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ABSTRACT

This paper presents Style2Shape, a novel framework for generating physically-
based rendering (PBR) materials for 3D models from a single reference image.
Unlike existing methods limited by the diversity of procedural material libraries
or producing non-editable representations, our approach combines procedural ma-
terials with generated textures via differentiable rendering. Our key insight is
that procedural parameters ensure reflectance correctness while generated textures
capture arbitrary appearances-their learnable combination achieves both physi-
cal plausibility and visual fidelity. The framework operates in three stages: (1)
structure-guided appearance transfer that synthesizes geometrically-aligned su-
pervision, (2) hybrid PBR material initialization that retrieves procedural mate-
rials based on physical properties and generates complementary textures for ap-
pearance details, and (3) physics-based optimization jointly refining all compo-
nents through differentiable rendering. Extensive experiments demonstrate that
our approach generates high-fidelity results, producing editable PBR materials
that faithfully reproduce reference appearances while maintaining physical plau-
sibility. The generated assets are structured to be compatible with standard 3D
rendering workflows.

1 INTRODUCTION

Creating realistic materials for 3D objects is fundamental to computer graphics, with critical ap-
plications spanning architectural visualization, film production, and virtual reality. While recent
advances in differentiable rendering and generative models have revolutionized 3D content creation,
acquiring physically-based materials from limited observations remains a significant challenge.

Recovering physically-based rendering (PBR) materials from a single reference image is inherently
ill-posed. The complex interplay between geometry, material properties, and illumination creates
fundamental ambiguities—a bright surface could result from either high albedo or strong lighting.
Moreover, the domain gap between arbitrary reference images and target 3D geometries prevents
direct material transfer.

Current approaches exhibit distinct limitations: text-driven methods (Chen et al., 2023; Michel et al.,
2022) suffer from description ambiguity, image-based methods (Liu et al., 2023; 2024) produce non-
editable implicit representations, and Material Palette (Lopes et al., 2024) requires manual mapping
and fails with perspective distortions. While procedural materials (Shi et al., 2020; Hu et al., 2022;
Yan et al., 2023) offer physically-plausible representations, they are constrained by predefined pa-
rameter spaces and cannot capture arbitrary real-world appearances.

A more promising direction involves procedural materials (Shi et al., 2020; Hu et al., 2022), which
offer physically-plausible and editable representations. PSDR-Room (Yan et al., 2023) demonstrates
the power of differentiable procedural materials. However, a fundamental limitation persists: pro-
cedural materials excel at representing physically-correct reflectance properties but are inherently
constrained by their predefined parameter spaces, failing to capture arbitrary real-world appear-
ances. Conversely, generative models can synthesize novel textures but lack physical grounding.

This raises a fundamental question: Can we combine the reflectance correctness of procedural ma-
terials with the expressive power of generated textures through differentiable rendering to achieve
both physically plausible and arbitrary appearance modeling?
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We present a novel three-stage framework that addresses this challenge through hybrid material op-
timization. Our key insight is that procedural materials and generated textures are complementary:
procedural parameters ensure correct reflectance properties (roughness, metallicity, etc.), while gen-
erated textures capture arbitrary visual patterns. By optimizing their learnable combination within a
physics-based differentiable rendering pipeline, we achieve materials that are both physically plau-
sible and visually faithful to reference image.

Our framework proceeds as follows:

(1) Structure-guided Appearance Transfer: We reformulate appearance transfer as an image-
to-image translation problem, synthesizing geometrically-aligned supervision images that preserve
reference appearance while matching the target model’s geometry.

(2) Hybrid PBR Material Initialization: We retrieve procedural materials based on physical prop-
erties and generate complementary textures for visual patterns, combining them through learnable
blending weights.

(3) Physics-Based Differentiable Optimization: We jointly optimize procedural parameters, gen-
erated textures, and their blending within a differentiable rendering framework, ensuring conver-
gence to physically-correct and visually-accurate materials.

In summary, the main contributions of our work include:

• A unified framework for generating editable PBR materials from a single image, bridging
the gap between generative models and physically-based rendering.

• A hybrid material representation that combines procedural materials for reflectance correct-
ness with generated textures for arbitrary appearance, unified through learnable blending.

• A physics-based optimization framework that utilizes differentiable rendering to jointly
optimize all material components while maintaining physical plausibility.

RELATED WORK

1.1 MATERIAL GENERATION FOR 3D OBJECT

The generation of materials for 3D models has evolved significantly, moving from simple texture
mapping to the synthesis of complex, physically-based rendering (PBR) materials. Early work by
(Munkberg et al., 2022) pioneered a method for jointly optimizing the geometry, materials, and
lighting from multi-view images, employing differentiable rendering and coordinate-based networks
to represent volumetric textures for gradient-based optimization on the surface mesh.

Text-driven Generation. With the rise of generative models, text-driven material generation has
become a prominent research area. Text2Mesh (Michel et al., 2022) established a paradigm for
text-driven stylization by predicting colors and local geometric details for a 3D mesh based on
a text prompt. Recent works enhance physical realism through various approaches: Fantasia3D
(Chen et al., 2023) disentangles geometry from appearance, MATLABER (Xu et al., 2023) uses
BRDF auto-encoders, and Paint-it (Youwang et al., 2024) re-parameterizes PBR textures for efficient
synthesis. More recently, 3DTopia (Chen et al., 2025) uses 2D diffusion priors to refine 3D model
textures through latent and pixel space optimization for high-quality material generation. Material
Anything (Huang et al., 2025) focuses specifically on the material generation problem, utilizing
a pre-trained image diffusion model with a triple-head architecture enhanced by a rendering loss
which allows for fully automated material generation for any 3D object. However, a core challenge
persists in these methods: the inherent ambiguity of text prompts in conveying the complex and
nuanced appearance of materials, which limits the precision of the final output.

Image-based Generation. To overcome text limitations, recent work uses images as more precise
visual guidance. Zero-1-to-3 (Liu et al., 2023) fine-tunes pre-trained 2D diffusion models for novel
view synthesis from a single image, but suffers from multi-view inconsistency due to independent
view generation. One-2-3-45 (Liu et al., 2024) addresses this by reconstructing 3D objects from
predicted multi-view images using generalizable NeRF, improving geometric consistency. However,
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these methods retain implicit material representations that lack tileability and standard editability,
making them difficult to export and transfer across different models.

Another line of work leverages large multimodal models for material retrieval. (Fang et al., 2024)
employs GPT-4V as a material analyzer to automate the generation of physically-based SVBRDFs
for 3D assets. By relying on retrieval, however, this approach is limited to the materials available
in its database, and it cannot generate novel materials or offer fine-grained control over material
parameters.

PHYSICS-BASED INVERSE RENDERING

Physics-Based Differentiable Rendering. To accurately recover material parameters from im-
ages, differentiable rendering is an essential tool. Physics-based differentiable rendering (PBDR)
combines modern, physically-principled rendering techniques with automatic differentiation to pro-
vide a powerful framework for inverse rendering problems. However, standard automatic differenti-
ation of Monte Carlo estimators produces biased gradients when applied to complex light transport
phenomena involving discontinuities from visibility events. To address this fundamental issue, (Li
et al., 2018) first introduced edge sampling for Monte Carlo ray tracing, enabling unbiased differ-
entiation of the rendering equation (Kajiya, 1986). They further generalized this into the path-space
differentiable rendering (PSDR) framework (Zhang, 2022), which operates directly on the path in-
tegral formulation and traces discontinuities along light paths for improved performance. (Loubet
et al., 2019) introduced an approximate re-parameterization technique to bypass the explicit sam-
pling of discontinuities, which integrated into differentiable renderer Mitsuba 3 (Jakob et al., 2022).

Inverse Procedural Materials. A burgeoning area within PBDR is the recovery of procedural
materials, which are highly valued for their resolution independence and editability. Early methods
relied on hand-crafted templates and rules to extract structural and local information from source
exemplars. For more stochastic textures, procedural noise models were optimized to match the ap-
pearance by fitting their power spectrum in either the image or frequency domain. With the advent of
node-based material authoring tools, a new branch of methods emerged to match the appearance of
photorealistic materials. MATch (Shi et al., 2020) introduced DiffMat, a library that converts large-
scale procedural material graphs into a differentiable format, enabling end-to-end, gradient-based
optimization of material parameters to match a target appearance. As an improvement, (Hu et al.,
2022) developed differentiable neural proxies to approximate non-differentiable generator nodes,
allowing for the joint optimization of both continuous and discrete parameters. Similarly, recent
systems like PSDR-Room (Yan et al., 2023) and Mapa (Zhang et al., 2024) have combined dif-
ferentiable procedural materials with PBDR for scene-level material reconstruction and text-driven
material painting, respectively.

2 METHOD

We propose a three-stage framework (Figure 1) that progressively refines materials from coarse
approximations to precise PBR representations: Our framework consists of: (1) structure-guided
appearance transfer using generative models, (2) hybrid material initialization combining proce-
dural retrieval with texture generation, and (3) differentiable optimization for precise appearance
matching.

2.1 STAGE 1: STRUCTURE-GUIDED APPEARANCE TRANSFER

A fundamental obstacle in single-image material acquisition is the domain gap between the reference
image’s viewpoint and the target 3D geometry. To circumvent this, we formulate the problem as a
task of image-to-image translation editing. To this end, we employ a state-of-the-art, prompt-guided
image editing model (e.g., GPT-Image-1), selected for its superior ability to disentangle and transfer
complex material attributes like material, texture, color, and reflectance from a source image.
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Figure 1: Our three-stage pipeline for generating PBR materials from a single image. (a) We syn-
thesize a geometrically-aligned target image that transfers the reference style. (b) A hybrid material
is initialized by blending a procedural base with a generated seamless texture. (c) The material is
then optimized within a differentiable renderer to match the target.

2.1.1 MULTI-MODAL INPUT CONSTRUCTION.

To address the challenge of viewpoint selection in single-image material transfer, we develop a sys-
tematic approach to find an optimal viewpoint that maximizes the visibility of all material regions.
Our approach operates on a 3D model S partitioned into K material segments, {Sk}Kk=1. For the
models used in our experiments, we leverage their predefined material groups. The number of seg-
ments K is therefore inherited from the source model’s structure. For assets lacking such groups,
an automatic mesh segmentation method like that of SAMesh (Tang et al., 2024) can be applied as
a preprocessing step. With these segments defined, our two-stage process for finding the optimal
viewpoint is as follows.

First, we sample n candidate viewpoints vini=1 on a sphere surrounding the model. Our objective is
to find the views that see the maximum number of distinct material segments. For each viewpoint
vi, we render a segmentation mask Mi and simply count the number of unique segments visible:

Ki = |{k ∈ {1, . . . ,K} : Sk ∩Mi ̸= ∅}| (1)

After computing this for all candidates, we create a subset of viewpoints, Vcandidate, containing only
those that achieve the maximum count (Kmax).

Second, from this candidate set, we select the single best viewpoint. A good viewpoint should not
only see many segments but also provide balanced visibility, avoiding cases where some segments
are occluded or shown as only a few pixels. To enforce this, we apply a ”maximin” criterion: we
find the viewpoint that maximizes the area of its least visible segment. First, for each candidate
view vj , we find the area of its smallest visible part, minSk∈Sj

Area(Sk ∩Mj). Then, we select the
viewpoint that maximizes this value:

vbest = arg max
vj∈Vcandidate

(
min
Sk∈Sj

Area(Sk ∩Mj)

)
(2)

This criterion ensures that all visible material regions are substantially represented. From this opti-
mal viewpoint vbest, we render a clean, untextured image of the model’s geometry, denoted as Igeom,
which serves as the structural template for subsequent appearance transfer.

2.1.2 STRUCTURE-GUIDED IMAGE EDITING.

We formulate the appearance transfer as a controlled image-to-image translation task. The editing
model receives three inputs: the reference style image Iref, the target structure image Igeom ren-
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dered from the optimal viewpoint, and a carefully designed prompt that enforces strict structural
constraints while enabling style transfer.

The prompt instructs the model to perform a stylized rendering that adheres to the following require-
ments:

• ”Strictly preserve the structure and geometric shape of the original model from Image 1.”
• ”The visual style must fully match the material, color, and texture characteristics of Image 2.”
• ”The output should exhibit the artistic style of Image 2 while retaining structural details from Image 1.”

The output of this process is an edited image, Iedit. To ensure geometric alignment, we then generate
the final transfer image, Itr, by projecting the style from Iedit onto our target geometry. This is
achieved using a mask of the model rendered from the optimal viewpoint, vbest. This resulting image,
Itr, serves as the crucial, pixel-aligned supervision signal for our subsequent material optimization
pipeline.

2.2 STAGE 2: HYBRID PBR MATERIAL INITIALIZATION

With the supervision image Itr established, we devise a hybrid strategy to initialize the material for
each surface segment, addressing the fundamental limitation of procedural material libraries: While
procedural materials offer physical plausibility and editability, material libraries are inherently lim-
ited in their coverage of real-world appearances. Direct retrieval from such libraries often fails to
capture the diverse textures and patterns present in arbitrary reference images. Pure optimization
from a poorly-matched initial material typically converges to suboptimal local minima. Therefore,
we enhance the retrieved base material with generative texture synthesis.

2.2.1 INTRINSIC IMAGE DECOMPOSITION

Before material retrieval, we decompose the transferred image Itr to extract its surface reflectance
properties using RGB-X (Zeng et al., 2024), a pre-trained diffusion model trained on over 200,000
paired samples. The decomposition process yields:

D(Itr) = (Ialb
tr , I

nor
tr , I rgh

tr , Imet
tr ) (3)

where Ialb
tr , Inor

tr , I rgh
tr , and Imet

tr represent the extracted albedo, normal, roughness, and metallic maps
respectively. These decomposed BRDF properties provide physically-meaningful features for sub-
sequent material matching.

2.2.2 PHYSICS-BASED MATERIAL RETRIEVAL

With the decomposed BRDF properties from Itr, we perform physics-informed material retrieval
for each material segment. For each segment Sk and each candidate procedural material Pm from
our library P , we map its physical parameter textures (roughness θmrgh and metallic θmmet) onto the
geometry via UV coordinates. We then render these mapped parameters from the optimal viewpoint,
where pixel intensities directly correspond to the parameter values.

The matching is performed by comparing these projected parameter maps with the corresponding
regions in the decomposed maps:

P ∗
k = arg min

Pm∈P

[
λrgh∥I rgh

tr,k − Pk(θ
m
rgh)∥22 + λmet∥Imet

tr,k − Pk(θ
m
met)∥22

]
(4)

where Pk(·) denotes an operator that projects the UV-mapped parameter textures of segment Sk into
screen space, and I rgh

tr,k, Imet
tr,k represent the decomposed roughness and metallic values in the region

corresponding to segment Sk. For small material segments where texture details are less critical, we
assign uniform materials without retrieval to maintain computational efficiency.

2.2.3 GENERATIVE TEXTURE SYNTHESIS AND BLENDING

To capture unique texture patterns absent from our library, we leverage the same image editing
model to generate tileable textures for each material segment. For each segment Sk, we extract its
corresponding masked region from Itr and provide it to the model with the following prompt:
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• ”Minimize texture distortion to ensure proper tiling.”
• ”Preserve the color and pattern characteristics.”

This yields a segment-specific albedo texture T gen
A,k that captures the visual patterns for material

segment Sk. We then blend this texture with the albedo map T proc
A,k from the retrieved procedural

material:
T final
A,k = (1− wk) · T proc

A,k + wk · T gen
A,k, (5)

where wk ∈ [0, 1] is a learnable blending weight for segment Sk. This hybrid approach combines
the structural coherence and physical plausibility of procedural materials with the visual richness
of generated textures, providing a robust initialization for each material segment in the subsequent
optimization stage.

2.3 STAGE 3: DIFFERENTIABLE MATERIAL OPTIMIZATION

The final stage optimizes all learnable parameters to precisely match the supervision image Itr.
Given the high-dimensional nature of the optimization problem, we adopt a coarse-to-fine strategy
that progressively refines different parameter groups.

Optimization Parameters. Our method optimizes three groups of parameters: the environment
map E representing scene illumination; the UV transformation parameters θuv = {s, r, t} for scale,
rotation, and translation; and the material parameters θmat, which include the procedural parameters
θproc and the blending weight w.

Progressive Optimization Strategy. We decompose the optimization into three sequential steps,
each focusing on different aspects of the appearance:

Step 1: Lighting Estimation. We first optimize the environment map E while keeping all material
parameters fixed:

Ê = argmin
E

Lrender(R(S, θinit, E), Itr) (6)

This establishes a plausible lighting condition that explains the overall illumination in the reference
image.

Step 2: UV Alignment. We initialize the texture blending weight w = 1 to ensure clear pattern
matching. For UV transformation, we first evaluate a discrete set of rotation and scale combinations,
selecting the best initialization based on VGG Gram matric distance (Gatys et al., 2016). With
lighting fixed to Ê, we then optimize the UV transformation parameters:

θ̂uv = argmin
θuv

LVGG(R(S, θmat, θuv, Ê), Itr) (7)

This ensures that texture scales and orientations match the reference appearance.

Step 3: Joint Material Refinement. Finally, we jointly optimize material parameters and fine-tune
UV coordinates:

(θ̂mat, θ̂uv) = arg min
θmat,θuv

Lrender(R(S, θmat, θuv, Ê), Itr) (8)

Loss Function. The rendering loss combines global appearance matching with segment-specific
perceptual terms. Let Irender = R(S, θmat, θuv, E) denote the final rendered image produced by our
differentiable renderer R. The overall loss is defined as:

Ltotal = Lrender +

K∑
k=1

λkLk
VGG(Irender,k, Itr,k) (9)

where Lrender = λglobal∥D(Irender) − D(Itr)∥1 is an L1 loss that captures global color consistency,
and D(·) is the downsampling operator.

The term Lk
VGG is a segment-specific perceptual loss computed on the image patches corresponding

to each material segment Sk. Let Irender,k and Itr,k be the image patches extracted from Irender and
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Figure 2: Qualitative comparison of material generation methods. For fair comparison, all baseline
methods use our Stage 1 transferred image as input, as they lack structure-guided appearance transfer
capabilities.

Itr respectively, using the mask for segment Sk. The loss for each segment is:

Lk
VGG(Irender,k, Itr,k) =

∑
l∈F

λl

C2
l

∥Gl(Irender,k)− Gl(Itr,k)∥1 (10)

where Gl(·) computes the Gram matrix of features from layer l of a pre-trained VGG network. Here,
ϕl(·) ∈ RCl×HlWl extracts and reshapes features, F denotes the set of selected feature layers, and
Cl, Hl, Wl are the channel, height, and width dimensions. This per-segment perceptual loss captures
fine-grained texture and style similarities specific to each material region.

3 EXPERIMENTS

Differentiable Renderer and Optimization. Our physics-based optimization pipeline is built
upon the Mitsuba 3 differentiable renderer (Jakob et al., 2022). For propagating gradients through
the rendering process, we utilize the reparameterization technique of Loubet et al. (Loubet et al.,
2019), which handles discontinuities from visibility events. We employ a path tracing integra-
tor for all rendering operations. The rendering resolution is set to 512×512 pixels. To generate
high-quality, anti-aliased images, we use a a indipendent sampler generates 64 samples-per-pixel
(spp).

3.1 QUALITATIVE EVALUATION

We evaluate our method on diverse 3D models across six categories and compare against two
baselines on imaged based appearance modeling: PSDR-Room (Yan et al., 2023), Material and
Palette (Lopes et al., 2024).

Comparison with Baselines. Figure 2 compares our method against two strong baselines. PSDR-
Room, limited by its procedural-only approach, fails to capture fine-grained appearance variations.
Material Palette’s SVBRDF extraction suffers from resolution dependencies and lacks physical con-
straints, resulting in spatially incoherent texture synthesis when input resolution falls below 4K.
In contrast, our hybrid representation effectively balances visual fidelity with physical plausibility,
achieving superior reconstruction quality across diverse material categories.

Material Generation Fidelity. Figure 3 presents our final rendering results across diverse object
categories, demonstrating high-fidelity reconstruction of various material properties from leather to

7
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Figure 3: Material generation results across di-
verse object categories.

Figure 4: Multi-view evaluation shows consis-
tent appearance.

Table 1: Quantitative evaluation of rendering quality. We compare rendered images of 3D shapes
with generated materials against transfer images. Higher PSNR/SSIM and lower LPIPS indicate
better visual fidelity. Best results are in bold.

Shape Category Ours PSDR-Room Material Palette
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

All 16.549 0.575 0.160 16.199 0.484 0.182 13.071 0.456 0.203
Bags 15.499 0.455 0.193 16.614 0.516 0.193 13.562 0.469 0.223
Beds 17.440 0.658 0.172 16.854 0.460 0.216 14.845 0.554 0.204

Buildings 14.239 0.395 0.220 14.162 0.367 0.225 12.823 0.209 0.247
Chairs 15.232 0.461 0.128 15.187 0.413 0.153 13.459 0.376 0.150
Sofas 15.723 0.640 0.175 15.030 0.535 0.195 12.893 0.542 0.224
Tables 18.666 0.623 0.124 18.051 0.499 0.149 12.304 0.441 0.182

wood. In these examples, our hybrid approach combines physically-correct procedural properties
with generated texture details to achieve a realistic appearance that remains faithful to the reference.
We provide additional results in the appendix, including the application of diverse material styles to
a single geometry (see Figure 8).

Multi-View Consistency. Figure 4 validates that our single-view optimization produces materials
that generalize well to novel viewpoints. This robustness stems from our physics-based represen-
tation: procedural materials inherently encode view-dependent effects correctly, while our differ-
entiable optimization enforces physical constraints throughout the process. This addresses a key
limitation of many appearance transfer methods that produce view-dependent artifacts.

3.2 QUANTITATIVE EVALUATION

We quantitatively evaluate our method against baselines using standard metrics for material recon-
struction quality.

Rendering Quality Assessment. Table 1 measures the visual quality of rendered results after ap-
plying generated materials to 3D shapes. Our method produces renderings that best match reference
images across all metrics. The superior PSNR (16.549) and SSIM (0.575) demonstrate accurate
reproduction of visual appearance, while the lowest LPIPS score (0.160) indicates our renderings
are perceptually closest to target images. Strong performance on furniture categories reflects our
method’s ability to capture complex appearance variations that define visual realism.

User Study. To evaluate perceptual fidelity, we conducted a user study. We created 54 unique test
cases by selecting 3 representative models and 3 stylistically diverse reference images from each of
our 6 object categories. We recruited 30 participants to perform a blind test comparing our method
against two baselines (PSDR-Room and Material Palette). In each trial, participants were shown
a reference image alongside the three rendered results, presented in a randomized order to prevent
bias. They were asked to rate each result on a 5-point Likert scale (1=Poor, 5=Excellent) based on
how well it replicated the reference material’s appearance (including texture, color, and reflectance).

8
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Table 2: User study results. We report the average user preference scores on a 5-point scale (1=Poor,
5=Excellent). Each row represents a material generation method.

Method Shape Category Overall Avg.
Bags Beds Buildings Chairs Sofas Tables

Ours 3.56 4.07 3.96 3.80 4.20 3.83 3.90
PSDR-Room 3.37 3.32 3.53 3.40 3.17 3.44 3.37
Material Palette 2.77 1.95 1.78 2.38 2.53 2.20 2.27

The results in Table 2, show that our method achieved the highest score, indicating a strong user
preference.

3.3 ABLATION STUDY

Figure 5: Ablation study comparison. W/O tex-
tures optimizes to match the reflectance but cannot
match the textures. Our captures both reflectance
and textures, validating our hybrid approach.

To validate our core contribution, the hybrid
material representation, we conduct an ablation
study comparing two configurations:

• W/O textures: Optimizes only the parame-
ters of the retrieved procedural material.

• Ours: Our full pipeline, which jointly opti-
mizes the procedural material and a generated
texture using a learnable blending weight.

Figure 5 illustrates the comparison on a multi-
material chair. The W/O textures method ad-
justs parameters to match the reference’s color
palette, such as the hue of the wood and fab-
ric. However, being constrained by the base
material’s definition, it fails to synthesize pat-
terns not present in the original procedure. In
contrast, Ours approach seamlessly integrates
these details by blending in the generated texture. This successfully reproduces the fine-grained
patterns, achieving a result faithful in both physical properties and detailed appearance.

4 CONCLUSION

We presented Style2Shape, a framework for generating high-fidelity materials for 3D shapes from a
single reference image. Our multi-stage design directly addresses the ill-posed nature of this task.
By first performing structure-guided appearance transfer, we bridge the domain gap to create
an aligned supervision target. Subsequently, our hybrid PBR material initialization provides a
robust starting point by combining the reflectance correctness of procedural materials with generated
textures. This enables our physics-based optimization to converge to solutions that are editable,
physically plausible, and visually faithful, as validated by our experiments.

Limitations and Future Work. While our framework shows promising results, it has several lim-
itations. First, our experiments primarily focus on transferring materials where the reference image
and target shape share a similar semantic category. The framework’s performance on cross-category
transfers with large semantic gaps (e.g., applying a sofa texture to a dragon) has not been evaluated
and remains a challenging area for future work. Second, as observed in some supplementary exam-
ples, performance on real-world photos with complex, non-uniform lighting can be suboptimal, as
the initial BRDF decomposition may be less accurate. Third, our hybrid blending mechanism cur-
rently operates only on the albedo channel to maximize appearance matching. Extending this hybrid
approach to other PBR maps like roughness and metallic, while ensuring physical plausibility, is a
non-trivial but important future direction. Finally, our Stage 1 depends on a powerful, proprietary
image editing model; exploring open-source alternatives to improve accessibility is also a key next
step.

9
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Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and
Wojciech Matusik. Match: Differentiable material graphs for procedural material capture. ACM
Transactions on Graphics (TOG), 39(6):1–15, 2020.

George Tang, William Zhao, Logan Ford, David Benhaim, and Paul Zhang. Segment any mesh:
Zero-shot mesh part segmentation via lifting segment anything 2 to 3d. arXiv e-prints, pp. arXiv–
2408, 2024.

Trimble Inc. 3D Warehouse, 2024. URL https://3dwarehouse.sketchup.com/. Ac-
cessed: 2024.

Xudong Xu, Zhaoyang Lyu, Xingang Pan, and Bo Dai. Matlaber: Material-aware text-to-3d via
latent brdf auto-encoder. arXiv preprint arXiv:2308.09278, 2023.
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A APPENDIX

A.1 ADDITIONAL RESULTS GALLERY

We present an extended collection of material generation results that demonstrate the robustness and
versatility of our method. These examples complement the main paper by showcasing our frame-
work’s performance on a broader range of 3D models and reference materials, including challenging
generalization tests.

Multi-Model, Multi-Category Variation. Figure 6 and Figure 7 demonstrate our method’s capa-
bility to handle geometric and material diversity across various models and object categories (e.g.,
tables, beds, sofas, bags). Our framework successfully adapts to each geometry while faithfully
reproducing both global appearance and fine-grained surface properties.

Single-Model, Multi-Style Versatility. A key capability of our framework is its versatility in
applying different material styles to a single geometry, enabling efficient design exploration. As
shown in Figure 8, we can take one chair model and apply a range of distinct appearances—from
fabric to leather to wood—each derived from a different reference image. This highlights the ability
of our pipeline to consistently generate high-quality materials regardless of the target style.

Cross-Category Generalization. To further investigate the framework’s generalization capabili-
ties, we conducted experiments on challenging cross-category material transfers. Figure 9 show-
cases two such results. The examples illustrate the successful application of a wooden texture and
a marble texture from table reference onto a chair model (left), and a leather and a fabric pattern
from handbag onto a table (right). This demonstrates the versatility of our approach, which effec-
tively transfers complex material attributes across significant semantic gaps while maintaining visual
coherence and key pattern details.

Figure 6: Material generation results within the tables category.

A.2 A DEEPER LOOK INTO THE PIPELINE

To provide further insight into our framework, we visualize and discuss key intermediate outputs
and design choices that are critical to the method’s success.

12
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Figure 7: Material generation results on multiple categories (beds, sofas, bags) paired with varied
reference materials.

The Importance of Structure-Guided Transfer. A core challenge is the domain gap between a
2D reference image and a 3D target shape. A naive approach might simply project the reference
texture, leading to severe distortions. Our Stage 1 circumvents this by generating a structure-guided
transfer image (Itr). As shown in Figure 10, our structured prompts successfully guide the image
editing model to transfer material properties while preserving the geometric integrity of the target
model. This process yields a clean, pixel-aligned supervision signal that has the reference style
but conforms perfectly to the target geometry and viewpoint, which is crucial for the subsequent
physics-based optimization to converge correctly.

Hybrid Material Components. Figure 11 displays the generated albedo textures (T gen
A,k) from

Stage 2. These textures, created with prompts requesting seamless patterns, are designed to cap-
ture intricate details from the reference style. They work in synergy with the retrieved procedural
base material; the procedural component provides a physically coherent foundation for reflectance,
while the generated texture provides the specific visual patterns. Their successful integration via our
optimization framework validates the effectiveness of our hybrid material representation.

A.3 ANALYSIS OF GENERATED PBR MATERIALS

BRDF Map Coherence. Figure 12 presents a comprehensive analysis of our generated PBR ma-
terials through their constituent BRDF maps. The albedo maps reveal the successful integration
of our hybrid approach—base procedural colors are seamlessly blended with generated texture de-
tails. In contrast, the roughness, metallic, and normal maps are derived directly from the optimized
procedural material. This design choice ensures that these physical parameters retain their inherent
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Figure 8: Versatility on a single object with diverse reference images. Our method enables ap-
plying multiple distinct material appearances to the same 3D geometry while maintaining consistent
material quality across different styles. This is ideal for rapid design exploration.

Figure 9: Demonstration of Cross-Category Material Transfer. Our framework successfully
transfers material styles between objects of disparate semantic categories. The examples show trans-
fers from a table to a chair (left panels) and from a handbag to a table (right panels).

coherence from the procedural graph, accurately controlling surface reflectance. These complete pa-
rameter sets confirm that our optimization process produces materials with plausible light interaction
properties, faithful to the reference’s appearance.

A.4 IMPLEMENTATION DETAILS

Dataset and Material Library. Our 3D model dataset is sourced from 3DCoMPaT (Yuchen Li,
2022) and 3D Warehouse (Trimble Inc., 2024), covering six categories: bags, beds, buildings, chairs,
tables, and sofas, with at least 5 models per category. Reference images consist of real-world pho-
tographs under CC0 license, similarly spanning all six categories with at least 5 images per category.
For material matching and optimization, we collect 263 base procedural materials from Substance
Designer (Adobe Inc., 2024) in .sbs format. We sample 5 parameter variants for each base material
by varying key parameters such as roughness, scale, and color, resulting in a total library of 1,315
material instances exported at 512×512 resolution.

Differentiable Renderer and Optimization. Our physics-based optimization pipeline is built
upon the Mitsuba 3 differentiable renderer (Jakob et al., 2022). For propagating gradients through
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Figure 10: Structure-guided appearance transfer results (Stage 1). This figure showcases the
output of the first stage of our pipeline. We leverage a powerful image editing model with structured
prompts to transfer material properties from a source image while preserving the geometric integrity
of diverse target models. The resulting images serve as the supervision targets for our optimization.

Figure 11: Visualization of pipeline intermediate results. Left: Structure-guided transfer images
(Itr) from Stage 1 providing pixel-aligned supervision. Right: Generated albedo textures (T gen

A,k)
from Stage 2 capturing detailed patterns for the hybrid material representation.

the rendering process, we utilize the reparameterization technique of Loubet et al. (Loubet et al.,
2019), which handles discontinuities from visibility events. We employ a path tracing integrator
for all rendering operations. The rendering resolution is set to 512×512 pixels. To generate high-
quality, anti-aliased images, we use a indipendent sampler generates 64 samples-per-pixel (spp). We
initialize the environment map E as a 256×256 HDR image with uniform unit radiance and apply
8× downsampling during the rendering loss computation. The perceptual loss employs a pre-trained
VGG-16 network. For UV transformation initialization, we evaluate discrete candidates with ro-
tation angles r ∈ {0, π/4, π/2,−π/2,−π/4} and scale factors s ∈ {0.5, 1.0, 2.0, 4.0, 8.0}. We
employ a three-stage optimization schedule using the Adam optimizer (Kingma & Ba, 2014): (i) 50
iterations for lighting estimation with lr = 10−2, where we apply a weak total variation regular-
izer to the environment map E to encourage spatial smoothness; (ii) 50 iterations for UV alignment
with lr = 10−3; and (iii) 100 iterations for joint refinement with cosine annealing from lr = 10−2 to
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Figure 12: Visualization of generated PBR materials. For each rendered result (left), we show the
complete set of BRDF parameter maps(right): Albedo, Roughness, Metallic, and Normal. The
physical coherence and visual quality of these maps demonstrate our method produces PBR materi-
als well-structured for integration into existing workflows.

10−4 for material parameters. The complete pipeline requires approximately 10 minutes on a single
NVIDIA RTX 3090 GPU.
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