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ABSTRACT

Machine learning is increasingly deployed in safety-critical domains where erro-
neous predictions may lead to potentially catastrophic consequences, highlighting
the need for learning systems to be aware of how confident they are in their own
predictions: in other words, ‘to know when they do not know’. In this paper, we
propose a novel Random-Set Neural Network (RS-NN) approach to classification
which predicts belief functions (rather than classical probability vectors) over the
class list using the mathematics of random sets, i.e., distributions over the col-
lection of sets of classes. RS-NN encodes the ‘epistemic’ uncertainty induced by
training sets that are insufficiently representative or limited in size via the size
of the convex set of probability vectors associated with a predicted belief func-
tion. Our approach outperforms state-of-the-art Bayesian and Ensemble methods
in terms of accuracy, uncertainty estimation and out-of-distribution (OoD) detec-
tion on multiple benchmarks (CIFAR-10 vs SVHN/Intel-Image, MNIST vs FM-
NIST/KMNIST, ImageNet vs ImageNet-O). RS-NN also scales up effectively to
large-scale architectures (e.g. WideResNet-28-10, VGG16, Inception V3, Effi-
cientNetB2 and ViT-Base-16), exhibits remarkable robustness to adversarial at-
tacks and can provide statistical guarantees in a conformal learning setting.

1 INTRODUCTION

Machine learning models often struggle to provide reliable predictions when confronted with unfa-
miliar data (Guo et al., 2017a; Ovadia et al., 2019; Minderer et al., 2021), may it be noisy samples
(Papernot et al., 2016) deliberately designed to deceive models, or out-of-distribution data (OoD)
beyond the model’s training distribution. An ideal learning system, in opposition, should be aware of
how confident it is in its own predictions, acknowledge the limits of its knowledge and gauge these
limitations to make informed decisions by modelling the epistemic uncertainty associated with it, in
essence, ‘to know when it does not know’. Epistemic uncertainty pertains to uncertainty associated
with our ignorance about the underlying data generation process (Kendall & Gal, 2017; Hüllermeier
& Waegeman, 2021; Manchingal & Cuzzolin, 2022). Within machine learning, a major source of
epistemic uncertainty arises from the limited representativeness of the available training data, con-
strained in both quantity and quality.

In this paper, we propose a new approach to classification which models epistemic uncertainty using
a random set approach (Molchanov, 2005; 2017). As they assign probability values to sets of out-
comes directly, random sets can naturally model the fact that observations often come in the form
of sets (in particular, when missing data occurs), and accommodate ambiguity, incomplete data,
and non-probabilistic uncertainties. As classification involves only a finite list of classes, we model
uncertainty using belief functions (Shafer, 1976), the finite incarnation of random sets (Cuzzolin,
2018), whose theory (Shafer, 1976) is, in fact, a generalisation of Bayesian inference (Smets, 1986).
Classical (discrete) probabilities can be seen as special belief functions, and Bayes’ rule as a special
case of the Dempster’s rule of combination (Dempster, 2008) originally proposed for aggregating
belief functions. For readers less familiar with the topic, in §A.1 we recall the distinction between
classical probabilities and belief functions and the way they handle uncertainty in more detail. Fig.
1 contrasts the inference processes of our Random-Set Neural Network (RS-NN) and of a Bayesian
Neural Network (Jospin et al., 2022). In hierarchical Bayesian inference (top), a posterior distri-
bution over the network’s weights is learned from a training set. At prediction time, a predictive
distribution is generated in the target space (left) by sampling from this weight posterior (middle),
which amounts to a second-order probability distribution there (Hüllermeier & Waegeman, 2021).
A single (mean) prediction is then typically derived by Bayesian Model Averaging (BMA) (Hoeting
et al., 1999) (right), while uncertainty is measured by the entropy of the mean prediction and the
variance of the predictive distribution.
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Figure 1: Inference in a Bayesian Neural Network (top) as op-
posed to a Random-Set Neural Network (bottom), with corre-
sponding measures of uncertainty and their sources. The triangle
represents the set of probability vectors (probability simplex) one
can define on the target space (e.g., a set of 3 classes).

Epsilon: 0.05

Epsilon: 0.01 True Label: '3'
Predictions:
RS-NN
{'3', 6'} : 48.25%
CNN
'4' : 96.74%

True Label: '3'
Predictions:
RS-NN
{'6'} : 32.59%
CNN
'4' : 99.01%

Figure 2: Confidence scores of
RS-NN and CNN for FGSM
adversarial attack for different
perturbations (ϵ = 0.05, 0.01) on
MNIST dataset.

In a Random-Set Neural Network (Fig. 1, bottom), each test input at inference time is mapped to
a belief function (Shafer, 1976) on the collection of classes C. This belief function is encoded by a
mass value m(A) ∈ [0, 1] assigned to a finite budget O = {Ak ⊂ C} of sets of classes (left). The
most relevant such sets are identified from training data by fitting a Gaussian Mixture Model (GMM)
to the labelled data and computing the overlap among the resulting clusters (Spruyt, 2013). Such a
predicted belief function is mathematically equivalent to a convex set of probability vectors (credal
set (Levi, 1980; Cuzzolin, 2008)) on the class list C (middle). A pointwise prediction (right) can then
be obtained by computing the centre of mass of this credal set, termed pignistic probability (Smets
& Kennes, 1994). In RS-NN, uncertainty can be expressed using either the entropy of the pignistic
prediction (analogously to the Bayesian case), or the width of the credal set prediction (Antonucci &
Cuzzolin, 2010). We find empirically that the pignistic entropy better separates in-distribution (iD)
and out-of-distribution (OoD) samples than Bayesian entropy does (see Tab. 2); the width of the
credal prediction, as it encodes the epistemic uncertainty about the prediction itself, is empirically
much less correlated with the confidence score than entropy (see §E.5.3).

Using a random-set representation prevents the need to discard information, a challenge observed in
Bayesian Model Averaging (Hinne et al., 2020; Graefe et al., 2015). While Bayesian inference re-
quires defining prior distributions for model parameters even in the absence of relevant information,
in belief theory priors are not required for the inference process, thus avoiding the selection bias
risks that can seriously condition Bayesian reasoning (Freedman, 1999). Based on our extensive ex-
periments on multiple datasets, including large-scale ones, RS-NNs not only demonstrate superior
accuracy compared to state-of-the-art Bayesian and Ensemble models (Sec. 4.2), but also arguably
better encode the epistemic uncertainty associated with the predictions (Sec. 4.4) and better dis-
tinguish in-distribution and out-of-distribution data (Sec. 4.3). Furthermore, RS-NNs effectively
circumvent the tendency of standard networks to generate overconfident incorrect predictions, as
illustrated in Fig. 2 in an experiment on Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014) adversarial attacks on MNIST (LeCun & Cortes, 2005). CNN misclassifies with high confi-
dence scores of 99.01% and 96.74%, while RS-NN shows lower confidence at 32.59% and 48.25%.

Contributions. Firstly, we propose a novel Random-Set Neural Network (RS-NN) approach based
on the principle that a deep neural network predicting belief values for sets of classes, rather than
individual classes, has the potential to be a more faithful representation of the epistemic uncertainty
induced by the limited quantity and quality of the training data. RS-NN is a ‘wrapper’ technique
that can be applied on top of any existing baseline network model, by just changing the output
layers and loss function. Statistical guarantees can also easily be provided for RS-NN predictions
by applying conformal prediction on the pignistic probabilities (see §A.4). Secondly, we outline a
budgeting method for efficiently selecting a limited budget of relevant sets of classes for the task at
hand given the available training data, by fitting Gaussian Mixture Models to the labelled training
points and computing their clusters. This overcomes the exponential complexity of vanilla random-
set implementations, ensures the scalability of the approach to large datasets, and helps the network
learn by limiting the available degrees of freedom (§E.7). Thirdly, we introduce two new meth-
ods for assessing the uncertainty associated with a random-set prediction: the Shannon entropy of
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the pignistic prediction and the width of the credal prediction itself, which prove to be more ro-
bust uncertainty measures. For instance, pignistic entropy provides a clearer distinction between
in-distribution (iD) and out-of-distribution (OoD) entropy (Fig. 18, §E.5.1), while credal set width
excels in separating iD and OoD samples, particularly for challenging datasets like ImageNet vs.
ImageNet-O (Tab. 7). Finally, we present a large body of experimental results (based on a fair com-
parison principle in which all competing models are trained from scratch) which demonstrate how
RS-NN outperforms both state-of-the-art Bayesian (LB-BNN (Hobbhahn et al., 2022), FSVI (Rud-
ner et al., 2022)) and Ensemble (DE (Lakshminarayanan et al., 2017), ENN (Osband et al., 2024))
methods in terms of: (i) performance (test accuracy, inference time) (Sec. 4.2); (ii) results on vari-
ous out-of-distribution (OoD) benchmarks (Sec. 4.3), including CIFAR-10 vs. SVHN/Intel-Image,
MNIST vs. FMNIST/KMNIST, and ImageNet vs. ImageNet-O; (iii) ability to provide reliable mea-
sures of uncertainty quantification (Sec. 4.4) in the form of pignistic entropy and credal set width,
verified on OoD benchmarks; (iv) scalability to large-scale architectures (WideResNet-28-10, In-
ception V3, EfficientNet B2, ViT-Base-16) and datasets (e.g. ImageNet) (Sec. 4.5). Additionally,
we show how RS-NN is robust to adversarial attacks (§E.4) and noisy data (§E.3), and circumvents
the overconfidence problem in CNNs (§E.2). A qualitative assessment of entropy vs credal set width
is given in §E.5.3 and in-distribution vs out-of-distribution entropy scores are shown in Fig. 18.

Paper outline. We first recall the notions of random sets, belief functions, credal and pignistic
predictions (Sec. 2). We explain the RS-NN approach, loss function and uncertainty representation
in Sec. 3. Sec. 4 provides a large body of empirical evidence supporting our approach and discusses
its limitations. Sec. 5 concludes and outlines future work. Appendix §A discusses RS-NN learning
process and statistical guarantees, §B reviews further related work, §C describes all algorithms in
detail while §E contains a wealth of additional experimental results and all implementation details.

Related Work. The machine learning community has recognised the challenge of estimating un-
certainty in model predictions, leading to the development of several Bayesian approximations (Gal
& Ghahramani, 2016; Charpentier et al., 2020), evidential Dirichlet models (Sensoy et al., 2018;
Gao et al., 2024) and conformal prediction (Shafer & Vovk, 2008; Papadopoulos et al., 2008; Bala-
subramanian et al., 2014; Vovk, 2012; Angelopoulos & Bates, 2021). Some methods rely on prior
knowledge (Fortuin, 2022), whereas others require setting a desired threshold on predictions (An-
gelopoulos & Bates, 2021). Some (Baron, 1987; Hüllermeier & Waegeman, 2021) have argued that
classical probability is not equipped to model ‘second-level’ uncertainty on the probabilities them-
selves. This has led to the formulation of numerous uncertainty calculi (Cuzzolin, 2020), including
possibility theory (Dubois & Prade, 1990), probability intervals (Halpern, 2017), credal sets (Levi,
1980), random sets (Nguyen, 1978) or imprecise probability (Walley, 1991).

Bayesian approaches, pioneered by Buntine & Weigend (1991) and others (MacKay, 1992; Neal,
2012), are dominant in uncertainty estimation. Notable techniques include R-BNN (Reparameter-
isation) (Kingma et al., 2015), variational inference with reparameterisation and Laplace Bridge
Bayesian approximation (LB-BNN) (Hobbhahn et al., 2022), which uses the Laplace Bridge to map
between Gaussian and Dirichlet distributions. Various approximations of full Bayesian inference
exist, such as Markov chain Monte Carlo (MCMC), function-space BNNs (Sun et al., 2019) such
as function-space variational inference (FSVI) (Rudner et al., 2022), and Dropout Variational Infer-
ence (Gal & Ghahramani, 2015). In our experiments, we do not consider older Bayesian models
such as R-BNN, MCMC and Dropout VI, since they have been superseded by more performing
approaches and are computationally expensive to train on larger datasets and architectures. Recent
work addresses challenges in computational cost (Hobbhahn et al., 2022; Daxberger et al., 2021)
and model priors (Tran et al., 2020). Despite their advantages, Bayesian models face challenges
when the model prior is misspecified. Ensemble-based approaches, such as Deep Ensembles (DE)
(Lakshminarayanan et al., 2017) and Epistemic Neural Networks (ENN) (Osband et al., 2024), ef-
ficiently estimate uncertainty by leveraging multiple models. However, the computational cost of
training ensembles, especially for large models, is often impractical. Our approach mitigates these
challenges by eliminating the need for both inference-time sampling and prior selection, reducing
computational complexity compared to Bayesian inference and lowering training time compared to
Ensembles, as demonstrated in our experiments in Sec. 4. More related work is given in §B.

2 RANDOM SETS AND BELIEF FUNCTIONS

Random sets. A die is a simple example of a (discrete) random variable. Its probability space is
defined on the sample space Θ = {face1, face 2, . . . , face 6}, where elements are mapped to the
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real numbers 1, 2, . . . , 6, respectively. Now, imagine that faces 1 and 2 are cloaked, and we roll the
die. How do we model this new experiment, mathematically? Actually, the probability space has
not changed (as the physical die has not been altered, its faces still have the same probabilities).
What has changed is the mapping: since we cannot observe the outcome when a cloaked face is
shown (assuming that only the top face is observable), both face 1 and face 2 (as elements of Θ)
are mapped to the set of possible values {1, 2} on the real line R (Fig. 3). Mathematically, this is
a random set (Matheron, 1975; Kendall, 1974; Nguyen, 1978; Molchanov, 2005), i.e., a set-valued
random variable, modelling random experiments in which observations come in the form of sets.

face 1

face 2
face 3

face 4

face 5

face 6

1 2 3 4 5

X

6

Ω

Figure 3: The random set associated
with a cloaked die in which faces 1 and
2 are not visible.
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 m({c1, c2}) = 0.5 + 0.4 = 0.9

Figure 4: A belief function is equivalent to a credal set
with boundaries determined by lower bounds (Eq. 4) on
probability values.

Belief functions. Random sets have been proposed by Dempster (2008) and Shafer (1976) as a
mathematical model for subjective belief, alternative to Bayesian reasoning. Thus, on finite domains
(e.g., for classification) they assume the name of belief functions. While classical discrete mass
functions assign normalised, non-negative values to elements θ ∈ Θ of their sample space, a belief
function independently assigns normalised, non-negative mass values to its subsets A ⊂ Θ:

m(A) ≥ 0,
∑
A

m(A) = 1, ∀A ∈ P(Θ) (1)

The belief function associated with a mass function m measures the total mass of the subsets of each
‘focal set’ A. Mass functions can be recovered from belief functions via Moebius inversion (Shafer,
1976), which, in combinatorics, plays a role similar to that of the derivative:

Bel(A) =
∑
B⊆A

m(B), m(A) =
∑
B⊆A

(−1)|A\B|Bel(B). (2)

Example. Consider a sample space (class list) Θ = C = {c1, c2, c3} and let P(Θ) be its power
set (collection of all subsets). As shown in Fig. 4, one can define a mass function on P(Θ) as:
m({c1}) = 0.5, m({c3}) = 0.1, m({c1, c2}) = 0.4 (Fig. 4, top), and the masses for all other
sets (unspecified) equal to zero. Note that m is normalised:

∑
B⊆Θ m(B) = 1. By Eq. 2, the

belief value of the composite class A = {c2, c3} is: Bel({c2, c3}) = m({c3}) = 0.1 (Fig. 4,
left). Similarly, the belief value of composite class {c1, c2} can by computed as Bel({c1, c2}) =
m({c1}) +m({c1, c2}) = 0.5 + 0.4 = 0.9.
Pignistic probability. Given a belief function Bel, its pignistic probability is the precise probability
distribution obtained by re-distributing the mass of its focal sets A to its constituent elements, θ ∈ A:

BetP (θ) =
∑
A∋θ

m(A)

|A|
. (3)

Smets (Smets, 2005) originally proposed to use the pignistic probability for decision making using
belief functions, by applying expected utility to it. Notably, the pignistic probability is geometrically
the centre of mass of the credal set (see Fig. 4) associated with a belief function (Cuzzolin, 2018).

Credal prediction. As anticipated, RS-NN is designed to predict a belief function (a finite random
set) on the set of classes. A belief function, in turn, is associated with a convex set of probability
distributions (a credal set (Levi, 1980; Zaffalon & Fagiuoli, 2003; Cuzzolin, 2010; Antonucci &
Cuzzolin, 2010; Cuzzolin, 2008)) on the same domain. This is the set:

Cre = {P : Θ→ [0, 1]|Bel(A) ≤ P (A)} , (4)

of probability distributions P on Θ which dominate the belief function on each focal set A. The
size of the resulting credal prediction measures the extent of the related epistemic uncertainty (see
Sec. 3.3), arising from lack of evidence (see §E.5.3). The use of credal set size as a measure of
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epistemic uncertainty is well-supported in literature (Hüllermeier & Waegeman, 2021; Bronevich &
Klir, 2008), as it aligns with established concepts of uncertainty such as conflict and non-specificity
(Yager, 2008; Kolmogorov, 1965). A credal prediction, by encompassing multiple potential distri-
butions, reflects the model’s acknowledgment of this uncertainty. A wider credal set indicates higher
uncertainty, as the model refrains from committing to a specific probability distribution due to lim-
ited or conflicting evidence. In contrast, a narrower credal set implies lower uncertainty, signifying
a more confident prediction based on substantial, consistent evidence.

3 RANDOM-SET NEURAL NETWORK

3.1 APPROACH

Representation. As shown in Fig. 5 (b), RS-NN predicts for each input data point a belief function,
rather than a vector of softmax probabilities as in a traditional CNN. For N classes, a ‘vanilla’
RS-NN would have 2N outputs (as 2N is the cardinality of P(C)), each being the belief value (Eq.
2) of the focal set of classes A ∈ P(C) corresponding to that output neuron. Our architecture
focuses primarily on the final layers (Fig. 5 (b), in grey), acting as a wrapper applicable on top
of any baseline representation layers from existing models (Fig. 5 (b), in blue). This enables the
integration of pre-trained networks while fine-tuning only the final decision layers. Hence, RS-NN
is easily scalable to any model architecture, as demonstrated in Sec. 4.5, Tab. 4.

Given a training datapoint with a true class attached, its ground truth is encoded by the vector
bel = {Bel(A), A ∈ P(C)} of belief values for each focal set of classes A ∈ P(C). Bel(A) is set
to 1 iff the true class is contained in the subset A, 0 otherwise1. This corresponds to full certainty
that the element belongs to that set and there is complete confidence in this proposition (see §A.2
for an example).

{car,truck}
car

Top K relevant
subsets

Fitting Gaussian
Mixture Models

(GMM) on each class

vehicle

truck {car,truck,
vehicle}

Feature vector
over     

Overlapping
clusters over          

(a)

Pignistic Entropy 
H(         )

Minimize          

Credal set          

p(c3) = 1p(c2) = 1

Pignistic
Probability

Uncertainty
estimate

Belief encoded ground truth
of most relevant subsets

Predicted
belief p(c1) = 1Input

(e.g, image)

Training

Inference

(b)
Figure 5: RS-NN model architecture. (a) Budgeting: Given a collection C of N classes, the top K
relevant (focal) sets of classes {A1, . . . , AK} are selected from the powerset P(C) (Algorithm in
§C.1) and added to the singleton classes to form the budget O. (b) Training and Inference: Ground
truth classes are encoded as belief vectors bel and used to predict a belief function b̂el for each
training data point by minimising the loss LRS (7), to train the output layers (in grey) producing
b̂el. Mass values m̂ and pignistic probability estimates BetP are computed from the predicted
belief function. Uncertainty is estimated as described in Sec. 3.3.

Budgeting. To overcome the exponential complexity of using 2N sets of classes (especially for large
N ), a fixed budget of K relevant non-singleton (of cardinality > 1) focal sets are used. These focal
sets are obtained by clustering the original classes C, fitting ellipses over them, and selecting the top
K focal sets of classes with the highest overlap ratio (Fig. 5 (a)). This is computed as the intersection
over union for each subset A in P(C): overlap(A) = ∩c∈AA

c/∪c∈AA
c, A1, . . . , AK ∈ P(C).

Clustering is performed on feature vectors of images generated by any feature extractor trained on
the original classes C. In our experiments, we used features from a trained standard ResNet50 model.
These feature vectors are further reduced to 3 dimensions using t-SNE (t-Distributed Stochastic
Neighbor Embedding) (van der Maaten & Hinton, 2008) before applying a Gaussian Mixture Model
(GMM) to them. Ellipsoids (Spruyt, 2013), covering 95% of data, are generated using eigenvectors
and eigenvalues of the covariance matrix Σc and the mean vector µc, ∀c ∈ C, Pc ∼ N (xc;µc,Σc)
obtained from the GMM to calculate the overlaps. To avoid computing a degree of overlap for all

1Note that the belief encoding of ground-truth is not related to label smoothing. It maps ground-truth labels
from the original class space to a set space without adding noise, thus preserving label “hardness”.
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2N subsets, the algorithm is early stopped when increasing the cardinality does not alter the list of
most-overlapping sets of classes. The K non-singleton focal sets so obtained, along with the N
original (singleton) classes, form our network’s budget of outputs O = C ∪ {A1, . . . , AK}. E.g.,
in a 100-class scenario, the powerset contains 2100 subsets (1030 possibilities). Setting a budget of
K = 200, for instance, results in 100 +K = 300 outputs, a far more manageable number.
As shown in our experiments, budgeting also helps the network converge without overfitting. While,
in theory, a complete belief function model would be more powerful, in practice a larger number of
focal sets impedes the learning process. As shown in Tab. 16, §E.7, RS-NN with a limited number
of well-representative sets often performs better than RS-NN with a full power set of classes, and is
more efficient at uncertainty estimation. The budgeting step is a one-time procedure, applied to any
given dataset before training. It requires just 2 minutes for CIFAR-10, 7 minutes for CIFAR-100,
and 60 minutes for ImageNet (≈ 1.1M images, 1000 classes).
Further, our budgeting procedure is not specific to t-SNE, but can use any dimensionality reduc-
tion technique (Maćkiewicz & Ratajczak, 1993). For instance, Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al., 2018) requires approximately 1 minute for the CIFAR-10
dataset, 2 minutes for CIFAR-100, and around 23 minutes for ImageNet to generate embeddings
(see Tabs. 17, 18 in §E.8 for a t-SNE vs UMAP ablation study). This is including the overlap
computation which only takes a few seconds and is efficiently parallelised across 150 CPU cores.

3.2 LOSS FUNCTION

A random-set prediction problem is mathematically similar to the multi-label classification problem,
for in both cases the ground truth vector contains several 1s. In the former case, these correspond
to sets all containing the true class; in the latter, to all the class labels attached to same data point.
Despite the different semantics, we can thus adopt as loss Binary Cross-Entropy (BCE) (5) with
sigmoid activation, to drive the prediction of a belief value for each focal set in the identified budget:

LBCE = − 1

bsize

bsize∑
i=1

1

|O|
∑
A∈O

[
Beli(A) log(B̂eli(A)) + (1−Beli(A)) log(1− B̂eli(A))

]
.

(5)
Here, i is the index of the training point within a batch of cardinality bsize, A is a focal set of classes
in the budget O, Beli(A) is the A-th component of the vector beli encoding the ground truth belief
values for the i-th training point, and B̂eli(A) is the corresponding belief value in the predicted
vector b̂eli for the same training point. Both beli and b̂eli are vectors of cardinality |O| for all i.

A valid belief function satisfies Eq. 1 which states that mass values derived from belief functions
should be non-negative and should sum up to 1 (Shafer, 1976). To ensure this, we incorporate a
mass regularization term Mr and a mass sum term Ms in the loss function:

Mr =
1

bsize

bsize∑
i=1

∑
A∈O

max(0,−m̂i(A)), Ms = max

(
0,

1

bsize

bsize∑
i=1

∑
A∈O

m̂i(A)− 1

)
. (6)

Mr encourages non-negativity of the (predicted) mass values m̂(A), A ∈ O. These mass values are
obtained from the predicted belief function b̂el via the Moebius inversion formula (Eq. 2). For it to
be valid, the sum of the masses of the predicted belief function must be equal to 1 (Eq. 1), which is
encouraged by the mass sum term Ms.

All loss components LBCE , Mr and Ms are computed during batch training. Two hyperparameters,
α and β, control the relative importance of the two mass terms, yielding as the total loss for RS-NN:

LRS = LBCE + αMr + βMs. (7)
The regularisation terms aim to penalise deviations from valid belief functions, in line with, e.g., the
way training time regularisation in neurosymbolic learning encourages predictions to be common-
sense (Giunchiglia et al., 2023). In general, soft constraints (Márquez-Neila et al., 2017) have been
shown to not be inferior to hard ones. Still, when α and β are too small, this may not be sufficient to
ensure that predictions are valid belief functions. In such cases,2 post-training, we set any negative
masses to zero and add the ‘universal’ set of all classes to the final budget. This subset is assigned
all the remaining mass, ensuring that the sum of masses across all focal sets in O equals 1. This
approach mimics classical approximation schemes (e.g. Cuzzolin (2020), Part III).

2At any rate, improper belief functions are normally used in the literature (Denoeux, 2021), e.g. for condi-
tioning (Cuzzolin, 2020).
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3.3 ACCURACY AND UNCERTAINTY ESTIMATION

Pignistic prediction. The pignistic probability (Eq. 3) is the central prediction associated with
a belief function (seen as a credal set): standard performance metrics such as accuracy can then
be calculated after extracting the most likely class according to the pignistic prediction (e.g. in
§E.5.1). Notably, the RS-NN architecture and training mechanism are designed to facilitate set-
based learning by incorporating class set information during training. When pignistic probabilities
are computed during inference, they reflect the learning derived from the masses and beliefs of
various subsets, making it more reliable than traditional softmax probabilities, as shown in §E.2.
Entropy of the pignistic prediction. The Shannon entropy of the pignistic prediction BetP can
then be used as a measure of the uncertainty associated with the predictions, in some way analogous
to the entropy of a Bayesian mean average prediction:

HRS = −
∑
c∈C

BetP (c) logBetP (c). (8)

A higher entropy value (8) indicates greater uncertainty in the model’s predictions.
Size of the credal prediction. As discussed above, and further elaborated upon in §E.5.3, a sensible
measure of the epistemic uncertainty attached to a random-set prediction b̂el is the size of the
corresponding credal set. Several ways exist of measuring the size of a convex polytope such as a
credal set (Sale et al., 2023). Given the upper and lower bounds to the probability assigned to each
class c by distributions within the predicted credal set ˆCre (Eq. 4),

P (c) = max
P∈ ˆCre

P (c), P (c) = min
P∈ ˆCre

P (c), (9)

we propose a simple way to measure the size of the credal set as the difference between the lower
and upper bounds (Eq. 9) associated with the most likely class, according to the pignistic prediction.
Note that the predicted pignistic estimate BetP (c) falls within the interval [P (c), P (c)] for each
class c, not just for the most likely class ĉ. Its width P (c)−P (c) indicates the epistemic uncertainty
associated with the prediction (§A.3).

4 EXPERIMENTS

4.1 IMPLEMENTATION

Datasets. Our experiments are performed on multi-class image classification datasets, including
MNIST (LeCun & Cortes, 2005), CIFAR-10 (Krizhevsky et al., 2009), Intel Image (Bansal, 2019),
CIFAR-100 (Krizhevsky, 2012), and ImageNet (Deng et al., 2009). For out-of-distribution (OoD)
experiments, we assess several in-distribution (iD) vs OoD datasets: CIFAR-10 vs SVHN (Net-
zer et al., 2011)/Intel-Image (Bansal, 2019), MNIST vs F-MNIST (Xiao et al., 2017)/K-MNIST
(Clanuwat et al., 2018), and ImageNet vs ImageNet-O (Hendrycks et al., 2021). The data is
split into 40000:10000:10000 samples for training, testing, and validation respectively for CIFAR-
10 and CIFAR-100, 50000:10000:10000 samples for MNIST, 13934:3000:100 for Intel Image,
1172498:50000:108669 for ImageNet. For OoD datasets, we use 10,000 testing samples, except
for Intel Image (3,000) and ImageNet-O (2,000). Training images are resized to 224× 224 pixels.

Baselines, backbone and training details. Our baselines include state-of-the-art Bayesian meth-
ods LB-BNN (Hobbhahn et al., 2022) and FSVI (Rudner et al., 2022), Ensemble classifiers DE (5
ensembles) (Lakshminarayanan et al., 2017) and ENN (3 ensembles) (Osband et al., 2024), and
standard CNN (see Sec. 4.2. Our baseline models are similar to those used in the most recent work
(Cinquin & Bamler, 2024; Daxberger et al., 2021; Wu & Williamson, 2024) in uncertainty estima-
tion. All models, including RS-NN, are trained on ResNet50 (on NVIDIA A100 80GB GPUs) with
a learning rate scheduler initialized at 1e-3 with 0.1 decrease at epochs 80, 120, 160 and 180. Stan-
dard data augmentation (Krizhevsky et al., 2012), including random horizontal/vertical shifts with a
magnitude of 0.1 and horizontal flips, is applied to all models.
ResNet50, excluding the top classification layer, serves as the common architecture. ResNet was
originally designed for classification on the ImageNet dataset (1000 classes). To accommodate a
reduced number of classes as in smaller datasets (e.g., CIFAR-10/MNIST with 10 classes, Intel
Image with 7 classes, and CIFAR-100 with 100 classes), two additional dense layers (1024 and 512
neurons, ReLU activation) are added to ResNet50. Similar techniques are commonly applied in
deep learning to adapt model architectures to datasets (He et al., 2016; Zagoruyko & Komodakis,
2016). The output layer of RS-NN on ResNet50 has the same number of units as the number of
(selected) focal sets |O|, and uses sigmoid activation, since the ground truth encoding resembles a
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Table 1: Test accuracies (%) and inference time (ms) for uncertainty estimation over 5 consecutive
runs across methods and datasets. Average and standard deviation are shown for each experiment.

Datasets MNIST CIFAR-10 Intel Image CIFAR-100 ImageNet (Top-1) ImageNet (Top-5) Inference time (ms)

RS-NN (ours) 99.71± 0.03 93.53± 0.09 94.22± 0.03 71.61± 0.07 79.92 94.47 1.91± 0.02
LB-BNN (Hobbhahn et al., 2022) 99.58± 0.04 89.95± 0.81 90.49± 0.42 59.89± 1.96 72.48 90.85 7.11± 0.89
FSVI (Rudner et al., 2022) 99.18± 0.03 80.29± 0.05 88.92± 0.13 53.34± 0.09 62.56 84.69 340.25± 0.76
DE (Lakshminarayanan et al., 2017) 99.25± 0.01 92.73± 0.04 91.98± 0.11 70.53± 0.07 78.77 94.37 13163.50± 3.37
ENN (Osband et al., 2024) 99.07± 0.11 91.55± 0.60 91.49± 0.19 68.02± 0.26 71.82 89.48 3.10± 0.03
CNN 99.12± 0.04 92.08± 0.42 90.89± 0.10 65.50± 0.08 78.56 94.34 1.91± 0.03

multi-label classification problem (see Sec. 3.2). For all other models, the final output layer simply
consists of a softmax activation for multi-class classification. All the models were trained from
scratch for 200 epochs (recommended by most), with a batch size of 128. Our objective is to ensure
a fair comparison across all models for all experiments. Tuning each model separately to maximise
performance would not guarantee that, as some models use pre-trained weights while others train
for larger number of epochs, which could result in the over-training of another model. We used pre-
trained weights for all models only when trained on ImageNet for efficiency. For all other training
hyperparameters (e.g, optimizer), we use what is specified for each model in their respective papers
(more in §D, Tab. 5). Consequently, the performance metrics reported in the original papers may
vary from those presented here, as they were obtained under different training conditions.
Training the RS-NN. In the clustering phase, we obtain features directly from a pre-trained
ResNet50 classifier. We use 50 CPU cores for t-SNE dimensionality reduction, and 150 CPU cores
for computing the overlap of classes. We set a budget K of 20 focal sets (ablation study on K in
§E.7) for CIFAR-10/ MNIST/ Intel Image, 200 for CIFAR-100 and 3000 for ImageNet. RS-NN is
trained from scratch on ground-truth belief encoding of sets using the LRS loss function (Eq. 7)
over 200 epochs, with a batch size (bsize) of 128 and α = β = 1e− 3 as hyperparameter values.
Experiments. Firstly, we assess the test accuracy (%) and inference time (ms) of all baselines on all
the multi-class classification datasets. Tab. 1 provides a comparison of test accuracies and inference
times of RS-NN against the baselines. Our second set of experiments (Sec. 4.3) concerns out-of-
distribution (OoD) detection. Tab. 2 shows our results on OoD detection metrics AUROC (Area
Under Receiver Operating Characteristic curve) and AUPRC (Area Under Precision-Recall curve)
for all the models on the iD vs OoD datasets listed above. We also report the Expected Calibration
Error (ECE) for all models on datasets CIFAR-10, MNIST and ImageNet (see Tab. 2). In a third
set of experiments (Sec. 4.4), we test the uncertainty estimation capabilities of RS-NN using both
the entropy of the pignistic prediction and the size of the predicted credal set. Tab. 2 presents the
predicted pignistic entropy of RS-NN alongside entropies of all baselines on iD and OoD datasets.
Tab. 3 shows credal set widths for RS-NN predictions across the same datasets. In our final set of
experiments, we explore the scalability of RS-NN (Sec. 4.5) to large-scale architectures, employing
it on models such as WideResNet-28-10, VGG16, Inception V3, EfficientNetB2 and ViT-Base-16.
Further, to underscore the model’s ability to leverage transfer learning, we train and test on a pre-
trained ResNet50 model initialised with ImageNet weights (Tab. 4).
Additional experiments concern obtaining statistical guarantees for RS-NN using non-conformity
scores (§A), evaluating the robustness of RS-NN to adversarial attacks (§E.4), noisy and rotated in-
distribution samples (Appendix §E.3), showing how RS-NN circumvents the overconfidence prob-
lem in CNNs (§E.2). Results showing how credal set width is less correlated with confidence scores
than entropy are discussed in in §E.5.3. We also conduct ablation studies on α and β (§E.6) and the
number of non-singleton focal sets K (§E.7), which show that the best accuracy is obtained at small
values (1e− 3) of α and β, and for K = 20 (on the CIFAR-10 dataset).

4.2 COMPARISON WITH THE STATE-OF-THE-ART ON ACCURACY

Tab. 1 shows that RS-NN outperforms state-of-the-art Bayesian (LB-BNN, FSVI) and Ensemble
(DE, ENN) methods in terms of test accuracy (%) across all datasets. Experiments on inference
time (ms) per sample, conducted over 5 runs (a single forward propagation) on the CIFAR-10
dataset, show that RS-NN and CNN have the fastest inference times among all models (Tab. 1).
Albeit CNN and DE are close to RS-NN in performance (e.g., on ImageNet), CNN tends to be over-
confident in incorrect predictions (§E.2), while DE has significantly longer training (Tab. 6, §D)
and inference times (Tab. 1). The pignistic predictions derived from predicted belief functions are
more reliable and accurate than predicted softmax probabilities of CNN and DE. It is important to
note that the comparison with standard CNN is not based on its role as an uncertainty method, but
as a benchmark, underscoring RS-NN’s effectiveness in achieving high accuracy compared to other
uncertainty baselines. Test accuracy for RS-NN is calculated by determining the class with the high-
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Table 2: OoD detection performance and uncertainty estimation for models trained on ResNet50
on CIFAR-10 vs SVHN/Intel Image, MNIST vs F-MNIST/K-MNIST and ImageNet vs ImageNet-
O. Evaluation metrics include AUROC/AUPRC (OoD); Entropy of predictions (uncertainty) and
Expected Calibration Error (ECE).

In-distribution (iD) Out-of-distribution (OoD)

Dataset Model Test accuracy
(%) (↑) Uncertainty measure In-distribution

Entropy (↓) ECE (↓) SVHN Intel Image

AUROC (↑) AUPRC (↑) Entropy (↑) AUROC (↑) AUPRC (↑) Entropy (↑)

CIFAR-10

RS-NN 93.53 Pignistic entropy 0.088± 0.308 0.0484 94.91 93.72 1.132± 0.855 97.39 90.27 1.517± 0.740
LB-BNN 89.95 Predictive Entropy 0.191± 0.412 0.0585 88.14 81.96 0.828± 0.243 82.21 55.17 0.763± 0.722

FSVI 80.29 Predictive Entropy 0.118± 0.563 0.0521 80.59 80.84 0.413± 0.461 74.27 72.51 0.289± 0.670
DE 92.73 Mean Entropy 0.154± 0.367 0.0482 93.84 91.88 0.939± 0.554 94.25 79.36 1.166± 0.552

ENN 91.55 Mean Entropy 0.126± 0.323 0.0556 92.76 89.05 0.887± 0.514 85.67 58.09 0.600± 0.578
CNN 92.08 Softmax Entropy 0.114± 0.304 0.0669 93.11 91.0 0.930± 0.610 87.75 65.54 0.719± 0.673

MNIST

F-MNIST K-MNIST

RS-NN 99.71 Pignistic entropy 0.010± 0.111 0.0029 93.89 93.98 0.530± 0.770 96.75 96.58 0.740± 0.917
LB-BNN 99.58 Predictive Entropy 0.001± 0.085 0.0032 89.65 90.36 0.287± 0.442 95.61 95.65 0.540± 0.621

FSVI 99.18 Predictive Entropy 0.006± 0.265 0.0047 92.79 91.17 0.264± 0.289 91.65 95.75 0.313± 0.381
DE 99.25 Mean Entropy 0.031± 0.155 0.0031 92.30 92.05 0.584± 0.587 95.81 94.71 0.564± 0.715

ENN 99.07 Mean Entropy 0.022± 0.127 0.0039 81.79 82.92 0.313± 0.464 95.94 95.45 0.503± 0.672
CNN 98.90 Softmax Entropy 0.023± 0.135 0.0052 83.77 84.14 0.278± 0.426 94.46 93.94 0.616± 0.688

ImageNet

ImageNet-O

AUROC AUPRC Entropy
RS-NN 79.92 Pignistic entropy 2.972± 2.108 0.1416 60.38 55.16 3.659± 3.771

LB-BNN 72.48 Predictive Entropy 2.471± 2.972 0.5812 41.08 30.99 1.383± 0.028
FSVI 62.56 Predictive Entropy 1.328± 1.966 0.3890 50.55 49.88 1.637± 1.328
DE 78.77 Mean Entropy 1.532± 1.325 0.1940 55.37 53.20 1.775± 1.343

ENN 71.82 Mean Entropy 1.395± 1.510 0.5961 54.67 43.73 1.617± 1.597
CNN 78.56 Softmax Entropy 6.386± 1.388 0.4004 54.28 48.73 6.575± 1.512

est pignistic probability for each prediction and comparing it with the true class. This proves that,
by modelling the epistemic uncertainty about the prediction, we take better into account possible
distribution shifts at test time - as a result, the central prediction of the set of probabilities (credal
set) associated with the predicted belief function is more likely to be closer to the ground truth. Note
that the results in the FSVI paper (Rudner et al., 2022) are based on ResNet18. Although using a
pre-trained ResNet50 could enhance FSVI’s performance, it would provide an unfair advantage over
the other baseline models in our paper, which were all trained from scratch.

4.3 OUT-OF-DISTRIBUTION (OOD) DETECTION

We evaluate our out-of-distribution (OoD) detection (Tab. 2) against baselines using AUROC and
AUPRC scores. OoD detection identifies data points deviating from the in-distribution (iD) train-
ing data by measuring true and false positive rates (AUROC) and precision and recall trade-offs
(AUPRC), indicating the model’s ability to handle unfamiliar data (further detailed in §C.3).
As shown in Tab. 2, RS-NN greatly outperforms Bayesian, Ensemble and standard CNN models in
OoD detection, with significantly higher AUROC and AUPRC scores for all iD vs OoD datasets, es-
pecially on difficult datasets like ImageNet and ImageNet-O (see §E.1). Even high-accuracy models
like CNN and DE struggle to differentiate between ImageNet and ImageNet-O. While DE shows
comparable AUROC scores on CIFAR-10 vs. SVHN and MNIST vs. F-MNIST/K-MNIST to RS-
NN, it has lower AUPRC. While AUROC assesses a model’s ability to distinguish between iD and
OoD samples, AUPRC measures both the precision of correctly identified OoD samples and the
recall of detected OoD samples, making it a more informative metric. Tab. 2 also reports the various
models’ Expected Calibration Error (ECE) (detailed in §C.2). A low ECE indicates that the model’s
confidence scores align closely with the actual likelihood of events. RS-NN exhibits the lowest ECE
indicating well-calibrated probabilistic predictions.

4.4 UNCERTAINTY ESTIMATION

Entropy. Tab. 2 shows the mean and variance of the entropy distributions for both iD and OoD
datasets. Lower entropy values for iD datasets indicate a confident prediction as the model is trained
on familiar data, while higher entropy for OoD datasets reflects the model’s uncertainty with unseen
data. RS-NN exhibits both low entropy for iD datasets and high entropy for OoD ones. The percent-
age mean iD/OoD shift in entropy is most pronounced in RS-NN, especially evident in CIFAR-10
vs SVHN/Intel Image and MNIST vs F-MNIST/K-MNIST. For ImageNet vs ImageNet-O, CNN
exhibits high entropy for both iD and OoD datasets while RS-NN maintains a desirable iD vs OoD
entropy ratio. In fact, Fig. 18, §E.5.1 show that RS-NN has the best iD vs OoD entropy ratio for all
datasets. This ideal behavior, along with superior OoD detection (Sec. 4.3), is a good indication that
RS-NN is better at estimating uncertainty induced by domain shift (see §E.5.1).
Credal set width. Fig. 6 shows a density plot of estimated credal set widths, the difference between
the lower and upper probability bounds in Eq. 9, for correctly and incorrectly classified samples of
CIFAR-10 test data. Incorrect predictions (red) correlate with larger credal set widths, indicating
higher epistemic uncertainty, and are more dispersed in the plot. Correct predictions (blue) concen-
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Table 3: Credal set width for RS-NN on iD vs OoD
datasets: CIFAR10 vs SVHN/Intel Image, MNIST vs F-
MNIST/K-MNIST and ImageNet vs ImageNet-O.

In-distribution (iD) Out-of-distribution (OoD)

CIFAR10 0.007± 0.044 SVHN 0.260± 0.322 Intel Image 0.587± 0.367

MNIST 0.001± 0.013 F-MNIST 0.070± 0.167 K-MNIST 0.103± 0.200

ImageNet 0.238± 0.266 ImageNet-O 0.272± 0.275
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Credal Set Width
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Figure 6: Width of credal predictions
for CIFAR-10 test data (correctly clas-
sified, blue; incorrectly classified, red).

Table 4: Adaptability to large-scale model architectures
with test accuracy (%) and parameters (in million) re-
ported on CIFAR10.

Model Pre-trained R50 WRN-28-10 VGG16 IncepV3 ENetB2 ViT-Base

Test acc. (%) RS-NN 94.42 93.58 87.87 78.24 92.10 86.75
CNN 94.38 92.79 84.14 76.89 90.02 87.21

Params (M) RS-NN 2.69 37.0 15.12 31.22 7.72 9.53
CNN 2.62 36.7 15.11 31.21 7.71 9.52

trate around smaller values, exhibiting smaller credal intervals as expected. Tab. 3 reports the credal
set widths of RS-NN predictions for iD vs OoD datasets. Larger intervals can be observed for OoD
datasets. The credal set widths for ImageNet vs ImageNet-O are not as distinct given the nature
of these datasets, as detailed in §E.1. Note that credal set width is not directly comparable to the
entropy, variance or mutual information of other models, as such metrics have distinct semantics.

4.5 SCALABILITY TO LARGE-SCALE ARCHITECTURES

Tab. 4 shows the scalability of RS-NN to larger model architectures and its ability to leverage
transfer learning. RS-NN outperforms standard CNNs across various large-scale model architec-
tures, including WideResNet28-10 (WRN-28-10), VGG16, InceptionV3 (IncV3), EfficientNetB2
(ENetB2), and Vision Transformer (ViT-Base-16), highlighting its versatility and ease in adopting
different architectures, and the generality of the random-set concept. Notably, using a pre-trained
ResNet50 (Pre-trained R50) model with ImageNet weights, RS-NN achieves higher accuracy on
CIFAR-10 compared to using only the architecture (no pre-trained weights).

4.6 LIMITATIONS

The budgeting step can be time consuming but, for a given dataset, it is a one-time procedure prior
to training. For large datasets, t-SNE and GMM can be applied to representative samples rather than
the entire dataset, as the purpose is merely to identify the most relevant sets, dramatically reducing
computational demands. To further optimise the method, instead of t-SNE, budgeting can utilize
various methods such as autoencoders (Ghasedi Dizaji et al., 2017; Guo et al., 2017b) or PCA (Abdi
& Williams, 2010) for dimensionality reduction. However, despite the initial time investment, the
efficiency gained from having a budget applicable to any training scenario is substantial. Another
limitation is manually setting the number of focal elements K; a dynamic strategy adjusting K
based on overlap would enhance flexibility and effectiveness. The budgeting procedure can also be
adapted to work with multiple sources of data or a stream of data (§E.8). Alternative methods such
as using sparse mass functions (Itkina et al., 2020; Chen et al., 2021), could provide a quantitative
basis for determining the subsets AK to consider.

5 CONCLUSION

This paper proposes a novel Random-Set Neural Network (RS-NN) for uncertainty estimation in clas-
sification predicting belief functions. Our random-set representation is a foundational approach that
acts as a versatile wrapper, applicable to any model architecture and classification task (e.g, text). To
our knowledge, this concept, along with budgeting for optimal selection of sets, is unprecedented.
RS-NN outperforms state-of-the-art uncertainty estimation models and the standard CNN in per-
formance and out-of-distribution OoD tests, and scales seamlessly to large-scale architectures and
datasets. Given such results, our approach exhibits significant potential impact for safety-critical
applications such as medical diagnostics and autonomous driving, where uncertainty estimation and
OoD detection is crucial. Future work will explore alternative methods for ensuring the validity of
belief functions without mass regularisation terms, such as integrating Semantic Probabilistic Layers
(Ahmed et al., 2022) to enforce logical constraints in probabilistic predictions, or applying softmax
over the computed masses to guarantee non-negativity (see §E.6). A parameter-level representation
of RS-NN and the extension of this concept to regression will also be explored.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed information on the datasets, baseline models, and
the training procedure for RS-NN and all baselines used in our experiments in Sec. 4.1, under the
subheadings ‘Datasets’ and ‘Baselines, backbones, and training details’ respectively. Additional
hyperparameters for RS-NN are provided under ‘Training the RS-NN’ (Sec. 4.1), and for baseline
models in §D. For convenience, we summarize the training hyperparameters for all models in Tab.
5. Additionally, the training times for each model are included in Tab. 6 (§D). The code for training
RS-NN (train.ipynb), including pre-trained models (for faster evaluation), evaluation script
(eval.ipynb), and configuration files are provided as supplementary materials. We also provide
a .yml file to set up the environment to run the experiments.
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estimation without ood samples via density-based pseudo-counts. Advances in neural information
processing systems, 33:1356–1367, 2020.

Alain Chateauneuf and Jean-Yves Jaffray. Some characterizations of lower probabili-
ties and other monotone capacities through the use of Möbius inversion. Mathemati-
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APPENDIX: RANDOM-SET NEURAL NETWORKS

This appendix provides a comprehensive overview of Random-Set Neural Networks (RS-NN), in-
cluding theoretical underpinnings (§A), related work (§B), algorithms (§C), implementation details
(§D), additional experimental results (§E) which addresses critical questions to elucidate the func-
tionality and robustness of RS-NN, and an application to text classification (§F).

A THEORETICAL EXPLANATION OF RS-NN

In this section, we provide an overview of belief functions (§A.1), describe the RS-NN learning
mechanism (§A.2), and show the relationship between pignistic and credal predictions (§A.3), and
provide statistical guarantees for RS-NN by applying conformal prediction to the predicted pignistic
probabilities (§A.4).

A.1 CLASSICAL PROBABILITIES VS BELIEF FUNCTIONS

In this section, we explain the difference between classical probability measures and non-additive
measures, such as random sets. Random sets (Matheron, 1975; Kendall, 1974; Nguyen, 1978;
Molchanov, 2005) are non-additive measures (i.e., the additivity property does not hold). Their
additional degrees of freedom allow to express the ‘epistemic’ uncertainty about probability values
themselves. In fact, an entire field on ‘imprecise probabilities’ (Augustin et al., 2014; Walley, 2000)
exist which deals with these kinds of measures.

In a standard classification task, where each input is classified into one of several mutually exclusive
classes, the classical probability framework does assume that each class is distinct and independent.
The output of a softmax model provides the probabilities for each class, and these probabilities
sum to 1. This approach works well when you are confident about the classification, for you have
sufficient evidence to assign a clear probability to each class. However, it does not capture the
uncertainty or ambiguity that exists when the evidence (as provided by the training set) is insufficient
(e.g., because you did not sample similar points at training time, or because the test data is affected
by distribution shift).

In Sec. 1 of the paper, we highlight that relying solely on confidence measures (like softmax proba-
bilities) is insufficient for a comprehensive analysis of model predictions. Fig. 2 shows that standard
neural networks are often overconfident (Nguyen et al., 2015) even for misclassifications. Our ap-
proach uses random sets (which, in the finite case, assume the name of belief functions), as detailed
in Sec. 2, to offer a robust framework for assessing prediction reliability.

Random sets, as the name suggest, assign probability mass values to sets independently, and are
therefore more general than classical probability measures (which are a special case of random set).
As a result, belief functions offer a way to handle uncertainty and make decisions when information
is incomplete or ambiguous. While in classical probability, the sum of probabilities for individual
events and their unions adheres to strict additive rules, belief functions relax these constraints to
better capture uncertainty. In particular, the belief in the union of two hypotheses, Bel({A,B}),
can be greater than the sum of the beliefs in the individual hypotheses, Bel({A}) + Bel({B}), i.e,
Bel({A}) + Bel({B}) ≤ Bel({A,B}). This inequality captures the idea that, in some situations, the
available evidence may support the true class being in the set {A,B}, without being enough to
distinguish between the two alternatives. If Bel({A,B}) > Bel({A}) + Bel({B}), it indicates that
the model has significant uncertainty or confusion about distinguishing between these classes for a
particular input.

Unlike classical probability theory, belief functions operate in a higher space than probability vec-
tors, i.e, it operates in a framework that generalizes classical probability theory. Suppose we know
with 100% certainty that an event is either A or B. In a classical probability setting, we might say
P(A) = 0.5 and P(B) = 0.5, or we might assign different probabilities to A and B if we have some rea-
son to favor one over the other. With belief functions, we can represent the same scenario differently.
We could assign a belief value of 1 to the set {A, B} and 0 to both A and B individually (Bel({A})
= Bel({B}) = 0, Bel({A, B}) = 1). This means that while we know the outcome must be either A
or B, we are entirely uncertain about which one it is. Alternatively, we could have Bel({A}) = 0.5,
Bel({B}) = 0.5, Bel({A, B}) = 1, reflecting a different state of knowledge or evidence, where we’re
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somewhat more informed but still not fully certain. In the behavioural interpretation of probability
(Walley, 2000), the belief value of an event A is the upper bound to the price one is willing to pay
for betting on an outcome A.

Consider the following example (Cuzzolin, 2020): Suppose there is a murder, and three peo-
ple—Peter, John, and Mary—are suspects. Our hypothesis space is therefore Θ = {Peter, John,
Mary}. A witness testifies that the person he saw was a man, supporting the proposition A = {Peter,
John} ⊆ Θ. However, the witness was tested, and the machine reported a 20% chance that he
was drunk when he gave his testimony. As a result, we assign 80% belief to the proposition A,
representing our uncertainty about whether any of the two could be the murderer.

In classical probability, Kolmogorov’s additive probability theory (Kolmogorov & Bharucha-Reid,
2018) forces us to specify support for individual outcomes, i.e. to distribute this 80% probabil-
ity between Peter and John individually, even when the evidence (our data) supports set proposi-
tions. This is unreasonable – an artificial constraint due to a mathematical model that is not general
enough. In the example, we have do not have enough evidence to assign this 80% probability
to either Peter or John, nor information on how to distribute it amongst them. The cause is the
additivity constraint that probability measures are subject to. This constraint reflects a broader lim-
itation of measure-theoretical probability, which, while effective in many scenarios, struggles with
second-order uncertainties and incomplete information. Therefore, we have several other methods
to estimate uncertainty, such as the Bayesian method, or using degrees of belief, such as Evidential
and belief function methods (see Sensoy et al. (2018), Sec. 3).

This means that belief functions allow us to model situations where we have uncertainty not just
about which class an input belongs to, but also about whether we have enough evidence to distin-
guish between certain classes. This added flexibility is what makes belief functions suitable for
single-label classification tasks.

A.2 RS-NN LEARNING MECHANISM

Here we wish to expand on the rationale behind our choices for ground-truth representation bel,
loss function and training, and the way in which RS-NN learns sets of outcomes.

Recall from Sec. 3.1 that the ground-truth for a RS-NN is the belief-encoded vector bel =
{Bel(A), A ∈ P(C)}, where Bel(A) is the belief function of a focal set A in the power set P
of classes C. In our method, Bel(A) is 1 if the true class is in subset A and 0 otherwise. Conse-
quently, the belief-encoded ground truth bel will include multiple occurrences of 1. For instance,
in a digit-classification task such as MNIST, if {3} is the true class, the belief-encoded ground truth
would contain 1s in all sets where {3} is present, such as {1, 3}, {0, 3}, {1, 2, 3}, and so forth, 0
for sets not containing {3} at all, such as {0, 1}, {1, 2}, {0, 1, 2}, etc.

Since we assign precise labels for belief containing different focal sets, our model begins by pe-
nalizing predictions that differ from the observed label in the same manner, regardless of the set’s
composition or relationship to the true label. Using MNIST as an example, this means that the loss
incurred for predicting label {3} is equivalent to predicting label {3, 7}, as both sets contain the
true label. This equivalence in losses might seem counterintuitive at first glance. However, despite
the identical loss values, the probabilities output by the sigmoid activation function will vary due
to differences in the input logit values for each label. For instance, if the correct label is {3}, the
loss for predicting {3} or {3, 7} would be the same. Still, the loss for predicting {7} would differ,
allowing the model to discern the set structure during training.

During the training process, the model learns to capture and understand these relationships by ob-
serving patterns and dependencies in the training data. As the model optimizes its parameters based
on the training objective (e.g., minimizing the loss function), it gradually adjusts its internal rep-
resentations to better reflect these relationships. We use as the basis for our loss function Binary
cross-entropy with sigmoid activation. It allows the model to predict the presence or absence of
each label separately as a binary classification problem, producing probabilities between 0 and 1
for each class. While the model is unaware that it is learning for sets of outcomes, we leverage
this technique to extract mass functions and pignistic predictions from the learnt belief functions.
By re-distributing masses to original classes, we obtain the best pignistic predictions that are often
more accurate than standard CNN predictions, attributing to the higher accuracy in Tab. 1.
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A.3 PIGNISTIC PROBABILITY AND CREDAL PREDICTION
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Figure 7: Upper and lower bounds (Eq. 9), in dotted red, to the probability of the predicted most
likely class according to the pignistic prediction (in solid red) for 100 samples of CIFAR-10.

As they have belief values as lower bounds, credal sets induced by belief functions have a peculiar
shape (see Fig. 4, right, for a case with 3 classes). Their vertices are induced by the permutations of
the elements of the sample space (for us, the set of classes) (Chateauneuf & Jaffray, 1989; Cuzzolin,
2008). Given one such permutation, e.g., (c2, c4, c1, c3) for a set of 4 classes, the corresponding
probability vector (vertex of the credal prediction) assigns to each class the mass of all the focal sets
containing it, but not containing any class preceding it in the permutation order (Wallner, 2005).

For additional illustration, the lower and upper bounds (Eq. 9) to the probability of the top predicted
class are plotted in Fig. 7, together with the pignistic probability, for 100 samples of CIFAR-10. The
bounds Eq. 9 can be efficiently computed from the finite number of vertices of the credal prediction
((Cuzzolin, 2008), Fig. 4).

A.4 STATISTICAL GUARANTEES

To complement the extensive discussion in the main paper, we provide here an in-depth discussion
on how statistical guarantees can be provided in an RS-NN framework.

Plugging RS-NN into conformal learning. Indeed, RS-NN can be employed as the ‘underlying
model’ in an inductive conformal learning framework3, which builds an empirical cumulative dis-
tribution of the ‘non-conformity’ scores of a set of calibration samples, and at test time outputs the
set of labels whose empirical CDF is above a desired significance level ϵ (e.g., 95%).
Given a test input x and the associated predictive belief function B̂el(c|x) (the output of RS-NN),
we could, for instance, set as non-conformity score

s(x, c)
.
= 1− P̂ l(c|x) = B̂el(C \ {c}|x) (10)

(i.e., a label c is ‘non-conformal’ if its predicted plausibility, which is defined as Pl(A) = 1 −
Bel(Θ\A) and has the semantic of an upper probability bound (Shafer, 1976), is low), and compute
predictive regions in the usual way:

Γ(x) = {c ∈ C : pc > ϵ},

where

pc =
|(xj , cj) : s(xj , cj) > s(x, c)|

q + 1
+ u · |(xj , cj) : s(xj , cj) = s(x, c)|

q + 1
,

(xj , cj) is the j-th calibration point, q is the number of calibration points, and u ∼ U(0, 1) (the
uniform distribution on the interval (0, 1)).

Experiments on conformal guarantees. Thus, we conducted experiments on CIFAR-10 dataset to
provide conformal prediction guarantees with non-conformity scores as given in Eq. 10. The goal
is to assess the reliability of classification predictions by determining a threshold of non-conformity
scores that covers 95% of the data.

To achieve this, non-conformity scores are obtained for all classes, and a threshold is calculated such
that it contains 95% of the data. This threshold determines the coverage of the classification, which
refers to the proportion of predictions that actually contain the true outcome.

3https://cml.rhul.ac.uk/copa2017/presentations/CP_Tutorial_2017.pdf
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This prediction threshold is determined by finding the percentile corresponding to 1−α, where α is
set to 0.05 to achieve 95% coverage. Fig. 9 shows the non-conformity scores for all the calibration
data, j = 1000 (Angelopoulos & Bates, 2021) (using the following split: 40000:10000:9000:1000
training, testing, validation and calibration data points respectively for CIFAR-10), with a cut-off
threshold that ensures 95% coverage.

The conformal prediction sets for two sample inputs are shown in Fig. 8, along with their predicted
probabilities.

Figure 8: Conformal prediction sets by RS-NN on the CIFAR-10 dataset. The predicted probabilities
for each class is shown.
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Figure 9: Conformal prediction threshold for CIFAR-10 indicating the
boundary beyond which predictions are considered non-conformal.
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Figure 10: Coverage per class of RS-NN for
CIFAR-10 dataset.
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Figure 11: Average size of the predictive sets
generated for each class of CIFAR-10.

Figs. 10 and 11 show the coverage and average set size for each class on the test dataset. Coverage
is the proportion of prediction sets that actually contain the true outcome, and average set size is the
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average number of predicted classes per instance. Higher numbers represent more overlap between
the classification regions of different classes.

Summarizing the results, (1) the coverage averages across classes over the desired threshold. This
indicates that the conformal prediction method is providing reliable prediction intervals that contain
the true class label with the specified confidence level; (2) The spread or variability in set sizes
across different samples provides insights into how well the prediction sets adapt to the difficulty of
the samples. Ideally, the prediction sets should dynamically adjust based on the difficulty of each
example, with larger sets for more challenging inputs and smaller sets for easier ones. Fig. 11 shows
that the average set size for classes 1, 2, 3, 4, and 6 is considerably larger than for the rest, indicating
that the model found samples from these as challenging inputs.

Alternative approaches to statistical guarantees. In the future we plan to explore the possibility
of generalising the empirical CDF at the basis of conformal learning in a belief function / random
set representation, aiming to retain statistical guarantees. Given the complexity of this enterprise,
we are working towards this in a separate paper.

Finally, an intriguing alternative approach (and one that is more achievable in the short term) is
the study of confidence intervals in a belief functions representation, such as the one we employ in
RS-NNs. In fact, recent studies have been looking at extending the notion of confidence interval
(https://en.wikipedia.org/wiki/Confidence_interval) to belief functions, un-
der the name of confidence structures (https://hal.science/hal-01576356v3), which
generalise standard confidence distributions and generate “frequency-calibrated” belief functions.

Liu and Martin, in particular, have developed an Inferential Model (IM) approach which produces
belief functions with well-defined frequentist properties (Martin & Liu, 2013; 2015). An alternative
approach relies on the notion of “predictive” belief function (Denœux, 2006), which, under repeated
sampling, is less committed than the true probability distribution of interest with some prescribed
probability.

B RELATED WORK

Researchers have recently taken some tentative steps to model uncertainty in machine learning and
artificial intelligence. Scientists have adopted measures of epistemic uncertainty (Kendall & Gal,
2017) to refuse or delay making a decision (Geifman & El-Yaniv, 2017), take actions specifically
directed at reducing uncertainty (as in active learning (Aggarwal et al., 2014)), or exclude highly-
uncertain data at decision making time (Kendall & Gal, 2017).

Imprecise probability. Significant work has been done in a credal set setting. Notably, (Zaffalon,
2002; Corani & Zaffalon, 2008) have proposed the Naive Credal Classifier (NCC) as an extension of
the naive Bayes classifier to credal sets, where imprecise probabilities are included in models in the
form of sets of classes. (Antonucci & Corani, 2017) have presented graphical models which gen-
eralise NCCs to multilabel data. Expected utility maximisation algorithms, such as Bayes-optimal
prediction (Mortier et al., 2021), and classification with reject option for risk aversion (Nguyen et al.,
2018) are also based on set-valued predictions.

Classification with partial data has been studied by various authors (Vannoorenberghe & Smets,
2005), while a large number of papers have been published on decision trees in the belief function
framework (Elouedi1 et al., 2000). Significant work in the neural network area was conducted
in (Denoeux, 2000) and (Fay et al., 2006). Classification approaches based on rough sets were
proposed in (Trabelsi et al., 2011). Ensemble classification (Burger et al., 2006) is another area in
which uncertainty theory has been quite impactful, as the problem is one of combining the results
of different classifiers. Important contributions have been made by (Xu et al., 1992) and (Rogova,
2008). Regression, on the other hand, has only recently been considered by belief theorists (Laanaya
et al., 2010; Gong & Cuzzolin, 2018; Denœux, 2022). For tasks like image classification in large
datasets, most of these approaches have low performance metrics including training time and test
accuracy.

Evidential approaches. Within a proper epistemic setting, a significant amount of work has been
done by Denoeux and co-authors, and Liu et al. (ga Liu et al., 2012), on unsupervised learning
and clustering in particular in the belief function framework. Quite a lot of work has been done
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on ensemble classification in the evidential framework (Xu et al., 1992) (in particular for neural
networks (Rogova, 2008)), decision trees (Elouedi et al., Madrid, 2000), K-nearest neighbour clas-
sifiers (Denœux, 2008), and more recently on evidential deep learning classifiers able to quantify
uncertainty (Tong et al., 2021). Tong et al.(Tong et al., 2021) proposes a convolutional neural net-
work based on Dempster-Shafer theory called the evidential deep-classifier employs utility functions
from decision theory to assign utilities on mass functions derived from input features to produce set-
valued observations. Another recent approach by Sensoy et al.(Sensoy et al., 2018) proposes an
evidential deep learning classifier to estimate second-order uncertainty in the Dirichlet representa-
tion. This work is based on subjective logic and learning to form subjective opinions by minimizing
the Kullback-Leibler divergence over a uniform Dirichlet distribution.

These methods represent predictions as Dirichlet distributions, as explored in various works over the
last few years (Sensoy et al., 2018; Malinin & Gales, 2018; 2019; Malinin et al., 2019; Charpentier
et al., 2020). However, many commonly used loss functions for these networks are flawed, as
they fail to ensure that epistemic uncertainty diminishes with more data, violating basic asymptotic
assumptions (Bengs et al., 2022). Additionally, some approaches require out-of-distribution (OoD)
data for training, which may not always be available and doesn’t guarantee robustness against all
types of OoD data. Studies (Ulmer et al., 2023) have shown that OoD detection degrades in certain
models under adversarial conditions, and even techniques like normalizing flows (NFs) in posterior
networks (Charpentier et al., 2020), while effective, can struggle with OoD data when relying on
learned features (Kopetzki et al., 2021; Stadler et al., 2021).

Conformal prediction. Conformal prediction (Vovk et al., 2005) provides a framework for esti-
mating uncertainty (Shafer & Vovk, 2008) by applying a threshold on the error the model can make
to produce prediction sets, irrespective of the underlying prediction problem. Different variants of
conformal predictors are described in papers by Saunders et al. (Saunders et al., 1999), Nouretdinov
et al. (Nouretdinov et al., 2001), Proedrou et al. (Proedrou et al., 2002) and Papadopoulos et al.
(Papadopoulos et al., 2008).

Since the computational inefficiency of conformal predictors posed a problem for their use in neu-
ral networks, Inductive Conformal Predictors (ICPs) were proposed by Papadopoulos et al. (Pa-
padopoulos et al., 2002a) (Papadopoulos et al., 2002b). Venn Predictors (Vovk et al., 2003), cross-
conformal predictors (Vovk, 2012) and Venn-Abers predictors (Vovk & Petej, 2012) were introduced
in distribution-free uncertainty quantification using conformal learning. As we show above, RS-NN
is compatible with conformal prediction, as a possible underlying model. In the future we plan to
extend our random-set representation to conformal learning, by replacing cumulative distribution
functions with random sets.

Deterministic uncertainty quantification. Deterministic Uncertainty Quantification (DUQ) meth-
ods estimate epistemic uncertainty by analyzing latent representations or using distance-sensitive
functions instead of softmax (Alemi et al., 2018; Wu & Goodman, 2020; Liu et al., 2020; Mukhoti
et al., 2021; Van Amersfoort et al., 2020). These methods have been applied to areas like object
detection (Gasperini et al., 2021) but focus mainly on OoD detection, overlooking calibration —
how well uncertainty reflects model performance under shifting distributions. Calibration is crucial
for safe deployment but remains underexplored, as DUQs are typically tested only on simple tasks
and datasets, leaving their effectiveness in more complex scenarios unproven (Postels et al., 2021).

Uncertainty estimates are poorly calibrated under distributional shifts, especially when compared
to scalable Bayesian methods. Regularization techniques based on feature space distances, such as
bi-Lipschitz regularization (used by most of these models), do not effectively improve OoD detec-
tion or calibration (Postels et al., 2021). This is due to the limitations of distance metrics in high-
dimensional data, such as images. Additionally, DUQ methods differ from RS-NN by modeling
epistemic uncertainty in the input space rather than the prediction space. They assess uncertainty
based on whether the model’s input is an iD or OoD sample. Because of this difference in how
epistemic uncertainty is modeled, we cannot directly compare RS-NN to DUQ methods.

C ALGORITHMS

This section outlines the algorithms integral to the implementation and evaluation of budgeting
(§C.1), expected calibration error (ECE) (§C.2), area under the receiver operating characteristic
curve (AUROC) and area under the precision-recall curve (AUPRC) (§C.3).
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C.1 ALGORITHM FOR BUDGETING

For RS-NN with N classes, generating 2N outputs is computationally infeasible due to exponential
complexity. Instead, we choose K relevant subsets (AK focal sets) from the 2N possibilities.

To obtain these K focal subsets, we extract feature vectors from the penultimate layer of a trained
standard CNN with N outputs. We then apply t-SNE for dimensionality reduction to 3 dimensions.
Note that our approach is agnostic, as t-SNE could be replaced with any other dimensionality reduc-
tion technique, including autoencoders.

Next, we fit a Gaussian Mixture Model (GMM) to the reduced feature vectors of each class. Using
the eigenvectors and eigenvalues of the covariance matrix Σc and the mean vector µc for each class
c, we define an ellipsoid covering 95% of the data. The lengths of the ellipsoid’s principal axes are
computed as lengthc,i = 2

√
7.815λi, where λi is the ith eigenvalue. The scalar 7.815 corresponds

to a 95% confidence interval for a chi-square distribution with 3 degrees of freedom. The class
ellipsoids are plotted in a 3D space and the overlap of each subset in the power set of N is computed.
As it is computationally infeasible to compute overlap for all 2N subsets, we start doing so from
cardinality 2 and use early stopping when increasing the cardinality further does not alter the list of
most-overlapping sets of classes. We choose the top-K subsets (AK) with the highest overlapping
ratio, computed as the intersection over union for each subset.

Algorithm 1 Budgeting Algorithm

1: Input: D – Training data with N classes, C – The set of classes, K – Number of non-singleton
focal sets

2: Output: O – Set containing N +K focal sets
3: Initialization
4: Extract feature vectors using a trained CNN
5: Apply t-SNE for dimensionality reduction to 3 dimensions
6: for each class c do
7: Fit GMM to the reduced feature vectors for that class to obtain µc and Σc

8: Define an ellipsoid covering 95% data using µc and Σc

9: end for
10: most overlapping sets← Initialize an empty list for non-singleton focal sets A1, . . . , AK

11: Set current cardinality ← 2
12: while current cardinality ≤ N do
13: Compute overlaps for subsets of cardinality current cardinality

14: overlap(A) = ∩c∈AAc

∪c∈AAc

15: Select top-K subsets with highest overlap
16: Update most overlapping sets
17: if no change in most overlapping sets then
18: break
19: end if
20: current cardinality ← current cardinality + 1
21: end while
22: Combine selected non-singleton focal sets with N singleton sets
23: O ← C ∪ {A1, . . . , AK}
24: return O

C.2 ALGORITHM FOR ECE

Expected Calibration Error (ECE) is computed by comparing the average confidence and accuracy
within each bin. The steps involved are as follows:

1. For each bin, calculate the absolute difference between the average confidence and the
accuracy.

2. Weight each difference by the proportion of instances in that bin compared to the total
number of instances.

3. Sum up these weighted differences across all bins to get the final ECE value.
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Algorithm 2 Expected Calibration Error (ECE)

Require: confidences: List or array of confidence scores predicted by the model predictions: List
or array of predicted class labels true labels: List or array of true class labels B: Number of
bins for binning confidence scores

Ensure: ECE: Expected Calibration Error
1: Step 1: Normalize Confidences Normalize the confidence scores to ensure they are in the

range [0, 1].
2: Step 2: Binning Divide the confidence scores into num bins bins.
3: Step 3: Initialize Arrays Initialize arrays bin accuracy, bin confidence, and weights with ze-

ros.
4: Step 4: Populate Arrays
5: for each bin do
6: Identify instances falling into the bin
7: Calculate mean accuracy and mean confidence within the bin
8: Update bin accuracy, bin confidence, and weights
9: end for

10: Step 5: Calculate ECE Calculate the Expected Calibration Error using the populated arrays.

ECE =

B∑
i=1

|(bin accuracyi − bin confidencei)| × weightsi

The formula for ECE is given by:

ECE =

B∑
i=1

|(Accuracyi − Confidencei)| ×Weighti

where:

• Accuracyi is the accuracy within the i-th bin.
• Confidencei is the average confidence within the i-th bin.
• Weighti is the proportion of instances in the i-th bin compared to the total number of

instances.
• B is the total number of bins.

The final ECE value represents how much the model’s estimated probabilities differ from the true
(observed) probabilities. A low ECE indicates well-calibrated probabilistic predictions, demonstrat-
ing that the model’s confidence scores align closely with the actual likelihood of events. RS-NN
exhibits the lowest ECE as shown in Tab 2.

C.3 ALGORITHM FOR AUROC, AUPRC

Out-of-distribution (OoD) detection involves the identification of data points that deviate from the
in-distribution (iD) data on which a model was trained. This process relies on assessing the model’s
uncertainty, particularly its epistemic uncertainty, which reflects the model’s lack of knowledge or
confidence in making predictions. When exposed to OoD data, which differs significantly from the
training data, the model tends to exhibit higher epistemic uncertainty.

AUROC (Area Under the Receiver Operating Characteristic Curve) and AUPRC (Area Under the
Precision-Recall Curve) are evaluation metrics commonly used to assess the performance of binary
classification models, providing insights into their ability to distinguish between positive and nega-
tive instances. In the context of evaluating uncertainty estimation in machine learning models, these
metrics quantify how well the model separates iD samples from OoD samples. AUROC is derived
from the Receiver Operating Characteristic (ROC) curve, which illustrates the trade-off between
True Positive Rate (TPR) and False Positive Rate (FPR) across various classification thresholds.

The AUROC value represents the area under this curve and ranges from 0 to 1, with higher values
indicating better discriminative performance. AUPRC is based on the Precision-Recall curve, which
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Algorithm 3 Algorithm for AUROC, AUPRC

Require: uncertainty iid: Uncertainty scores for in-distribution samples. uncertainty ood: Uncer-
tainty scores for out-of-distribution samples.

Ensure: (fpr, tpr, thresholds): ROC curve metrics.
1: (precision, recall, prc thresholds): Precision-Recall curve metrics.
2: auroc: Area Under the Receiver Operating Characteristic curve.
3: auprc: Area Under the Precision-Recall curve.
4: Step 1: Concatenate uncertainties;
5: uncertainties← concatenate(uncertainty iid, uncertainty ood)
6: Step 2: Create and combine labels;
7: in labels ← zeros(uncertainty iid.shape[0]) ood labels ← ones(uncertainty ood.shape[0])

labels← concatenate(in labels, ood labels)
8: Step 4: Calculate ROC curve;
9: (fpr, tpr, thresholds)← roc curve(labels, uncertainties)

10: Step 5: Calculate AUROC;
11: auroc← roc auc score(labels, uncertainties)
12: Step 6: Calculate Precision-Recall curve;
13: (precision, recall, prc thresholds)← precision recall curve(labels, uncertainties)
14: Step 7: Calculate AUPRC;
15: auprc← average precision score(labels, uncertainties)

plots Precision against Recall at different classification thresholds. Precision measures the accuracy
of positive predictions, while Recall quantifies the ability to capture all positive instances. AUPRC
calculates the area under this curve and provides a complementary perspective, particularly valuable
when dealing with imbalanced datasets.
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Figure 12: Receiver Operating Characteristic (ROC) and Precision-Recall Characteristic (PRC)
curves for RS-NN, LB-BNN, ENN, and CNN evaluated on the SVHN and Intel Image OoD datasets
for CIFAR-10.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (TPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(F

PR
) F-MNIST - ROC Curve

RS-CNN: 93.89
LB-BNN: 89.65
ENN: 81.79
CNN: 83.77

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (TPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(F

PR
) K-MNIST - ROC Curve

RS-CNN: 96.75
LB-BNN: 95.61
ENN: 95.94
CNN: 94.46

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

F-MNIST - PRC Curve

RS-CNN: 93.98
LB-BNN: 90.36
ENN: 82.92
CNN: 84.14

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

K-MNIST - PRC Curve

RS-CNN: 96.58
LB-BNN: 95.65
ENN: 95.45
CNN: 93.94

Figure 13: Receiver Operating Characteristic (ROC) and Precision-Recall Characteristic (PRC)
curves for RS-NN, LB-BNN, ENN, and CNN evaluated on the SVHN and Intel Image OoD datasets
for MNIST.

Figs. 12 and 13 plot each model’s performance, illustrating the trade-offs between True Positive
Rate and False Positive Rate (ROC curve), Precision and Recall (PRC curve) for CIFAR-10 (Fig.
12) and MNIST (Fig. 13). The left two plots depict the AUROC curves, where the blue curve
representing RS-NN outperforms others, indicating superior discrimination between true positive
and false positive rates. Similarly, on the two right plots displaying Precision-Recall Curve (PRC),
RS-NN exhibits the highest curve, emphasizing its precision and recall performance. These results
showcase RS-NN’s effectiveness in distinguishing in-distribution and out-of-distribution samples.

In real-world scenarios, encountering OoD instances is inevitable, making reliable OoD detection
essential for safety-critical applications to avoid erroneous decisions on unfamiliar data. Recognis-
ing unfamiliar data signals the model about situations beyond its training, allowing it to acknowledge
its own limitations and ignorance, which in turn enhances its uncertainty estimation.
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D IMPLEMENTATION DETAILS

Laplace Bridge Bayesian approximation (LB-BNN) (Hobbhahn et al., 2022) uses the Laplace Bridge
to map efficiently between Gaussian and Dirichlet distributions and enhance computational effi-
ciency. In our experiments, we obtain multiple samples from the LB-BNN posterior and aver-
age these samples using Bayesian Model Averaging (BMA). Function-Space Variational Inference
(FSVI) (Rudner et al., 2022) utilizes variational inference to derive an approximation of the posterior
distribution over the function space. FSVI proposes approximating distributions over functions as
Gaussian by linearizing their mean parameters and derived a tractable and well-defined variational
posterior. Deep Ensembles (DEs) (Lakshminarayanan et al., 2017) and Epistemic Neural Networks
(ENNs) (Osband et al., 2024) are ensemble methods that train ensembles of models to efficiently
estimate uncertainty. The mean and variance of ensemble predictions are calculated and the mean
is softmaxed to obtain predictions from DE and ENN. The training hyperparameters for all models
are outlined in Tab. 5.

Table 5: Training Hyperparameters for All Models

Parameter Value
Architecture ResNet50 (excluding top classification layer)
Additional Dense Layers 1024 and 512 neurons (ReLU activation)
Output Layer Activation (RS-NN) Sigmoid (multi-label classification)
Output Layer Activation (Other Models) Softmax (multi-class classification)

Learning Rate Initial: 1e-3
Learning Rate Scheduler Decrease by 0.1 at epochs 80, 120, 160, 180
Training Epochs 200
Batch Size 128
Optimizer RS-NN: Adam, LB-BNN: Adam, ENN: Adam, DE: Adam, FSVI: SGD

Training Dataset Sizes

CIFAR-10: 40,000
CIFAR-100: 40,000
MNIST: 50,000
Intel Image: 13,934
ImageNet: 1,172,498

Testig Dataset Sizes

CIFAR-10: 10,000
CIFAR-100: 10,000
MNIST: 10,000
Intel Image: 3,000
ImageNet: 2,000

Testing Samples for OoD Datasets 10,000 (except Intel Image: 3,000)

Input Image Size 224 × 224
Data Augmentation Random horizontal/vertical shifts (magnitude 0.1), horizontal flips
GPU NVIDIA A100 80GB

We report the training times (in minutes) for all models on the CIFAR-10 dataset in Tab. 6. Tab.
6 shows that FSVI has the longest training time, followed by RNN and DE. Compared to LB-
BNN, RS-NN has an additional 5 minutes to the training duration, while CNN has the shortest
training time. However, CNNs do not provide uncertainty estimation, and RS-NN has more reliable
uncertainty and OoD metrics in comparison to LB-BNN.

The significant training time required for Deep Ensembles (DE) often does not justify their uncer-
tainty estimates (Abe et al., 2022; Rahaman et al., 2021). Despite the computational cost, DE is
sometimes only as good as other uncertainty estimation models, which can be trained much faster.
Other approaches, like methods with calibration techniques (e.g., temperature scaling or Bayesian
approaches), can provide similar performance without the substantial overhead that DE entails.

Table 6: Training time (min) for all models on the CIFAR-10 dataset.

RS-NN LB-BNN FSVI DE ENN CNN

Training time (min) 113.23 107.900 1518.35 426.66 712.302 85.333
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we will address the following questions based on our experimental findings:

• Q1: Why are most models not able to differentiate between ImageNet and ImageNet-O in
terms of entropy?

• Q2: Why does RS-NN achieve better accuracy than CNN? What is the overconfidence
problem in CNN?

• Q3: How does RS-NN handle perturbed data (noisy, rotated)?

• Q4: What empirical evidence supports the claim that RS-NN is more robust against
adversarial attacks than traditional CNNs?

• Q5: Why is the credal set considered a good measure of epistemic uncertainty?

• Q6: What is the importance of the mass regularizers in the loss function LRS (Sec. 3.2)?
Why is it important to properly tune the regularization parameters α and β, and what
impact does this have on the model’s performance?

• Q7: What are the effects of budgeting on RS-NN? How was the number of budgeted focal
sets K chosen? How does budgeted RS-NN differ from standard RS-NN with all the
subsets in the power set?

• Q8: How does UMAP measure as a faster alternative to t-SNE for budgeting in RS-NN?
How can the budgeting procedure be adapted for continuous data streams?

E.1 IMAGENET VS IMAGENET-O

In Tab 2, the clear separation between iD and OoD entropy is evident for RS-NN, yet for ImageNet
vs ImageNet-O, all other models struggle to distinguish between the iD vs OoD entropy and the
OoD dataset almost falls within the standard deviation of the iD samples. Also, in Tab. 3, the credal
set widths for CIFAR-10 vs SVHN/Intel Image and MNIST vs F-MNIST/K-MNIST are distinct, but
ImageNet vs ImageNet-O is not too different.

To better understand this, it is important to consider how ImageNet-O is generated. ImageNet-O is a
dataset of adversarially filtered examples for ImageNet out-of-distribution detectors. It is created by
removing all the ImageNet-1K samples from the full ImageNet-22K dataset. The remaining sam-
ples, which do not belong to ImageNet-1K classes, are classified by a trained model. The samples
classified by the model as ImageNet-1K classes with high confidence becomes ImageNet-O. Hence,
in general, it is difficult for models to make the iD vs OoD distinction as evident by uncertainty
measures in Tab. 2.

We conducted experiments on Credal Set Width and Pignistic Entropy measures of RS-NN using a
ViT-B-16 (Vision Transformer) backbone, as shown in Tab. 7. The pignistic entropy and credal set
width show good distinction between iD and OoD measures, unlike the uncertainty measures from
other baseline models in Tab. 2.

This is specifically due to the peculiar relation between ImageNet and ImageNet-O, and not a general
problem with the models not being able to distinguish samples when they belong to the same image
distribution.

To support our claim, we conducted experiments using CIFAR-10 (iD) vs CIFAR-100 (OoD) as
shown in Tab. 8 below, and the results indicate that our model distinguishes between these two
datasets well, as evident through the AUROC, AUPRC, entropy and credal set width. Therefore,
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Table 7: Credal set width and entropy for RS-NN using ViT-B-16 model on ImageNet vs ImageNet-
O datasets.

Datasets Credal Set Width Pignistic Entropy Softmax Entropy

RS-NN ImageNet (iD) (↓) 0.1082± 0.1926 2.7401± 2.3678 CNN 2.3442± 1.2243

ImageNet-O (OoD) (↑) 0.1948± 0.2455 4.4238± 2.5744 2.8619± 1.5884

Table 8: OoD detection and uncertainty estimation performance for iD vs OoD dataset: CIFAR-10
vs CIFAR-100.

Dataset Model In-distribution
Entropy (↓)

Credal Set
Width (↓)

CIFAR-100

AUROC (↑) AUPRC (↑) Entropy (↑) Credal Set Width (↑)
CIFAR-10 RS-NN 0.0802± 0.297 0.0061± 0.039 88.01 84.93 0.5778± 0.729 0.0721± 0.165

the issue seems to be specific to ImageNet and ImageNet-O, likely due to the class imbalance in
ImageNet. As per the general trend for ImageNet in Tab. 2, all models behave uncertainly for higher
number of classes which makes the difference between iD and OoD less extreme. Although, RS-NN
still performs better than other models on ImageNet.

E.2 RS-NN VS CNNS: ACCURACY AND CONFIDENCE

Table 9: Standard CNN fails to perform well when tested on an noisy (rotated) sample of MNIST
test data. The predicted results show how a standard CNN predicts the wrong class with a high
confidence score (99.95%), while the RS-NN model predicts the correct class with 49.7% confidence
and a high entropy of 2.1626.

True Label =“8” CNN Predictions RS-NN Predictions

Class 6 0.9995
Class 5 0.0002
Class 8 0.0001
Class 0 1.4e-05
Class 4 1.1e-06

Belief values
{’6’, ’4’, ’8’} 0.7853
{’6’, ’8’, ’1’} 0.7150
{’6’, ’8’} 0.6357
{’9’, ’8’} 0.5529
{’8’, ’3’} 0.4092

Mass values
{’6’, ’8’} 0.2079
{’9’, ’8’, ’1’} 0.1999
{’8’} 0.1959
{’8’, ’3’} 0.0961
{’6’} 0.05147

Pignistic Probability
8 0.4978
6 0.2294
9 0.1002
3 0.0502
4 0.0459

Entropy 0.0061 Entropy 2.1626 Credal set width 0.582

Accuracy. RS-NN consistently achieves higher accuracy than standard CNN (ResNet50) on all
datasets as shown in Tab. 1. This appears to attest that, as RS-NN uses a random-set framework
which does not require prior assumptions and is more data driven, it can better adapt and capture the
inherent complexity of the data (as sets), contributing to its superior performance in test accuracy
across various datasets (Tab. 1). The training hyperparameters for RS-NN and CNN are the same,
since the training procedure is quite similar.

Confidence. We further analyse how RS-NN overcomes the overconfidence problem in CNNs. Tab
9 shows an noisy example of a rotated MNIST image with a true label ‘8’. The standard CNN makes
an incorrect prediction (‘6’) with 99.95% confidence and a low entropy of 0.0061, showcasing a
noTab limitation in relying solely on confidence scores and entropy of predicted probabilities. RS-
NN provides a correct prediction (class ‘8’) with a confidence of 49.7% and pignistic entropy of
2.1626 and a credal set width of 0.482. Crucially, the RS-NN’s prediction process considers more
than just the predicted class, taking into account both the confidence of the pignistic probability and
the entropy. In this example, despite predicting the correct class (‘8’), the RS-NN demonstrates a
low confidence (49.7%) and high entropy (2.1626). This holistic approach provides a more nuanced
and reliable understanding of the model’s uncertainty.

A distribution of confidence scores for RS-NN in the same noisy experiment are shown in Fig. 15 for
both incorrectly classified and correctly classified samples. In Fig. 14, we show how a standard CNN
has high confidence for incorrectly classified samples whereas RS-NN exhibits lower confidence and
higher entropy (Fig. 16) for incorrectly classified samples. Fig. 16 displays the entropy distribution
for correctly and incorrectly classified samples of CIFAR-10, including in-distribution, noisy, and
rotated images. Higher entropy is observed for incorrectly classified predictions across all three
cases.
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RS-NN

RS-NN

Figure 14: Confidence scores for Incorrectly Classified samples of RS-NN and CNN
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Figure 15: Confidence scores of RS-NN on CIFAR-10, Noisy CIFAR-10, and Rotated CIFAR-10
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Figure 16: Entropy distribution of RS-NN on CIFAR-10, Noisy CIFAR-10, and Rotated CIFAR-10

E.3 ROBUSTNESS TO NOISY AND ROTATED DATA

We split the MNIST data into training and test sets, train the RS-NN model using the training test,
and test the model on noisy and rotated out-of-distribution test data. This is done by adding random
noise to the test set of images to obtain noisy data and rotating MNIST images with random degrees
of rotation between 0 and 360.

Tab 10 shows predictions for noisy and rotated noisy MNIST samples. In cases where a standard
CNN makes wrong predictions with high confidence scores, Random-Set NN manages to predict
the correct class with varying confidences verifying that the model is not overcofident in uncertain
cases. For example, a noisy sample with true class ‘3’ has a standard CNN prediction of class
‘8’ with 96.9% confidence, while RS-NN predicts the correct class {‘3’} with 42.7% confidence.
Similarly, for rotated ‘9’, the standard CNN predicts class ‘5’ with 98.8% confidence whereas RS-
NN predicts the correct class {‘9’} with 69.9% confidence. For a rotated ‘1’, the standard CNN
predicts class ‘2’ with 100% confidence.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 10: Standard CNN fails to perform well when tested on noisy noisy and rotated samples of
MNIST test data. The predicted results show how a standard CNN predicts the wrong class with a
high confidence score, whereas the RS-NN model predicts the right class with varying confidence
scores.

Standard CNN Predictions Belief RS-NN Predictions

True Label = 2

Class 0 0.628
Class 2 0.232
Class 3 0.117
Class 8 0.015

Belief values
{‘2’} 0.985
{‘2’, ‘0’, ‘1’} 0.981
{‘2’, ‘1’} 0.980
{‘2’, ‘4’} 0.979

Mass values
{‘2’} 0.982
{‘0’, ‘8’} 0.009
{‘7’, ‘0’, ‘1’} 0.002
{‘7’, ‘8’} 0.002

Pignistic
2 0.982
8 0.007
0 0.100
3 0.004

True Label = 3

Class 8 0.969
Class 5 0.018
Class 9 0.006
Class 2 0.003

Belief values
{‘3’, ‘5’} 0.772
{‘6’, ‘3’} 0.637
{‘6’, ‘3’, ‘5’} 0.620
{‘3’} 0.540

Mass values
{‘3’} 0.361
{‘7’, ‘8’} 0.134
{‘0’, ‘8’} 0.104
{‘8’} 0.084

Pignistic
3 0.427
8 0.205
5 0.115
7 0.080

True Label = 1

Class 2 1.0
Class 1 3.39e-08
Class 6 1.03e-10
Class 3 4.92e-11

Belief values
{‘2’, ‘1’} 0.999
{‘1’, ‘9’} 0.958
{‘1’} 0.924
{‘1’, ‘5’} 0.825

Mass values
{‘1’} 0.556
{‘2’} 0.423
{‘1’, ‘9’} 0.020
{‘6’} 4.31e-05

Pignistic
1 0.566
2 0.423
9 0.010
6 4.31e-05

True Label = 9

Class 5 0.988
Class 2 0.010
Class 3 0.0004
Class 7 0.0002

Belief values
{‘7’, ‘5’, ‘9’} 0.831
{‘7’, ‘9’} 0.706
{‘5’, ‘9’} 0.576
{‘3’, ‘9’} 0.558

Mass values
{‘7’, ‘9’} 0.171
{‘3’} 0.134
{‘9’} 0.132
{‘7’, ‘8’} 0.102

Pignistic
9 0.699
7 0.023
5 0.004
3 0.001

Table 11: Test accuracies(%) for RS-NN, standard CNN, LB-BNN (Bayesian) and ENN (Ensemble)
on noisy samples of MNIST . ‘Scale’ represents the standard deviation of the normal distribution
from which random numbers are being generated for random noise.

Noise (scale) 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Standard CNN 93.40% 79.08% 79.15% 58.33% 40.19% 28.15% 28.59%
RS-NN 96.90% 85.36% 85.91 % 68.33 % 51.46 % 37.18 % 38.05 %
LB-BNN 98.47% 95.26 % 80.18% 61.56% 43.28% 31.41% 24.55
ENN 97.81% 90.76% 75.41% 58.99% 45.70% 36.97% 31.51

Tab. 11 shows the test accuracies for standard CNN, RS-NN, LB-BNN and ENN at different scales
of random noise. RS-NN shows significantly higher test accuracy than other models as the amount
of noise added to the test data increases.

Table 12: Test accuracies(%) for RS-NN, standard CNN, LB-BNN (Bayesian) and ENN (Ensemble)
on Rotated MNIST out-of-distribution (OoD) samples. Rotation angle is random between the values
given.

Rotation (angle) -180/-120 -120/-60 -60/0 0/60 60/120 120/180 0/360

Standard CNN 36.41% 21.86% 74.41% 80.80% 23.89% 37.53% 45.86%
RS-NN 37.84% 23.54% 78.44% 81.46% 26.31% 38.48% 47.71%
LB-BNN 37.56% 20.19% 75.12% 77.67% 23.18% 37.83% 46.07
ENN 36.40% 19.43% 71.70% 78.59% 18.70% 36.38% 44.14
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The test accuracies for standard CNN, RS-NN, LB-BNN and ENN on Rotated MNIST images are
shown in Tab 12. The samples are randomly rotated every 60 degrees, -180◦ to -120◦, -120◦ to -60◦,
-60◦ to 0◦, etc. A fully random rotation between 0◦ and 360◦ also shows higher test accuracy for
RS-NN at 47.71% when compared to standard CNN with test accuracy 45.86%.

E.4 ROBUSTNESS TO ADVERSARIAL ATTACKS

We conducted experiments on adversarial attacks using the well-known Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014). FGSM is a popular approach for generating adversarial examples
by perturbing input images based on the sign of the gradient of the loss function with respect to the
input. Mathematically, the perturbed image x′ is computed as

x′ = x+ ϵ · sign(∇xJ(θ, x, y)), (11)

where x is the original input image, ϵ (epsilon) is a small scalar representing the magnitude of the
perturbation, J is the loss function, θ are the model parameters, and y is the true label of the input
image.

Figure 17: Examples of perturbed images generated using FGSM adversarial attacks on the MNIST
dataset for different epsilon values. Epsilon values range from 0 to 0.05.

In our experiments, we applied FGSM adversarial attacks on the MNIST dataset for standard CNN,
Random-Set NN (RS-NN), LB-BNN (Bayesian) and ENN (Ensemble) models. This involved per-
turbing images from the MNIST dataset with noise generated using FGSM based on the gradient of
the loss function (namely, the cross entropy loss for CNN and the LB−RS loss, see Sec. 3.2, (7), for
RS-NN).

Table 13: Test accuracies of CNN, RS-NN, LB-BNN and ENN models under FGSM adversarial
attacks on MNIST and CIFAR-10 dataset for different epsilon values. Epsilon values range from 0
to 0.05.

Dataset Model Epsilon (ϵ)

0 0.005 0.01 0.02 0.03 0.04 0.05

Test acc. (%)

MNIST

CNN 99.12 98.25 94.82 72.62 49.75 38.08 32.43
RS-NN 99.71 98.46 95.84 91.90 90.62 90.10 89.72
LB-BNN 99.58 99.07 98.64 97.15 80.51 47.65 34.25
ENN 99.07 98.56 92.98 51.51 35.04 27.03 9.47

CIFAR-10

CNN 92.08 41.54 20.88 9.18 5.81 4.43 4.05
RS-NN 93.53 63.42 61.73 61.67 61.53 61.12 60.35
LB-BNN 89.95 23.95 10.54 6.17 5.96 6.26 6.47
ENN 91.55 62.29 42.64 24.12 16.39 12.78 11.20

Subsequently, we evaluated the models’ predictions on these perturbed images and computed their
test accuracies. Tab. 13 presents the test accuracies of CNN, RS-NN, LB-BNN and ENN models
under FGSM adversarial attacks on the MNIST dataset for different values of ϵ.
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For CIFAR-10, RS-NN demonstrates higher robustness to the attack compared to all other models
with increased perturbations, while for MNIST, LB-BNN has higher accuracy at lower ϵ values but
drops significantly for larger values. RS-NN circumvents the FGSM attack and shows consistent
accuracy values for higher ϵ. This is because FGSM for a given input image is dependent on the
gradient of the loss, whereas RS-NN makes precise correct predictions with loss/gradient zero and
is very confident about these predictions. As a result, the input image does not get perturbed and is
correctly classified by RS-NN irrespective of the ϵ value.

Fig. 17 shows examples of perturbed images generated using FSGM adversarial attacks applied to
the MNIST dataset for various epsilon values ranging from 0 to 0.05.

Additionally, we conducted experiments using the Projected Gradient Descent (PGD) adversarial
attack (Madry et al., 2017), which is a more iterative and stronger attack compared to FGSM. PGD
generates adversarial examples by iteratively perturbing the input image in the direction of the gra-
dient of the loss function, followed by a projection step to ensure that the perturbation stays within
a predefined range, typically defined by a norm ball around the original image. Mathematically, the
perturbed image x′ is computed as follows:

x(0) = x, x(t+1) = ProjB(x,ϵ)

(
x(t) + α · sign(∇xJ(θ, x

(t), y))
)
, (12)

where x(t) represents the image at the t-th iteration, α is the step size, ϵ is the maximum allowable
perturbation (i.e., the size of the B(x, ϵ) ball), and Proj denotes the projection operation that ensures
the perturbed image x′ stays within the ϵ-ball around the original image x:

B(x, ϵ) = {x′ : ∥x′ − x∥ ≤ ϵ} . (13)

After a number of iterations, typically denoted as T , the final perturbed image x′ is obtained. This it-
erative process makes PGD a more powerful adversarial attack compared to FGSM. Tab. 14 presents
the test accuracies of CNN, RS-NN, LB-BNN and ENN models under the PGD adversarial attack
on MNIST and CIFAR-10 datasets for different values of ϵ.

On MNIST, LB-BNN does well for ϵ = 0.005 and ϵ = 0.01, but CNN, LB-BNN and ENN suffer
significant drops in accuracy at higher ϵ values. RS-NN performs better at higher ϵ values. On
CIFAR-10, RS-NN significantly outperforms all models at all ϵ values, while the other models show
a significant drop in performance, even at ϵ = 0.005. As explained earlier, RS-NN makes precise
predictions with gradient zero and, therefore, is unaffected by PGD.

Table 14: Test accuracies of CNN, RS-NN, LB-BNN and ENN models under PGD adversarial
attacks on MNIST and CIFAR-10 datasets with α = 1/255 and number of iterations = 10. Epsilon
values range from 0 to 0.05

Dataset Model Epsilon (ϵ)

0 0.005 0.01 0.02 0.03 0.04 0.05

Test acc. (%)

MNIST

CNN 99.12 98.90 55.44 14.03 8.11 6.58 6.58
RS-NN 99.71 99.13 93.39 91.06 89.25 89.07 89.02
LB-BNN 99.58 99.35 99.01 33.67 16.35 13.64 13.64
ENN 99.07 98.43 78.09 20.64 9.94 3.78 0.93

CIFAR-10

CNN 92.08 23.82 2.47 0.04 0 0 0
RS-NN 93.53 60.23 59.98 59.97 59.97 59.97 59.97
LB-BNN 89.95 6.28 0.51 0.55 0.59 0.59 0.59
ENN 91.55 33.95 4.40 0.15 0.02 0 0

E.5 UNCERTAINTY ESTIMATION FOR RS-NN

In this section, we discuss the uncertainty measures of RS-NN: pignistic entropy (§E.5.1) and credal
set width (§E.5.2), and their correlation with confidence scores (§E.5.3).
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E.5.1 ENTROPY OF PIGNISTIC PREDICTIONS

The plots shown in Fig. 18 provide a comparative analysis of the entropy values across various
machine learning models under two conditions: In-Distribution (iD) and Out-of-Distribution (OoD)
datasets. Each subplot represents a different dataset — CIFAR-10, MNIST, and ImageNet — high-
lighting the performance of multiple models, including RS-NN, LB-BNN, FSVI, DE, ENN, and
CNN.

Fig. 18 illustrates that RS-NN exhibits the best iD vs OoD entropy ratio among the evaluated
baseline models. Specifically, RS-NN maintains significantly lower entropy values for iD datasets,
indicating a strong ability to recognize familiar patterns while showing elevated entropy for OoD
datasets. DE and CNN closely follow RS-NN but struggle to effectively differentiate entropy for
the ImageNet dataset. LB-BNN shows more uncertainty regarding iD samples compared to OoD
samples. FSVI demonstrates the weakest distinction between iD and OoD.
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Figure 18: Entropy comparison of all models for iD and OoD datasets. The plots illustrate the
performance of various models, with error bars indicating the standard deviation of entropy values.

Table 15: The predicted belief, mass values, pignistic probabilities, and entropy for two CIFAR-
10 predictions. The figure on the top (True Label = “horse”) is a certain prediction with 99.9%
confidence and a low entropy of 0.0017, whereas the figure on the bottom (True Label = “cat”) is an
uncertain prediction with 33.3% confidence and a higher entropy of 2.6955.

Sample Belief Mass Pignistic Entropy

{‘horse’, ‘bird’} 0.9999402
{‘horse’, ‘dog’} 0.9999225
{‘horse’} 0.9999175
{‘horse’, ‘deer’} 0.9998697
{‘cat’, ‘truck’} 7.0380207e-05

{‘horse’} 0.9999175
{‘cat’, ‘truck’} 6.859753e-05
{‘ship’, ‘bird’} 4.094290e-05
{‘horse’, ‘bird’} 2.250525e-05
{‘dog’} 1.717869e-05

horse 0.9998833
truck 3.5826409e-05
cat 3.3859180e-05
bird 3.3015738e-05
ship 2.3060647e-05

0.0017040148

{‘deer’, ‘cat’} 0.4787728
{‘deer’, ‘airplane’, ‘bird’} 0.4126398
{‘horse’, ‘deer’} 0.3732957
{‘deer’, ‘bird’} 0.3658997
{‘deer’, ‘dog’} 0.3651531

{‘deer’} 0.3104962
{‘cat’, ‘truck’} 0.1762222
{‘dog’, ‘bird’} 0.0998060
{‘horse’, ‘bird’} 0.0954350
{‘bird’} 0.0524873

deer 0.3332411
cat 0.2230723
horse 0.1153417
bird 0.1086245
dog 0.1039505

2.6955228261

Tab. 15 shows sample predictions by RS-NN: belief functions, masses, and pignistic predictions for
given samples of CIFAR-10. The predicted belief, mass values, pignistic probabilities, and entropy
are illustrated for two CIFAR-10 predictions. In the top figure, corresponding to the true label
“horse,” the model makes a highly confident prediction with 99.9% confidence and a low entropy of
0.0017. Conversely, the bottom figure, associated with the true label “cat,” represents an uncertain
prediction with 33.3% confidence and a higher entropy of 2.6955. It’s important to note that the
second image is slightly unclear and poor in quality.

Fig. 19 shows the entropy for two samples of CIFAR-10, one is a slightly uncertain image, whereas
the other is certain with high belief values and lower entropy. Both results are shown for K = 20
classes, additional to the 10 singletons.

Qualitative results of entropy. Fig. 20 depicts entropy-based uncertainty estimates for rotated
out-of-distribution (OoD) MNIST digit ‘3’ samples. All models accurately predict the true class
at −30◦, 0◦, and 30◦. RS-NN and LB-BNN consistently exhibit low entropy in these scenarios,
while ENN shows higher entropy for correct classifications at these angles. As the rotation angle
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Figure 19: Entropy, predicted class and belief value graph for two samples of CIFAR-10 dataset.

RS-NN

Figure 20: Uncertainty (entropy) of MNIST digit ’3’ rotated between -90 and 90 degrees. The blue
line indicates RS-NN estimates low uncertainty between -30 to 30, and high uncertainty for further
rotations.
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Figure 21: Entropy Distributions for RS-NN on
MNIST vs Fashion-MNIST/Kuzushiji-MNIST.
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Figure 22: Entropy Distributions for RS-NN on
CIFAR-10 vs SVHN/Intel-Image.

increases, indicating more challenging scenarios, all models predict the wrong class. Notably, LB-
BNN fails to exhibit a significant increase in entropy for these incorrect predictions. ENN performs
relatively better than RS-NN at 60◦ and 90◦ rotations but has previously demonstrated high entropy
levels even for accurate predictions at relatively minor rotations of−30◦ and +30◦ degrees. Overall,
RS-NN provides a more reliable measure of uncertainty.
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Figs. 21 and 22 show the entropy distributions for RS-NN on MNIST (iD) vs Fashion-MNIST
(OoD)/Kuzushiji-MNIST (OoD), and CIFAR-10 (iD) vs SVHN (OoD)/Intel-Image (OoD), respec-
tively. There is a clear iD vs OoD shift in entropy for RS-NN, as detailed in Sec. 4.4.

The plots show that RS-NN consistently exhibits larger iD vs OoD entropy ratio for all datasets. For
iD data, the entropy values are generally lower, indicating that these models exhibit a higher level
of confidence when making predictions within familiar datasets. Conversely, the OoD side shows
significantly higher entropy values for most models, particularly notable with the SVHN and Intel
datasets, suggesting that the models struggle to generalize when faced with unfamiliar data. The
error bars represent the standard deviation of the entropy values.

E.5.2 CREDAL SET WIDTH
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Figure 23: Credal set widths for individual classes of CIFAR-10 dataset. For Incorrectly Classified
samples (top). For Correctly Classified samples (bottom).

Fig. 23 plots the credal set widths for incorrectly classified (left) and correctly classified (right)
samples over each class c in CIFAR-10, respectively. The box represents the interquartile range
between the 25th and 75th percentiles of the data encompassing most of the data. The vertical line
inside the box represents the median and the whiskers extend from the box to the minimum and
maximum values within a certain range, and data points beyond this range are considered outliers
and are plotted individually as dots or circles. The box plots here are shown for 10,000 samples
of CIFAR-10 dataset where most samples within the incorrect classifications have higher credal set
widths indicating higher uncertainty in these samples, especially for classes ‘bird’, ‘cat’, ‘deer’,
and ‘dog’.

E.5.3 ENTROPY VS CREDAL SET WIDTH

There has been considerable research on uncertainty measures for credal sets. One of the earlier
works by Yager (2008) makes the distinction between two types of uncertainty within a credal
set: conflict (also known as randomness or discord) and non-specificity. Non-specificity essentially
varies with the size of the credal set (Kolmogorov, 1965). Since by definition, aleatoric uncertainty
refers to the inherent randomness or variability in the data, while epistemic uncertainty relates to
the lack of knowledge or information about the system (Hüllermeier & Waegeman, 2021), conflict
and non-specificity directly parallel these concepts. These measures of uncertainty are axiomatically
justified (Bronevich & Klir, 2008).

Figs. 24 and 25 depict the relationship between the entropy of RS-NN pignistic prediction and the
associated confidence level (Fig. 24), and between credal set width and confidence (Fig. 25) for the
CIFAR-10 (left) and SVHN/Intel Image (right) datasets. The distribution of iD predictions (left) for
both tests show a concentration at the top left, indicating high confidence and low entropy or credal
set width. Conversely, OoD predictions (middle, right) exhibit a more dispersed pattern.

Entropy, reflecting prediction uncertainty, is quite correlated with confidence, in both iD and OoD
tests. In contrast, as it considers the entire set of plausible outcomes within a belief function rather
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Figure 24: Entropy vs Confidence score on iD (left) vs OoD (right) datasets. For CIFAR-10, most
predictions are concentrated top left of the plot indicating lower entropy and higher confidence in
the predictions. For SVHN and Intel Image datasets, predictions are more distributed.
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Figure 25: Credal Set Width vs Confidence score on iD (left) vs OoD (right) datasets. For CIFAR-
10, confidence scores are high and credal set width is small. For SVHN and Intel Image datasets,
credal set width varies for each prediction and is less reliant on confidence score.

than a single prediction, credal set width better quantifies the degree of epistemic uncertainty inher-
ent to a prediction. As a result, credal set width is less dependent on the concentration of predictions
and is more reflective of the overall uncertainty encompassed by the model. Fig. 25 shows that,
unlike entropy, credal with is clearly not correlated with confidence.

E.6 ABLATION STUDY ON HYPERPARAMETERS α AND β

The regularization serves the purpose of ensuring that our model generates valid belief functions,
which are constrained by maintaining a sum of masses equal to 1 and ensuring non-negativity. These
terms are designed to penalize deviations from valid belief functions. However, it is crucial not to
assign too much weight to this term, as excessively penalizing deviations may hinder the model’s
ability to accurately classify data points. For example, in a Variational Auto Encoder (VAE), if we
assign too much weight to the KL divergence term in the loss, the model may prioritize fitting the
latent distribution at the expense of reconstructing the input data accurately. This imbalance can
lead to poor reconstruction quality and suboptimal performance on downstream tasks.

Hence, it is essential to properly tune the values of α and β to ensure that these regularization
terms play a meaningful role in the training. The ablation study on hyperparameters is conducted to
examine the impact of α and β on the model’s accuracy. It demonstrates that small values suffice
for these parameters.

In Fig. 26, we show the test accuracies for different values of hyperparameters α and β in LB−RS

loss function (Eq. 7). Hyperparameters α and β adjusts the relative significance of the regularization
terms Mr and Ms respectively in LB−RS loss. The test accuracies are calculated for CIFAR-10
dataset with a fixed number of focal sets K = 20 and varying α (blue) and β (red) values, α/β =
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[0.001, 0.005, 0.006, 0.009, 0.01, 0.015, 0.020, 0.025, 0.03, 0.04, 0.05]. Test accuracy is the highest
when α and β equals 1e− 3.

In our experiments across various datasets and architectures, we found that a value of 1e − 3 for
the hyperparameters yields satisfactory results. This includes architectures ranging from ResNet-50
to Vision Transformers (ViT-Base-16), and datasets ranging from MNIST (≈ 60,000 images of 10
classes) to ImageNet (≈ 1.1M images of 1000 classes). While conducting a parameter search for
each dataset could potentially lead to further optimization, it is worth noting that, in many cases, this
step can be omitted without sacrificing performance significantly. For further optimization one can,
of course, perform a tailored parameter search per dataset, but this is not quite necessary.
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Figure 26: Test accuracies of RS-NN on the CIFAR-10 dataset using ResNet50, for a fixed K = 20
and different values of hyperparameters α and β in the loss function.

An alternative loss with valid belief functions. A straightforward way of enforcing the positivity
of the masses is to apply softmax over the masses computed in the BCE loss. This ensures that the
masses are non-negative and sum to one. After obtaining the softmaxed masses, one can compute
the belief functions from these normalized masses and minimize the loss between this computed
belief and the original unnormalized belief.

The random set loss LRS now becomes,

LRS = LBCE + LBCEnorm
,

where LBCE is the BCE loss between belief function logits and ground truth, and LBCEnorm is the
BCE loss between the normalized belief function logits reconstructed from mass logits that have
been softmaxed.

We implemented this simple method on ResNet50 RS-NN on the CIFAR-10 dataset and obtained
an accuracy of 92.47%. This is quite close to our original accuracy of 93.53% with the mass regu-
larizations. This mirrors results in the literature showing that soft constraints work as well as hard
ones in practice (Márquez-Neila et al., 2017).

E.7 ABLATION STUDY ON THE NUMBER OF FOCAL SETS

The number of non-singleton focal sets K to be budgeted is a hyperparameter and needs to be
studied. A smaller value of K can lead to more similar results to classical classification while a
larger value of K can increase the complexity. Therefore, we conducted an ablation study on K
on the CIFAR-10 dataset. We found that a small value of K (comparable to the number of classes)
works best and even performs better than K = 0 (when there are no non-singleton focal sets)
(see Fig. 27). Hence, using set prediction along with the proposed budgeting algorithm not only
helps induce uncertainty quantification but also improves the performance of the model. Note that
performance comparison was made in terms of accuracy. Smet’s Pignistic Transform (Smets, 2005)
was used to compute class-wise probabilities from the predicted belief function. Fig. 27 shows
an ablation study on different number of focal sets K for CIFAR-10 on the Vision-Transformer
(ViT-Base-16) model with α = β = 1e− 3.

To further support our claim, we compare a budgeted RS-NN with standard RS-NN (full 2N sets)
on the CIFAR-10 datasets using ResNet50 as the backbone. In Tab. 16 below, we report the test
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Figure 27: Ablation study on number of non-singleton focal sets
K on CIFAR-10 dataset using ViT-Base-16 (with α = β = 1e −
3). The maximum value of K can be 1013 for 10 classes (after
excluding the singletons and empty set).

accuracy, OoD detection metrics (AUROC, AUPRC), pignistic entropy and credal set width for the
standard RS-NN vs budgeted RS-NN. The standard RS-NN has 1024 (210) sets since CIFAR-10 has
10 classes, and the budgeted RS-NN has K = 20 focal (non-singleton) sets, so 10 + 20 = 30 input
sets. Tab. 16 shows that budgeted RS-NN performs better than the standard model, especially iD vs
OoD entropy, and AUROC and AUPRC scores.

As we say in the main paper, while, in theory, using the full power set is ideal for uncertainty
estimation, in practice, having all those degrees of freedom might make it more difficult for the
network to learn. When a model is confronted with an overwhelming number of input sets, it
may struggle to identify meaningful patterns amidst the noise created by less relevant or redundant
combinations. This excessive flexibility can hinder the network’s ability to converge effectively, as
it may become trapped in local minima or overfit to the training data. This can dilute the model’s
capacity to generalize well to unseen data, thereby complicating the learning of the underlying
relationships between features and the set structure of the data.

Table 16: Comparison of accuracy, AUROC, AUPRC, pignistic entropy, and credal set width for
standard RS-NN vs budgeted RS-NN on the CIFAR-10 dataset.

In-distribution (iD) Out-of-distribution (OoD)

Dataset Model Test accuracy
(%) (↑) ECE (↓) SVHN Intel Image

AUROC (↑) AUPRC (↑) AUROC (↑) AUPRC (↑)

CIFAR-10

Standard RS-NN 92.66 0.0501 93.39 91.38 95.84 89.33
Budgeted RS-NN 93.53 0.0484 94.91 93.72 97.39 90.27

SVHN Intel Image

Entropy (iD) (↓) Credal Set Width (iD) (↓) Entropy (↑) Credal Set Width (↑) Entropy (↑) Credal Set Width (↑)
Standard RS-NN 0.286± 0.80 0.048± 0.15 1.205± 1.20 0.408± 0.07 1.490± 0.71 0.669± 0.21
Budgeted RS-NN 0.088± 0.308 0.007± 0.044 1.132± 0.855 0.260± 0.322 1.517± 0.740 0.587± 0.367

E.8 ON THE FEASIBILITY OF BUDGETING OF SETS

Tabs. 17 and 18 show that replacing t-SNE with UMAP for budgeting in the RS-NN model yields
comparable performance in terms of test accuracy, out-of-distribution (OoD) detection, and uncer-
tainty estimation. Both t-SNE and UMAP are capable of embedding data in a 3D space, with UMAP
employing a faster algorithm that utilizes five nearest neighbors and a minimum distance of 0.9. This
approach ensures that the integrity of the data structure is maintained while significantly reducing
computational costs. UMAP offers an efficient alternative without compromising the model’s ef-
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fectiveness. To make the generation of embeddings for budgeting of focal sets more efficient, we
can utilize faster alternatives like UMAP instead of t-SNE, without compromising the overall model
performance.

Table 17: Test accuracy and OoD detection (AUROC, AUPRC) results on RS-NN where budgeting
is done using t-SNE vs budgeting done on UMAP.

In-distribution (iD) Out-of-distribution (OoD)

Dataset Model Test accuracy
(%) (↑) ECE (↓) SVHN Intel Image

AUROC (↑) AUPRC (↑) AUROC (↑) AUPRC (↑)

CIFAR-10 RS-NN (t-SNE) 93.53 0.0484 94.91 93.72 97.39 90.27
RS-NN (UMAP) 92.97 0.0482 94.31 92.46 96.22 89.66

Table 18: Entropy and credal set width results on RS-NN where budgeting is done using t-SNE vs
budgeting done on UMAP. The goal is to minimize both metrics for in-distribution (iD) data while
increasing them for out-of-distribution (OoD) data.

In-distribution (iD) Out-of-distribution (OoD)

Dataset Model Entropy (↓) Credal Set Width (↓) SVHN Intel Image

Entropy (↑) Credal Set Width (↑) Entropy (↑) Credal Set Width (↑)

CIFAR-10 RS-NN (t-SNE) 0.088 ± 0.308 0.007 ± 0.044 1.132 ± 0.855 0.260 ± 0.322 1.517 ± 0.740 0.587 ± 0.367
RS-NN (UMAP) 0.082 ± 0.305 0.007 ± 0.047 1.119 ± 0.887 0.341 ± 0.374 1.423 ± 0.762 0.582 ± 0.402

Figure 28: 2D visualization of the clusters of 10 classes of CIFAR-10 dataset and the ellipses formed
by RS-NN based on the hyperparameters of Gaussian Mixture Models.

A 2D visualization of the ellipses formed by calculating the principle axes and their lengths using
eigenvectors and eigenvalues obtained from GMMs, for each class c (Spruyt, 2013) is shown in Fig.
28.

The budgeting procedure can also be modified to accommodate multiple data sources or a continuous
stream of data. t-SNE can be replaced by an autoencoder (this will need to be trained first) or PCA to
add continual inference capabilities in the dimensionality reduction step. Similarly, Gaussian-based
dynamic probabilistic clustering (GDPC) (Diaz-Rozo et al., 2018) can be used instead of GMM
clustering to handle a continuous stream of data. GDPC works by first initialising a GMM and then
updating its parameters as it sees new data. In alternative, (Kulis & Jordan, 2011) have proposed
an interesting approach to learn a GMM from multiple sources of data by maintaining a local and
a global mixture model. Both these approaches can be plugged into our budgeting framework with
little modifications to add continual learning capabilities to it. The computation of cluster overlaps
remains the same, so overlapping scores and the resultant focal sets will need to be updated as the
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clusters evolve. However, a cluster tracking strategy (Barbara & Chen, 2001) can be employed so
that the overlap assessment step is only re-done when a sufficient drift has been detected in the
clusters. All the proposed changes are efficient enough to not have a significant effect on the overall
time of budgeting.

F APPLICATION ON TEXT CLASSIFICATION

The random-set approach can be applied on any classification task. In this section, we detail experi-
ments performed on text classification.

Dataset. We chose the BBC text dataset (Greene & Cunningham, 2006), which consists of various
news categories such as tech, business, sport, and entertainment, and used this data for training our
model. The task is to classify the given text into one of these categories. The dataset is structured
with two columns: category and text, where the category is the label, and the text is the content to
be classified. The text data will be preprocessed and fed into the model to predict the category of
each text.

Model. To train our model, we leveraged a pre-trained BERT model available on TensorFlow Hub.
Specifically, we used the small BERT (L−4H −512A−8) model, which is a lightweight version of
BERT. The model is designed to take text input, preprocess it with BERT’s preprocessing layer, pass
it through BERT’s encoder to generate embeddings, and then use a dropout layer. The final layer
is a fully-connected layer with sigmoid activation for the RS-NN BERT classifier (RS-NN BERT),
and a fully-connected layer with softmax activation for the standard BERT classifier (CNN BERT).

Training. We trained these models on the BBC text dataset, fine-tuning the BERT model as part of
the training process. Both models were trained for 10 epochs using Adam optimizer, a batch size of
32, and a learning rate of 3e-5. RS-NN BERT has all the sets of classes excluding the null set and
full set (25 = 32 - 2 = 30 classes) and CNN BERT has the 5 original classes.

Out-of-distribution detection. For OoD detection, we use the Emotion Detection from Text
(Seyeditabari et al., 2018) dataset which contains tweets annotated with emotional labels. The
dataset includes three columns: tweetid, sentiment, and content, where sentiment represents the
emotion behind each tweet. The dataset includes 13 emotion classes such as anger, fear, joy, love,
sadness, and surprise, etc, aiming to identify emotional expressions in text.

Experimental results. In Tab. 19 below, we show the test accuracy, out-of-distribution (OoD)
metrics (AUROC, AUPRC), and the in-distribution (iD) vs OoD entropy for RS-NN BERT and
CNN BERT. RS-NN achieves higher overall performance with a significantly higher AUROC and
AUPRC scores, highlighting the efficiency of the model at differentiating between iD and OoD
samples. RS-NN has higher OoD entropy than CNN, but also has higher iD entropy than CNN,
which indicates that the uncertainty in predictions is higher as it is a small dataset.

Table 19: Test accuracy, AUROC, AUPRC, iD vs OoD entropy for RS-NN BERT and CNN BERT
(both fine-tuned on BERT).

Dataset (iD) Model Test Acc. (%) (↑) iD Entropy (↓) Emotion Detection (OoD)

AUROC (↑) AUPRC (↑) Entropy (↑)

BBC Text (iD) RS-NN BERT 96.85 0.541 ± 0.196 95.19 95.93 1.510 ± 0.611
CNN BERT 94.15 0.027 ± 0.125 56.71 57.54 0.059 ± 0.191
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