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Abstract

Detecting mirror regions in RGB videos is essential for scene
understanding in applications such as scene reconstruction
and robotic navigation. Existing video mirror detectors typi-
cally rely on cues like inside-outside mirror correspondences
and 2D motion inconsistencies. However, these methods of-
ten yield noisy or incomplete predictions when confronted
with complex real-world video scenes, especially in areas
with occlusion or limited visual features and motions. We
observe that human perceive and navigate 3D occluded en-
vironments with remarkable ease, owing to Motion-in-Depth
(MiD) perception. MiD integrates information from visual
appearance (image colors and textures), the way objects move
around us in 3D space (3D motions), and their relative dis-
tance from us (depth) to determine if something is approach-
ing or receding and to support navigation. Motivated by this
neuroscience mechanism, we introduce MiD-VMD, the first
approach to explicitly model MiD for video mirror detection.
MiD-VMD jointly utilizes contrastive 3D motion, depth, and
image features through two novel modules based on a combi-
national QKV transformer architecture. The Motion-in-Depth
Attention Learning (MiD-AL) module captures complemen-
tary relationships across these modalities with combinato-
rial attention and enforces a compact encoding to represent
global 3D transformations, resulting in more accurate mirror
detection and reduced motion artifacts. The Motion-in-Depth
Boundary Detection (MiD-BD) module further sharpens mir-
ror boundaries by leveraging cross-modal attention on 3D
motion and depth features. Extensive experiments show that
MiD-VMD outperforms current SOTAs. The code is avail-
able at https://github.com/Alex Anthony Warren1/MiDVMD.

Introduction

Mirrors are abundant in the real world. Successful detec-
tion of mirror regions is crucial for reducing errors in many
downstream vision tasks such as scene parsing (Huang et al.
2019), 3D reconstruction (Guo et al. 2022; Zeng et al. 2023),
and autonomous navigation (Pal, Mondal, and Christensen
2020). However, detecting mirror regions is challenging be-
cause mirrors lack a consistent visual appearance and in-
stead reflect their surrounding scenes.

Yang et al. (2019) propose the first image-based mir-
ror detection method by modeling contrasting image fea-
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Figure 1: The SOTA video mirror detection MGVMD (War-
ren et al. 2024) primary models 2D motion, which fails
in featureless or weak-motion regions (lower example, 6th
column). The upper example illustrates three complemen-
tary cues: RGB appearance (a), contrastive 3D motion (b),
and depth (c). These complementary cues, shown across
columns 14 in the lower example, correlate strongly inside
and outside mirrors and provide greater robustness than 2D
motion alone. This observation aligns with human MiD per-
ception, motivating our MiD-inspired approach.

tures between mirror and non-mirror regions. Two subse-
quent methods (Mei et al. 2021; Tan et al. 2021) incor-
porate depth sensors to model contrasted features. Other
approaches model appearance correspondence (Lin, Wang,
and Lau 2020), semantic correlations (Guan, Lin, and Lau
2022), visual chirality (Tan et al. 2023), and coarse symme-
try (Huang et al. 2023) between mirror and non-mirror re-
gions. All these methods, however, address mirror detection
only within single RGB or RGB-D images.

Lin et al. (2023) propose VMD-Net, the first video mirror
detection method, modeling appearance correspondences
within and across frames. Yet, such correspondences can be
unreliable: when two similar objects/regions both appear ei-
ther inside or outside a mirror, VMD-Net may misclassify



one as inside and the other outside (Tan et al. 2023). Re-
cently, Warren et al. (2024) propose MGVMD, which mod-
els inconsistent motion inside and outside mirror regions us-
ing 2D optical flow. Although interesting, this method may
be prone to noise in flow fields, especially in occluded or
complex scenes, leading to over- or under-predictions. It also
struggles with featureless regions common in mirror reflec-
tions from plain surfaces like walls, floors, and furniture.

In this work we make three key observations moti-
vating our approach. First, humans perceive the world
in 3D and handle noisy occluded environments using a
well established neuroscience cue called Motion-in-Depth
(MiD) (Kim, Angelaki, and DeAngelis 2015; Baker and Bair
2016; Uka and DeAngelis 2006). MiD helps us sense our
surroundings and navigate by combining several types of
information: 1) what we see with our eyes such as colors
textures and shapes (image features); 2) how objects move
through space around us (3D motion); and 3) how far away
things are (depth). By integrating these clues, the brain ro-
bustly understands motion in depth and judges distances
even in complex scenes, especially those with mirror reflec-
tions and challenging occlusions. Second, although depth
and motion features can be high dimensional and noisy, 3D
motions in mirror scenes can often be simplified into two
low dimensional transformations—one inside and one out-
side mirror regions—helping reduce noise. Third, as shown
in Fig.1 (top row), image depth and motion features comple-
ment each other strongly, providing reliable cues for mirror
localization. These insights guide us to leverage the Motion-
in-Depth cue for robust video mirror detection.

To this end, we propose MiD-VMD, a novel approach to
leverage the Motion-in-Depth cue by jointly exploring con-
trastive 3D motion, depth, and image feature spaces. Our
framework incorporates two key modules: Motion-in-Depth
Attention Learning (MiD-AL) and Motion-in-Depth Bound-
ary Detection (MiD-BD). MiD-AL leverages the comple-
mentary relationships among image, depth, and 3D motion
features by mutually and combinatorially attending to all
three modalities, promoting comprehensive and redundant
information while enforcing low-dimensional embeddings
to reduce noise. MiD-BD exploits contrastive depth and 3D
motion cues to guide mirror boundary detection and ensure
accurate delineation, especially where depth or motion sig-
nals are weak.

To our knowledge, this is the first study to explicitly
model the Motion-in-Depth, unlike prior works that rely on
motion alone, depth alone, or a simple concatenation fusion
of both (which we term Motion-and-Depth, M&D) as auxil-
iary features (Mou et al. 2024). Our method captures corre-
lations among depth-conditioned 3D motion, depth, and im-
age features, leading to significant improvements in mirror
detection. Figure 1(a)-(c) illustrates these relationships, with
the bottom examples showing MiD-based detection. Our ap-
proach (5th column) remains robust even in featureless re-
gions that challenge humans. Importantly, MiD-VMD uses
only RGB inputs without explicit depth sensors, further dis-
tinguishing it from prior work. Our contributions are:

* We propose the first work to explicitly model the Motion-

in-Depth cue and leverage it for video mirror detection
through a novel framework, MiD-VMD, which exploits
the complementary and contrastive information among
depth, 3D motion, and image features.

e Our framework introduces two novel modules: MiD-
AL, which attentively models correlations among image,
depth, and low-dimensional 3D motion features to lo-
cate mirror regions; and MiD-BD, which uses contrastive
depth and 3D motion cues at mirror boundaries to guide
accurate boundary learning.

Extensive experiments demonstrate that MiD-VMD out-
performs state-of-the-art video mirror detection methods,
is efficient and flexible (requiring only RGB inputs), and
is robust across different depth estimation methods.

Related Work

Image-based Mirror Detection. Yang et al. (2019) propose
the first image-based mirror detection method, based on con-
textual contrasting features, and the first benchmark dataset
for training/evaluation. Several methods have been subse-
quently proposed for this task. Lin er al. (2020) propose
a mirror detection method based on detecting appearance
correspondences between inside and outside mirror regions.
Mei et al.(2021) extend the approach in (Yang et al. 2019)
by leveraging RGB-D input data for mirror prediction and
introducing an RGB-D image dataset for image-based mir-
ror detection. Tan et al. (2021) propose to detect 3D mirror
planes using a mask RCNN (He et al. 2017) and a mirror
normal prediction network. Guan et al. (2022) consider that
mirrors are typically placed in correlation with certain types
of objects, and propose to learn semantic correlation as a
cue for mirror detection. Tan et al.(2023) propose a mirror
detection method based on detecting visual chirality at the
pixel level. Huang et al. (2023) propose to model the coarse
symmetry property of an object and its reflection in the mir-
ror for mirror detection. He et al. (2023) propose to detect
mirror regions based on the intensity-based low-level and
semantics-based high-level features. Xing et al. (2025) pro-
pose a semi-supervised mirror detection framework with an
iterative data engine and dual-scoring approach.

While these image-based methods exhibit good perfor-
mance, they are not well-suited for our video mirror de-
tection task, as they focus on mirror detection in singular
frames and do not consistently perform well.

Video Mirror Detection (VMD). Recently, Lin et al. (2023)
propose the first VMD method, VMD-Net, and the VMD-D
dataset. VMD-Net utilizes dual correspondences to correlate
objects within and across frames for VMD. Despite the suc-
cess, object correspondences may not always be found be-
tween inside and outside of the mirror. Xu et al. (2024) pro-
pose a weakly-supervised method to model the feature sim-
ilarity and contrast in temporal variations, but their method
may not always be reliable due to their extremely weak su-
pervision of per-frame zero-one mirror indicators in videos.
Warren et al. (2024) introduce a VMD method, MGVMD,
using 2D optical flow vector fields to detect motion incon-
sistencies in and around mirror regions. However, this ap-
proach is sensitive to noise from high-dimensional motion.



In addition, the reliance on optical flow and motion inconsis-
tencies makes MGVMD less effective when image features
are weak or video motions are small.

In this work, we propose a novel approach to directly learn
contrasting correlations in depth and 3D motion for VMD.
Our approach is flexible (not requiring RGBD inputs), and
shown to be robust to different depth estimators.

Video Salient Object Detection (VSOD). VSOD involves
identifying prominent objects in videos. Deep-learning
based VSOD methods (Jun Wei 2020; Fan et al. 2019; Ji
etal.2021; Li et al. 2019; Liu et al. 2022; Tang, Li, and Xing
2021; Zhao et al. 2024; Zhang et al. 2021; Gu et al. 2020;
Wang, Shen, and Shao 2017; Xu et al. 2021) have achieved
promising performances by exploiting the strong representa-
tion capacity of neural networks, e.g., modelling long-term
temporal (Liu et al. 2022), dynamic context (Zhang et al.
2021) multi-level (Gu et al. 2020) features, and preserv-
ing spatial continuity with a Mamba-based (He et al. 2025)
framework. Despite their success, it is important to note that
VSOD methods are not designed or optimized for the VMD
task, as mirror regions are not always the most prominent
salient objects within a scene and lack distinct visual fea-
tures of their own. Our experiment shows that our proposed
method performs better than these VSOD methods.

Motion, Depth, Motion-and-Depth (M&D), and Motion-
in-Depth (MiD). Multi-modal features like motion and
depth are widely used independently in tasks such as mirror
detection (Yang et al. 2019; Warren et al. 2024), 3D recon-
struction (Ju et al. 2023), VSOD (Li et al. 2019), and camou-
flage object detection (Cheng et al. 2022). We term Motion-
and-Depth (M&D) the simple concatenation fusion of mo-
tion and depth as separate modalities; for example, DCT-
Net+ (Mou et al. 2024) uses 2D optical flow and depth maps
alongside RGB features. In contrast, MiD—which involves
motion in a 3D context, especially along the z-axis—has
been studied extensively in neuroscience (Kim, Angelaki,
and DeAngelis 2015; Baker and Bair 2016; Uka and DeAn-
gelis 2006). We explicitly model and capture MiD by in-
tegrating motion, depth, and image features using a com-
binatorial Query-Key-Value (QKV) transformer structure.
This learns complex cross-modal interactions to directly en-
code 3D motion cues. We find that a compact MiD encod-
ing strongly contrasts mirror and non-mirror regions. To our
knowledge, this is the first work to explicitly model and
leverage MiD for improved mirror detection.

Methodology

MiD-VMD leverages the Motion in Depth (MiD) cue (Kim,
Angelaki, and DeAngelis 2015; Baker and Bair 2016; Uka
and DeAngelis 2006) for video mirror detection. Human
brains perceive their surroundings by combining: 1) what
we see (image features); 2) how objects move in 3D space
(3D motion); and 3) how far away objects (depth). Inte-
grating these cues enables robust scene understanding even
in complex scenes. In mirror detection, this integration is
key because mirrors often cause visual ambiguities. Reflec-
tions may appear at conflicting depths or show motion pat-
terns inconsistent with the surrounding scene. MiD-VMD

leverages MiD for complementary image, motion, and depth
cues to resolve ambiguous depth and motion across mirror
boundaries, and accurately localize mirrors even in reflected,
cluttered or occluded environments. It outperforms existing
methods that rely on appearance, 2D motion, or depth alone.

Overview. Figure 2 provides an overview of MiD-VMD.
It processes three adjacent input images (Iy_2, In—_1, and
In) to estimate depth maps and perform 3D scene flow es-
timation. Depth maps Dy_; and Dy are estimated from
the image pairs (/y—_2, In—1) and (Ix—_1, I ), respectively,
using depth estimator like (Lipson, Teed, and Deng 2021).
(MiD-VMD is robust to various depth estimators.) These
depth maps, along with images Iny_; and Iy, condition a
frozen RAFT-3D (Teed and Deng 2021) model to gener-
ate 3D scene flow features, denoted as Featgg. A shared
ResNext-101 (Xie et al. 2017) backbone extracts multi-scale
image features, F'eaty_1 and Featy, from the inputs.

To fully utilize the MiD cue for mirror detection, two
novel modules are introduced, both of which take depth-
conditioned 3D motion, depth features, and image features
as input. The Motion-in-Depth Attention Learning (MiD-
AL) module learns the complementary correlations between
regions inside and outside the mirror by combining these
features, with the help of a low-dimensional motion embed-
ding. The Motion-in-Depth Boundary Detection (MiD-
BD) module uses scene flow and depth features to guide mir-
ror boundary predictions, particularly in challenging areas
such as featureless or motionless regions. Finally, the Fu-
sion Refinement Module integrates the outputs of MiD-AL,
MiD-BD, and multi-scale image features from the ResNext-
101 backbone. It refines the final mirror map predictions,
Predy_; for the previous frame and Pred for the current
frame, improving the accuracy of video mirror detection.

The MiD-AL Module

Existing methods rely on depth features from sensors (Mei
et al. 2021) or 2D motion features (Warren et al. 2024) to
guide the image features, but these can become noisy in low-
motion or low-contrast scenes, leading to inaccurate mirror
detection. On the other hand, Time-of-Flight (ToF) depth in-
puts are costly, and standalone depth estimators can be un-
stable. In this work, we explore the Motion-in-Depth (MiD)
cue by examining the relationship between 3D motion and
depth features. We first observe a strong complementary
correlation between Scene Flow (3D motion), Depth Esti-
mation, and Image Features for mirror localization, which
aligns with MiD. Additionally, we observe that 3D mo-
tion inside and outside the mirror can be captured by two
affine transformations, suggesting that low-dimensional en-
coding can further reduce noise from scene flow estimators.
Depth features further stabilize Scene Flow, enhancing scene
understanding through the z-axis (MiD). To this end, we
propose the Motion-in-Depth Attention Learning (MiD-AL)
module to locate mirror regions by modeling contrastive cor-
relations among 3D motion, depth, and image features.
Figure 3 shows the structure of the MiD-AL module,
which takes as input the depth features Depthc (which are
concatenated depth features from Depthy_1 and Depthy),
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Figure 2: Overview of our MiD-VMD: Given three consecutive input images (In, In.1, In), the Feature Extraction Mod-
ule—comprising a stereoscopic depth estimator, a scene flow estimator, and an image encoder—produces two depth maps
(Dn—1 and Dy), scene flow features (F'eatsr), and multi-scale image features (Featy_1 and Featy). The depth maps
(Dn—1 and Dy) are then fusion concatenated to (Depth¢). The multi-scale image features (Featy_1 and Featy) are then
fusion concatenated to (F'eatc). The fusion concatenated depth feature (Depthc), scene flow features (Fleatsr), and fusion
concatenated multi-scale image features (F'eat) are then processed by our Motion-in-Depth Attention Learning module (MiD-
AL) to learn correlations in contrastive regions and predict mirror localization features by attentively modeling the Motion-in-
Depth cue. Meanwhile, the fusion concatenated multi-scale image features (Featc), scene flow features (Featsr), and fusion
concatenated depth map (Depth¢) are fed into our Motion-in-Depth Boundary Detection module (MiD-BD), which extracts
and cross-guides mirror boundaries by exploiting depth discrepancies and contrasts within 3D motion at mirror boundaries.
Finally, the Fusion Refinement Module combines the mirror localization features from MiD-AL, the Motion-in-Depth guided
mirror boundary maps (Boundaryy—_1 and Boundaryy) from MiD-BD, and the multi-scale image features (Feat_1 and
Feat ) to predict the final mirror maps (Predy_; and Predy), respectively.

This encoding is crucial for reducing noise from high-

dimensional movements, occlusions, and low-contrast re-
Patch gions. The ablation of encoding dimension (Table 3) fur-
Sk S ther supports this. We then apply patch embedding with
positional information to each set of input features, creat-
ing low-dimensional, learnable representations for 3D scene
flow (Embedycene), depth (Embedgepn), and multi-scale im-
age features (Embed;mage). To capture these complementary
correlations, we assign Embedgcene as Q3K3V3, Embedgepn
as Q2K,V;, and Embed;mage as QK V. This configuration
leverages the unique strengths of each set of features: sensi-
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Figure 3: MiD-AL module models correlated contrastive re-

gions in scene flow, depth, and image features to identify
mirror locations. Operating in a 16-D space (| for dimension
reduction), it learns the global 3D affine transformations in-
side and outside mirrors, reducing noisy predictions.

the multi-scale image features F'eatc (which are concate-
nated image features from Featy_1 and Featy), and the
scene flow features Featgsp. To reduce noise in Featgp,
we first encode Featsp into a lower-dimensional space
(16-D), as motions inside and outside mirrors are typi-
cally described by two 3D global affine transformations.

tivity to motion for 3D scene flow features, structural stabil-
ity for depth features, and the multi-scale context for image
features. Finally, we use self-attention within a transformer
block, leveraging the following combinations of queries
(Q) and keys and values (K, V): [(Q;K;,V»), (Q1K3V3),
(Q2K1V1), (Q2K35V3), (Q3K1Vy), (Q3KyV3)], to capture a
correlated feature space across all three input modalities.
The output from this mechanism is subsequently passed
through a convolutional layer, producing the mirror local-
ization prediction. This is critical for our Fusion Refinement
Module, which enhances the final mirror prediction.



The MiD-BD Module

As highlighted, depth and 3D motion provide complemen-
tary strengths: while depth offers stable priors in low-motion
scenes, 3D motion compensates when depth estimates are
unstable, as captured by Motion-in-Depth (MiD) cues for
mirror localization. However, occasional weak signals from
depth and motion estimators may still introduce inconsis-
tencies along mirror boundaries. These observations moti-
vate the design of our Motion-in-Depth Boundary Detection
(MiD-BD) module, which detects mirror boundaries using
estimated depth and 3D motion features. To address poten-
tial weak signals, we use a feature-guidance approach in-
stead of relying solely on mutual feature attention. We cross-
guide scene flow and depth with mirror boundary features
from both low-level (textures) and high-level (semantics)
image features. This enhances mirror boundary detection.

Figure 4 shows the structure of the MiD-BD module,
which takes three inputs: Featc (concatenated image fea-
tures F'eatn_1 and Featy), Featsr (Scene Flow 3D mo-
tion), and Depthc (concatenated depth features Depth 1
and Depthy). We first apply a convolutional boundary
feature extraction network to extract boundary features
(Feat Boundary) from Featc, ensuring that fine-grained de-
tails and contextual information are captured effectively. We
then fuse the input depth features Depthc and scene flow
features F'eatgr to obtain Feal pepinsr. Subsequently, we
take advantage of the dynamic weighting capacity of the
cross-attention mechanism to guide the extracted bound-
ary features F'eat goundary With contrastive features found
within Feat pepinsr (Depthe and Featgr). We compute
attention weights (Beta values) that direct the focus onto
relevant F'eat pepinsr features, which facilitate the refine-
ment of boundary features and align them more closely
with the abrupt depth changes and 3D motion changes ob-
served along mirror boundaries. Finally, the refined Motion-
in-Depth boundary features are processed via a convolu-
tional layer to produce the Motion-in-Depth guided mirror
boundary maps Boundaryy_1 and Boundaryy. In this
way, our module captures and accentuates the sharp bound-
aries indicative of mirror regions.

Unlike existing methods that use separate edge detection
or apply edge preservation losses, our approach leverages
3D motion and depth features to guide mirror boundary
learning. By combining temporal features from Featn_1
and Feat in a single module call, we reduce memory us-
age and improve runtime, distinguishing our method from
techniques like MGVMD (Warren et al. 2024), which rely
on sequential calls. Further, our lightweight MiD-BD fo-
cuses on mirror boundaries.

Fusion Refinement Module

We extend the refinement module in (Lin, Wang, and Lau
2020) to handle multiple input modalities, enhancing the ac-
curacy of mirror predictions Predy_1 and Predy. Specif-
ically, the Fusion Refinement Module combines Featn_1
and Boundaryy_1 from MiD-BD with mirror localization
features from MiD-AL to predict the mirror map Predy_.
Similarly, it integrates F'eaty and Boundaryy from MiD-
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Figure 4: Our MiD-BD module predicts mirror boundaries
from depth discrepancies inside and outside mirror regions.
® denotes matrix multiplication. It is lightweight and pro-
vides boundary cues in featureless mirror regions.

BD with MiD-AL features to predict Predy. Each com-
bined representation is then processed through convolutional
layers for per-pixel binary classification.

Loss Function

We train our model with the following loss function:

(a . ACMap) + [fCrossModal + ACBounclary'f'
EStruclural + EBoundaryCoherence + ECoherence

»CMirror = (1)
Mirror Loss (Lyap) is a BCE loss that measures the ac-
curacy between the predicted mirror masks Predy_; and
Predy and the ground truth mirror masks. We empirically
set a to 3 to emphasize the accuracy in detecting mirrors in
our video mirror detection task.
Depth and 3D Motion Prediction Loss (LciossModal) 1S
BCE loss between the predicted mirror localisation map
from the MiD-AL and the ground truth mirror map.
Mirror Boundary Loss (Lpoundary) is @ BCE loss computed
between the detected mirror boundaries by the MiD-BD and
the ground truth mirror boundaries.
Scene Flow Structural Constraint (Lsyucura). We use a
covariance loss (Liu, Hu, and Salzmann 2023) to constrain
structural coherence and reduce noisy motion in the low-
dimensional encoded scene flow. It also facilitates the cap-
ture of more meaningful contrastive cues, especially from
mirror regions.
Coherence Loss (Lcoherence)- We use a BCE loss to tempo-
rally regulate the mirror predictions Predy and Predy_1
to drive temporal consistency in video mirror detection.
Coherence Boundary Loss (LpoundaryCoherence). We use a
BCE loss to temporally regulate the mirror boundary pre-
dictions Boundaryy—1 and Boundaryy to drive temporal
consistency in video mirror boundary detection.

Ablation studies on loss weighting and full loss analysis
can be found in the Supplemental.

Experiments

Implementation Details. Our method is implemented in
PyTorch and trained on one NVIDIA RTX3090 GPU. In pre-
processing, input RGB images, ground-truth mirror maps,
and edge maps are resized to 224 x 224. We initialize
the ResNext-101 (Xie et al. 2017) backbone from VMD-
Net (Lin, Tan, and Lau 2023) pretrained weights. The model



Table 1: Comparison of Video Mirror Detection (VMD),
Image-based Mirror Detection (IMD), Video Salient Ob-
ject Detection (VSD) and Video Object Segmentation (VOS)
methods on the MMD dataset (Warren et al. 2024).

Models Tasks Venues  Fgt TIoUT  Accuf MAE]
F3Net (Jun Wei 2020) VSD AAAI20 0.852 0.696 0.851  0.149
FSNet (Ji et al. 2021) VSD ICCv2l  0.831 0.710 0.853 0.147
MGA (Li et al. 2019) VSD ICCV19 0506 0.299 0577 0423
UFO (Su et al. 2023) VSD TMM23 0.799 0.601 0.798  0.202
Samba (He et al. 2025) VSD CVPR25 0.838 0.724 0.861 0.139
MirrorNet (Yang et al. 2019) IMD ICCVI9 0.845 0.674 0.840  0.160
PDNet (Mei et al. 2021) IMD CVPR21 0.824 0.722 0.857 0.143

PMDNet (Lin, Wang, and Lau 2020) IMD  CVPR20 0.839 0.400 0.731 0.269
VMDNet (Lin, Tan, and Lau 2023) VMD CVPR23 0812 0723 0854  0.150
MGVMD (Warren et al. 2024) VMD CVPR24 0869 0.725 0873  0.128
SAM2 (Ravi et al. 2025) VOS ICLR25 0.743 0.651 0.801 0.199
Ours VMD - 0884 0.746 0.889 0.112

is trained for 15 epochs with early stopping using SGD with
an initial learning rate of 9¢ — 3, momentum 0.9, weight
decay 5e — 4, thresholding 0.5, batch size 8. An adaptive
schedule interpolates the learning rate from 9e — 3 to 3e — 3
over epochs 1-15. We adopt non-overlapping dataset splits
from (Warren et al. 2024) and VMD-D (Lin, Tan, and Lau
2023).

Evaluation Methods and Metrics. We evaluate our method
against 11 state-of-the-art methods, including two video mir-
ror detection methods (i.e., MGVMD (Warren et al. 2024)
and VMDNet (Lin, Tan, and Lau 2023)), a large foun-
dational video segmentation method SAM2 (Ravi et al.
2025), five video salient object detection methods (i.e.,
F3Net (Jun Wei 2020), FSNet (Ji et al. 2021), MGA (Li
et al. 2019), UFO (Su et al. 2023), and Samba (He et al.
2025)), and three image-based mirror detection methods
(i.e., PDNet (Mei et al. 2021), MirrorNet (Yang et al. 2019),
and PMDNet (Lin, Wang, and Lau 2020)). We use their re-
spective pre-trained weights, fine-tune and validate them on
the video mirror dataset MMD (Warren et al. 2024)!

We use the Intersection over Union (IoU?) for a geometric
interpretation of how predictions overlap with ground truth
mirror masks, and the F-beta Score (Fg?) for considering
both precisions and recalls. We also report the per-pixel ac-
curacy/MAE (Accuracyt/MAE)) for a reference.
Quantitative Comparison. Table 1 reports the results on
the MMD dataset (Warren et al. 2024). We can see that by
leveraging 2D motion cues, the state-of-the-art MGVMD
method typically outperforms previous mirror detectors in
terms of Fg. However, it still struggles to detect mirrors in
complex scenes with clustered or featureless regions, result-
ing in an IoU similar to those of appearance correspondence-
based VMDNet and RGBD-based PDNet. Meanwhile, the
results show that fine-tuning large foundational model for
video object segmentation (SAM?2) may not be optimal to
video mirror detection. In contrast, we learn mirror represen-
tations by modeling the motion-in-depth cue, which corre-
lates contrastive contextual features in low-dimensional 3D
motion, depth, and RGB modalities, yielding consistently
better results on all four metrics. We provide speed and pa-

"We evaluate on VMD-D (Lin, Tan, and Lau 2023). MiD-VMD
surpasses SOTA in Accuracy? and MAE|. However, VMD-D has
labeling errors and many small mirrors (Warren et al. 2024), reduc-
ing representativeness. Results are discussed in the supplemental.

Table 2: Model ablation study on the MMD dataset.

Ablated Models Fst IoUT  Accuracy? MAE|
Baseline 0.806 0.681 0.856 0.144
Baseline + MiD-AL  0.843  0.718 0.872 0.128
Baseline + MiD-BD  0.861 0.724 0.875 0.125
Ours 0.884 0.746 0.889 0.112

Table 3: Ablation on dimensions of the MiD-AL module.

Dimensions FBetat IoUT  Accuracyl MAE]
128 (None) 0.814  0.713 0.871 0.129
32 0.850 0.736 0.872 0.128
8 0.861  0.737 0.879 0.121
Ours (16) 0.884 0.746 0.889 0.112

rameter analysis of our method against SOTA methods in the
Supplemental (our model ranks second in inference time).
Qualitative Comparison. We provide visual comparison in
Figure 5, where we observe several key points. First, our
method shows improved temporal consistency and reduced
noise in predictions. This is attributed to the MiD-AL mod-
ule, which learns mirror representations from the correla-
tion of contrastive features in 3D motion, depth, and RGB
modalities, while leveraging a low-dimensional 3D motion
prior to minimize noise. Second, our method effectively pre-
dicts mirror regions of varying shapes, sizes, and scenes,
demonstrating the robustness of our approach by model-
ing Motion-in-Depth. Additionally, the lightweight MiD-
BD module enhances the boundary of the mirror predictions,
allowing accurate mirror detection even in featureless or mo-
tionless regions, such as reflections from plain walls.

Internal Analysis

Proposed Modules. We evaluate the effectiveness of our
modules on the MMD dataset, as summarized in Table 2.
First, we remove both the Motion-in-Depth Attention Learn-
ing (MiD-AL) and Motion-in-Depth Boundary Detection
(MiD-BD) modules to form the Baseline (b), representing
performance without multi-modality correlations or con-
trastive 3D features. We then add each module individ-
ually for ablation, denoted as ‘“Baseline+MiD-AL” and
“Baseline+MiD-BD”. Table 2 demonstrates that both mod-
ules improve results over the baseline, highlighting the value
of modeling 3D motion, depth, and image features. The
full model yields the best performance, with sharper mirror
boundaries attributed to contrastive boundary feature learn-
ing. Figure 6 provides qualitative comparisons: b+MiD-BD
enhances boundary quality over the baseline, while b+MiD-
AL further improves mirror localization. Combining both
modules delivers the most accurate results overall.

Dimensions in MiD-AL. We hypothesize that motion-in-
depth cues can be effectively modeled using two global
(affine) transformations, one for the motion inside the mirror
and one for outside, resulting in a low o-dimensional repre-
sentation (12 < o < 12 4 12 = 24). To test this hypothe-
sis, we perform an ablation study on the dimensions, using
the MMD dataset and the MiD-AL without low-dimensional
encoding as baseline (denoted as “128 (None)” in Table 3).
Next, we ablate on encoding dimensions of 32, 16 (Ours),
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Table 4: Comparisons of MiD to motion, depth, and M&D.

Models Types Fst IoUT  Acct MAE]
MGVMD 2D Motion  0.869 0.725 0.873 0.127
MGVMD+SF 3D Motion  0.874 0.742 0.868 0.132
DCTNet+ (Mou et al. 2024) M&D 0.827 0.729 0.861 0.140
Ours-Depth Only (No Scene Flow)  Depth 0.852 0.709 0.868 0.132
Ours MiD 0.884 0.746 0.889 0.112

Table 5: Robustness of MiD-VMD to depth estimation.

Models Fsgt ToUT Acct MAE]
Ours (ML-Depth-Pro (Bochkovskii et al. 2025)) 0.879 0.758 0.890 0.110
Ours (DepthAnything-V2 (Yang et al. 2024)) 0.878 0.751 0.888 0.112
Ours (GA-Net (Zhang et al. 2019)) 0.857 0.727 0.874 0.126

Ours (Raft-Stereo (Lipson, Teed, and Deng 2021)  0.884 0.746 0.889 0.112

and 8. Table 3 shows that our MiD-AL module with a di-
mension of 16 delivers the best performance.

MiD vs. Motion, Depth, and M&D. Previous works, in-
cluding those beyond mirror detection, typically rely on
either depth (Li et al. 2023) or motion (Li et al. 2019)
alone, or use simple motion-depth (M&D) fusion (Mou et al.
2024). To demonstrate the effectiveness of our MiD cue,
we further conduct comprehensive ablations. We first adapt
MGVMD (Warren et al. 2024) by replacing its 2D optical
flow with 3D scene flow to assess the impact of 3D motion.
We then compare against DCTNet+ (Mou et al. 2024), a re-
cent SOTA VSOD method that explicitly models 2D motion
and depth (M&D). Last, we include a depth-only baseline
by reducing RAFT-3D to single-frame depth input. Results
in Table 4 show that our method consistently outperforms
all alternatives, highlighting the value of explicitly model-
ing 3D motion (MiD) inspired by human perception.

Depth Estimation Ablation Study. Table 5 presents abla-
tion results using ML-Depth-Pro (Bochkovskii et al. 2025),
DepthAnything-V2 (Yang et al. 2024), GA-Net (Zhang et al.

MirrorNet

PDNet PMDNet SAM2 VMDNet MGVMD Ours GT

Image  baseline b+MiD- b+MiD-  Ours
AL BD

Figure 6: Qualitative results of the ablated models.

2019), and Raft-Stereo (Lipson, Teed, and Deng 2021)
depth estimators. While ML-Depth-Pro achieves the best
Acct and MAEJ, its inference speed is considerably slower.
DepthAnything-V2 and Raft-Stereo show similar perfor-
mances. This demonstrates the robustness of our model
to different depth estimators. Supplemental provides more
analysis and timing comparison of our method.

Conclusion

We propose the first method to derive and apply the Motion-
in-Depth (MiD) cue without depth sensors for video mir-
ror detection. Our MiD-VMD model introduces two mod-
ules: MiD-AL (Motion-in-Depth Attention Learning), which
reduces noise and exploits correlations among 3D motion,
depth, and image features, and MiD-BD (Motion-in-Depth
Boundary Detection), which improves mirror boundary de-
tection in motionless or featureless regions. MiD-VMD sur-
passes state-of-the-art methods but is not yet real-time. Fu-
ture work will focus on accelerating inference via distillation
for resource-constrained scenarios such as drone surveying.
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