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Abstract

The ultimate ideal in AI-driven drug discovery is the automatic design of specific
drugs for individual diseases, yet this goal remains technically distant at present.
However, recent advancements in large language models (LLMs) have significantly
broadened the scope of applications with various tasks being explored in the
chemistry domain. To probe the potential of utilizing LLMs in drug discovery, we
organized a contest: the LLM Drug Discovery Challenge. Participants were tasked
with proposing molecular structures of active compound candidates for a designated
drug target using LLM-based workflows. The proposed chemical structures were
evaluated comprehensively through scoring by a panel of five judges with deep
expertise in medicinal chemistry, structural biology, and computational chemistry.
Nine participants tackled the challenge with their unique methodologies, exploring
the possibilities and current limitations of leveraging LLMs in drug discovery. In
this rapidly advancing field, we aim to discuss the directions of future developments
and what is expected moving forward.

1 Introduction

The quest to automate drug discovery through artificial intelligence (AI) has captivated the scientific
community [1, 2], with the ultimate goal of autonomously designing specific drugs for individ-
ual diseases. However, despite significant advances in AI research, this goal remains technically
distant [3]. In particular, the range of tasks that current LLMs can handle is limited in areas that
require iterative cycles of specialized domain knowledge application, advanced simulations, and data
collection through experimentation.

Nevertheless, LLMs have demonstrated a wide range of capabilities, including extensive knowledge
and programming skills, which offer a wide range of potential applications. In the field of chemistry,
various explorations have been attempted [4, 5], such as extracting some knowledge of compound
properties [6, 7] or synthetic routes [8]. However, tasks essential to compound design, such as accurate
recognition and manipulation of structural formulae such as SMILES [9], handling of 3D structures,
or numerical manipulation of 3D physicochemical properties, are challenging [10]. While there are
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reports of use cases where collaboration with external toolsets has resulted in drug candidates that
slightly differ from existing compounds [11], the acquisition of novel scaffolds for active compounds
remains elusive. This reflects an inherent challenge of computational drug discovery, where the true
activity of designed compounds remains unknown until they are synthesized and tested in actual
assays.

Meanwhile, the automation of programming tasks by LLMs has the potential to revolutionize research
and education in chemistry [12, 13]. Individuals with no expertise in medicinal chemistry could
initiate computational drug discovery efforts using LLMs, and those with limited programming skills
could easily create code to perform compound design calculations using LLMs. Broadening the base
of individuals involved in drug discovery science is beneficial to the advancement of the field.

With this in mind, the LLM Drug Discovery Challenge was conceived as a competition to further
explore the feasibility of using LLMs in drug discovery. The challenge aimed to harness the collective
ingenuity of participants to propose molecular structures of drug candidates for a given drug target
using LLM-based workflows. In addition to exploring the practical utility of LLMs in drug discovery,
the challenge aimed to identify current limitations and pave the way for future advances in this
rapidly evolving field. We recruited participants for this challenge via social media and attracted
nine participants, along with a panel of five experts for evaluation. In this paper we describe the
design of the challenge, the proposed methodologies, the medicinal chemistry validity of the proposed
compound sets and the outlook for the future.

2 Contest Design and Rules

The contest commenced on March 30, 2023, and concluded on June 4, 2023. The details of the rules
were posted on our GitHub repository [14], and participants were recruited online, mainly on Twitter.

2.1 General Rules

Participants were required to propose ten candidate compounds predicted to be active for a specified
drug target, using processes in their workflow where the LLM either suggests or selects compounds.
Each participant was allowed one submission set, with the option to overwrite submissions during the
submission period.

2.1.1 Submission Requirements

The submissions were to include:

• Markdown output of interactions with the LLM or a detailed description of the process if
not in dialogue format, uploaded to GitHub Gist or similar platforms.

• Code for any computational processing executed outside the LLM, uploaded to GitHub Gist
or similar platforms.

• Ten proposed compounds in SMILES format.

2.1.2 Evaluation System

In this event, instead of evaluating activity through actual assay experiments, it was decided to assess
whether participants could propose compounds feasible from a medicinal chemistry perspective using
LLMs. The evaluation comprised peer reviews among participants and assessments by a panel of
judges, combining the score based on the judges’ expert evaluation of the molecular structures, and
the score assessing the effective utilization of the LLMs (Supplementary Figure 1: the overall scoring
formulation). The following five criteria were set as scoring items.

• Chemical stability or Reactivity
• Synthetic accessibility
• Synthetic amenability to diverse derivatizations
• Structural alerts
• Potential for bioactivity
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Table 1: The participants’ backgrounds and types of methods used by all participants.

Player No. Backgrounds Method Type Ranking

1 Chemoinformatics (MS student) Hybrid 2nd place
2 Bioinformatics (MS student) Hybrid 3rd place
3 Computer science (PhD student) Only LLMs
4 IT professional Only LLMs
5 Orgchem, compchem (PhD student) Hybrid 1st place
6 Computer Science (Undergrad) Only LLMs
7 Compchem (Industry) Hybrid Top LLM utilization
8 Orgchem professional Only LLMs
9 Orgchem professional Only LLMs

A panel of five judges with diverse expertise in medicinal chemistry, computational chemistry, and
structural biology was assembled to evaluate the submissions. The evaluation was conducted using a
dedicated web application [15] (Supplementary Figure 2) prepared specifically for this scoring task.

2.2 Target Molecule

While our event was held independently from another drug discovery competition, Critical Assessment
of Computational Hit-finding Experiments (CACHE) 4th [16, 17], the selection of the drug discovery
target followed the lead of CACHE 4th, with the TKB domain of CBL-B protein [18] being chosen.
Approximately 900 patented compounds known to bind to this target were provided as references.
The goal was to propose novel active compound candidates with low structural similarity to these
known compounds, assessed using metrics like the Tanimoto coefficient on Morgan fingerprints.
Known protein-ligand complex structure was available (8GCY.PDB [19]), and targeting the same
binding site was mandatory (Supplementary Figure 3). If utilizing commercial compound libraries,
we recommended the Enamine Hit Locator Library [20] as a default set.

3 Results

The evaluation was carried out based on the scoring criteria outlined in the previous section, leading
to the identification of four award winners. The scores and awards for each participant are shown
on the contest website [21]. A summary of the methodologies employed by all nine participants is
presented in Table 1. Here, we delve into the detailed methodologies of the four award winners.

3.1 Winner with the Highest LLM Utilization Score

Through repeated trial and error, the participant determined that the performance and limitations of
ChatGPT and other LLMs at the time of the contest would not allow us to create a drug candidate
compound with a simple prompt, so he decided to utilize a step-by-step execution application called
AutoGPT [22, 23]. AutoGPT is software that allows LLMs not only to simply respond to a given
prompt by specifying a final goal, but also to think step-by-step about the sub-goals necessary to
achieve that goal and to accomplish them in a continuous process. AutoGPT also allows users to
implement and add functionality in Python or shell scripts, in addition to features that did not exist in
ChatGPT at the time of the contest, such as a web search function, for example.

He added the ability to perform similarity searches and generate chemical structures using REINVENT
as a chemoinformatics plugin to AutoGPT. In order to emphasize scaffold hopping of chemical
structures in the contest, REINVENT [24] and AutoDockVina [25]/DockStream [26] were combined
to generate chemical structures based on docking scores. He also confirmed that AutoGPT can
perform relatively simple programming, such as implementing a Python script to extract specific tag
information from an SDF file, by itself.

Finally, by directing AutoGPT to generate chemical structures with high docking scores based on
PDB information, although some human support was required, the top 10 compounds were submitted.
Although it is not possible to have current LLMs perform all of their tasks autonomously, this
methodology may be one approach to drug discovery by LLMs with human support.
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3.2 First-place Winner in the Overall Score

The methodology incorporates a uniquely tuned LLM, integration with external tools, and further
includes judgments based on his expertise as an organic chemist. The workflow is as follows:

The known 895 ligands and compounds obtained from ChEMBL [27] were docked against the protein
derived from PDB:8GCY. The acquired docking scores were evaluated on a five-point scale and were
used to fine-tune the LLM (Open-CALM) [28] using LoRA. The model was later employed to predict
the binding affinity of new compounds to the target protein.

A compound generation model (STONED) [29] was used to virtually generate compounds. STONED
aimed to create compounds with a balance of similarity and novelty compared to known ligands
based on them. Various filters were applied to the generated compounds to ensure they met certain
criteria such as synthetic accessibility, molecular weight, and distinctiveness from known ligands.

The fine-tuned LLM was utilized to narrow down compounds from Enamine’s library [20] and
the group of compounds produced by STONED. In the five-point scale evaluation of the docking
score, compounds predicted to have the highest binding affinity were extracted, narrowing down
approximately 470,000 compounds to 5,614. In the end, 10 compounds that exhibited docking poses
similar to the co-crystal of 8GCY were selected.

This methodology integrates docking, machine learning fine-tuning, virtual compound generation,
and selection processes to identify potential compounds for further evaluation in drug discovery. The
use of LLM, in conjunction with LoRA for fine-tuning, and STONED for compound generation,
showcases a multi-faceted approach to harness computational techniques in the realm of medicinal
chemistry.

3.3 Second-place Winner in the Overall Score

This methodology aims to generate novel structures starting from compounds with known structures
on GPT-4. Submissions were selected in four steps: molecule generation by GPT-4, conversion to
synthesizable compounds, activity evaluation by docking, and selection of desirable compounds.

First, the molecule generation process by GPT-4 iteratively generates SMILES of new compounds
that improve the evaluation based on known compounds and their evaluation. Four evaluation
filters were used: 2 filters to avoid known scaffolds, "Novelty" based on Tanimoto similarity to
known compounds, and "Goodness" based on a MolSkill [30]-inspired score function. Prompts are
dynamically generated based on reference SMILES that are randomly sampled from the compound
library. Then, the generated compounds are added to the compound library. The iterative process
resulted in 145 compounds. Then, 47 compounds were extracted that did not contain any known
scaffolds and had original MolSkill [30] scores less than -10. The generated compounds were
converted to compounds contained in Enamine’s Hit Locator Library to avoid the synthesizability
issue. Here, the generated compounds were converted to the nearest compound in the library based
on Tanimoto similarity with ECFP4. Next, activity evaluation by docking used template docking in
Cresset Flare V7’s LeadFinder [31]. The known complex structure (PDB:8GCY) was referenced
and the binding pose was visually evaluated, and then the activity was determined by VSScore [31].
Finally, The 10 compounds were selected for submission based on the MaxMin method from 18
compounds that had VS scores less than -8 and satisfied the BRENK [32] and PAINS [33] filters.

The methodology showcased GPT-4’s capability to commence from known compounds, avoid certain
substructures, and propose novel entities. The compounds exist in Enamine, making experimental
validation feasible. Manual efforts were invested in scrutinizing the compounds’ properties and
stereochemistry. However, it may be possible to generate novel and highly active compounds by
considering the activity of GPT-4 in the generation stage.

3.4 Third-place Winner in the Overall Score

The methodology employed MERMAID[34], a vital tool for structured compound discovery for the
specified drug target, and divided into Generation, Filtration, and Selection phases. MERMAID, a
molecular generative model with structural target information, was central to this approach.

MERMAID served as an in-silico hit-to-lead optimization tool, refining compounds based on affinity
via Monte Carlo Tree Search. Autodock Vina[35] conducted docking simulations using initial
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molecules from the PDB database. Approximately 10k compounds were generated. These compounds
underwent filtration based on criteria like molecular weight, ring structure, and synthetic potential.
A machine learning-based retrosynthesis analysis tool further narrowed the selection, reducing
the pool to 1k compounds. Lastly, LLM selected final candidates based on similarity to known
inhibitors. This methodology combined MERMAID’s exploration, computational tools, and LLM’s
capabilities, offering a comprehensive approach to streamline drug discovery. It leveraged machine
learning, computational chemistry, and domain-specific knowledge to expedite promising compound
identification.

4 Discussion

Various molecular structures were submitted through the distinct methodologies employed by each
participant. As depicted in Supplementary Figure 5, compounds proposed solely using LLMs tended
not to escape the trend of high similarity with known compounds. On the other hand, the set of
compounds proposed using external toolsets tended to yield molecules with promising prospects
from a medicinal chemist’s perspective, and lower similarity to known compounds, depending on the
performance of individual tools and the expertise of the user.

4.1 Challenges in Establishing Evaluation Criteria

The contest was designed to broadly investigate the applicability of LLMs without specifying how
they should be used. This situation necessitated that participants strike a balance between two critical
aspects: i) efficient selection of promising compounds, ii) utilization of LLMs in the process.

Some participants prioritized the former, incorporating LLMs only partially and leaving room for
alternative methods. Conversely, others emphasized the latter, which sometimes led to the submission
of less desirable compounds. This diversity in approach can be attributed to the vague guidelines
of the contest. While this ambiguity may have encouraged creative explorations, it likely also
led to uncertainty among the participants. This suggests room for improvement in the contest’s
administration and points toward issues to be addressed in future iterations.

4.2 Utilized LLM Methods

A variety of molecular design methods using LLMs have been reported, ranging from those that
directly apply OpenAI’s models (e.g., ChatDrug [36]) to those that use LLMs to guide the selection
of various tools (e.g., ChemCrow [37]). Multimodal approaches that connect molecules with natural
language (e.g., CLAMP [38], KV-PLM [39], MolFM [40]) were also observed. However, most
of these models are currently limited to simple molecular transformations and are best suited for
auxiliary roles in molecular design. In this contest, direct generation of molecules via models
like ChatGPT generally yielded less promising results. On the other hand, molecular evaluations
using LLMs sometimes showed comparable performance to existing methods employing traditional
molecular representations, even offered unique predictive results, indicating a certain level of utility
in this contest.

5 Conclusions

The LLM Drug Discovery Contest served as a valuable platform to evaluate the extent to which LLMs
can be pragmatically employed in the drug discovery field. Although we have not yet realized the
ideal "one-click" solution by LLMs, the contest has likely offered valuable insights for the community,
pointing toward future directions for achieving this goal.
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