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Abstract: Passive non-line-of-sight imaging methods that utilize scattered light to “look around
corners” are often hindered by unwanted sources that overwhelm the weaker desired signal.
Recent approaches to mitigate these “clutter” sources have exploited dependencies in the spectral
content, or color, of the scattered light. A particularly successful method utilized blind source
separation methods to isolate the desired imaging signal with minimal prior information. This
current paper quantifies the efficacy of several preconditioning and unmixing algorithms when
blind source separation methods are employed for passive multispectral non-line-of-sight imaging.
Using an OLED television monitor as the source of both the desired signals and clutter, we
conducted multiple controlled experiments to test these methods under a variety of scene
conditions. We conclude that the preconditioner is a vital component as it greatly decreases the
power and correlation of the clutter. Additionally, the choice of unmixing algorithm significantly
impacts the reconstruction quality. By optimizing these two components, we find that effective
image retrieval can be obtained even when the clutter signals are as much as 670 times stronger
than the desired image.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Passive non-line-of-sight (NLOS) imaging utilizes light scattered from rough surfaces to retrieve
information hidden or occluded from the observer. Such imaging scenarios include objects
located in a hidden hallway or around a street corner [1–12]. These imaging techniques have many
applications, such as quickly locating survivors in a burning building during search-and-rescue or
discerning hidden pedestrians and cars in autonomous driving. Several passive NLOS imaging
methods have been proposed over the last several years, including occlusion-based methods
[1–4], light field methods [5–8], and thermal imaging methods [9–12]. However, most realistic
scenarios contain a large number of unwanted signals which negatively impact reconstruction
of the desired scene. For example, the undesired ambient light in Ref. [2] was one thousand
times stronger than the desired scattered light from the hidden human subjects. We refer to
these undesired signals as “clutter” rather than “noise” since they have significant structure and
therefore cannot be mitigated by stochastic denoising techniques.

There have been several attempts to attenuate strong clutter signals. These include incorporating
prior information or models of the clutter [1,13,14], utilizing scene movement as a discriminant
[2,15], applying slow spatially-varying assumptions [3,4], measuring the angle of the received
light [5,7], and using non-visible wavelengths [9–12,16]. Although these clutter rejection methods
have achieved some success, there is no single method that 1) requires minimal information about
the clutter, 2) can image stationary objects, 3) can remove both fast and slow spatially-varying
clutter, and 4) can perform image retrieval while using only visible light.

Recently, we have shown that the spectral content of a scene can be used to reject clutter while
satisfying all the above criteria [17,18]. In particular, in Ref. [17] we incorporated aspects of
blind source separation (BSS) to successfully attenuate clutter signals under several challenging
conditions. For example, with just five visible spectral filters, we were able to reconstruct
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images that were 30 times more accurate in the presence of complex clutter that was 15 dB
stronger than the desired imaging signal (results shown later in Fig. 4). Additionally, since BSS
is “blind,” the method required very few priors about the hidden scene. However, adapting
BSS to multispectral passive NLOS imaging is not straightforward since passive NLOS signals
typically originate from diffusely scattered light in the presence of background lighting that
contains a large dynamic range. This scenario differs considerably from applications of BSS in
hyperspectral unmixing [19,20]. To address these unique difficulties, Ref. [17] implemented a
three-step BSS pipeline consisting of (1) applying a preconditioner to the raw measurements,
(2) performing signal unmixing, and (3) discriminating between the clutter and desired signals.
Although this work demonstrated the efficacy of applying BSS to the spectral content of scattered
light, many unexplored questions remain concerning this process. Understanding the theory and
best practices for these methods is essential for future improvements and application.

The current paper explores and quantifies the effectiveness of the first two steps of the three-step
pipeline developed in Ref. [17]: preconditioning and unmixing. First, we introduce the general
method of multispectral NLOS imaging and describe the benefit of incorporating multiple
wavelength measurements. We then examine the BSS pipeline and consider multiple candidate
preconditioners and algorithms. Next, we perform laboratory experiments using an OLED
television monitor to generate a controlled hidden scene, allowing us to vary the number and
strength of the clutter signals and the spectral complexity of the hidden scene with precision.
These experiments are designed to quantitatively measure the performance of our various methods.
Finally, we provide a general discussion and determine which methods and algorithms are most
effective.

2. Multispectral passive NLOS imaging

2.1. Monochrome scattered radiance equation

The scattered radiance equation describes how light from a hidden scene on the left side of
Fig. 1(a) is received by a camera on the right side of Fig. 1(a) after scattering off of a flat rough
surface. Typically, this scattering is described by a 4-D light field which contains two spatial
dimensions ξ, η on the scattering surface and two angular dimensions θ, ϕ eminating from the
surface. For simplicity, this paper will just consider a 2-D slice of the 4-D light field which
includes the horizontal position ξ and horizontal angle θ, but the extension to the entire 4-D light
field is straightforward.

Ignoring wavelength variations λ for now, the scattered radiance equation across ξ and θ is
given by

lscat(ξ, θscat) =

∫
Θinc(ξ)

linc(ξ, θinc)f (θinc, θscat) cos θincdθinc, (1)

where lscat(ξ, θscat) is the measured radiance scattered off the surface (i.e. the signal recorded by
the camera) as a function of spatial scattering location ξ and scattering angle θscat, linc(ξ, θinc) is
the incident radiance from the hidden scene (i.e. the objects to be reconstructed) as a function of
spatial scattering location ξ and incident angle θinc, Θinc(ξ) is the angular region of the hidden
scene visible from surface location ξ, and f (θinc, θscat) describes the bi-directional reflectance
distribution function (BRDF) containing the reflectance properties of the surface as a function of
incoming and outgoing angles.

With V total scattering locations ξ, M total scattering angles θscat, and P total incident angles
θinc, the scattered radiance can be described in discrete terms using a simple forward model:

lscat = Flinc, (2)

where lscat ∈ IR(V ·M)×1 is the lexicographically-scanned scattered radiance vector, linc ∈ IR(V ·P)×1

is the lexicographically-scanned incident radiance vector, and F ∈ IR(V ·M)×(V ·P) is the forward
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Fig. 1. (a) depicts our NLOS imaging setup with associated variables; (b) depicts a cluttered
occlusion-based imaging example.

operator that describes the scattering process. In passive NLOS imaging it is typically assumed
F is known or calculated beforehand.

2.2. Occlusion-based imaging and clutter

Since the BRDF of many common materials is approximately Lambertian in visible light (i.e.
f (θinc, θscat) ≈ ρ/π where ρ is the reflectivity of the surface), it is often insufficient to rely solely
on the BRDF to solve for the incident light linc. Occluders in the scene (such as the occluding
edge of the wall in Fig. 1(a)) can cast “penumbras” or “shadows” which create a spatially-varying
incident domainΘ(ξ) by revealing or occluding different parts of the hidden scene across different
ξ locations. This improves the condition number of matrix F in Eq. (2) to the extent that it can
often be inverted to solve for the hidden scene linc. One possible inversion is given by the equation

linc = F+lscat, (3)

where + signifies the Moore-Penrose inverse. Utilizing occluders to image the hidden scene is
called occlusion-based imaging and has been shown to be very successful across a variety of
occluders and scattering surfaces [1–4].

Often, only a portion of the hidden scene casts information-rich shadows. This part of the
hidden scene (shown in green in Fig. 1(a)) is called the computational field-of-view (CFOV) [3].
Any part of the hidden scene that lies outside the CFOV is not affected by the occluder and thus
cannot be reconstructed by occlusion-based imaging. These objects and their associated signals
are known as clutter. Since the forward model in Eq. (2) is linear, we can describe the measured
scattered radiance as a collection of CFOV and clutter signals:

lscat = lcfov + lclut, (4)

where lcfov ∈ IR(V ·M)×1 contains the scattered radiance derived from the CFOV region while
lclut ∈ IR(V ·M)×1 contains the scattered radiance derived from the clutter (i.e. not from the CFOV
region). If the clutter signals are not entirely orthogonal to the occlusion-based forward model,
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or F+lclut ≠ 0, then the clutter signals can negatively impact the reconstructions of the CFOV
scene. This is particularly problematic in practical situations where the clutter can be orders of
magnitude stronger than the CFOV signals. As mentioned in the introduction, the main goal of
this work is to mitigate lclut under the conditions of stationary scenes at visible wavelengths while
making minimal assumptions about the clutter. A short depiction of cluttered occlusion-based
imaging is shown in Fig. 1(b).

2.3. Multispectral Linear Mixture

Most passive NLOS imaging methods use the forward model shown in Eq. (2) which implicitly
assumes that the light is composed of a single-wavelength. We hypothesize that incorporating
wavelength information into Eq. (2) will aid in the clutter removal process. If we assume that 1)
the scattering surface is spectrally white, 2) the scattering surface is rough, and 3) the wavelength
range is limited to the visible domain, then the multispectral scattered light can be described as a
linear mixture of K uniformly-colored objects in the hidden scene:

Lscat = ΛSscat, (5)

where Lscat ∈ IRN×(V ·M) is the multispectral scattered radiance matrix with N total wavelength
measurements, Λ ∈ IRN×K contains the spectral information for the K uniformly-colored
scene objects, and Sscat ∈ IRK×(V ·M) contains the lexicographically-scanned scattered radiance
distribution vectors of each object that is independent of wavelength, where Sscat

k = Flinc
k and linc

k
is the incident radiance from object k [17]. Note that the number of uniformly-colored objects K
can be derived from tools such as k-means clustering of the scene’s spectral content.

Equation (5) represents a linear mixture, where each row of Lscat measures a different
combination of the rows from the “source matrix” Sscat, each weighted according to the “mixing
matrix” Λ [21]. It is important to realize that the mixture in Eq. (5) contains both the clutter and
CFOV radiance described in Eq. (4):

Lscat = ΛcfovScfov + ΛclutSclut, (6)

where Λcfov, Scfov are the CFOV components while Λclut, Sclut are the clutter components. In
comparison to the monochrome signal described by Eq. (4), the multispectral mixture in Eq. (6)
contains some redundancy which can be used to “unmix” ΛcfovScfov from ΛclutSclut. This is the
essential idea behind using multiple wavelengths for clutter rejection in NLOS imaging. Figure 2
depicts the multispectral mixture; more details about the derivation can be found in the appendix
and in Ref. [17].

Fig. 2. Depiction of a multispectral linear mixture. (a) measurement; (b) linear mixture in
Eq. (5); (c) separation of CFOV and clutter objects in Eq. (6).
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3. Preconditioners and unmixing algorithms

3.1. Blind Source Separation (BSS) Models

Blind source separation models represent a class of techniques that can be used to “unmix” the
linear mixture in Eq. (5) into an estimated mixing matrix Λ̃ and source matrix S̃scat [21,22]. It
assumes minimal prior information about the mixture - hence the term “blind.” As mentioned
in the introduction, there are many challenges in adapting BSS to the multispectral passive
NLOS imaging mixture in Eq. (5) and Eq. (6). To make the problem more manageable, we
focus on extracting only Scfov in Eq. (6) since it contains the most useful information about the
CFOV objects such as their shape and location. Previously in Ref. [17] we utilized a 3-step
approach to extract Scfov given by 1) preconditioning, 2) unmixing, and 3) clutter rejection. First,
the measurements undergo linear “preconditioning” which converts the measurements into a
new domain that is numerically easier to unmix. Second, an unmixing algorithm estimates the
predicted source matrix S̃scat with prior knowledge of the number of uniformly-colored objects K
(note that this can also be estimated “blindly”). Third, some simple criteria is used to determine
if the scattering distribution of object k belongs to Scfov or Sclut. Finally, Scfov is reconstructed
while Sclut is discarded. The BSS pipeline is depicted in Fig. 3 while Fig. 4 depicts an experiment
performed in Ref. [17] with five visible spectral filters and clutter light bulbs that were 15 dB
stronger than the CFOV objects. Note that the CFOV objects (i.e. book and can) are not of
uniform color yet can still be reconstructed via BSS.

Fig. 3. Depiction of the BSS model described in Section 3.1. This paper focuses on parts
a-c which include aspects of the preconditioning transforms and unmixing algorithms.

In the BSS model there are many valid choices for the preconditioners (step 1) and unmixing
algorithms (step 2) that are unexplored. There also are other criteria that can be considered for the
clutter rejection (step 3), such as rejecting objects based on spectral content or prior knowledge
of clutter structure. However, this paper will not focus on the clutter rejection step since it is
more straightforward and depends on the specific application.

3.2. Preconditioning

The first step of the BSS pipeline, preconditioning, defines a linear transform P{·} that converts
the scattered radiance measurements Lscat into “preconditioned” measurements P{Lscat} that are
numerically easier to unmix. While the performance metric of P{·} depends on the particular
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Fig. 4. Results from the supplementary material of Ref. [17] using a setup similar to Fig. 1
and Fig. 3 with real hidden objects and visible spectral filters. Clutter sources are three light
bulbs: two “soft-white” and one “daylight” temperature profiles. Note the reconstructions
have vertical-uniformity due to the 1-D wall edge occluder.

unmixing algorithm used in step 2, in general we expect that decreasing the correlation between
the scattering distributions in Sscat and decreasing the power of the clutter objects will improve
the reconstruction results. This paper explores several different preconditioners P{·} for the
multispectral scattered light.

3.2.1. Spatial differential

Pdiff{Lscat} = DξLscat, (7)

where Dξ ∈ IR(V ·M)×(V ·M) performs the differential across ξ. Many occlusion-based imaging
methods utilize Pdiff since the penumbras from CFOV objects have sharp gradients while
unobstructed ambient light has a smooth profile [2–4]. As a result, Pdiff minimizes the power of
slow spatially-varying clutter objects while maximizing the power of the CFOV objects.

3.2.2. Truncated spatial differential

P
(Q)

diff {L
scat} =

Q∑︂
i=1

1
σi

DξLscatuiuT
i , (8)

where σi is the ith singular value and ui ∈ IR(V ·M)×1 is the ith right-singular vector of the matrix
describing the discretized BRDF. Previously used in Ref. [5], P(Q)

diff is unique to light field NLOS
imaging since it performs best with non-Lambertian BRDFs in which θscat carries significant
information. Compared to Pdiff, P(Q)

diff is expected to better handle fast spatially-varying clutter
sources which have significant parallax. Note that we use Q = 3 to obtain the best results with
the scattering surface (white satin paint) used later in the experiments.

3.2.3. Least-squares (LS) reconstruction

P
(Q)
recon{Lscat} = F+

(︁
P

(Q)

diff {L
scat}

)︁
, (9)

where + is the Moore-Penrose inverse and F is the forward operator previously defined in Eq. (2).
This reconstruction is very similar to the least squares inversion described in Eq. (3) with the
addition of the previously mentioned preconditioner P(Q)

diff {L
scat} in Eq. (8). It is also used in

occlusion-based light field NLOS imaging in Ref. [5]. Compared to P
(Q)

diff {L
scat}, P(Q)

recon{Lscat}
further minimizes the strength of clutter objects whose scattering distributions are near orthogonal
to F. However, it is important to note that this preconditioner prevents the typical implementation
of the third BSS step since it causes the residuals of the resulting S̃scat to always be zero.
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3.2.4. “Optimized Preconditioning”

Popt{Lscat} = P̂Lscat where P̂ =
⎡⎢⎢⎢⎢⎣
I

0

⎤⎥⎥⎥⎥⎦
[︂
F Sclut

]︂+
, (10)

where Sclut is the clutter objects’ scattering distributions. “Optimized Preconditioning” was
previously developed in Ref. [14] to mitigate clutter objects by placing their expected scattering
distributions Sclut in the nullspace of the preconditioner. Under ideal circumstances where the
clutter and forward model are nearly orthogonal, this would completely remove the effects of the
clutter. However, this method is highly susceptible to noise and model mismatch. It is important
to understand that, unlike the rest of the preconditioners, optimized preconditioning is not blind
since it requires a measurement or approximation of Sclut ahead of time. However, we still include
it in this paper to show the best non-blind result.

3.3. Unmixing algorithms

The second step of the BSS pipeline, the unmixing algorithm, separates the preconditioned
measurements P{Lscat} into the estimated mixing matrix Λ̃ and estimated source matrix S̃scat

in Eq. (5). Since BSS operates under “blind” assumptions, each unmixing method employs a
different metric to optimize the unmixing. There are a variety of BSS unmixing techniques, and
we test the following popular algorithms.

3.3.1. Principal component analysis (PCA)

PCA is a popular dimensionality-reduction method that produces an ordered orthogonal basis.
The first basis element, or principal component w1 ∈ IR(V ·M)×1, minimizes the projection error of
the scattered radiance observations Lscat:

min
w1

| |Lscat − Lscatw1wT
1 | |

T
F where wT

1 w1 = 1. (11)

Equation (11) is repeated in a similar fashion to find the subsequent principal components. For
BSS, the first K principal components comprise the estimated scattering distributions S̃scat. While
PCA can be thought of as a “naïve” BSS solution since it is not specifically designed for unmixing
linear mixtures, it has shown recent success in finding small signals in large biases for passive
NLOS imaging [12]. In this paper, we implement PCA using singular value decomposition
(SVD) in MATLAB.

3.3.2. Non-Negative Matrix Factorization (NMF)

NMF is a popular BSS technique that assumes both S̃scat and Λ̃ are non-negative and minimizes
the Euclidean distance:

min
S̃scat,Λ̃

| |Lscat − Λ̃S̃scat | |2F where Λ̃ ≥ 0, S̃scat ≥ 0. (12)

The biggest disadvantage of NMF is that the evolving solution can become trapped in a
local minimum, making the ideal solution difficult to find. To increase reliability, we have use
a cascading or multilayer NMF similar to Refs. [20,23] with three layers. We also repeated
the algorithm 100 times with different random initialization states and kept the result with the
smallest residual error.

3.3.3. Second-order blind identification (SOBI)

Independent component analysis (ICA) algorithms assume that the sources in Sscat are “indepen-
dent” from each other, where each ICA method measures the degree of independence differently
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[24]. SOBI approximates independence between sources sscat in S̃scat by using second-order
statistics, namely that the sources are mutually uncorrelated:

Cov(sscat
i , sscat

j ) = 0 where i ≠ j. (13)

To solve Eq. (13), SOBI performs joint-diagonalization with many different sample lags [25].

3.3.4. Joint approximate diagonalization of Eigen-matrices (JADE)

JADE [26] is an ICA algorithm that uses higher-order statistics to measure independence. It
assumes that the fourth-order cross-cumulants between sources in S̃scat are all equal to zero:

Cum(sscat
i , sscat

j , sscat
k , sscat

l ) = 0 where i ≠ j ≠ k ≠ l. (14)

JADE has been shown to produce meaningful results in many fields. It is solved by joint-
diagonalization in a similar manner to SOBI. However, because it uses higher-order statistics, it
tends to be more robust than the SOBI algorithm.

4. Experiments using a television monitor as a controlled source

In this section we describe an experimental setup that uses a calibrated OLED television monitor to
simulate multispectral light from a variety of object and clutter sources. Unlike the demonstration
shown in Fig. 4 that used real objects, we generate synthetic light fields from the television
monitor to more accurately control the hidden scene parameters and test the limitations our
methods under a variety of conditions.

4.1. Experimental setup

Figure 5 depicts the experimental setup. The left side of Fig. 5(a) shows an LG C2 OLED monitor
displaying multiple uniformly-colored hidden objects. Two baffles are placed near the OLED
monitor to create more complex object scattering distributions and to restrict the CFOV region.
The imaging occluder is an opaque steel sheet covered with black felt and is meant to simulate
the edge of a standard hallway. The right sides of Fig. 5(a) and Fig. 5(b) show a camera (with
lens) that records images of the scattering surface from a variety of angles from 0 to 70 degrees
in 1 degree increments (M = 71). The field-of-view of the camera is 10 cm. Note that the iris
of the camera lens is reduced in size so that the scattering angle θscat can be highly resolved
for each spatial location ξ on the scattering wall and rotation angle of the camera. The camera
images contain 2048x2048 pixels. However, after correcting for distortion and performing spatial
averaging, only 271 spatial ξ positions remain (V = 271). The signal-to-noise ratio of the camera
is approximately 30 dB. The scattering surface is a white satin-painted surface which has a mix
of specular and diffusive BRDF components. Its specular peak can be roughly approximated by
a Gaussian with a full-width half-maximum of 20◦.

Fig. 5. Depiction of setup used in experiments. Figure modified from Ref. [17].

To generate a multispectral hidden scene, the monochrome intensity of the TV screen was
adjusted to correspond to each of the predefined spectral components of the scene, and data was
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taken for each spectral component separately. This mimics multispectral measurements using
monochrome screen intensities without the need for spectral filters. Figures 5(c) and 5(d) show
the two different scene conditions. Figure 5(c) shows two clutter objects and one CFOV object
(K = 3) with five total spectral filters (N = 5) while Fig. 5(d) shows only one clutter object and
up to five CFOV objects (2 ≤ K ≤ 6) with six total spectral filters (N = 6). Note that the depicted
colors of the objects represent the simulated spectral distributions.

4.2. Results and discussion

4.2.1. Preconditioner metrics

Although it is difficult to quantify the “effectiveness” of a preconditioner, it is reasonable to
consider a reduction in the correlation among scattering distributions in Sscat and a reduction in
the total power of the clutter sourcesΛclutSclut as effective metrics. Figure 6 depicts and compares
the preconditioners applied to the screen objects displayed in Fig. 5(c). Without preconditioning
(i.e. using just light field measurements Lscat) the scattered radiance from both clutter objects
is considerably brighter than the CFOV object (350 and 10 times brighter) and they have a
correlation to the CFOV object of 0.37 and 0.38.

Fig. 6. The effect of the BSS preconditioners in Section 3.2 on the objects in Fig. 5(c). (a)
preconditioning depictions. Each column contains a different preconditioner applied to the
scattered radiance from each scene object. Note the units change based on the preconditioner;
(b) corresponding power ratio and correlation of each clutter element to the CFOV object
(lower is better for both metrics).

As depicted in Fig. 6(b), each preconditioner greatly reduces the correlation and power
metrics compared to using Lscat directly. While each preconditioner minimizes the correlations
between the scattering distributions, the “optimized preconditioner” performs the best by reducing
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the power ratio of the clutter objects relative to the CFOV objects to 0.7% and 31% of the
non-preconditioned (light field) values. However, it is important to remember that “optimized
preconditioning” requires prior knowledge of the clutter scattering distributions while the other
methods do not. For the “blind” (i.e. limited prior knowledge) preconditioners, the “truncated
differential” offers the best results by reducing the power ratio of the clutter sources to 17% and
65% of the non-preconditioned values.

4.2.2. Single object reconstructions with varying clutter strength

Figure 7 compares the reconstruction accuracy of the single CFOV object setup in Fig. 5(c) with
a varying signal-to-clutter ratio (SCR) and several preconditioner and unmixing algorithms. The
“baseline” curve is the spectrally-agnostic “LS reconstruction” in Eq. (9) which is commonly
used in light field NLOS imaging [5]. Figure 8 compares the best results.

Fig. 7. Reconstruction accuracy as a function of signal-to-clutter ratio (SCR) for various
preconditioner and unmixing algorithms. Screen setup is as shown in Fig. 5(c).

Fig. 8. Best reconstruction error results as a function of SCR for (a) each preconditioner
and (b) each unmixing algorithm across all “blind” preconditioners.

In Fig. 8(a) the “LS recon” and “truncated differential” preconditioners performed the best in
the single object experiments. This is also evident in Fig. 7 where the errors in (c) and (d) are
generally smaller than the rest of the preconditioners while “light field” (i.e. no preconditioning)
and “spatial differential” perform the poorest. In general, the best performing preconditioners
in Fig. 6 were also the best performing preconditioners in the single object reconstructions in
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Fig. 7 and Fig. 8. However, the one exception is “optimized preconditioning,” which performs
the best across the preconditioner metrics yet is only the third-best performer in the single object
reconstruction in Fig. 8(a). This is a result of the preconditioner’s high susceptibility to noise in
the system due to the ill-conditioned inversion in Eq. (10).

Figure 8(b) summarizes the best performances of the unmixing algorithms across all “blind”
preconditioners (i.e. all except “optimized preconditioning”). Overall, the JADE algorithm
performs the best across the majority of the SCRs, followed by SOBI, PCA, and NMF. The
performance of NMF and PCA is a bit unexpected. Intuitively, NMF (non-negative matrix
factorization) would be the ideal candidate for unmixing multispectral light fields since both Λ
and Sscat are non-negative (because negative radiance is not physical). The biggest reason NMF’s
performance is subpar is that using the raw light field without preconditioners offers weaker
performance as evident in Fig. 6 and Fig. 7. Since most of the preconditioners are not guaranteed
to have non-negative constraints, this removes the main advantage of utilizing NMF. PCA, while
not specifically designed for linear unmixing, is able to achieve surprisingly impressive results
(see Fig. 8(b)) while being one of the least expensive algorithms. One reason for PCA’s success
is that it can extract weak signals across large biases. This is particularly well-suited to passive
NLOS imaging which typically has a large dynamic range across the CFOV and clutter objects.
This also can explain why the performance of PCA improves as the SCR becomes smaller in
Fig. 8(b).

4.2.3. Spectral overlap in single object reconstructions

While the SCR is one important metric to gauge the difficulty of BSS, another important metric
is the spectral overlap between the scene objects. If this overlap is large, it is much more difficult
to utilize the differences in the spectral content to separate the objects in the scene. Figure 9
compares the performance of the unmixing algorithms at a fixed SCR of 1:40 while the average
spectral overlap between the CFOV object and clutter objects in Fig. 5(c) is varied. In this
experiment the “truncated differential” preconditioner was used since it had the best overall
results in Fig. 8(a). As expected, each algorithm performs best when the spectral overlap is small.
However, the JADE algorithm clearly is more robust than the others for most degrees of spectral
overlap. Note that, while we tried to keep the SCR constant, it decreased as the overlap increased
which is why the baseline performance in blue varies slightly.

Fig. 9. Effects of spectral overlap between CFOV object and clutter objects. (a) “spectral
overlap” definition; (b) unmixing algorithm performance.

4.3. Multiple object reconstructions

As the number of hidden CFOV objects increases, the number of total hidden objects K also
increases and the linear mixture in Eq. (5) becomes more complex. While this should not affect
the efficacy of the preconditioners, it will degrade the performance of the unmixing algorithms.
Figures 10 and 11 depict the unmixing results with just a single clutter source (clutter 1 in
Fig. 5(a)) and multiple hidden CFOV objects as shown in the screen setup in Fig. 5(d). The
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“truncated differential” preconditioner is used and the SCR is set to 1:50 with an average spectral
overlap of 0.90. The “baseline” is again the “LS reconstruction” from Eq. (9).

Fig. 10. Reconstructions of multiple CFOV objects in Fig. 5(d) experiment.

Fig. 11. Structural similarity (SSIM) index of reconstructions in Fig. 10 compared to
“Clutterless Recon.”

As is evident in the reconstructions displayed in Fig. 10, the reconstructed color of the objects is
often inaccurate. Note that this color inaccuracy was also noted in our previous work in Ref. [17]
and is clearly visible in the results in Fig. 4. This inaccuracy is most likely due to the fact that the
BSS model in Section 3.1 is designed to extract the estimated scattering distributions S̃cfov since
they provide the most important information about the hidden scene. As a result, the majority of
the methods (i.e. the preconditioners and unmixing algorithms) refine the estimate of S̃cfov. There
is no such refinement or priors applied to the estimated spectral content Λ̃cfov, resulting in the poor
color fidelity displayed in Fig. 10. Furthermore, with multiple CFOV objects, the reconstructed
scattering distributions in S̃cfov overlap and merge with each other. For example, the estimated
BSS component for object one actually contains elements of objects two and three. While
neither the poor color fidelity nor the distribution overlap affect the single-object reconstructions
shown previously, they greatly affect the multi-object reconstructions since the multiple BSS
components interfere with each other when combining together in the final reconstruction.

The reconstruction accuracy utilized in previous experiments proved to be insufficient to gauge
the reconstruction quality due to the large color inaccuracies in the multi-object experiments. As
an alternative metric, we calculated the structural similarity (SSIM) index of each reconstruction
compared to the clutterless reconstruction, where a larger SSIM index corresponds to a recon-
struction whose structure more accurately matches the clutterless version. The SSIM curves in
Fig. 11 roughly correspond to the visual appearance of the reconstructions in Fig. 10, with PCA
performing the best and JADE performing the worse with a large number of hidden objects. This
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is a surprising result, since JADE performed the best in the previous single-object experiments
(also seen as a high SSIM value for one object in the curve of Fig. 11).

5. Conclusion

In this paper we have explored and quantified the efficacy of several preconditioners and unmixing
algorithms in blind source separation (BSS) of multispectral non-line-of-sight (NLOS) imagery
to reject clutter and improve the reconstruction performance in low-signal scenarios. The use
of a television monitor to generate the source light fields allowed us to quantitatively evaluate
the performance of single-object and multiple-object reconstructions as a function of several
parameters. As evident in our results, preconditioning is a vital step to mitigate many of the
difficulties in unmixing NLOS imagery and greatly improves the clutter rejection performance.
For blind (i.e. no or few priors) applications, the best performing preconditioner was the
“truncated differential.” In non-blind applications, the “optimized preconditioning” performed
better as long as it was paired with a strong denoiser or regularizer to mitigate its susceptibility
to noise. From our tests of unmixing algorithms, the independent component analysis (ICA)
methods represented by SOBI and JADE performed best and had the most consistent results.
In particular, JADE performed better with fewer hidden objects whereas SOBI performed
better with more. However, principal component analysis (PCA), which is mainly used for
dimensionality-reduction, also performed surprisingly well with multiple hidden objects and
could be a less-expensive solution. Finally, recovering the true colors of the hidden objects and
preventing overlap between different scattering distributions remain a challenge. These issues
require more robust solutions when applying BSS methods to multiple-object reconstructions
and more spectrally-complex scenes.

While there are many future research routes, there currently are no methods to refine the
estimated spectral content of the hidden scene. One way to improve spectral recovery would
be to design the unmixing algorithms based on the unique problems of multispectral NLOS
imaging. For example, traditional ICA methods which are designed for general applications
could be modified to exploit the high dynamic range and relatively simple scattering distributions
present in passive NLOS imaging. In addition, since many clutter sources have a similar spectral
content (e.g. incandescent light bulbs with similar color temperatures), there are opportunities
to utilize spectral priors to identify clutter and improve spectral reconstructions, perhaps in a
deep-learning environment similar to Ref. [27].

Appendix: multispectral linear mixture derivation

This section reviews the derivation of the multispectral linear mixture in Eq. (5) that was
previously developed in Ref. [17].

The addition of a spectral dimension to the monochrome scattered radiance equation in Eq. (1)
results in a multispectral scattered radiance equation:

lscat(ξ, θscat, λ) =
∫
Θinc(ξ ,λ)

linc(ξ, θinc, λ)f (θinc, θscat, λ) cos θincdθinc, (15)

where Θinc(ξ, λ) is the angular domain of the hidden scene as a function of spatial position ξ
and wavelength λ, linc(ξ, θinc, λ) is the multispectral incident radiance, and f (θinc, θscat, λ) is the
multispectral BRDF.

To simplify Eq. (15), we make the assumption that λ is confined to the visible domain and
therefore the occluders are opaque across all wavelengths. This allows us to simplify Θinc(ξ, λ) as

Θ
inc(ξ, λ) = Θinc(ξ). (16)

To simplify the multispectral BRDF in the visible domain, we use a dichromatic reflection
model [28,29] for f (θinc, θscat, λ) which separates the BRDF into surface scattering and subsurface
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scattering components:

f (θinc, θscat, λ) = f spec(θinc, θscat) + α(λ)f diff(θinc, θscat), (17)

where f spec is the surface scattering (i.e. specular reflection), f diff is the subsurface scattering (i.e.
diffuse reflection), and α(λ) is the diffuse albedo of the material (α(λ) ≤ 1).

The final assumption is that the hidden scene can be represented by a collection of K total
uniformly-colored objects:

linc(ξ, θinc, λ) =
K∑︂

k=1
linc
k (ξ, θinc, λ) =

K∑︂
k=1

lksinc
k (ξ, θinc)γk(λ), (18)

where linc
k (ξ, θinc, λ) is the multispectral light from a uniformly-colored object k, lk is a constant

that represents the brightness of object k, sinc
k (ξ, θinc) is the normalized incident distribution

of object k, and γk(λ) is the normalized spectrum of object k. Note that this uniform color
assumption can be applied to multi-colored objects by assigning each color in the multicolored
object to a different value k. However, for scenes containing objects with a large number of
colors, the total number K could become sufficiently large as to degrade the performance of the
BSS algorithm.

With the subsitutions made in Eqs. (16), (17), and (18), the multispectral scattered radiance
can be described as

lscat(ξ, θscat, λ) =
K∑︂

k=1

[︂
lkγk(λ)

∫
Θinc(ξ)

sinc
k (ξ, θinc)

[︁
f spec(θinc, θscat) + α(λ)f diff(θinc, θscat)

]︁
cos θincdθinc

]︂
.

(19)

To simplify Eq. (19), we convert the incident distributions sinc
k (ξ, θinc) to specular sspec

k (ξ, θscat)

and diffuse sdiff
k (ξ, θscat) scattering distributions by

sspec
k (ξ, θscat) =

∫
Θinc(ξ)

sinc
k (ξ, θinc)f spec(θinc, θscat) cos θincdθinc

sdiff
k (ξ, θscat) =

∫
Θinc(ξ)

sinc
k (ξ, θinc)f diff(θinc, θscat) cos θincdθinc.

(20)

Substituting Eq. (20) into Eq. (19) leads to the final simplified equation:

lscat(ξ, θscat, λ) =
K∑︂

k=1
lkγk(λ)

[︁
sspec
k (ξ, θscat) + α(λ)sdiff

k (ξ, θscat)
]︁
. (21)

If the scattering surface is spectrally white (α(λ) = 1), then a discretized version of Eq. (21)
simplifies to the multispectral mixture used in Eq. (5). If it is not spectrally white, it can still be
expressed as a linear mixture with four matrix components ΛspecSspec + ΛdiffSdiff instead of the
two components ΛSscat used in Eq. (5).
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