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Abstract

In this paper, we first present the character texture generation system Minecraft-ify,
specified to Minecraft video game toward in-game application. Ours can generate
face-focused image for texture mapping tailored to 3D virtual character having cube
manifold. While existing projects or works only generate texture, proposed system
can inverse the user-provided real image, or generate average/random appearance
from learned distribution. Moreover, it can be manipulated with text-guidance
using StyleGAN and StyleCLIP. These features provide a more extended user
experience with enlarged freedom as a user-friendly AI-tool. Project page can be
found at https://gh-bumsookim.github.io/Minecraft-ify/

Figure 1: Rendered 3D character in Minecraft-World using our generated frontal character texture.

1 Introduction

Non-photorealistic image generative models with editability leads AI-based creation tools for comic
book, animation and video game. Recently, for specific domain with applicability, generative model
have been tailored with data-centric approach [4, 11, 12, 9, 3, 7]. In this paper, we present creation
tool, specified the 3D character texture of Mincraft-World2 based on StyleGAN [5, 6] and StyleCLIP
[8] including text-guided manipulation. With elaborately refined large Minecraft-World character
texture dataset, game player can generate the frontal face texture of 3D character and manipulate it
via text description with extended user experience and freedom.

∗Corresponding author
2https://www.minecraft.net/
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2 Method

Figure 2: Overview of our Minecraft-ify system.

Our proposed system aims to generate and manipulate Minecraft-World character image having
texture format. From that, we can provide wider user freedom for character creation with two paths:
A) inverse the user-provided real images, or B) generate the frontal texture from learned distribution.
Finally, they can manipulate generated image with text description. For inversion, our inversion
objective, was originally proposed from Image2StyleGAN [1], designed with simple modification:

argmin
w̃∈W̃+

λmse

N

∥∥∥G̃(w̃)− I↓

∥∥∥2
2
+ λstatLstat(G̃(w̃), Iorg), (1)

where G̃(·) is fined-tuned generator trained in preprocess with our large dataset which output the 8
by 8 image, w̃ ∈ R2×512 is limited latent vector in limited space W̃+ for specified Minecraft-World
texture, I↓ is downsampled real image with same size as G̃(w̃) and Lstat is statistics loss obtained by:

Lstat(G̃(w̃), Iorg) =
1

3

∑
c∈{R,G,B}

(
|µc(G̃(w̃)− µc(Iorg)|+ |σc(G̃(w̃)− σc(Iorg)|

)
, (2)

where µc and σc are mean and standard deviation of c channel, respectively. With Lstat, we explicitly
force the generated texture to have similar image statistics with real image Iorg inspired by [2]. After
inversion, we apply the StyleCLIP [8] via text using latent optimization method without identity loss:

argmin
w̃∗

fin∈W̃+

DCLIP(G̃(w̃∗
fin), t) + λL2

∥∥w̃∗
fin − w̃∗∥∥

2
, (3)

where w̃∗ is fixed vector obtained by inversion process, DCLIP output the similarity between image
and text using CLIP [10] image-, text-encoder and t is tokenized vector from text description. From
Eq. 3, we can finalize the manipulation process for in-game texture generation and editing through
StyleCLIP-based [8] optimized vector w̃∗

fin as G̃(w̃∗
fin). Player also can utilize average vector w̄ or

random vector wrandom instead of inversed vector w̃∗ in Eq. 3 without considering real image input.

3 Conclusion

To generate and manipulate the Minecraft-World texture toward in-game application, we proposed
Minecraft-ify that can fully support the functions for enhanced user-freedom as user-friendly AI-tool
using StyleGAN [5, 6] and StyleCLIP [8]. From experimental results, we demonstrated that the text-
guided manipulation can enough provide semantically plausible appearance although it was derived
from user-wanted real sample by inversion. Additionally, we also showed that user can generate
seamless random or average appearance texture from the learned distribution without considering the
input images.
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4 Ethical Implications

Our large dataset originally obtained from here using Public Domain license. Our system generate
the image via text with CLIP [8]. CLIP is known to have unwanted data-bias issues by training
dataset. Thus, it is important that the user do not use this work for generating harmful or unpleasant
things. Note that this work is proposed for entertainment purposes only to easily create diverse
character texture to enrich the in-game play experience.

5 Acknowledgement

This research was supported by Culture, Sports and Tourism R&D Program through the Korea Creative
Content Agency(KOCCA) grant funded by the Ministry of Culture, Sports and Tourism(MCST)
in 2023 (Project Name: Development of digital abusing detection and management technology for
a safe Metaverse service, Project Number: RS-2023-00227686, Contribution Rate: 50%) and the
National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)
(No.2022R1A2C1004657, Contribution Rate: 50%).

References
[1] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan: How to embed images into the stylegan

latent space? 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages
4431–4440, 2019.

[2] M. Afifi, M. A. Brubaker, and M. S. Brown. Histogan: Controlling colors of gan-generated and
real images via color histograms. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 7941–7950, 2021.

[3] J. Back, S. Kim, and N. Ahn. Webtoonme: A data-centric approach for full-body portrait
stylization. SIGGRAPH Asia 2022 Technical Communications, 2022.

[4] Z. Hao, A. Mallya, S. J. Belongie, and M.-Y. Liu. Gancraft: Unsupervised 3d neural rendering
of minecraft worlds. 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 14052–14062, 2021.

[5] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4396–4405, 2018.

[6] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving
the image quality of stylegan. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8107–8116, 2019.

[7] Z. Li, Y. Xu, N. Zhao, Y. Zhou, Y. Liu, D. Lin, and S. He. Parsing-conditioned anime translation:
A new dataset and method. ACM Transactions on Graphics, 42:1 – 14, 2023.

[8] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischinski. Styleclip: Text-driven
manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2085–2094, 2021.

[9] J. N. M. Pinkney and D. Adler. Resolution dependent gan interpolation for controllable image
synthesis between domains. ArXiv, abs/2010.05334, 2020.

[10] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, 2021.

[11] Z. Wu, L. Chai, N. Zhao, B. Deng, Y. Liu, Q. Wen, J. Wang, and S. He. Make your own sprites.
ACM Transactions on Graphics (TOG), 41:1 – 16, 2022.

[12] R. Zhao, W. Li, Z. Hu, L. Li, Z. Zou, Z. X. Shi, and C. Fan. Zero-shot text-to-parameter
translation for game character auto-creation. 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 21013–21023, 2023.

3

https://www.kaggle.com/datasets/sha2048/minecraft-skin-dataset?select=Skins


Appendices
A StyleGAN fine-tuning

Before GAN inversion and CLIP-based optimization process, generator is fine-tuned with face texture
dataset. Since our output has 8 by 8 image, the partial convolution layers are learnable in training.
Thereby, latent vector also include first two coarse-level elements w̃ ∈ R2×512.

In training, fine tuning from FFHQ-weight converge more fast than weight initialization (i.e., from
scratch), and we used 1024, 512 batch size for 4 by 4 and 8 by 8 output, respectively. For 20K
iterations, it took about 6 hours under 1 NVIDIA RTX 3090 24GB.

Generator architecture is based on StyleGAN13 since we can not find any difference between Style-
GAN1 and StyleGAN2 outputs. In our knowledge, this is because output pixel has low representation
capability with partially used convolution layers against overall StyleGAN.

B Dataset refinement

Based on open-dataset, we further collect texture dataset to cover the unique or hand-crafted texture
as many as possible. To elaborate the training dataset, data refinement process is conducted: (a) reject
low standard deviation, (b) reject meaningless pattern image like chessboard, (c) reject monochromatic
image. Total refined dataset include about 35K textures. Result about dataset refinement is shown in
Fig. 3.

Figure 3: Dataset refinement result.

C Additional experiments

To depict a character in popular or celebrated animation, we inverse and edit non-photorealistic
image. As shown in Fig. 4, fine-level character faces (Fig. 4 (b)) are easily collapsed while losing
their detailed information. Simple or coarse-level character faces without high-frequency details are
relatively preserved compared to aforementioned one, it often shows an unsatisfactory appearance by
inversion process. It relies heavily on user-provided image sample that can come from a wide variety
of domains including different rendering styles, structures, color distributions, and so on. In addition,
we perform random generation from our learned distribution as shown in Fig. 5.

3https://github.com/SiskonEmilia/StyleGAN-PyTorch
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Figure 4: Additional results with famous animation characters.

Figure 5: Random generated texture from learned distribution.
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D In-Game screenshot

In this section, we showcase the overall screenshot images using our results as shown in Fig. 6

Figure 6: In-Game screenshots using our edited face texture.

E Future work

This work aims to generate character texture for in-game application. In Minecraft world, virtual
character include face, body texture. For entire texture generation, we know that our system need to
generate all the texture not only face but also body and others. To this end, we are continuing our
Minecraft-ify research project to cover this issue in additional method. Target goal of future work
may include generating face, body, and accessories.
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