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Figure 1: We present CLIPGaussian, a universal model for style transfer that supports a wide range
of data modalities, including images, videos, 3D objects, and 4D dynamic scenes. Style transfer in
CLIPGaussian can be guided using an image or a text prompt. Our method leverages a Gaussian
Splatting representation to model both color and geometric aspects of style transfer.

Abstract

Gaussian Splatting (GS) has recently emerged as an efficient representation for
rendering 3D scenes from 2D images and has been extended to images, videos, and
dynamic 4D content. However, applying style transfer to GS-based representations,
especially beyond simple color changes, remains challenging. In this work, we
introduce CLIPGaussian, the first unified style transfer framework that supports
text- and image-guided stylization across multiple modalities: 2D images, videos,
3D objects, and 4D scenes. Our method operates directly on Gaussian primitives
and integrates into existing GS pipelines as a plug-in module, without requiring
large generative models or retraining from scratch. The CLIPGaussian approach
enables joint optimization of color and geometry in 3D and 4D settings, and
achieves temporal coherence in videos, while preserving the model size. We
demonstrate superior style fidelity and consistency across all tasks, validating
CLIPGaussian as a universal and efficient solution for multimodal style transfer.
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1 Introduction
The past year has seen an explosive rise in user-driven content generation, particularly in the visual
domain. Following the launch of OpenAI’s GPT-4o [1], users created more than 700 million images
within a single week, highlighting the massive demand for generative tools that allow intuitive, direct
manipulation of visual content. Although 2D image generation and edition are rapidly becoming
mainstream tasks, editing in higher dimensions, such as video, 3D, and 4D content, is significantly
more complex [2]. These domains bring challenges in consistency, geometry, temporal coherence,
and user control that existing systems are not yet fully equipped to handle.

Gaussian Splatting (GS) [3] is a major advancement in computer graphics, representing 3D scenes as
sets of Gaussian components with color and opacity. Its training and rendering are highly efficient and
produce realistic images. GS has also been adapted for 4D dynamic scenes [4, 5, 6], 2D images [7, 8],
and videos [9, 10], using slightly modified Gaussian components to model 2D content.

One of the ways to edit objects represented by 3D Gaussian primitives is style transfer [11], which
alters the global appearance of objects and scenes. A possible approach to address this issue is the
use of plug-in-type models. This refers to a family of components that can be inserted into existing
architectures without requiring complete retraining [12], allowing them to adapt to new tasks such as
style transfer.

In this paper, we introduce CLIPGaussian, a plug-in type model suitable for Gaussian Splatting-based
architectures. Our model stylizes content represented by Gaussian primitives, conditioned on either
a reference image or a text prompt, across 2D, video, 3D, and 4D data, see Fig. 1. As a plug-in
component, CLIPGaussian integrates into existing pipelines without requiring retraining of the base
model.

When conditioned on a text prompt, models based on Gaussian Splatting primarily focus on editing
rather than style transfer [13, 14, 15]. In the context of conditioning on a reference image, models typ-
ically concentrate on modifying only color and opacity. Examples of this include StyleGaussian [16],
ReGS [17], InstantStyleGaussian [18], Style3D [19], and StyleSplat [20]. G-Style [21] employs a
two-phase process, consisting of stylization followed by refining the scene’s geometry, but increasing
the size of the model significantly. Since our CLIPGaussian uses the architecture of the base model,
we can optimize all parameters, without changing the model size. By operating directly within the
architecture of the Gaussian Splatting-based model, our method enables end-to-end optimization
of the full set of Gaussian parameters including position and scale, rather than being restricted to
color-based edits, see Fig. 2. Crucially, we retain the original number of Gaussian primitives, thereby
preserving the memory and computational characteristics of the object’s reconstruction.

In this work, we make the following primary contributions:

• Universal Multimodal Stylization: We propose CLIPGaussian, the first plug-in style
transfer model for Gaussian Splatting, enabling image- and text-guided stylization across
2D, video, 3D, and 4D data without retraining the base model.

• Joint Appearance and Geometry Optimization: Our method allows end-to-end opti-
mization of all Gaussian parameters, enabling geometric transformations and temporally
consistent results, while preserving the original model size.

• Generalizable GS-based Stylization Framework: We demonstrate that Gaussian Splatting
is a versatile substrate for style transfer, achieving strong performance across tasks and
modalities with a unified architecture.

2 Related Works
CLIPGaussian operates across diverse data modalities, including images, videos, and 3D or 4D
scenes. To our knowledge, it is the first method capable of style transfer across such a wide range. As
a result, direct comparison with existing work is challenging, so we evaluate our model separately for
each modality.

3D Our model uses Gaussian Splatting to represent various data modalities. Therefore, the closest
solutions are dedicated to 3D scenes. In the case of classical Gaussian Splatting, style transfer methods
usually work only on colors [16, 17, 18, 19, 20]. It means that such algorithms do not change the
geometry of objects. Therefore, the only modification is to the colors and opacities of Gaussian
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Figure 2: CLIPGaussian architecture in the case of a 4D dynamic scene. The method operates in
two main stages. In the first stage, we train a Gaussian Splatting model tailored to a specific data
modality. In the second stage, during training, we leverage training images, randomly sampled
patches, and conditioning inputs (either an image or a text) in the feature spaces of VGG-19 and
CLIP models. We optimize the Gaussian parameters using a composite loss function with four terms:
content preservation, background preservation, local style transfer, and global style transfer. Notably,
CLIPGaussian integrates with GS-based systems as a plug-in module.

primitives. StyleGaussian [16] embeds 2D VGG features into 3D Gaussians, transforms them based
on a style image, and decodes them with a novel KNN-based 3D CNN. Such a model can be seen as
an adaptation of AdaIN [22] to 3D Gaussian Splatting. StyleSplat [20] segments individual objects,
then fine-tunes their appearance using feature matching with a style image, allowing customizable,
multi-object stylization with strong visual consistency and efficiency. ReGS [17] introduces a texture-
guided control mechanism for fine-grained appearance editing. It enhances style detail by replacing
selected Gaussians with denser ones, guided by texture cues and regularized by depth to preserve
geometry. G-Style [21] is a 3D scene stylization algorithm that enhances Gaussian Splatting by
optimizing both appearance and geometry to match a reference style image. It improves visual quality
by preprocessing out problematic Gaussians, applying multi-scale style losses, and refining geometry
through gradient-based Gaussian Splatting.

Alternatively, we can use a large diffusion model for the style transfer of 3D models. InstantStyleGaus-
sian [18] uses diffusion models and an iterative dataset update strategy. It stylizes pre-reconstructed
scenes by generating target-style images, updating the training data, and optimizing the scene effi-
ciently, achieving high-quality results with improved speed and consistency. Style3D [19] introduces
MultiFusion Attention to align structural and stylistic features across views, ensuring spatial coherence
and visual fidelity, and uses a large 3D reconstruction model for high-quality, efficient stylization.
Morpheus [23] introduces a novel autoregressive 3D Gaussian Splatting stylization method that
enables controllable stylization of both appearance and geometry in 3D scenes. Instruct-GS2GS
(I-GS2GS) [13] performs style transfer by applying a diffusion-based model to each of the input
images used to train a Gaussian Splatting. Each splat is then fine-tuned using these stylized images.
In contrast CLIPGaussian instead of stylizing the training images, directly optimizes the Gaussian
representation using losses derived from CLIP embeddings. This approach enables high-quality style
transfer and supports conditioning on both images and text prompts, whereas I-GS2GS supports
only text-based conditioning. Importantly, CLIPGaussian does not rely on any pretrained diffusion
models for image stylization; the entire process is guided solely by CLIP-based objectives. The key
contribution is an RGBD diffusion model allowing users to adjust stylization strength over shape and
look. Such task is closer to 3D scene editing than style transfer like in DGE [14], GaussCltr [15],
ProGDF [24] or EditSplat [25].

4D One of the most underexplored modalities is the 4D scene stylization which aims to modify
the appearance of the 3D scene over time. Existing approaches remain limited. Currently, to our
knowledge there are only just a few 4D style transfer models.

4DStyleGaussian [26] uses a reversible neural network to train 4D embedded Gaussians, preserving
content fidelity while reducing feature distillation artifacts. A learned 4D style transformation matrix
enables consistent stylization across views and time. Instruct 4D-to-4D [27] is a NeRF-based method
for instruction-guided editing of dynamic scenes. It enhances 2D diffusion models with 4D awareness
and spatial-temporal consistency. Treating 4D scenes as pseudo-3D combines anchor-aware attention,
optical flow-guided appearance propagation, and depth-based projection to enable consistent, high-
quality edits across time and viewpoints. While both methods focus on scenes, we show that our
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method also works very well on objects without backgrounds, see Fig. 3. StyleDyRF [28] is also
a NeRF-based method. The Canonical Feature Volume and Canonical Style Transformation are
introduced to create a compact representation of the 4D scene, and learn the linear transformation to
reflect the reference style respectively. As opposed to our method, it supports only image based style
conditioning.

Figure 3: Results of text-based 4D style transfer.
Our model modifies both the color and geometry
of Gaussian primitives.

Images In contrast to 4D scenes, 2D image
style transfer is a very popular task. The foun-
dational work in neural style transfer [29] intro-
duced an optimization-based method to match
the content features of one image and the style
captured using Gram matrices of another, us-
ing a pre-trained convolutional neural model.
This demonstrated that deep features could dis-
entangle content and style, but the approach was
computationally expensive due to its iterative na-
ture. To address speed limitations, feed-forward
networks were introduced to enable real-time
stylization by applying a fixed style in a sin-
gle pass [30, 31]. Arbitrary style transfer was
later made possible by aligning feature statis-
tics using Adaptive Instance Normalization [22],
further refined through Whitening and Coloring
Transform [32]. More recent methods have ex-
plored more flexible conditioning mechanisms.
For image-guided style, transformer-based ar-
chitectures like StyTr2 leverage both local and
global context to improve stylization quality and content preservation [33]. Alternatively, text prompts
have emerged as an intuitive way to specify style. Style transfer guided by CLIP embeddings enables
stylization from a textual description [34], while more efficient approaches learn lightweight style
representations for feed-forward transfer [35].

Videos The majority of image-style transfer methods [36, 37, 38] are employed for video-style
transfer. Linear [36] proposes a fast and flexible style transfer method using a learned transformation
matrix. It replaces costly or handcrafted operations with a feed-forward model. CCPL [37] uses a
novel Contrastive Coherence Preserving Loss to reduce local inconsistencies, maintaining temporal
coherence without harming style quality. UniVST [38] is a unified, training-free video style transfer
framework based on diffusion models that focuses on localized stylization. It uses a point-matching
mask propagation strategy to avoid the need for tracking models. AdaAttN [39] introduces Adaptive
Attention Normalization, which addresses the problem of local distortions by performing attentive
normalization on a per-point basis by jointly considering shallow and deep features of content and
style images. ReReVST [40] introduces a zero-shot video style transfer framework with a novel
relaxation of the style loss and a new temporal regularization. ViSt3D [41] introduces the first video
style transfer method to use 3D CNNs directly, which works by disentangling motion and appearance
features to apply the style only to the appearance before re-adding the motion.

Alternatively, we can use large generative models for style transfer on videos [42, 43, 44]. In [45],
the authors adapt large text-to-image diffusion models for video generation, addressing the challenge
of temporal consistency. The framework consists of two parts: key frame translation and full
video translation. Style-a-video [46] is a zero-shot video stylization method that uses a pre-trained
image latent diffusion model and a generative transformer for text-guided style transfer. UniST
[47] introduces the Domain Interaction Transformer (DIT), which enables cross-domain learning
by sharing contextual information between images and videos. StyleMaster [48] improves style
consistency and temporal coherence by filtering content-related patches while retaining style ones.
The method also supports image-to-video stylization by employing a lightweight motion adapter
trained on still videos.

Each of the above approaches has issues with optical flow, so a dedicated mechanism is necessary to
create smooth style transitions between frames. Our method works directly on Gaussian components,
which inherently addresses these problems.
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Figure 4: We conduct a user study,
comparing our model against base-
line methods. CLIPGaussian achieves
scores comparable to G-Style with im-
age conditioning and outperforms all
models when using text prompts.

GT & Style I-GS2GS [13] DGE [14] CLIPGaussian

Figure 5: Comparison of various 3D style transfer meth-
ods involving text conditioning. CLIPGaussian applies
style transfer with more significant shape changes. Our
model captures details by attending to local regions through
patches processing.

3 CLIPGaussian: Universal and Multimodal Style Transfer Based on
Gaussian Splatting

This section introduces our CLIPGaussian model, which is designed for style transfer across different
data modalities: images, videos, and 3D or 4D scenes. CLIPGaussian is a universal method that
works as a plug-in for Gaussian Splatting-based representations. The core idea is to fine-tune the
parameters of the Gaussian components using the CLIP model [49], which evaluates the similarity
between natural language and images. As a result, our model is agnostic not only to the modality
of data, but also to the conditioning mechanism, allowing the style to be transferred from either an
image or a text.

The core of our approach is to represent all data modalities using Gaussian components. This unified
representation facilitates style transfer across images, videos, and 3D or 4D scenes by modifying
the corresponding Gaussian primitives. Although each modality introduces specific variations—
such as temporal embeddings for videos and 4D scenes—our framework supports a single, general
architecture for style transfer.

Training Dataset The input data for CLIPGaussian are similar to those of typical style transfer
models, but they vary slightly depending on the specific task. When applying a style to an image,
the input is simply a single image. For videos, the input consists of all frames, which can be
treated as a sequence of 2D images. For 3D scenes, views from different camera positions are used.
Finally, for 4D objects, temporal indices for these views are also included. Despite the mentioned
differences, we can unify our framework by assuming that the training dataset consists of a set of
images I = {I1, . . . , Ik}. Additionally, we have a style given by an image or a text prompt, which
can be seen as a conditioning factor S.

Base Model: Gaussian Splatting Representation of Various Data Modalities Our model can
be seen as plug-in for Gaussian Splatting representations. For this purpose, we work on a GS-based
general representation consisting of a set of Gaussians:

G = Gmi,Σi,σi,ci,θi = {(N (mi,Σi), σi, ci, θi)}ni=1, (1)

where mi are the mean positions, Σi are the covariance matrices, σi are the opacities, and ci are the
Spherical Harmonics (SH) colors of the Gaussian components—these are standard GS parameters.
On the other hand, θi are additional parameters dedicated to specific data modalities related to an
applied base model, which can be any of the available GS-based architectures. In this paper, we use
the classical 3DGS [3] for 3D scenes, D-MiSo [6] for 4D scenes, MiRaGe [6] for 2D images, and
VeGaS [10] for videos. A detailed description of each case can be found in Appendix A.

The first stage of CLIPGaussian is to train an established base model on the set of input images
I, which boils down to optimizing all the parameters occurring in Eq. (1). Note that this varies
depending on the chosen data modality. Once training is complete, the resulting pre-trained model

5



Table 1: Quantitative comparison of style transfer, compared against baseline methods.

Model CLIP-S ↑ CLIP-SIM ↑ CLIP-F↑ CLIP-CONS ↑ Memory size ↓
Text-conditioned

I-GS2GS [13] 16.80 12.03 99.19 13.53 -36%
DGE [14] 17.59 12.27 99.31 12.46 -5%
CLIPGaussian-Light 23.14 22.30 99.17 8.51 +0%
CLIPGaussian 26.86 26.31 98.80 2.34 +0%

Image-conditioned

StyleGaussian [16] 63.69 13.07 98.87 1.36 +0%
SGSST [50] 66.57 16.24 97.54 0.91 +0%
ABC-GS [51] 68.68 16.29 99.10 2.11 +0%
G-Style [21] 76.94 24.94 98.94 1.31 +126%
CLIPGaussian-Light 69.27 17.02 99.16 5.26 +0%
CLIPGaussian 72.65 20.72 98.78 1.77 +0%

becomes the input for the second stage of our algorithm, in which a final style transfer procedure is
performed.

CLIPGaussian: Final Style Transfer In the subsequent stage, we implement style transfer by
further fine-tuning the parameters of the base model (see Eq. (1)). The key idea behind CLIP-
Gaussian is to work on whole objects and small patches at the same time. The training procedure
begins by selecting a single image Il from the training dataset I, which is then used along with
its reconstruction RG(Il) produced by the base model G, Then, a collection of random patches
P = {p1(RG(Il)), . . . , pm(RG(Il)} from the rendered output RG(Il) is extracted, to which random
perspective augmentations are further applied (these cropped patches maintain fixed dimensions).
Eventually, the parameters of G are updated according to the multi-component loss function, which
is elaborated in the following paragraph, and the procedure is repeated from the beginning. It is
important to note that CLIPGaussian does not perform densification or alter the number of Gaus-
sian components. As a result, the stylized objects retain the same size as the original. Moreover,
this property enables style interpolation by linearly interpolating the parameters of each Gaussian
component.

GT & Style StyleGaussian [16] G-Style [21] CLIPGaussian

Figure 6: Comparison of 3D style transfer obtained by
image conditioning. Results generated by CLIPGaussian
are more detailed.

CLIPGaussian: Loss Function Our
loss function contains several compo-
nents, which are detailed below. How-
ever, it should be noted that our ap-
proach relies on two pre-trained archi-
tectures: CLIP and VGG-19, which we
further denote as ΦCLIP and ΦVGG, re-
spectively. We use the CLIP model for
style transfer and the VGG-19 model
to ensure that the stylized output resem-
bles the original object.

Content loss (Lc) measures the similar-
ity between input views and elements
after style transfer. To maintain the
content information of the input object,
following [29], we calculate Lc as the
mean squared error (MSE) between the
conv4_2 and conv5_2 features of the
original image Il and rendered image
RG(Il), extracted from a pre-trained VGG-19 model, i.e.,

Lc(RG(Il), Il) = MSE(ΦV GG (RG(Il)) ,ΦV GG (Il)). (2)

Directional CLIP loss (Ld) is responsible for global style transfer. Similar to [52], we define it as
follows:
Ld(RG(Il), Il) = 1− cos(ΦCLIP (RG(Il))− ΦCLIP (Il),ΦCLIP (S)− ΦCLIP (“Photo”)). (3)
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It should be noted that in this case, CLIP embeddings of the original image Il and the reconstructed
image RG(Il), in conjunction with outputs produced by the CLIP model for a given style factor S
(either a style image or a style prompt) and a simple universal negative prompt “Photo”, are utilized.
Both negative and positive text prompts are combined with an ImageNet prompt template [53].

Patch CLIP loss (Lp) is responsible for local style transfer. It is defined as follows:

Lp(RG(Il), Il) =
1

n

n∑
i=1

Ld(pi(RG(Il)), Il). (4)

However, we emphasize that, as proposed in [34], for all patches pi(RG(Il)) ∈ P we apply random
perspective augmentations before calculating the CLIP directional loss.

Background loss (Lb) is assigned to fixed background elements. For 3D objects and videos, a mask is
typically used to distinguish between the foreground and background. We incorporate background
loss to prevent the style transfer process from introducing unwanted background artifacts. Therefore,
Lb is defined as the mean L1 distance between the designated background color and the pixel values
corresponding to background regions in the rendered image.

Total loss (Ltotal), which is used to fine-tune the parameters of the base model, is defined as a
weighted sum of the multiple loss components described above. This leads to the following formula:

Ltotal = λdLd + λpLp + λcLc + λbLb, (5)

where λd, λp, λc, and λb are empirically chosen weighting parameters. Details of the ablation study
are provided in Appendix B. For Lp and Ld we use ViT-B/32 CLIP model [53].

4 Experiments

Figure 7: Style interpolation between "Black mar-
ble" and "Green crystal" styles on the lego object.

The experiments section is divided into four
parts, each corresponding to a specific modal-
ity for which the model has been applied. We
note that because CLIPGaussian operates across
multiple data modalities, baselines differ by task.
Within each task, we standardize the setup for
fair comparisons. For comparison, we include
two versions of our method which differ in hy-
perparameters. CLIPGaussian with standard pa-
rameters and CLIPGaussian-Light which pro-
duces lighter stylization. Details of hyperparam-
eters can be found in Appendix A. Additional
experiments using other datasets and ablation
studies are presented in Appendix B. For all 2D,
3D, Videos, 4D-objects experiments, we used
the NVIDIA RTX 4090 GPU, For 4D-scenes
we used NVIDIA DGX A100 GPU. The code is
available on GitHub 2.

Style 4DStyleGaussian [26] CLIPGaussian

Figure 8: Comparative analysis of style transfer
using referenced style image of novel views across
various time frames and styles on the Neural 3D
Video dataset (DyNeRF) [54].

3D As our approach is designed as a plug-
in model compatible with Gaussian Splatting-
based models, we begin our evaluation us-
ing the standard, vanilla Gaussian Splatting
framework. The experiments evaluate both 3D
object-level and scene-level performance. The
NeRF-Synthetic dataset [55], comprising object-
centric synthetic scenes with clean geometry and
no background, enables controlled assessment
of reconstruction and style transfer on isolated
objects. Mip-NeRF 360 [56] provides photore-
alistic 360-degree real-world scenes with wide
baselines, occlusions, and varying depth scales.

2https://github.com/kornelhowil/CLIPGaussian
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To assess performance on both image- and text-based stylization, we employ CLIP-based metrics.
CLIP Directional Similarity [52] (CLIP-SIM) and CLIP-S [57] evaluate transfer quality, while CLIP
Directional Consistency [58] (CLIP-CONS) and CLIP-F [59] assess temporal consistency and content
similarity. We also report changes in model size (number of Gaussians) after stylization. Metric
definitions and detailed evaluation settings are provided in Appendices B.1.1 and B.2.

Tab. 1 compares our method with Instruct-GS2GS [13] and DGE [14] for text-conditioned style
transfer and StyleGaussian [16], SGSST [50], ABC-GS [51] and G-Style [21] for image-conditioned
style transfer. Experiments use two objects (lego, hotdog) and two scenes (garden, bonsai), each
evaluated under both image- and text-driven conditions. CLIPGaussian method achieves state-of-the-
art results under text-guided conditions. It significantly outperforms all baselines with respect to the
CLIP-S and CLIP-SIM metrics. We also achieve high-quality results under image-guided conditions.
Compared to G-Style, our method offers a balance between performance and efficiency. This makes
CLIPGaussian a practical and scalable alternative for style transfer tasks.

Instruct 4D-to-4D [27] CLIPGaussian

Figure 9: Comparative analysis of style trans-
fer using text condition on the coffee_martini
dataset [54].

For selected baseline methods (Instruct-GS2GS,
DGE, StyleGaussian and G-Style) and the stan-
dard version of CLIPGaussian, we conducted
a formal online user study on the same dataset
as in the quantitative comparison. It evaluated
the quality of the style transfer and identified
which method best conveyed the intended style.
We conducted four surveys to evaluate differ-
ent methods of 3D content stylization: (1) 3D
objects stylization with images, (2) 3D scenes
stylization with images, (3) 3D objects styliza-
tion with text, and (4) 3D scenes stylization with
text. Each survey had 30 randomly selected par-
ticipants, one user could participate in multiple
surveys. The surveys were conducted formally
using the CLICKworker platform3. A detailed
description of the questions is provided in Ap-
pendix B.2.3.

Fig. 4 shows the results from four evaluated
scenarios. In case (1), our method was most
frequently selected for producing objects most
similar to the reference image. In case (2), G-
Style performed better on larger scenes, but our
method was rated as the least similar to the refer-
ence image less often than StyleGaussian. Con-
sidering that G-Style uses over twice as many
Gaussians, our method remains a competitive
alternative (see Table 1). In case (3), users most
often rated our approach as the best for text-
based object stylization. Case (4), involving 3D
scene stylization from text, yielded mixed results. Users gave high and low ratings, likely due to the
subjective nature of prompt interpretation. A post hoc Conover-Friedman test showed significant
differences in “perceived similarity” rankings across methods, except between our method and
G-Style for object stylization.

Fig. 5 and Fig. 6 show a qualitative comparison with selected baseline methods, on a subset of data
used for quantitative evaluation and user study. Full comparison is provided in Appendix B.2. Unlike
other methods, CLIPGaussian does not change the number of Gaussians, which also enables style
interpolation (see Fig. 7). Additional results and train time can be found in Appendix B.2.

4D To evaluate performance on dynamic 4D scenes, we used D-MiSo [6], which integrates the
Multi-Gaussian Splatting representation with a deformation network. All components of the pipeline
actively contribute to the learning of style transfer.

3https://www.clickworker.com

8

https://www.clickworker.com


Style
& GT

AdaIN [22] StyTr2 [33] CLIPGaussian

Figure 10: Comparison of 2D style transfer
using image condition.

Style
& GT

InstructPix2Pix
[61]

ChatGPT
[1]

CLIPGaussian

Figure 11: Comparison of 2D style transfer
using text condition.

Empirical evaluations were performed on well-established benchmark datasets. The neural 3D video
dataset coffee_martini (DyNeRF) [54] provides time-synchronized and calibrated multiview video
sequences capturing complex 4D dynamic scenes. The D-NeRF dataset [60] consists of seven moving
objects, with the constraint that only one camera view is accessible at any given time step.

For comparative evaluation, we examined CLIPGaussian against 4DStyleGaussian [26]. However,
at the time of submission, the official implementation of this method was not publicly available.
Consequently, visual comparisons were made using qualitative results extracted directly from the
paper. Fig. 8 shows a comparison of style editing results produced by both methods, using the
referenced image as the style source. Our method captures much more details in the style, especially
in patterns and textures. Fig. 9 presents a comparison with Instruct 4D-to-4D [27], a first instruction-
guided 4D scene editing method based on diffusion models and NeRFs, which imposes significant
hardware requirements. In this comparison, we evaluate style transfer using a text prompt instead
of a reference image. Instruct 4D-to-4D focuses mainly on the color palette, while our approach
additionally modifies the geometry of the scene. Consequently, the results obtained by CLIPGaussian
contain more details. Fig. 3 shows objects from D-NeRF stylization using text prompts, demonstrating
that our model performs well not only on 4D scenes. Additional quantitative results, train time
comparison and discussion about background loss can be found in Appendix B.3.1.

2D We evaluate performance of CLIPGaussian on 2D images using MiRaGe [8] on a subset of
MS-COCO [62], which is commonly used for evaluating style transfer [29, 22]. Fig. 10 shows a
qualitative comparison with AdaIN [22] and StyTr2 [33], demonstrating image-guided style transfer.
Fig. 11 provides a visual comparison with InstructPix2Pix [61] and ChatGPT [1], using text-based
stylization. While we acknowledge that our method may not achieve the same level of visual quality
as large-scale or diffusion-based models, these models often alter the identity or structure of the
stylized subject. In contrast, CLIPGaussian preserves the original content of the image. Additionally,
GS-based 2D style transfer benefits from properties such as realistic and localized editing in 3D space,
as demonstrated in [8]. Notably, in 2D, repeating structures are more visible. This is particularly
evident in Fig. 10 (bottom row) and Fig. 11 (top row). In both cases, stylizations aligned with
the chosen references. The patch_size parameter controls the local stylization. For example for
patch_size = 128, each patch of size 128x128 is stylized. For this reason, detailed formation can be
controlled through the patch_size parameter. Additional comparisons are provided in Appendix B.4.

Video To evaluate our algorithm on the video style transfer task, we employed the VeGaS
model [10], which represents videos using 3D Gaussian Splatting. The evaluation was conducted on
the DAVIS dataset [63], a high-quality, high-resolution video collection commonly used for video
object segmentation. The dataset comprises numerous videos, each containing fewer than 100 frames.
Additionally, to test performance on a longer videos we use the Ultra Video Group (UVG) dataset [64].
The dataset is composed of 16 versatile high-resolution test video sequences captured at 50/120 fps.
Fig. 12 presents a qualitative comparison with existing baseline models CCPL [37] and UniST [47],
showcasing an example of image-based style transfer. The figure displays the first and last frames of
the respective videos to illustrate the style transformation over time. Our method produces visually
more coherent and aesthetically pleasing results, better preserving the style details while maintaining
high fidelity to the video content. Fig. 13 provides a visual comparison with Text2Video [42] and
RerenderAVideo [45], illustrating an example of text-conditioned style transfer; here too, the first
and last frames are shown. Compared to RerenderAVideo, our method demonstrates significantly
better temporal consistency, reducing flickering and preserving motion coherence. Compared to

9



Style
& GT

CCPL [37] UniST [47] CLIPGaussian

Figure 12: Comparison of video style transfer
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[63]. CLIPGaussian produces more detailed
results.
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Figure 13: Comparison of video style trans-
fer using text condition on the DAVIS
dataset [63]. CLIPGaussian shows better tem-
poral consistency than baseline methods.

Text2Video, we achieve higher visual quality with more faithful adherence to the intended style
prompt. All comparisons were conducted using the default settings for each method. Additional
comparisons and quantitative evaluations are provided in Appendix B.5.

Our experiments show that CLIPGaussian achieves comparable or superior style transfer. Moreover,
CLIPGaussian maintains significantly better temporal consistency than prior methods. This is because
video content is modeled as a set of Gaussian primitives, where each Gaussian spans multiple frames.
As a result, style modifications applied to the Gaussians naturally propagate coherently over time.

5 Conclusions
CLIPGaussian is designed as a plug-in model, compatible with Gaussian Splatting-based architecture.
Our method enables effective style transfer from either a text prompt or an image to reconstructed
objects. This flexibility allows CLIPGaussian to operate seamlessly across various data modalities,
including 2D images, videos, 3D objects, and 4D dynamic scenes.

In the 3D domain, user study experiments demonstrate a strong preference for the stylized outputs
produced by CLIPGaussian. This suggests that our approach offers not only technical effectiveness
but also practical appeal for creative applications. Quantitative results indicate that our method
achieves comparable or superior visual quality relative to existing baselines.

Limitations Given the maturity of existing 2D image stylization methods, we acknowledge that our
results in 2D may not match the visual quality achieved by large models or diffusion-based methods.
Although CLIPGaussian is designed for universal applicability, its performance is contingent upon
the quality of the underlying base models. Moreover, when the selected base fails to reconstruct the
scene with high fidelity, style transfer may become intractable or produce perceptually implausible
results.

Social impact CLIPGaussian enables cross-modal generality as a plug-in-based on Gaussian
Splatting models. Using CLIP as a multimodal vision and language model allow it to enable high-
quality stylization and expand creative possibilities. Gaussian-based representation enables the
creation of high-quality real-time renders which is a key challenge in computer vision, especially in
broad applications in AR, gaming, and digital content creation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract outlines several key contributions: a unified style transfer frame-
work for Gaussian Splatting (GS), support for multimodal inputs (2D, 3D, video, 4D),
compatibility with text- and image-guided prompts, direct operation on Gaussian primitives,
integration without retraining, and joint optimization of color and geometry. These claims
are well-aligned with the detailed methods and results presented in the paper. The paper
substantiates each claim through comprehensive experiments and qualitative results demon-
strating style fidelity, temporal coherence, and cross-modal generality. Additionally, the
modular design and efficiency aspects are clearly discussed and validated. Therefore, the
abstract and introduction provide an accurate and honest summary of the paper’s scope and
contributions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of CLIPGaussian are clearly stated. While the proposed
approach is applicable to multiple modalities, in the case of images, we obtain slightly worse
results than approaches using large generative models.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The authors provide comprehensive implementation details, including the
structure of the CLIPGaussian module, optimization objectives, training procedures, and
integration into existing Gaussian Splatting pipelines. The paper clearly specifies the datasets
used, the baselines for comparison, and the evaluation metrics applied. These details are
sufficient for a knowledgeable reader to replicate the methodology independently, even in
the absence of immediate code availability.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in the paper are publicly available.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The authors clearly outline the datasets used across different modalities (2D
images, videos, 3D objects, and 4D scenes), including data splits for training and evaluation.
They provide detailed information on hyperparameters such as learning rates, number of
iterations, loss weights, and initialization strategies. The choice of optimizer and training
schedule is also specified, along with justification for selected settings when relevant. These
details are consistently reported across experiments, enabling readers to understand the
experimental setup and reasoning behind parameter choices.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The authors present qualitative comparisons across multiple modalities and a
user study for 3D objects. This statistical reporting ensures that performance differences are
not only visible but also statistically interpretable, helping to distinguish between meaningful
improvements and potential noise.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors specify the type of compute hardware used, such as the GPU
models (single NVIDIA RTX 4090; single NVIDIA DGX A100) and the time of execution.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: On the positive side, the authors highlight how CLIPGaussian enables more
accessible, efficient, and flexible style transfer across multiple modalities (images, video,
3D, 4D), which can benefit applications in art, design, virtual reality, film production,
and educational tools. The ability to stylize content using simple text or image prompts
democratizes content creation and lowers the technical barrier for creators.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all utilized works and resources according to the citing guidelines.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not relate new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We conducted a formal survey using the CLICKworker https://www.
clickworker.com/ platform to evaluate stylized objects. Detailed information is included
in the Appendix. We paid 1.5EUR for each survey.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The authors collaborated with an external formal company to design and
carry out the user study, ensuring professional management of participant recruitment and
instructions.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLM was used only for writing, editing, or formatting purposes.
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A Base Model Choice: Implementation Details

3D The vanilla Gaussian Splatting [3] framework represents a scene using a dense set of 3D Gaussians,
denoted as G = {(N (mi,Σi), σi, ci)}ni=1,, where m specifies the mean position, Σ the covariance
matrix, σ the opacity and c the colors of the Gaussians spherical harmonics. The optimization
procedure iteratively renders images from these Gaussians and refines their parameters by minimizing
the discrepancy between the rendered outputs and the corresponding ground-truth training views.

Our method refines Gaussian primitives by optimizing their position, color, scale, rotation, and opacity
parameters, allowing for both appearance and geometry modifications. Our model is trained for 5000
steps without densification or pruning using loss function described in the section 3. If not stated
otherwise we set λb = 1000, λp = 90, λd = 5, λc = 0.8, patch_size = 128, num_patch = 64
and feature_lr = 0.01. For the CLIPGaussian-Light variant we set feature_lr = 0.002 and
λp = 35. The remaining hyperparameters follow default values of original GS implementation.

4D Many models in the literature are dedicated to 4D (3D dynamic) scenes [4, 65, 66]. Our approach
can be adapted to all models since they all use General Gaussian components and an additional model
for modeling time dependence. To present our concept for such models, we choose the D-MiSo
model [6], which extends the Gaussian Splatting framework through a Multi-Gaussian structure and
deform networks. A multi-Gaussian structure uses a hierarchy based on the relationship between the
Core and sub-Gaussian. Core Gaussians are designated to capture and model motion dynamics:

Gcore = {(Ncore(mi, Ri, Si), σi, ci)}pi=1, (6)

where m specifies the mean position, R the rotation matrix, S the scaling parameters, σ the opacity
and c the colors of the Gaussians. Sub-Gaussians serve to enhance rendering quality, and is defined as

Gsub = {(Nsub(m +RαiαiαiT , Ri, Si), σi, ci)}ki=1, (7)

where m, R is Core-Gaussian position and rotation; and αiαiαi are trainable parameters used to define
the positions of the Sub-Gaussian relative to the Core-Gaussian.

CLIPGaussian style transfer jointly optimizes the Gaussian primitive parameters and the deformation
networks. Our first stage is a classical D-MiSo framework, which gives us scenes represented by
trainable parameters of D-MiSo, see Fig. 2. The second phase is dedicated to style transfer. Similar
to 3D as default we set iterations = 5000, λp = 90, λd = 5, λc = 0.8, patch_size = 128,
num_patch = 64. We use feature_lr = 0.025. The remaining hyperparameters follow default
values of original D-MiSo implementation. The background loss weighting parameter λb was set to a
default value of 0, which is suitable for most styling experiments with text prompts. In special cases,
it was adjusted to 500.

2D Adapting 3D Gaussian Splatting frameworks, originally designed for 3D scene representa-
tion, to the domain of single-image 2D reconstruction presents significant challenges [7]. Mi-
raGe [8] models 2D image I by embedding flat, parametric Gaussian primitives within a percep-
tually motivated 3D latent space, aligning with human perception. Each Gaussian is defined as
G = {(N (mi, Ri, Si), σi, ci)}ni=1, where R is rotation matrix and S = diag(s1, s2, s3) is a diagonal
matrix containing the scaling parameters, where s1 = ϵ. To improve generalization and capture
symmetries inherent in natural 2D images, MiraGe employs mirrored input image M(I) during
training as a form of data augmentation. While the standard 3D Gaussian Splatting framework
employs a loss function of the form L = (1−λL1(I,GS(I))+λLD−SSIM (I,GS(I)), the MiraGe
model extends this by incorporating both the original image I and its mirrored I utilizes a cost
function L(I) + L(M(I)).

We optimize position, color, scale, rotation, and opacity parameters of the Gaussian primitives. We
train our model for 5000 steps without densification or pruning, using loss function described in the
section 3 (modified by using mirror camera as in MiraGe). If not stated otherwise we set λb = 0,
λp = 90, λd = 5, λc = 0.8, patch_size = 128, num_patch = 64 and feature_lr = 0.0025.
The remaining hyperparameters follow default values of original MiraGe implementation.

Video For a video representation, we use the VeGaS model [10], which models a video as a collection
of 3D Folded Gaussians, denoted as

GVeGaS = (FN (m,Σ, a, f), ρ, c) (8)
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Here, a and f are temporal folding functions that modulate the Gaussian shape over time. Each video
frame is rendered as a 2D projection of these Gaussians, positioned and shaped according to their
trained spatial-temporal parameters.

CLIPGaussian maintains temporal consistency. This is because video content is modeled as a set of
Gaussian primitives, where each Gaussian spans multiple frames. As a result, style modifications
applied to the underlying Gaussians naturally propagate coherently over time. To preserve it, our
framework optimizes only colors of the Gaussians spherical harmonics. Our model is trained for
5000 steps without densification or pruning using loss function described in the section 3. If not
stated otherwise we set λp = 90, λd = 5, λc = 0.5, patch_size = 128, num_patch = 64
and feature_lr = 0.02. For the CLIPGaussian-Light variant we set feature_lr = 0.002 and
λp = 45. The remaining hyperparameters follow default values of original VeGaS implementation.
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B Extended Experimental Results and Evaluation

This section presents additional experimental results and analyses. We begin with a detailed descrip-
tion of the evaluation metrics used to assess the effectiveness of our approach. Subsequently, we
provide extended results across various data modalities, including images, videos, 3D objects, and
4D dynamic scenes. The supplementary materials contain additional .mp4 files.

B.1 Evaluation Metrics

B.1.1 CLIP-based metrics

In the quantitative evaluation, we report four CLIP-based metrics. CLIP Directional Similarity [52]
and CLIP-S [57] measure the quality of style transfer while CLIP Directional Consistency [58] and
CLIP-F [59] measure the consistency and similarity to the original content. For all metrics, we use
ViT-L/14 CLIP model [53].

Let Epos denote the CLIP embedding of a style (either a style image or a style prompt), and Eneg

denote the embedding of a negative prompt. In the case of the NeRF Synthetic dataset, we use object
names (e.g., "a lego" for lego object) with ImageNet prompt templates [53]. Let Erender(i) and
Egt(i) represent the CLIP embeddings of the stylized render and the ground truth of the i-th test
image, respectively. N is the size of a test set. We define the CLIP Directional Similarity and CLIP-S
as follows:

CLIP-SIM =
1

N

N∑
i=1

cos(Erender(i)− Egt(i), Epos − Eneg), (9)

CLIP-S =
1

N

N∑
i=1

cos(Erender(i), Epos) (10)

Assuming that testing frames come from a video, we can also define CLIP Directional Consistency
and CLIP-F as follows:

CLIP-CONS =
1

N − 1

N−1∑
i=1

cos(Erender(i+ 1)− Erender(i), Egt(i+ 1)− Egt(i)) (11)

CLIP-F =

∑N−1
i=1 cos(Erender(i+ 1), Erender(i))∑N−1

i=1 cos(Egt(i+ 1), Egt(i))
(12)

B.1.2 Additional consistency metrics

For additional consistency evaluation, we use short-range and long-range consistency following the
implementation and settings from StyleRF [67]. Specifically we warp one view to the other according
to the optical flow using softmax splatting, and then compute the masked RMSE and LPIPS scores
to measure the stylization consistency. For short-range we average over pairs of i-th and (i+ 1)-th
frames and for long-range we take i-th and (i+ 7)-th frames.

In addition to these metrics, for evaluation of video consistency, we employ the Farneback optical
Flow based metric, following the setup proposed in the ViSt3D [41]. Accordingly, in the case of
video:

mFoF,k =
1

N

N∑
i=1

|FoF (GTi, GTi+k)− FoF (Stylei, Stylei+k)|, (13)

where FoF is Farneback optical Flow function, GTi is i-th frame from the original video and Stylei
is i-th frame from the stylized video.
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B.2 3D: Additional Results and Explanation

This section provides a detailed description of the quantitative evaluation setup.

During experiments we used two objects (lego and hotdog) from the NeRF-Synthetic dataset [55],
and two scenes (garden and bonsai) from the Mip-NeRF 360 dataset [56]. Each was stylized using
four text prompts ("Fire", "Mosaic", "Starry Night by Vincent van Gogh", and "Scream by Edvard
Munch") and four style images (as shown in Fig. 6).

We evaluated CLIPGaussian (our method), DGE [14], SGSST [50], ABC-GS [51] and G-Style [21]
using the same base models trained with the original Gaussian Splatting codebase4. Since Instruct-
GS2GS [13] is incompatible with this codebase, it was evaluated on models trained using Nerfstudio5.
Due to the high VRAM requirements of StyleGaussian [16], it was evaluated on models trained
with its own training script, which limits the number of Gaussians to 105. As Instruct-GS2GS [13]
and DGE [14] employ different prompt templates, we prepended our text prompts with the prefixes
used in their original papers: "Turn it into a "for Instruct-GS2GS and "Make it look like a" for DGE.
Baseline methods were trained using their default configurations. CLIPGaussian models were trained
according to the settings described in Appendix A, except for the "Fire" condition, which used a
higher feature learning rate (0.02). Additionally, for the lego object with the "Fire" condition, we set
λbg = 100.

B.2.1 Training Time

We evaluate training time using the same dataset as in the user study and quantitative analysis. For
each scene, we report the average training time across all styles. Table 2 shows how the number of
Gaussian primitives affects stylization time.

Table 2: Number of Gaussian primitives impact on stylization time.

Scene Number of Gaussians Avg. stylization time

hotdog 0.14M 11m29s
lego 0.31M 11m36s
bonsai 1.35M 11m37s
garden 4.48M 21m03s

B.2.2 Additional consistency evaluation

The consistency of the stylized objects was evaluated using the metrics described in Appendix B.1.2.
Table 3 reports the resulting short-range and long-range consistency metrics, demonstrating that
CLIPGaussian achieves results comparable to the original data.

B.2.3 User Study: Details

Table 4: Friedman statistic test Fr and p values for
user study Question 1. In case of image condition
we consider StyleGaussian G-Style, CLIPGaussian
and CLIPGaussian, in case text condition we con-
sider I-GS2GS, DGE, CLIPGaussian

condition Fr p
object image 139.3 5.62e-31
scene image 1178.8 1.44e-39
object text 54.70 1.32e-12
scene text 8.40 0.014

We conducted a formal survey using the CLICK-
worker platform 6. This allowed us to recruit
a demographically balanced participant pool in
terms of gender, age. Each participant was pre-
sented with a questionnaire in which they eval-
uated stylized objects or scenes stylized using a
text prompt or reference image. We wanted the
survey for both conditional text and image to be
comparable, so we chose prompts correspond-
ing to images.

The survey was divided into two parts: a main
evaluation section and additional question in the

4https://github.com/graphdeco-inria/gaussian-splatting
5https://github.com/nerfstudio-project/nerfstudio
6https://www.clickworker.com [access: 12.05.2025]
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Table 3: Quantitative comparison of style transfer, compared against baseline methods.

Model Short-range consistency Long-range consistency

LPIPS ↓ RMSE ↓ LPIPS ↓ RMSE ↓
Original Videos 0.053 0.047 0.140 0.123

Text-conditioned

I-GS2GS [13] 0.048 0.043 0.148 0.131
DGE [14] 0.055 0.044 0.148 0.120
CLIPGaussian-Light 0.051 0.043 0.132 0.117
CLIPGaussian 0.057 0.051 0.148 0.125

Image-conditioned

StyleGaussian [16] 0.052 0.061 0.145 0.144
SGSST [50] 0.040 0.050 0.139 0.142
ABC-GS [51] 0.048 0.043 0.141 0.126
G-Style [21] 0.054 0.049 0.145 0.136
CLIPGaussian-Light 0.055 0.045 0.139 0.120
CLIPGaussian 0.064 0.055 0.162 0.132

end. The main section included eight comparative examples, each involving stylized outputs from
three different methods (see Fig. 5, 6). Fig. 18 illustrates a typical evaluation interface. In each
example, participants were first shown the reference image or text prompt used for styling. This was
followed by a GIF animation showing the original object or scene, and then the stylized results from
each method. For each evaluation we also asked about stylized factors like Color Palette, Lighting,
Detail Level, Mood or Atmosphere, Brushstrokes".

Main evaluation consisted of four questions:

• Question 1: "Please rank the generated results according to how closely they match the
style from most similar(1) to least similar(3)" focused on style transfer quality. Participants
ranked the three methods based on how well they reflected the reference style. Each method
could be selected only once per ranking. For example, Method X might be ranked 3rd,
Method Y 1st, and Method Z 2nd.

• Question 2: "On a scale from "Very Low" to "Very High", how would you rate the visual
appeal of each generated result?" assessed visual appeal. For each method, participants
selected one of several options ("Very Low", "Low", "Medium", "High", "Very High" ). This
allowed users to express their perception of the aesthetic quality of each result independently.

• Question 3: "On a scale from "Very difficult" to "Very easy", How well can you recognize
the original scene content in each generated result" focused on recognizability of content.
The users evaluated how clearly the original object or scene was preserved after stylization.
Options ("Very Difficult", "Difficult", "Medium", "Easy", "Very Easy") independently rated
for each method.

• Question 4: "On a scale from "Not important at all" to "Extremely important" how much
does this factor influence your judgment of the styled 3D object?", asked about the factors
influencing the user’s decision. Participants chose from predefined options ("Not important
at all", "Not important", "Important", "Extremely important"). Each factor was rated
separately, following the same format as questions 2 and 3.

Additional question:

• In the context of "Starry Night by Vincent van Gogh" and "Scream by Edvard Munch". We
asked an additional question: "Were you familiar with the following images before?". Users
could answer "Yes" or "No".

The poll format was consistent across all object/scene and text/image conditions. For evaluations
based on text prompts, we wanted to avoid introducing visual bias, and we didn’t attach any referenced
image. Therefore, we included only those participants who were already familiar with the references,
such as "Scream by Edvard Munch" and "Starry Night by Vincent van Gogh".
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Figure 14: User study: Comparison of 3D style
transfer using referenced image.

Figure 15: User study: Comparison of 3D style
transfer using text condition.

Figure 16: User study: Comparison of 3D style
transfer using text condition.User ratings of fac-
tors influencing their judgment of styled 3D ob-
jects/scenes by text.

Figure 17: User study: Comparison of 3D style
transfer using text condition.User ratings of fac-
tors influencing their judgment of styled 3D ob-
jects/scenes by image.

Tab. 4 shows Friedman statistic test Fr and p values for Question 1 user study. For the image
condition, we evaluated three methods: StyleGaussian, G-Style, and CLIPGaussian. For the text
condition, the evaluated methods were I-GS2GS, DGE, and CLIPGaussian. In all scenarios (1-4) we
observe significant differences between methods (reject H0). Additional results for image-based style
transfer are presented in Fig. 14, while results for text-based style transfer are shown in Fig. 15. The
post hoc Conover Friedman test for a user study on stylized objects/scenes by image/text revealed
statistically significant differences between methods (p < 0.05), indicating if the null hypothesis can
be rejected is shown in the Tabs. 5, 6, 7 ,8. In almost every case we can reject H0, the exception is the
comparison of our model with G-Style in the case of evaluation on objects stylized with a reference
image.

Fig 16 and Fig. 17 show that the majority of participants identified color and lighting as highly
influential factors in their assessment of styled 3D objects/scenes. In comparison, brushstroke
details were generally regarded as less important to their judgments. A high-resolution comparison
across object/scenes styled by text-based methods is shown in Fig. 20 and Fig. 21. A corresponding
comparison for image-based methods is presented in Fig. 22 and Fig. 23.
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Figure 18: Survey interface view from the ClickWorker website, users evaluate stylization of the 3D
object hotdog conditioned on the painting Starry Night by Vincent van Gogh.
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Style CLIPGaussian-Light CLIPGaussian

Fire

Starry Night
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van Gogh

Figure 19: Visual comparison of CLIPGaussian and CLIPGaussian-Light in 3D style transfer,
conditioned by text, on hotdog and lego objects from NeRF-Synthetic dataset [55].

Table 5: Calculated p-value Posthoc Conover
Friedman test for user study in case of objects
stylized by image.

StyleGaussian G-Style CLIPGaussian
StyleGaussian 1.00e+00 1.45e-25 5.71e-33

G-Style 1.45e-25 1.00e+00 6.66e-02
CLIPGaussian 5.71e-33 6.67e-02 1.00e+00

Table 6: Calculated p-value Posthoc Conover
Friedman test for user study in case of scene styl-
ized by image.

StyleGaussian G-Style CLIPGaussian
StyleGaussian 1.00e+00 8.90e-51 1.68e-17

G-Style 8.90e-51 1.00e+00 3.32e-15
CLIPGaussian 1.68e-17 3.32e-15 1.00e+00

Table 7: Calculated p-value Posthoc Conover
Friedman test for user study in case of objects
stylized by text.

I-GS2GS DGE CLIPGaussian
I-GS2GS 1.000e+00 0.000067 2.39e-14
G-Style 6.67e-05 1.000000 1.24e-04

CLIPGaussian 2.39e-14 0.000125 1.00e+00

Table 8: Calculated p-value Posthoc Conover
Friedman test for user study in case of scene styl-
ized by text.

I-GS2GS DGE CLIPGaussian
I-GS2GS 1.00e+00 0.000067 2.39e-14

DGE 6.67e-05 1.00e+00 1.24e-04
CLIPGaussian 2.39e-14 0.000125 1.00e+00

B.2.4 Hyperparameters Analysis

We evaluate the visual quality of 3D style transfer with respect to the parameters feature_lr and
patch_size on three objects from the NeRF-Synthetic dataset: lego, hotdog, and mic. These objects
are stylized using prompts such as "Starry Night by Vincent van Gogh", "Fire", and "The Great Wave
off Kanagawa by Katsushika Hokusai". The quantitative impact of feature_lr is shown in Tab.
9, while the influence of patch_size is reported in Tab. 10. Our observations indicate that both
parameters contribute to enhancing the stylistic expressiveness of the output. However, excessively
large values introduce greater flexibility in the spatial distribution of the Gaussians, resulting in a
noticeable loss of content detail and reduced spatial consistency (see Fig. 24).

Additionally, we evaluate the effect of the weighting factors of the loss components, λp and λd.
The quantitative impact of λp is shown in Tab. 11, while the influence of λd is reported in Tab.
12. Qualitative results are presented in Fig. 25. A higher λp increases the expressiveness of local
style transfer; however, excessively high values may lead to overstylization of the object. Similarly,
increasing λd enhances the global style characteristics. Quantitative evaluations suggest that λd

parameter has limited impact on spatial consistency and content similarity.
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Table 9: Effect of a feature learning rate on the performance of CLIPGaussian in terms of the CLIP
metrics.

patch_size CLIP-S ↑ CLIP-SIM ↑ CLIP-F ↑ CLIP-CONS ↑
32 18.53 19.51 98.08 15.02
64 21.73 19.31 97.70 11.06
128 25.60 29.78 97.87 6.93
256 27.45 32.65 97.96 4.42

Table 10: Effect of a feature learning rate on the performance of CLIPGaussian in terms of the CLIP
metrics.

feature_lr CLIP-S ↑ CLIP-SIM ↑ CLIP-F ↑ CLIP-CONS ↑
0.0025 25.24 29.31 97.68 7.91
0.005 25.60 29.77 97.99 6.93
0.01 25.61 29.93 97.61 6.26
0.02 26.27 30.09 97.54 6.35

Table 11: Effect of λp parameter on the performance of CLIPGaussian in terms of the CLIP metrics.

λp CLIP-S ↑ CLIP-SIM ↑ CLIP-F ↑ CLIP-CONS ↑
0 16.00 14.12 98.74 11.03
90 23.67 25.07 97.95 2.36
180 24.36 25.27 97.78 1.48

Table 12: Effect of a λd parameter on the performance of CLIPGaussian in terms of the CLIP metrics.

λd CLIP-S ↑ CLIP-SIM ↑ CLIP-F ↑ CLIP-CONS ↑
0 22.20 22.76 97.71 2.52
5 23.67 25.07 97.95 2.32
10 23.55 25.15 98.04 2.61
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Figure 20: Full comparison of CLIPGaussian (our) and baseline models in 3D style transfer, condi-
tioned by text, on hotdog and lego objects from NeRF-Synthetic dataset [55].
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Figure 21: Full comparison of CLIPGaussian (our) and baseline models in 3D style transfer, condi-
tioned by text, on garden and bonsai objects from Mip-NeRF 360 dataset [56].
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Style StyleGaussian [16] G-Style [21] CLIPGaussian

Figure 22: Full comparison of CLIPGaussian (our) and baseline models in 3D style transfer, condi-
tioned by image, on hotdog and lego objects from NeRF-Synthetic dataset [55].
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Style StyleGaussian [16] G-Style [21] CLIPGaussian

Figure 23: Full comparison of CLIPGaussian (our) and baseline models in 3D style transfer, condi-
tioned by image, on garden and bonsai objects from Mip-NeRF 360 dataset [56].
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Figure 24: Effect of a patch size and a feature learning rate on the performance of CLIPGaussian on
lego, hotdog and mic objects from NeRF-Synthetic dataset [55]. Objects are stylized with "Starry
Night by Vincent van Gogh", "Fire" and "The Great Wave off Kanagawa by Katsushika Hokusai"
prompts.
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Figure 25: Effect of a λp and a λd rate on the performance of CLIPGaussian on lego, hotdog and mic
objects from NeRF-Synthetic dataset [55]. Objects are stylized with "Starry Night by Vincent van
Gogh", "Fire" and "The Great Wave off Kanagawa by Katsushika Hokusai" prompts.
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B.3 4D: Additional Results and Explanation

This section delves deeper into our experimental analysis of 4D scenes. We begin with a detailed
exploration of stage 2 hyperparameters, followed by demonstrating the adaptability of our method on
an additional multi-camera dataset.

Fig. 26 presents style transfer on selected objects from the D-NeRF dataset. These results illustrate
that CLIPGaussian enables style conditioning via both text prompts and reference images, highlighting
its versatility across multiple guidance modalities.

Text condition Style image

Fire

Starry Night
by Vincent
van Gogh

Scream by
Edvard
Munch

Figure 26: Style transfer results on samples from the D-NeRF dataset [60]. Our CLIPGaussian model
accommodates both text-based and image-based style inputs.

B.3.1 Hyperparameters Analysis

For dynamic 3D scenes using the D-MiSo model, the background parameter was set to the default
value of 0 in most cases. However, using the prompt "Summer" we could observe the background
stylization as well. Fig. 27 shows the effect of background loss on the Jumpingjacks object: without
background loss (λbg = 0) and with background loss (λbg = 500). More precisely, we used the alpha
channel from the original images available in D-NeRF dataset to create a background mask m for
each view. In this case Lb = λb (|m(Il)−m(RG(Il))|). The effect of using the background loss is
also shown in Fig. 31 and Fig. 32.

λbg = 0 λbg = 500

Figure 27: Effect of background loss λbg on styl-
ization Jumpingjacks object with the prompt "Sum-
mer".

We evaluate the visual quality of style transfer in
4D with respect to feature_lr and the number
of patches n. Fig. 28 shows two representative
objects from the D-NeRF dataset, each condi-
tioned on a distinct text prompt (Hellwarrior -
"The Great Wave of Kanagawa by Katsushika
Hokusai", Jumpingjacks - "Spring"). feature_lr
is influences primarily the color saturation of
Gaussians. We observe that increasing this pa-
rameter enhances the stylistic expressiveness
of the output. A higher n generally improves
styles details. In Hellwarrior example for the
larger n we see more “water swirls” appropriate
to the style. However, excessively large values
(e.g., n=128) introduce increased freedom in the
Gaussians’ spatial distribution, leading to a notable loss of content detail. This effect is particularly
pronounced in the Jumpingjacks example, where reconstruction of the hand visibly deteriorates.

Fig. 29 shows that increasing batch size and the number of patches leads to noticeably improved
visual fidelity in style transfer. Increasing the batch size enables the preservation of finer visual details.
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Figure 28: Visual comparison of style transfer results on D-NeRF objects under two text prompts "The
Great Wave of Kanagawa by Katsushika Hokusai" and "Spring", showing the impact of feature_lr
and number of patches.

We check the influence of batch size hyperparameter from the chosen base model (D-MiSo). A larger
batch size prevents deformation of the subject’s head. This highlights that our method faithfully
inherits and reinforces the structural integrity imparted by the base architecture.

Table 13 presents a comparison of numerical training time and CLIP-S, CLIP-SIM metrics for the
selected object under batch size, the text condition “Starry Night by Vincent van Gogh” and number
of patch=32. The training time results reflect a dependency on the base architecture. The CLIP-S
suggests that models trained with smaller batch strategies achieve marginally higher. However,
the differences in CLIP-S between models remain relatively minor. In particular, despite the small
numerical variance, visual comparison (Fig. 29) reveals substantial qualitative differences in output
fidelity, highlighting the limitations of current metrics in capturing perceptual quality.

B.3.2 Multi-Camera Setup

Fig. 8 in main paper shows experiment on The Neural 3D Video dataset (DyNeRF) [54]. It consists
of videos captured by 21 cameras for each scene. The multi-view inputs were time synchronized and
the images were extracted at 30FPS. In our experiments we use the first 24 frames following the data
loader provided in [5] to show the capabilities of CLIPGaussian in real 4D scenes. In this dataset
only the frontal views of the scenes are shown. In contrast the PanopticSports datasets [68] is full
360 view dataset, which comprises dynamic scenes featuring significant object and actor movements.
Each scene was recorded using 31 cameras over 150 timesteps. Fig. 30 shows the transferred style is
prominently expressed on both the primary actor and the background.
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Table 13: Numerical comparison of training time and CLIP score, CLIP-SIM metrics for the selected
object under the text condition “Starry Night by Vincent van Gogh” and number of patch=32,
background white, checking influence of batch size hyperparameter from the chosen base model
(D-MiSo).

B
at

ch

Hook Jumpingjacks Trex BouncingBalls
CLIP-S CLIP-

SIM
Train
time

CLIP-S CLIP-
SIM

Train
time

CLIP-S CLIP-
SIM

Train
time

CLIP-S CLIP-
SIM

Train
time

1 27.73 22.68 10:12 23.15 18.32 10:35 28.00 23.57 10:41 24.77 22.81 11:43
2 27.75 23.11 20:59 23.19 18.68 20:32 27.54 22.94 20:53 25.27 24.36 21:49
4 26.88 23.42 39:31 22.05 17.64 42:25 27.47 22.13 42:01 26.35 25.37 43:21

B
at

ch

Hellwarrior Mutant Standup
CLIP-S CLIP-

SIM
Train
time

CLIP-S CLIP-
SIM

Train
time

CLIP-S CLIP-
SIM

Train
time

1 24.58 23.52 10:17 29.76 21.58 10:43 24.55 21.43 10:28
2 25.40 24.53 20:56 29.76 21.99 20:08 24.21 21.42 21:18
4 26.02 25.85 39:37 29.43 21.86 39:57 23.02 20.70 39:17
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Figure 29: Effect of Batch Sizes and Number of patches using D-MiSo base model. Mutant from
D-NeRF is stylized with "Starry Night by Vincent van Gogh".

Text condition Styled images

Fire

Starry Night
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Gogh
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Hokusai

Figure 30: Qualitative style transfer results on samples from the PanopticSports dataset [68].

36



B.3.3 Artifacts

The styling of objects may be incorrect or may not meet the user’s visual needs, especially in concepts
that are difficult to represent, such as hope, country names, random or beauty

Based on our experience, we have also identified common categories of failure cases mostly related
to text prompts:

Too general concepts, less known concepts Since we are using CLIP representation, the concept
should be well represented by CLIP embedding. We considered 3 prompts: We observed that
for general prompts such as "Impressionism", "Painting by Claude Monet" , "Woman with a
Parasol – Madame Monet and Her Son". Where: CosineSimilarity(prompt1, prompt2) = 0.802,
CosineSimilarity(prompt1, prompt3) = 0.531, CosineSimilarity(prompt2, prompt3) = 0.382.

We observed that for general prompts such as “Impressionism”, the model tends to fill the background,
and hollow spaces (e.g. between fingers). This improves the quantitative results, but in our opinion it
decreases the visual perception of the stylization. We support this claim using the CLIP-S metric, the
difference between choosing the λbg parameter is shown in the Tab. 14 and Fig. 27, 31, 32.

The concepts of “Impressionism” and “Painting by Claude Monet” are well represented by the CLIP
model. In addition, they are closely related, which is visually supported by the models trained using
those prompts. On the other hand, concepts such as “Woman with(...)” are heavily influenced by
details like as an umbrella, which spoils the visual effect in this case. This pattern is shown by the
CLIP-SIM metric.

"Impressionism" "Painting by Claude
Monet"

"Woman with a Parasol –
Madame Monet and Her
Son"
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Figure 31: Visual comparison of object styling using three prompts, ranging from the most general
to the most specific. A highly general prompt tends to produce background artifacts, which can be
mitigated through background loss. Conversely, an overly specific prompt may be poorly represented
in the CLIP space, leading to features such as face-like patterns (suggesting Madame) or umbrella-like
shapes.

Table 14: The impact of prompts on the quality of styling using the CLIP-SIM and CLIP-Smetric.
prompt1: "Impressionism", prompt2: "Painting by Claude Monet", prompt3: "Woman with a Parasol
– Madame Monet and Her Son".

Jumpinjacks prompt1 prompt2 prompt3
CLIP-S CLIP-SIM CLIP-S CLIP- SIM CLIP-S CLIP-SIM

λbg = 0 23.04 18.63 17.77 12.18 18.97 10.88
λbg = 500 21.51 16.02 18.02 13.45 18.35 10.41
λbg = 1000 21.81 16.59 18.20 14.27 18.52 10.65

Length and detail of the general concept prompts We conducted an experiment using Jumpingjacks
in which we considered three prompt lengths, see Tab. 15. We noticed that if a shorter prompt is
considered, the CLIP model finds a certain representation of a specific word/short prompt related to
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a general concept, see Fig. 3 If a longer prompt is used, we can expect an averaged representation
of the concepts found in the prompt, which may cause some inaccuracies in the stylized image, see
Fig. 32.

In both cases, the styling emphasizes artifacts, especially in the background. We can mitigate the
artifacts in the background using λbg and patch_size. This is particularly evident in detailed areas,
e.g. on the hands (see Fig. 27, 28). Visual assessment is very difficult and subjective.

"Lotus flower" "A soft pink lotus flower
with delicate petals and a
bright yellow center, rest-
ing gently on a pond"

"A close-up of a bloom-
ing pink lotus flower, its
intricate petals radiating
around a vivid yellow
core, floating gracefully
on the water with a gentle
reflection beneath and soft
green lily pads surround-
ing it"
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Figure 32: Visual comparison of the impact of length and detail of the prompt on the style. Using a
more detailed prompt tends to create artifacts in the background. It is worth noting that some areas
tend to change more, e.g. a lotus almost always appeared on the Hook’s back. When prompt is too
long we observe inaccurate with a good representation using a clip.

Table 15: The impact of length and detail of the overall concept of the prompt. prompt1: "Lotus
flower", prompt2: "A soft pink lotus flower with delicate petals and a bright yellow center, resting
gently on a pond"; prompt3: "A close-up of a blooming pink lotus flower, its intricate petals radiating
around a vivid yellow core, floating gracefully on the water with a gentle reflection beneath and soft
green lily pads surrounding it".

Jumpinjacks prompt1 prompt2 prompt3
CLIP-S CLIP-SIM CLIP-S CLIP- SIM CLIP-S CLIP-SIM

λbg = 0 24.97 22.24 23.36 19.57 24.03 21.88
λbg = 500 24.85 20.78 19.46 15.87 20.34 19.15
λbg = 1000 24.71 20.82 19.25 15.81 20.90 19.00
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B.3.4 Time

The D-NeRF dataset provide GT as only one time point for each camera. For a set of time steps
0.1 · i | i ∈ {0, 1, 2, . . . , 10}, we used the test cameras from NeRF-Synthetic (200 views) to generate
reference images using the base D-MiSo model. Then, we generated the corresponding stylized
images and computed the mean CLIP-F and CLIP-CONS metrics for time steps, see. Tab 16. From
this experiment, we can see that it is difficult to indisputably determine which styling is best based on
the selected metrics.

Table 16: Numerical comparison of the influence of batch on the quality of styling using CLIP-F
and CLIP-CONS metrics. We used default parameters and the prompt "Starry Night by Vincent van
Gogh" for the experiment. D-Miso only means reconstructions of the 4D object.

dataset Hook Jumpingjacks Trex Bouncingballs Hellwarrior Mutant Standup
CLIP-F
batch=1 97.56 98.41 97.36 98.73 98.41 98.01 98.03
2 97.37 98.15 97.34 98.66 98.23 97.95 97.87
4 97.66 98.35 97.68 98.33 98.26 97.65 98.19
CLIP-CONS
1 2.1 2.31 2.25 0.66 5.64 1.78 2.60
2 1.7 2.80 3.24 1.03 5.72 1.92 3.02
4 2.7 2.97 2.97 0.53 6.29 2.43 3.68

For each test camera from the D-NeRF dataset, we generated stylized images at 0.05 · i | i ∈
{0, 1, 2, . . . , 20} time points. Next, we calculate the average metrics to evaluate the temporal
consistency over time for each camera; see the Tab. 17. An interesting observation is that in almost
every case, when using selected hyperparameters, we see an increase in metrics compared to the base
model. Fig. 33 presents a visual comparison of objects with respect to camera angle and time. The
results show that the styling remains consistent and that temporal variations do not introduce artifacts,
as long as the object is accurately reconstructed.

Table 17: A numerical comparison of the effect of batch size on temporal consistency over time for
each camera, using the prompt "Starry Night by Vincent van Gogh".

dataset Hook Jumpingjacks Trex Bouncingballs Hellwarrior Mutant Standup
Short-range consistency: LPIPS
1 0.017 0.019 0.012 0.013 0.023 0.007 0.009
2 0.017 0.018 0.012 0.012 0.025 0.007 0.010
4 0.017 0.017 0.012 0.013 0.026 0.007 0.009
D-MiSo 0.009 0.011 0.008 0.007 0.018 0.006 0.006
Short-range consistency: RMSE
1 0.046 0.061 0.046 0.021 0.055 0.028 0.031
2 0.045 0.058 0.044 0.020 0.056 0.028 0.032
4 0.044 0.055 0.043 0.021 0.057 0.028 0.031
D-MiSo 0.023 0.036 0.029 0.018 0.043 0.017 0.018
Long-range consistency: LPIPS
1 0.028 0.062 0.049 0.043 0.027 0.044 0.031
2 0.025 0.063 0.050 0.043 0.026 0.043 0.030
4 0.026 0.063 0.048 0.040 0.027 0.039 0.029
D-MiSo 0.016 0.046 0.031 0.028 0.020 0.031 0.021
Long-range consistency: RMSE
1 0.049 0.043 0.031 0.028 0.062 0.027 0.044
2 0.050 0.043 0.030 0.025 0.063 0.026 0.043
4 0.048 0.040 0.029 0.026 0.063 0.027 0.039
D-MiSo 0.031 0.028 0.021 0.016 0.046 0.020 0.031
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Figure 33: Visual comparison of objects across camera angles and time, demonstrating consistent
styling. We used λbg = 1000, batch=4.
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B.4 2D: Additional Results and Explanation

This section presents additional qualitative results for 2D style transfer. Fig. 34 shows a qualitative
comparison with similar text-based methods: CLIPstyler [34] and FastCLIPstyler [35]. Fig. 35
presents an additional comparison with AdaIN [22] and StyTr2 [33]. CLIPGaussian is a competitive
alternative to these methods. We see that our method mainly focuses on details.

Style Original CLIPstyler [34] FastCLIPstyler [35] CLIPGaussian

Fire

Starry Night
by Vincent
van Gogh

Mosaic

Scream by
Edvard
Munch

Figure 34: Comparison of image style transfer using text condition.

Style Original AdaIN [22] StyTr2 [33] CLIPGaussian

Figure 35: Comparison of image style transfer using image condition.
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B.5 Video: Additional Results and Explanation

This section provides a detailed description of the quantitative evaluation setup.

During experiments we used four videos (camel, bear, train and blackswan) from the DAVIS
dataset [63] and four videos (beauty, bospho, shake and yacht) from the UVG dataset [64]. For
DAVIS dataset we used videos with resolution 854px × 480px and for UVG we downscaled videos
to 960px × 540px. Similarly to evaluation of 3D style transfer, each was stylized using four text
prompts ("Fire", "Mosaic", "Starry Night by Vincent van Gogh", and "Scream by Edvard Munch")
and four style images (same as in Fig. 36).

As Text2Video [42] and RerenderAVideo [45] employ different prompt templates, we use "Make
it {style} style" for Text2Video and "A { object} in {style} style" for RerenderAVideo, where
style is a CLIPGaussian style prompt and object is a video name i.e. bear, blackswan, camel or
train. Baseline methods were trained using their default configurations. CLIPGaussian models were
trained according to the settings described in Appendix A. On average CLIPGaussian took around 11
minutes to style a video from DAVIS dataset.

We provide example comparisons on a test subset for image (Fig. 36) and text (Fig. 37) conditioning.
Quantitative evaluations using CLIP-based metrics are presented for the DAVIS (Tab. 18) and UVG
(Tab. 19) datasets. Furthermore, consistency is evaluated using RMSE and LPIPS (Tab. 20 and
Tab. 21), while temporal consistency is measured using Farneback optical flow at different time
intervals (Tab. 22).

Style
& GT

CCPL [37] UniST [47] CLIPGaussian

Figure 36: Comparison of video style transfer
using image condition on DAVIS dataset [63].

Style
& GT

Text2Video
[42]

Rerender
[45]

CLIPGaussian

Figure 37: Comparison of video style transfer
using text condition on DAVIS dataset [63].
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Table 18: Quantitative comparison of video style transfer on the DAVIS dataset [63], using CLIP-
based metrics. Larger values are better.

Model CLIP-S ↑ CLIP-SIM ↑ CLIP-F↑ CLIP-CONS ↑
Text-conditioned

Rerender [45] 19.40 9.83 98.23 -0.03
Text2Video [42] 26.05 24.99 93.63 0.03
CLIPGaussian 26.25 24.53 99.00 1.92

Image-conditioned

ViSt3D [41] 55.92 2.75 99.18 3.28
AdaAttN [39] 57.71 -1.04 97.56 1.08
ReReVST [69] 61.50 2.12 98.85 2.51
UniST [47] 65.93 3.85 99.36 5.16
CCPL [37] 68.89 8.20 97.92 -0.02
CLIPGaussian-Light 63.60 8.06 99.50 11.99
CLIPGaussian 74.31 17.60 99.18 1.27

Table 19: Quantitative comparison of video style transfer on the UVG dataset [64], using CLIP-based
metrics. Larger values are better.

Model CLIP-S ↑ CLIP-SIM ↑ CLIP-F↑ CLIP-CONS ↑
Text-conditioned

Rerender [45] 14.08 7.11 74.38 0.01
Text2Video [42] 19.02 13.18 70.51 0.18
CLIPGaussian 23.88 18.38 100.39 18.38

Image-conditioned

ViSt3D [41] 55.98 0.70 99.54 3.78
AdaAttN [39] 56.27 1.24 98.11 1.22
ReReVST [69] Out of memory
UniST [47] 55.75 2.04 99.44 5.29
CCPL [37] 59.14 2.19 98.50 1.45
CLIPGaussian-Light 63.83 10.61 100.38 4.25
CLIPGaussian 71.64 16.68 100.42 0.94

Table 20: Quantitative comparison of video style transfer consistency on the DAVIS dataset [63],
using RMSE and LPIPS. Smaller values are better.

Model Short-range consistency Long-range consistency

LPIPS ↓ RMSE ↓ LPIPS ↓ RMSE ↓
Original Videos 0.042 0.034 0.070 0.055

Text-conditioned

Rerender [45] 0.062 0.040 0.132 0.077
Text2Video [42] 0.261 0.183 0.235 0.166
CLIPGaussian 0.084 0.057 0.152 0.095

Image-conditioned

ViSt3D [41] 0.081 0.043 0.121 0.063
AdaAttN [39] 0.087 0.059 0.116 0.083
ReReVST [69] 0.072 0.047 0.100 0.068
UniST [47] 0.062 0.047 0.088 0.066
CCPL [37] 0.102 0.065 0.132 0.093
CLIPGaussian-Light 0.049 0.035 0.083 0.061
CLIPGaussian 0.086 0.057 0.157 0.090

43



Table 21: Quantitative comparison of video style transfer consistency on the UVG dataset [64], using
RMSE and LPIPS. Smaller values are better.

Model Short-range consistency Long-range consistency

LPIPS ↓ RMSE ↓ LPIPS ↓ RMSE ↓
Original Videos 0.045 0.025 0.068 0.049

Text-conditioned

Rerender [45] 0.027 0.025 0.064 0.049
Text2Video [42] 0.223 0.153 0.150 0.105
CLIPGaussian 0.017 0.018 0.053 0.054

Image-conditioned

ViSt3D [41] 0.047 0.031 0.103 0.059
AdaAttN [39] 0.056 0.046 0.096 0.075
ReReVST [69] Out of memory
UniST [47] 0.043 0.038 0.077 0.065
CCPL [37] 0.072 0.052 0.106 0.081
CLIPGaussian-Light 0.019 0.017 0.049 0.044
CLIPGaussian 0.020 0.019 0.060 0.056

Table 22: Quantitative comparison of video style transfer consistency on the DAVIS dataset [63],
using mean absolute difference of Farneback optical Flow, for different intervals (number of frames -
k).

Model / k 1 2 4 8 16

Text-conditioned

Rerender [45] 1.08 2.07 4.40 7.95 11.34
Text2Video [42] 5.06 5.91 7.68 9.93 11.34
CLIPGaussian 0.41 0.79 2.02 4.00 6.58

Image-conditioned

ViSt3D [41] 0.75 1.19 2.30 3.59 4.54
AdaAttN [42] 0.69 1.09 2.57 3.86 5.26
ReReVST [69] 0.46 0.84 2.30 3.43 4.94
UniST [47] 0.43 0.73 1.75 3.21 4.98
CCPL [37] 1.40 2.36 4.62 6.86 8.45
CLIPGaussian-Light 0.20 0.35 0.83 1.46 2.32
CLIPGaussian 0.41 0.79 2.12 4.06 7.00
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