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ABSTRACT

Understanding how effectively large vision language models (VLMs) compare vi-
sual inputs is crucial across numerous applications, yet this fundamental capability
remains insufficiently assessed. While VLMs are increasingly deployed for tasks
requiring comparative judgment, including automated evaluation, re-ranking, and
retrieval-augmented generation, no systematic framework exists to measure their
performance in these scenarios. We present PAIRBENCH, a simple framework
that evaluates VLMs as customizable similarity tools using widely available image
datasets. Our approach introduces four key metrics for reliable comparison: align-
ment with scores derived from human annotations, consistency across pair ordering,
distribution smoothness, and controllability through prompting. Our analysis re-
veals that no model consistently excels across all metrics, with each demonstrating
distinct strengths and weaknesses. Most concerning is the widespread inability
of VLMs to maintain symmetric similarity scores. Interestingly, we demonstrate
that performance on our benchmark strongly correlates with popular benchmarks
used for complex reasoning tasks, while providing additional insight into con-
trollability, smoothness and ordering. This makes PAIRBENCH a unique and
comprehensive framework to evaluate the performance of VLMs for automatic
evaluation, while offering an efficient predictor of model capabilities for more com-
plex tasks. Our evaluation code and dataset are available to the research community
at https://anonymous.4open.science/r/pairbench-6C08.

1 INTRODUCTION

Vision language models (VLMs) have progressed to the point of having impressive performance on
a wide array of tasks (Achiam et al., 2023; Laurençon et al., 2024; Reid et al., 2024; Abdin et al.,
2024; Wang et al., 2024c; Grattafiori et al., 2024), ranging from summarization and visual question
answering to image captioning and common sense reasoning (Kembhavi et al., 2016; Johnson et al.,
2017; Zellers et al., 2019; Lu et al., 2023; Chen et al., 2024b; Liu et al., 2025; Kazemi et al., 2024;
Kil et al., 2024). While human evaluation remains the gold standard for assessing model outputs,
it is expensive, time-consuming, and prone to inconsistency due to annotator variance (Liu et al.,
2019; Knox et al., 2024; Feng et al., 2024). Consequently, practitioners increasingly deploy more
powerful VLMs as automated evaluators across diverse applications including model assessment,
content ranking, and information retrieval systems (Mañas et al., 2024; Liu et al., 2024a; 2025).

The efficacy of VLMs in these comparative tasks fundamentally depends on their ability to function
as reliable similarity kernels, consistently measuring the relevance between data pairs regardless
of context. However, this critical capability remains insufficiently examined. Current evaluation
approaches either fail to isolate comparison abilities or require expensive expert validation, and
little to no guidance exists when selecting models for comparison-dependent tasks. As illustrated
in Figure 1, even widely used and highly capable commercial models like GPT-4o-1120 and
Gemini-1.5-Pro demonstrate concerning inconsistencies when comparing visual inputs, some-
times failing to follow similarity assessment instructions or producing asymmetric scores for identical
pairs presented in different orders, which exemplifies the extent to which evaluation of comparison
skills are lacking.

To address this gap, we introduce PAIRBENCH, a framework designed to evaluate VLMs as similarity
estimators using readily available datasets and straightforward transformation techniques. Our ap-
proach optimizes the signal-to-evaluation cost ratio by focusing on four essential metrics: MMScore
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The first image appears to be a mold [...] the content,

context, and purpose are completely dissimilar.

The images are of the same sandwich, [...] the content is

identical, fulfilling the color invariance requirement.

The images depict similar objects, but there are notable
differences. [...] the overall resemblance is weak.

The images are of the same sandwich, [...] but since the
structural alignment and composition remain consistent,

the similarity remains high.

Prompt: Be invariant to color and score the similarity of the images on a scale of 1-10

Reverse 
order

1

10

8

3

Figure 1: Image order change; prompting GPT-4o-1120 and Gemini-1.5-Pro with identical text and
image prompts, differing only in image order, leads to varying predicted scores. Auto evaluators defined by these
models will yield drastically different judgments after minor changes in the prompt. Detailed failure cases of
state-of-the-art models are reported in Appendix A.

(alignment with human judgment), ε-RelaxSym (consistency across pair ordering), Smoothness
(distribution of scores), and Controllability (response to prompt instructions). We instantiated
PAIRBENCH using easily accessible datasets. Namely, ImageNet (Deng et al., 2009), MS-COCO (Lin
et al., 2014), and WhatsUp (Kamath et al., 2023) seeded the evaluation suite we built. We further
conducted a human study to establish ground truth similarity scores that enable direct measurement
of how well model assessments align with human perception. By applying controlled transformations
to create synthetic paired images with specific feature differences, PAIRBENCH enables precise
examination of model biases and strengths in detecting various types of visual differences.

We carried out an extensive evaluation covering several state-of-the-art VLMs, both proprietary and
open-source, multiple dataset configurations, and different prompt templates. Results reveal not only
significant variations in comparison capabilities across different architectures and training approaches,
but also show concerning asymmetries in how models process the same data pairs when presented in
different orders, and highlight which models can be effectively controlled through prompt instructions.
Remarkably, despite its simplicity, the performance on PAIRBENCH strongly correlates with results
on complex reasoning benchmarks (Yue et al., 2024; Lu et al., 2023; Chen et al., 2024b; Guan et al.,
2024; Liu et al., 2024b; Kembhavi et al., 2016), suggesting that many advanced tasks ultimately rely
on models functioning as effective similarity kernels.

Our contributions are as follows:

• We propose PAIRBENCH, a framework for evaluating VLMs as similarity kernels, which
does not require additional expert annotations and is cheap to instantiate.

• We further create and release1 four instantiations of PAIRBENCH using popular datasets -
ImageNet, MS-COCO, and WhatsUp - which consist of 70K data pairs for comparisons.

• We carry out a broad benchmarking of several closed- and open-source VLMs on the
different configurations within our proposed dataset instantiations to show how models
differ and give insight into what extent they can be trusted to act as auto evaluators on
image-image and image-text data pairs.

• Lastly, we report the correlations of the results of our framework with popular benchmarks
and show the ability to compare, captured by the metrics in PAIRBENCH, have predictive
power of performance on several tasks and can act as a low-cost surrogate during training or
validation of VLMs.

1https://huggingface.co/datasets/feiziaarash/pairbench
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d

Source Data

Identical

70+ 
Participants

Transformed

Irrelevant

Identical

Transformed

Pair Categories

Irrelevant

Human SurveyPair Creation

Q: Be invariant to
<transformation>. What
is the similarity of the
image pair from 1-10?

Condition:
Sensitive

Identical Pair: 10
Transformed Pair: 6
Irrelevant Pair: 1

Q: Be sensitive to
<transformation>. What
is the similarity of the
image pair from 1-10?

Assigning 
Ground Truth Scores

Condition:
Invariant

Identical Pair: 10
Transformed Pair: 10
Irrelevant Pair: 1

Figure 2: Dataset creation pipeline for the image-image datasets, i.e., PBCOCO, PBIN100, and PBWU-II.
Each original image is used to create three pairs of image: identical, transformed, and irrelevant.
Finally, based on the human study, each pair is scores depending on the condition of the prompt.

2 PAIRBENCH

2.1 DATASET CREATION

To evaluate how well vision-language models can assess similarity under controlled transformations,
we construct a dataset using the PAIRBENCH framework, illustrated in Figure 2. For each original
image, we generate three types of pairs: (1) Identical pairs where the second image is a near-duplicate,
(2) Transformed pairs where a specific transformation (e.g., color jitter or spatial shift) is applied, and
(3) Irrelevant pairs with unrelated content. We then gather similarity judgments from over 70 human
annotators under two distinct conditions: invariant, where models should ignore transformations
and focus on semantic similarity, and sensitive, where models should penalize such transformations.
These human ratings verify the assignment of ground-truth similarity scores: both identical and
irrelevant pairs are assigned fixed values of 10 and 1, respectively, while transformed pairs receive a
score of 10 under invariance and 6 under sensitivity.

The framework is instantiated across image-only datasets (COCO, IN100) and image-text datasets
(WhatsUp), using five standard image transformations plus a spatial position shift known to challenge
VLMs. Full construction details, including transformation splits, prompt templates used to reduce
linguistic bias, and details of the human study procedure, are provided in Appendix D.

2.2 METRICS

To measure the reliability of VLMs in scoring data pairs, we define four metrics that we measure
across datasets and models: MMScore, ε-RelaxSym, Smoothness (SM), and Controllability (Cont).

We adopt the following notation to formulate the metrics: we denote the VLM being evalu-
ated as M and the condition, which determines if the prompt instructs the model to be sen-
sitive or invariant to a visual feature, as C ∈ {sens,inv}. Finally, given a dataset DN =
{(d1, d2), (d3, d4), . . . , (d2N−1, d2N ))}, we denote the similarity score of a data pair (di, dj) ∈ DN

returned by an VLM (M) for a given condition (C) as:

sCM(di, dj) := M(C, di, dj),

where (di, dj) could be an image-image or image-text pair. Note that we instruct the model to
generate the output in a structured format to make sure the predicted score is parsable from the model
output. If sCM(di, dj) is valid, it would fall in the set V = [1, 10]. However, models often do not
consistently follow the details of the prompt and may produce scores not in V or outputs that do not
satisfy the output format, in which case we set sCM(di, dj) = −1. Finally, to evaluate a model M on
DN given condition C, we create and annotate the set of all its outputs as:

SC
M(DN ) =

{
sCM(di, dj)

∣∣ (di, dj) ∈ DN ∪ rev(DN )
}
,

where rev(DN ) = {(d2, d1), (d4, d3), . . . , (d2N , d2N−1))} are the data pairs in reverse order.
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Original Image CJ R GB PS ET

Original Image SP-CJ SP-R SP-GB SP-PS SP-ETSP

Original Image - Text SP

CJ: Color Jitter
R:    Rotation
GB: Gaussian Blur
PS: Perspective Shift
ET: Elastic Transform

SP: Spatial Position
SP-CJ: Spatial Position & Color Jitter
SP-R: Spatial Position & Rotation

SP-GB: Spatial Position & Gaussian Blur
SP-PS: Spatial Position & Perspective Shift
SP-ET: Spatial Position & Elastic Transform

banjo
left of
armchair

banjo
right of
armchair

Figure 3: Examples of transformations (green boxes) applied to the original data points (gray boxes)
of each subset instantiated with PAIRBENCH. The first row shows the different splits of PBCOCO and
PBIN100, the second row for PBWU-II, and the third for PBWU-IT.

2.2.1 MMSCORE

We first introduce MMScore, the main metric of PAIRBENCH, which measures the alignment between
model predictions and scores derived from human assessments. To this aim, we utilize Kendall’s rank
correlation coefficient (Kendall, 1938) between the predicted and the ground-truth scores. Instead of
accuracy or squared error, we consider MMScore as we do not prompt the VLM with examples of the
correct scores and hence cannot expect it to predict them directly. In other words, MMScore focuses
on whether the VLM’s scores are consistent with the ranking of the ground-truth scores without
penalizing outputs that do not exactly match in magnitude. The better a model preserves the relative
ordering and variance in the ground-truth scores, the better it is able to capture that characteristic.
Hence we write,

MMScore(M, C,DN ) = KT(SC
M(DN ), GTC(DN )),

where KT(., .) is the Kendall’s Tau and GTC(.) is the ground truth of the input dataset considering
the condition of C. We further explore other rank-based metrics in Appendix C.2 and observed
Kendall’s Tau is the most suitable for this metric.

2.2.2 ε-RELAXSYM

The second metric we introduce aims to evaluate how consistent models are with respect to input order.
This metric captures a fundamental characteristic when VLMs are used as re-rankers or automatic
evaluators. Surprisingly, however, we found that most models do not satisfy exact symmetry, i.e., the
equality of sim(a, b) and sim(b, a). We thus introduce ε-RelaxSym, which tolerates a difference of
ε between the scores that should be equal. More specifically, to analyze the symmetry of VLMs on a
dataset DN , we compute the ε-RelaxSym of (M) on DN :

ε-RelaxSym(M,DN ) =
1

N

∑
(di,dj)∈DN

SoftEqε(M, di, dj),

where SoftEqε(M, di, dj) is defined as:

SoftEqε(M, di, dj) =

{
1(|sCM(di, dj)− sCM(dj , di) ≤ ε|), sCM(di, dj), s

C
M(dj , di) ∈ V,

0, otherwise.

Throughout this paper, we set ε = 1 and provide ablation studies covering other cases in Figure 9 in
the Appendix.
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2.2.3 SMOOTHNESS

We aim to measure how smooth the kernels induced by VLMs are. For instance, a non-smooth
kernel would assign scores such that pairs are either exactly the same or completely different, while a
smoother kernel produces more nuanced distinctions. We measure smoothness via the diversity of
the predicted scores. Given SC

M, smoothness (SM) is computed as:

SM(M,DN , C) = Ent(
{
s
∣∣ s ∈ SC

M(DN ) and s ∈ V
}
),

where Ent(.) is the entropy of a set relative to its support, i.e., the set of candidate inputs.

2.2.4 CONTROLLABILITY

We measure how responsive to instructions models are. To do so, we define controllability based
on the difference in MMScore between the sensitive and invariant settings. The more controllable a
model is, the smaller the discrepancy observed between the sens and invar settings. Hence, when
measuring the controllability on DN for a model M is defined as

Cont(M,DN ) = 1− |MMScore(M,sens,DN )− MMScore(M,inv,DN )|√
(MMScore(M,sens,DN )× MMScore(M,inv,DN ))

.
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Llava-OneVision-7B
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Qwen2.5-VL-7B
Pixtral-12B
InternVL2-8B

InternVL2.5-8B
GPT-4o-mini-0718
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GPT-4o-1120
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Gemini-1.5-Flash

Gemini-1.5-Pro
Gemini-2.0-Flash
Gemini-2.5-Pro

Figure 4: Best models performances on PBCOCO, PBIN100, PBWU-II, and PBWU-IT. No model dominates the
others as a similarity kernel, hence showing the limitation of defaulting to a single model as a judge for every
task and dataset. Note the full symmetry of Phi-3.5-vision, LLaVA-OneVision-7B, and InternVL
models on PBWU-IT are due to the lack of flexibility in the prompt structure to take the image anywhere but the
beginning.

3 EVALUATION RESULTS

3.1 EXPERIMENTAL SETTING

We choose a comprehensive set of open- and closed-source vision-language models and evaluate
them using the instantiations of PAIRBENCH. From the openly available models, we evaluated
Chameleon-7B (Lu et al., 2024), LLaVA-OneVision-7B (Li et al., 2024), Pixtral-12B
(Agrawal et al., 2024), Phi-3.5-vision (Abdin et al., 2024), four model sizes (1B, 2B, 4B,
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and 8B) of InternVL2 (Wang et al., 2024c), four model sizes (1B, 2B, 4B, and 8B) of InternVL2.5
(Chen et al., 2024c), two capacities (2B and 7B) of Qwen2-VL (Wang et al., 2024b), two capacities
(3B and 7B) Qwen2.5-VL (Hui et al., 2024), and three versions (MolmoE-1B, Molmo-7B-O, and
Molmo-7B-D) of Molmo (Deitke et al., 2024).

We also considered commercial grade models and benchmarked four versions of GPT (Achiam
et al., 2023)(GPT-5, GPT-4o-0513, GPT-4o-0806, GPT-4o-1120), GPT-4o-mini-0718,
and four versions of Gemini (Reid et al., 2024) (Gemini-1.5-Flash, Gemini-1.5-Pro,
Gemini-2.0-Flash, Gemini-2.5-Pro). Note that we consider multiple versions of the same
architecture, as opposed to using the newest/largest version, to understand better how model capacity
affects each of the metrics. We provide an extended analysis of different model versions in Appendix
C.3. We run all open-source models on a single NVIDIA H100 GPU using greedy sampling for
inference. For closed-source models, we use API access through either OPENROUTER2 or OpenAI3,
applying the default inference hyperparameters provided by the respective platforms.

Also note that, since PAIRBENCH aims to evaluate VLMs as similarity kernels on image-only or
text-image pairs, we do not evaluate text-only reasoning models such as OpenAI-o1 or DeepSeek-R1
(Guo et al., 2025). Further, we do not evaluate Llama3.2-11B (Grattafiori et al., 2024) as its
official implementation on HuggingFace4 does not support Flash Attention (Dao et al., 2022) and
inference was prohibitively slow. As a result, we excluded them from our final results.

Table 1: Aggregated MMScore, 1-RS:1-RelaxSym,
SM, and Cont over all four data splits. No model
performs the best across all metrics, showing the
importance of PAIRBENCH to rank models based
on different abilities.
Model MMScore(%) 1-RS(%) SM Cont(%)

Phi-3.5-vision 62.45 75.07 1.44 90.86
Qwen2-VL-7B 74.94 84.45 1.63 91.56
Qwen2.5-VL-7B 81.51 90.77 1.26 89.62
InternVL2-8B 77.07 74.63 1.32 91.62
InternVL2.5-8B 81.50 95.21 1.42 88.63
Pixtral-12B 68.61 74.84 1.67 88.44

GPT-4o-1120 82.86 91.50 1.52 92.28
GPT-5 83.63 96.51 1.39 93.71
Gemini-1.5-Pro 83.44 88.72 1.17 89.93
Gemini-2.5-Pro 80.80 83.67 1.44 90.7

Table 2: Spearman correlation of different
metrics of PAIRBENCH with performance on
other benchmarks for 23 models. MMScore
has the highest correlation, making it the main
metric.
Metric MMScore 1-RS SM Cont

AI2D 79% 30% 26% 77%
HallusionBench 80% 36% 32% 67%
MMBench 77% 29% 33% 71%
MMMU 90% 34% 31% 80%
MMStar 81% 20% 33% 79%
MMVet 81% 28% 38% 68%
MathVista 73% 18% 35% 74%
OCRBench 51% 8% 37% 52%

Open Closed
0.0

0.2

0.4

0.6

0.8

M
M

Sc
or

e

MMScore (COCO)

Open Closed

MMScore (IN100)

Open Closed

MMScore (WU-II)

Open Closed

MMScore (WU-IT)
Criteria

Sensitive
Invariant

Figure 5: Closed- and open-source models perform comparable on image-text tasks. From the left to
the right, the first three plots are image-image tasks, while the last is an image-text comparison task.

3.2 RESULTS

We analyze and plot the results of the best models in Figure 4 and provide an aggregated version of the
metrics over all four datasets in Table 1. We aggregate different splits/datasets by taking the average

2https://openrouter.ai/
3https://platform.openai.com/
4https://huggingface.co/
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of them to give each sub-dataset equal importance in the final number. The full set of benchmarking
results of all models for PAIRBENCH on all datasets and metrics are reported in Appendix C.

3.2.1 GENERAL OBSERVATIONS

As illustrated in Figure 4 and Table 1, we observe no model, whether closed- or open-source, is
the best performer across all four metrics. Moreover, we further observe that for each metric,
no model is the ‘best’ similarity kernel across the four different datasets either. This shows how
features of the dataset and also the metrics a user might want to optimize play a crucial role in
which VLM to choose as the best similarity kernel/judge. For instance, among open-source models,
although InternVL2.5-8B outperforms the rest in MMScore, it is less controllable and smooth
than Qwen2-VL-7B or LLaVA-OneVision-7B.

When considering PAIRBENCH’s main metric, MMScore, we notice that the performance of models
is generally better on image-image pairs rather than image-text pairs. Furthermore, as seen in
Figure 5, we observe that although open-source VLMs are roughly comparable to closed-source
ones on PBWU-IT, the gap between the two groups is larger in the image-image pairs. However,
InternVL2.5-8B is a strong competitor to closed-source models considering all four metrics and
could potentially be used as a substitute to closed-source models as a similarity kernel based on the
results reported in Table 1.

Interestingly, we further observe a pattern regarding GPT-4o-1120, a common default judge
used in the literature, and its lower cost version, GPT-4o-mini-0718; they both suffer from low
1-RelaxSym when comparing image-text pairs, and the cheaper model’s Cont and SM are higher or
comparable to that of the expensive one across datasets. Another fascinating result we observed was
the effect the scaling effect on different metrics of PAIRBENCH for a single model family; the larger
a model gets, the better it performs on MMScore and 1-RelaxSym. However, that does not hold for
controllability and smoothness. This emphasizes the importance of PAIRBENCH in analyzing the
capabilities of models, both open and closed-source, as similarity kernels to be better used as judges.
We analyze and plot these results further in Appendix C and show further qualitative examples of
the errors the best VLMs make in these tasks in Appendix A.

3.2.2 CORRELATION WITH BENCHMARKS

To showcase the effectiveness of our metrics and PAIRBENCH in predicting reasoning performance,
we compute the Spearman correlation with respect to other popular benchmarks used in the literature.
By showing correlations of our metrics with these benchmarks, we show that although the PAIR-
BENCH framework introduces simple and cost-efficient methods focused on evaluating the ability to
compare due to prompted VLMs, these metrics are predictive of an VLM’s performance on other
tasks, and can provide an alternative for model ranking and validation during development.

We collect all the model performances from the OPENVLM LEADERBOARD(Duan et al., 2024)
and filter out the models we evaluate, resulting in all 27 (including different versions/capacities of
closed- and open-source) models. By filtering out the benchmarks that have evaluation scores for
all 27 models on OpenVLM, we end up with AI2D (Kembhavi et al., 2016), HallusionBench (Guan
et al., 2024), MMBench (Liu et al., 2025), MMStar (Chen et al., 2024b), MMMU (Yue et al., 2024),
MathVista (Lu et al., 2023), MM-Vet (Yu et al., 2023), OCRBench (Liu et al., 2024b). Each metric is
aggregated for each model across all the configurations created by PAIRBENCHbefore computing
correlations. Namely, we aggregate all features within each dataset (e.g., CJ, SP, etc.) and across all
datasets (e.g., PBCOCO, PBWU-II) and end up with an aggregate result per metric for each model.

As seen in Table 2, all metrics in PAIRBENCH have a high positive correlation with performances in
benchmarks. More specifically, we observe that MMScore has strong correlations with all benchmarks,
indicating that it aligns closely with overall model performance. Hence, we select it as the main
metric of PAIRBENCH. Furthermore, when analyzing the correlations of PAIRBENCH’s other metrics
with all benchmarks, we find that the strength of correlation reflects how much of the base skill
captured by the metric is required by each benchmark. For example, HallusionBench shows the
highest correlation with 1-RelaxSym, which is notable since HallusionBench focuses primarily on
evaluating hallucinations in VLMs. This suggests a connection between lack of symmetry and
hallucination. Another example is the highest and lowest correlation of Cont with MMMU and
OCRBench, respectively. MMMU’s prompt mostly contain complex questions and multiple answers,
whereas OCRBench features simple prompts for most questions. We hypothesize that since Cont
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Figure 6: The main metric of PAIRBENCH, MMScore, strongly correlates with previous multimodal
benchmarks, showcasing its predictive power of a model’s performance at a lower cost to create.

measures how well models follow the prompt, these differences explain the highest and lowest
correlations observed with MMMU and OCRBench.

Note that measuring comparison skills incurs a low cost as it does not require expert-generated
annotations. Our results suggest that metrics that assess these skills can serve as a low-cost surrogate
of performance in various tasks: an efficient alternative to model selection. We further show scatter
plots that highlight correlations in Figure 6, and more comprehensively in Figure 12 in Appendix C.

3.2.3 PROMPT SELECTION

We show the MMScore performance of models across datasets in Figure 7 for various prompt
templates. As evident from the plots, no single prompt template consistently achieves the best
performance across all models. Some models perform better with certain phrasings, while others
are negatively affected by the same templates. This variation highlights the significant influence of
prompt wording on model behavior. Recent work (Polo et al., 2024b) has emphasized the importance
of using diverse prompts. Similarly, our randomized approach offers empirical support for that
recommendation. Evaluating models with multiple prompt templates and averaging the results
eliminates prompt-induced variance and leads to more reliable and fair comparisons. We recommend
this strategy as a stronger and more principled standard for future benchmarking of prompted models,
whether multimodal or otherwise.

4 RELATED WORK

Recent work has explored using language models as automated evaluators in NLP and vision-language
domains, with approaches like GPTSCORE and G-eval (Fu et al., 2023; Liu et al., 2023) showing
alignment with human preferences. However, concerns remain regarding their reliability, especially
due to known limitations such as sensitivity to input order (Fang et al., 2024) and failure to infer
reversible relationships (Berglund et al., 2023). In the multimodal case, work such as Zheng et al.
(2023); Thakur et al. (2024); Murugadoss et al. (2024) evaluates VLMs as judges, highlighting issues
of bias, prompt dependency, and limited control over evaluation criteria. Our work extends this line of
research by focusing on structured pairwise comparisons, measuring not just performance alignment
but also properties like symmetry, smoothness, and controllability.

While benchmarks like Chen et al. (2024a) and Awal et al. (2024) introduce ways to test comparison
abilities of VLMs, we aim to provide a more systematic and transformation-aware framework. Prior
work also identifies well-known blind spots in discriminative models such as CLIP, including spatial
reasoning failures (Kamath et al., 2023) and neglect of logical constructs like negation (Alhamoud
et al., 2025). Our goal is to support the development and evaluation of models in these areas through
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Figure 7: By using multiple prompt templates, we ensure no model is biased towards a single prompt
and the mean capture the overall model performance. Above we show MMScore.

a carefully designed testbed. A detailed review of related evaluation benchmarks, model limitations,
and pair-comparison studies is included in Appendix B.

5 CONCLUSION AND FUTURE WORK

We introduced PAIRBENCH, a framework that systematically evaluates the fundamental yet over-
looked ability of VLMs to compare visual inputs, a capability critical for applications ranging from
automated evaluation and re-ranking to retrieval-augmented generation. By focusing on four key
metrics (alignment with human judgment, symmetry, smoothness, and controllability), PAIRBENCH
provides comprehensive insights into how models process comparative information while intention-
ally minimizing computational requirements. This cost-efficiency addresses growing concerns around
the unsustainable costs of model evaluation, which increasingly constitutes a significant portion of
model development budgets (Polo et al., 2024a; Pacchiardi et al., 2024; Yuan et al., 2025).

Our extensive benchmarking revealed that no model excels across all metrics, with even leading
commercial systems demonstrating concerning asymmetries when comparing identical pairs in
different orders. Particularly noteworthy is our finding that performance on PAIRBENCH strongly
correlates with results on complex reasoning benchmarks, suggesting that comparison capabilities
may constitute a fundamental skill that underlies performance across diverse tasks. This insight
offers a more efficient path to model selection and validation without the computational burden
of exhaustive evaluations on large-scale benchmarks. As a means to further improve evaluation
efficiency while accounting for sensitivity to prompting, we applied a randomized prompting strategy,
rendering comparisons across models more reliable at no additional inference cost.

Looking forward, we hypothesize that tailored post-training approaches to focus on improving
comparative skills and better model classes may enhance overall capabilities across diverse tasks,
given the transferability our results revealed. Future research could explore architectural modifications
or specialized fine-tuning techniques that optimize for these metrics, creating more reliable VLMs
for critical evaluation tasks.
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Ethics Statement We do not foresee any ethical issues with our work and have complied with
the conference guidelines. We believe our work will aid in the better and safer usage of VLMs in
practice, as we offer means to evaluate and understand model behavior prior to deployment. This
can help mitigate potential risks associated with model biases and inconsistencies, leading to more
reliable and transparent systems. As per language model usage, besides the evaluations we reported,
we restricted ourselves to using these only to refine or rephrase handwritten parts of the manuscript
to ensure correctness and clarity.

Reproducibility Statement We disclose all the details needed to carry out our evaluation such as
exact prompt templates, exact model versions, and inference settings.

A sample of the data and example code to compute metrics are included as part of the supplementary
material, and the full dataset is made anonymously available at https://anonymous.4open.
science/r/pairbench-6C08.
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A ERROR ANALYSIS

In this section, we look into the outputs of each model and their errors given different data
pairs. More specifically, we look into errors made by Gemini-1.5-Pro, GPT-4o-1120,
InternVL2.5-8B, Pixtral-12B, Qwen2-VL-7B, and Phi-3.5-vision.

A.1 GEMINI MODEL

Below is an error example of Gemini-1.5-Pro on a data-pair from PBCOCOwith color jittering
(CJ).

Gemini-1.5-Pro Evaluation Instructions
User prompt: Evaluate the similarity of the images based on the following conditions: - Be
invariant to color jittering while evaluating images. Even if one image has been modified with
random color changes (e.g., brightness or contrast adjustments), the similarity score should
remain high. If the images are different, the similarity score should decrease regardless of the
jittering.
The score should take into account how well the images align with these conditions, as well
as their overall resemblance. Even if the images are identical but fail to meet the conditions,
they should still receive a higher score than completely different images. Provide a score
from 1 to 10, where 1 indicates no similarity and 10 indicates identical images that fully
satisfy the conditions. Respond only in this format:

Score: <1-10>
Reason: <reason for score>

Nothing else should be included. What score would you give? “data1” “data2”

Gemini-1.5-Pro Response - Original Order

Model response:

Score: 10
Reason: The images are of the
same sandwich, one in normal
color and the other with a strong
purple color filter applied. De-
spite the heavy color distortion,
the content is identical, fulfill-
ing the color invariance require-
ment.

Gemini-1.5-Pro Response - Reversed Order

Model response:

Score: 1
Reason: The first image appears
to be a mold of some sort, possi-
bly for dental work or other med-
ical purposes. The second image
is a Caprese sandwich. They are
entirely different objects. While
the layered structure might be
vaguely similar, the content, con-
text, and purpose are completely
dissimilar.
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A.2 GPT4O MODEL

Below is an error example of GPT-4o-1120 on a data-pair from PBCOCOwith color jittering (CJ).

GPT-4o-1120 Evaluation Instructions
User prompt: Evaluate the similarity of the images based on the following conditions:
- Be invariant to color jittering while evaluating images. Even if one image has been modified
with random color changes (e.g., brightness or contrast adjustments), the similarity score
should remain high. If the images are different, the similarity score should decrease regardless
of the jittering.
The score should take into account how well the images align with these conditions, as well
as their overall resemblance. Even if the images are identical but fail to meet the conditions,
they should still receive a higher score than completely different images.
Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images
that fully satisfy the conditions.
Respond only in this format:
Score: <1-10>
Reason: <reason for score>

Nothing else should be included. What score would you give? "data1" "data2"

GPT-4o-1120 Response - Original Order

Model response:

Score: 8
Reason: The images are of
the same sandwich, with similar
shapes and arrangements of the
bread, tomato, mozzarella, and
basil. The second image has
substantial color jittering, but
since the structural alignment
and composition remain consis-
tent, the similarity remains high.

GPT-4o-1120 Response - Reversed Order

Model response:

Score: 3
Reason: The images depict sim-
ilar objects, presumably a sand-
wich with layers, but there are no-
table differences. The first image
appears distorted with altered
coloration, and while it shares
structural similarities with the
second image, the overall resem-
blance is weak.

A.3 INTERNVL2.5 MODEL

Below is an error example of InternVL2.5-8B on a data-pair from PBCOCOwith that are irrelevant
to each other.
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InternVL2.5-8B Evaluation Instructions
User prompt: Evaluate the similarity of the images based on the following conditions: - Be
invariant to Gaussian blurs while evaluating images. For example, even if both images are
the exact same, even if one is more blurred compared to the other, the similarity score should
remain high. If the images are different, the similarity score should decrease regardless of
how blurred they are. The score should take into account how well the images align with
these conditions, as well as their overall resemblance. Even if the images are identical but
fail to meet the conditions, they should still receive a higher score than completely different
images.
Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images
that fully satisfy the conditions. Respond only in this format:

Score: <1-10>
Reason: <reason for score>

Nothing else should be included. What score would you give? “data1” “data2”

InternVL2.5-8B - Original Order

Model response:

Score: 7
Reason: The images are similar
in content, featuring parrots, but
they are not identical. The first
image is a close-up of a spider
web on a wooden surface, while
the second image shows two par-
rots on a ledge. The parrots are
the main subjects in the second
image, and the first image has a
different focus and subject mat-
ter. The images do not meet the
condition of being identical, but
they share some visual elements
like color and subject type.

InternVL2.5-8B - Reverse Order

Model response:

Score: 1
Reason: The images are com-
pletely different in terms of con-
tent, subject matter, and context.
The first image features colorful
parrots, while the second image
shows a wooden door with a spi-
der web. There is no similarity in
terms of subject, color, or compo-
sition.

A.4 PIXTRAL MODEL

Below is an error example of Pixtral-12B on a data-pair from PBCOCOwith rotation (R).
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Pixtral-12B Evaluation Instructions
User prompt: Rate the similarity of these images on a scale of 1 to 10 while considering the
following condition:
- Be invariant to rotations while evaluating images. For example, if one image is a rotated
version of the other, the similarity score should remain high. If the images are different, the
similarity score should decrease regardless of their orientation.
The score should account for both how well the images satisfy the conditions and their overall
resemblance. If the images are identical but do not meet the conditions, they should still score
higher than unrelated images.
Your response must follow this exact format:
Score: <1-10>
Reason: <reason for score>

Provide nothing else. What’s your score? “data1” “data2”

Pixtral-12B Response - Original Order

Model response:

Score: 8
Reason: The images depict sim-
ilar scenes of people interact-
ing with birds in natural settings.
The first image features a group
of people sitting on rocks with
birds nearby, while the second
image has a person extending
their hand towards a bird in a
mountainous area. Despite slight
differences in the environment
and specific actions, the overall
theme and presence of birds and
human interaction score high.

Pixtral-12B Response - Reversed Order

Model response:

Score: 2
Reason: The images depict com-
pletely different scenes and sub-
jects, with no recognizable sim-
ilarity between them. One im-
age shows a bird and people in a
rocky area, while the other does
not bear any resemblance to it.

A.5 QWEN2-VL MODEL

Below is an error example of Qwen2-VL-7B on a data-pair from PBCOCOwith gaussian blur (GB).
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Qwen2-VL-7B Evaluation Instructions
User prompt: As a similarity evaluator, your responsibility is to assess the similarity of
the given images while considering these conditions: - Be sensitive to Gaussian blurs while
evaluating images. For example, if both images are the same except one is a blurred version
of the other, the similarity score should decrease. If the images are the same and have the
same exact sharpness, the similarity score should remain high.
The similarity score should reflect both how well the images align with the conditions and
their overall resemblance. Images that are identical but do not meet the conditions should
receive a moderate score, while completely unrelated images should receive the lowest score.
Provide your score on a scale of 1 to 10, with 10 being identical images that fully meet the
conditions. Ensure your response is in the following format:
Score: <1-10>
Reason: <reason for score>

Provide nothing else. What is your score? “data1” “data2”

Qwen2-VL-7B - Original Order

Model response:

Score: 6
Reason: The images are very sim-
ilar, with the second image being
a slightly blurred version of the
first. However, they do not fully
meet the conditions as the images
are not identical and the blurring
is not perfect.

Qwen2-VL-7B - Reverse Order

Model response:

Score: 9
Reason: The images are nearly
identical, with only a slight dif-
ference in the sharpness of the
objects. The overall resemblance
is high, and the conditions are
met.

A.6 PHI3.5 MODEL

Below is an error example of Phi-3.5-vision on a data-pair from PBCOCOwith elastic transform
(ET).
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Phi-3.5-vision Evaluation Instructions
User prompt: Judge the similarity of these images based on: - Be sensitive to elastic
transformations while evaluating images. For example, if the images are the same but have
differing distortions due to elastic transformations, the similarity score should decrease. If the
images are identical and have matching elastic transformations, the similarity score should
remain high.
The similarity score should reflect both the overall resemblance of the images and how well
they satisfy the conditions. Identical images that do not meet the conditions should still score
higher than completely unrelated images.
Provide a score on a scale of 1 to 10, with 1 being no similarity and 10 being identical images
that satisfy all conditions. Respond strictly in this format:
Score: <1-10>
Reason: <reason for score>

Do not include additional text. What’s your rating? “data1” “data2”

Phi-3.5-vision - Original Order

Model response:

Score: 1
Reason: The images are highly
distorted with elastic transforma-
tions, making it impossible to ac-
curately compare the content.

Phi-3.5-vision - Reverse Order

Model response:

Score: 10
Reason: The images are identi-
cal with no differences in content,
color, or composition. They both
depict the same scene with mo-
torcycles and people in a bar set-
ting, and the elastic transforma-
tions do not alter the image in
any way.

B EXTENDED RELATED WORK

Using language models as automatic evaluators has become a somewhat common practice with
popular approaches such as GPTSCORE and G-eval (Fu et al., 2023; Liu et al., 2023) being used to
rank responses in the NLP domain. Due to that there has been a significant amount of recent work that
has investigated the capabilities and limitations of using LLMs as judges (Thakur et al., 2024; Chiang
& Lee, 2023; Murugadoss et al., 2024; Shankar et al., 2024). Chiang & Lee (2023) have shown
that LLM evaluations are consistent and reproducible, making them suitable alternatives for human
evaluation, they argue that these models inherent biases should prevent them using independently
rather than alongside human experts. Furthermore, Zheng et al. (2023) reveal that large VLMs, e.g.,
GPT-4 Turbo, align well with human judgments and Thakur et al. (2024) further states that simpler
models may still outperform GPT-4 Turbo in ranking tasks due to superior alignment metrics. Also,
recent work assessed how humans can help LLMs evaluate better by testing different instruction
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types or designing tools that result in more balanced evaluations (Murugadoss et al., 2024; Shankar
et al., 2024).

It is worth noting that known limitations of LLMs such as their lack of invariance to the order of
examples given in a prompt, which is a well studied issue of natural language models (Fang et al.,
2024), may render auto evaluation unreliable. Similarly, Berglund et al. (2023) show failure cases
where models trained on unidirectional relationships do not infer the reverse, indicating systemic
limitations even in state-of-the-art LLMs such as GPT-4 (as seen in Figure 1 and in Appendix A for
VLMs). Our main goal is to investigate the reliability of automated evaluation in the multimodal
context, by probing the models to compare data pairs.

Namely, the evaluations we carry out focus on testing in multiple different ways how good VLMs
are when it comes to comparing data instances, such as whether VLMs prompted to compare are
symmetric or smooth for instance, and to what extent they can be controlled, i.e., instructed to pay
attention to or ignore certain features of the inputs. While the literature is more sparse regarding
testing VLMs in this setting, recent work has tested for something along those lines. Chen et al.
(2024a) for instance propose a benchmark for evaluating VLMs in multiple different scenarios,
including checking whether pairwise comparisons of responses to a query correlated with human
judgments. They concluded that although correlations are relatively high on comparison tasks, biases
and inconsistencies affect performance on pair scoring and batch ranking. Similarly, Awal et al.
(2024) introduced a synthetic dataset containing paired images that differ only along one feature (e.g.,
the color of an object). We seek to add to this branch of the literature by introducing a framework
where controlled experiments can be carried out to anticipate the performance of models when being
used as judges, and various different characteristics of automatic judges can be identified (e.g., how
smooth they are).

Unlike the case of generative VLMs discussed above, discriminative visual language models such
as CLIP (Radford et al., 2021) are covered by a significant amount of recent work, and several
failure modes are well reported, mostly deriving from the fact this class of VLMs tends to behave
as bag-of-words models, focusing on nouns and ignoring relationships and semantics in their input
data (Yuksekgonul et al., 2023). For instance, CLIP was observed to struggle with spatial reason-
ing (Kamath et al., 2023) and ignore negation (Alhamoud et al., 2025). On the other hand, fine-tuning
CLIP to reason about pairwise differences Sam et al. (2024) showed that discriminative VLMs can
improve on how well they manage to reason about pairwise differences if training is tailored for
enabling so, highlighting the benefits that being able to measure these skills may inform training
and improve models as a consequence. Ouali et al. (2024) showed that fine-tuning generative VLMs
to turn them into discriminative models results in improved image-retrieval from text, which aligns
with results we reported in Section C.5 showing a gap between open-sources VLMs and CLIP-style
encoders.

C FULL RESULTS

In this section, we provide the MMScore of all models on all the different splits of PBCOCO, PBIN100,
PBWU-II, and PBWU-IT in Tables 3, 4, 3, 4, 5, 6, and 7. We further report the coverage, the number of
times the VLMs give a valid output, of each model on our different proposed datasets.

C.1 ALL ε-RELAXSYMFOR DIFFERENT ϵS

To show the ε-RelaxSym for different values of ε, we plot Figure 9 and show as ε gets higher, the
values go higher. However, some models such as the GPT4o models struggle with symmetry. Please
note that if ε = 0, it is the same as not having a threshold and hence calculating exact symmetry
rather than a relaxed version.

C.2 VARIATIONS OF MMSCORE FORMULATION

In this section, we examine how model rankings vary when Kendall’s Tau is replaced with other
correlation-based metrics, namely Normalized Mutual Information (NMI), Spearman’s rank correla-
tion, and Normalized Discounted Cumulative Gain (NDCG). Overall, we find that NMI, Spearman,
and NDCG produce rankings consistent with those obtained using Kendall’s Tau. However, NDCG
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Table 3: Comparison of the MMScore metric (×100) of VLMs on PBCOCO and PBIN100 benchmarks
in the sensitive setting. Models are evaluated across multiple criteria: color jitter (CJ), elastic
transform (ET), gaussian blur (GB), perspective shift (PS), and rotation (R). Higher scores indicate
better performance.

Model PBCOCO PBIN100

CJ ET GB PS R CJ ET GB PS R

Chameleon-7B 00.37 00.34 00.19 00.31 00.60 00.38 00.26 00.31 00.50 00.52
LLaVA-OneVision-7B 36.51 44.05 38.57 43.80 41.41 37.05 49.89 40.00 46.01 49.30
Phi-3.5-vision 38.21 51.61 61.94 47.33 34.56 25.74 43.03 51.40 32.51 23.61
Pixtral-12B 37.67 56.25 54.32 49.53 36.80 30.75 52.30 51.94 46.04 40.76
InternVL2-1B 03.23 03.47 03.27 03.63 03.51 02.59 02.38 01.70 02.02 02.23
InternVL2-2B 23.89 32.76 34.32 31.53 24.76 18.32 34.02 33.35 28.17 23.35
InternVL2-4B 52.13 69.43 62.46 63.77 52.68 45.25 65.90 59.90 60.28 51.04
InternVL2-8B 51.58 62.80 62.35 60.27 54.80 47.94 60.18 58.60 56.66 53.00
InternVL2.5-1B 16.74 25.38 27.67 24.83 16.54 15.63 33.67 39.23 37.97 22.53
InternVL2.5-2B 12.48 19.58 25.26 18.33 13.84 17.27 38.28 39.21 31.23 21.45
InternVL2.5-4B 42.61 59.78 54.33 55.34 49.47 41.35 62.35 54.21 56.18 49.90
InternVL2.5-8B 54.51 73.37 78.31 63.17 60.71 51.76 77.10 76.40 60.40 55.30
MolmoE-1B 00.40 00.09 01.20 00.03 00.05 00.41 00.01 00.45 00.01 00.01
Molmo-7B-O 14.32 16.02 48.93 16.12 15.40 12.91 14.20 48.43 13.83 12.16
Molmo-7B-D 27.06 45.28 34.46 49.60 30.39 22.88 41.06 35.83 44.49 32.22
Qwen2-VL-2B 09.91 11.82 09.01 13.13 11.95 10.63 13.69 10.41 13.21 12.23
Qwen2-VL-7B 42.58 61.90 50.22 55.81 51.10 38.24 61.73 50.23 53.07 52.29

GPT-4o-mini-0718 49.98 65.97 58.29 53.23 53.60 47.06 67.06 56.43 49.97 52.59
GPT-4o-0513 50.96 65.54 61.67 56.69 56.71 48.55 65.68 57.48 54.11 55.00
GPT-4o-0806 42.26 60.58 56.62 50.13 53.63 40.35 60.66 52.65 49.62 49.77
GPT-4o-1120 51.31 63.50 61.35 57.84 57.16 50.88 66.55 58.14 56.25 55.52
Gemini-1.5-Flash 58.26 82.64 87.41 65.92 61.08 56.25 79.69 85.21 62.07 61.15
Gemini-1.5-Pro 53.33 87.86 89.56 74.92 71.04 51.19 91.36 92.98 71.56 74.22
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Figure 8: Coverage of each model.

exhibits lower sensitivity, leading to flatter curves that are less informative for our setting. We attribute
this to the fact that NDCG was originally designed for retrieval systems, where the top-ranked items
dominate the evaluation, and thus the metric emphasizes alignment at the highest scores rather than
capturing fine-grained differences across the full ranking. The results can be seen in Fig. 10.
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Table 4: Comparison of the MMScore metric (×100) of VLMs on PBCOCO and PBIN100 benchmarks
in the invariant setting. Models are evaluated across multiple criteria: color jitter (CJ), elastic
transform (ET), gaussian blur (GB), perspective shift (PS), and rotation (R). Higher scores indicate
better performance.

Model PBCOCO PBIN100

CJ ET GB PS R CJ ET GB PS R

Chameleon-7B 00.89 00.34 00.44 00.51 00.38 00.57 00.35 00.53 00.58 00.45
LLaVA-OneVision-7B 35.13 37.26 39.22 40.29 38.29 38.09 43.04 41.83 40.86 42.24
Phi-3.5-vision 49.41 40.19 42.93 55.03 47.90 45.88 33.79 39.72 50.41 39.46
Pixtral-12B 48.26 47.34 45.35 60.20 55.65 41.53 45.30 42.84 52.63 52.65
InternVL2-1B 02.69 01.76 02.71 02.00 02.69 01.39 00.82 01.22 00.90 01.40
InternVL2-2B 36.38 31.55 31.99 39.18 37.28 32.68 31.40 30.13 35.98 34.70
InternVL2-4B 59.44 55.47 51.35 59.61 59.02 51.74 52.77 49.60 54.63 53.11
InternVL2-8B 58.69 58.56 53.60 61.91 64.22 58.44 54.48 51.78 61.97 62.90
InternVL2.5-1B 21.39 18.59 21.65 23.19 22.86 22.52 14.63 24.34 22.76 19.24
InternVL2.5-2B 22.85 19.05 21.46 27.62 25.99 32.09 33.03 37.34 34.65 34.75
InternVL2.5-4B 56.24 47.41 43.93 53.71 55.28 61.80 50.50 47.33 51.58 58.56
InternVL2.5-8B 75.11 65.18 66.32 78.56 81.77 72.53 61.61 62.23 65.18 74.27
MolmoE-1B 00.10 00.11 00.06 00.02 00.00 00.02 00.11 00.10 00.07 00.25
Molmo-7B-O 26.86 34.58 33.46 34.70 24.55 25.04 30.81 38.52 32.79 27.65
Molmo-7B-D 47.20 45.02 43.02 50.54 48.64 45.01 45.83 45.47 49.25 40.87
Qwen2-VL-2B 09.55 09.10 10.21 12.65 08.83 09.02 09.61 10.01 14.97 09.33
Qwen2-VL-7B 50.52 51.80 52.70 54.50 53.29 47.86 49.73 51.18 51.55 50.67

GPT-4o-mini-0718 59.76 57.94 56.55 61.31 58.17 56.33 55.56 55.35 60.99 60.83
GPT-4o-0513 70.83 61.70 59.40 61.13 62.10 68.82 56.16 56.70 57.79 59.80
GPT-4o-0806 55.14 50.31 46.00 52.15 52.45 54.13 45.43 44.25 48.26 52.18
GPT-4o-1120 73.48 69.06 61.51 67.60 63.99 70.16 61.33 58.89 65.06 60.84
Gemini-1.5-Flash 72.11 67.81 68.17 71.88 78.31 70.32 65.94 66.58 69.10 74.77
Gemini-1.5-Pro 68.93 69.64 71.50 72.06 68.42 66.31 70.03 72.17 70.13 69.32

C.3 DIFFERENT VERSIONS OF SAME MODEL

We further examine the effect of model capacity on the different metrics of PAIRBENCH. As seen in
Figure 11, larger-capacity models tend to perform better across MMScore, ε-RelaxSym, and Cont.
However, there are exceptions—for example, InternVL2-4B demonstrates greater controllability
in rotation (R) and perspective shift (PS) compared to InternVL2-8B. Additionally, smoothness
(SM) does not increase monotonically with model capacity. This suggests that stronger models may
be more confident in their responses, leading to less diversity in their similarity scores compared to
lower-capacity models.

On the other hand, Table 2 and Figure 13 show that SM correlates positively with model performance
and other benchmarks, indicating that better models tend to produce smoother and more diverse
outputs than weaker ones. Ultimately, we conclude that SM is not strictly a property of model
performance but rather a characteristic of a VLM as a judge model that may be desirable (or not)
depending on the use case.

C.4 CORRELATIONS

In this section, we further plot the correlations of the different metrics and show them in Figures 12,
13, 13. As seen, all these metrics have positive correlations as seen in the scatter plots.

C.5 ENCODERS VS VLMS

For the image-image task, we explore how image encoders compare to VLMs on our metrics. To
this end, three DINOv2 versions (DINOv2-Base, DINOv2-Small, and DINOv2-Large) and
the LAION- and OpenAI- CLIP-trained ViTs (base and large) are chosen to encode images. Since
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Table 5: Comparison of the MMScore metric (×100) of VLMs on PBWU-II (subset A and B) bench-
mark in the sensitive setting. Models are evaluated across multiple criteria: spatial position (SP),
spatial position and color jitter (SP-CJ), spatial position and elastic transform (SP-ET), spatial position
and gaussian blur (SP-GB), spatial position and perspective shift (SP-PS), and spatial position and
rotation (SP-R). Higher scores indicate better performance.

Model PAIRBENCHWUa PAIRBENCHWUb

SP SP-CJ SP-ET SP-GB SP-PS SP-R SP SP-CJ SP-ET SP-GB SP-PS SP-R

Chameleon-7B 00.28 00.47 00.23 00.52 0.21 00.20 00.34 00.38 00.35 00.26 00.31 00.33
LLaVA-OneVision-7B 38.95 18.83 24.03 26.78 29.46 24.63 19.70 14.03 16.51 16.78 17.76 17.02
Phi-3.5-vision 23.44 08.46 15.70 19.41 13.34 10.83 15.38 12.98 18.91 20.19 11.69 17.06
Pixtral-12B 37.91 26.09 32.05 33.52 32.47 25.00 28.02 19.58 22.32 22.31 23.46 24.50
InternVL2-1B 00.44 00.98 00.79 00.65 00.30 00.28 00.20 - - 00.41 01.18 00.90
InternVL2-2B 22.85 12.03 14.37 17.84 18.66 15.50 20.72 10.89 11.22 15.74 17.74 13.58
InternVL2-4B 46.89 27.91 36.67 43.03 44.27 27.76 44.89 27.77 33.35 38.12 42.23 36.16
InternVL2-8B 41.99 32.06 35.71 41.02 40.12 29.11 46.36 32.17 39.24 41.90 45.59 40.30
InternVL2.5-1B 25.50 14.16 21.32 15.69 21.49 16.30 24.77 16.16 21.10 19.95 27.89 21.47
InternVL2.5-2B 20.63 11.76 16.75 15.21 18.03 13.79 23.44 09.33 15.90 17.64 18.17 17.56
InternVL2.5-4B 46.15 32.74 39.05 39.24 42.28 32.94 47.93 33.75 40.23 39.82 44.07 42.57
InternVL2.5-8B 44.27 36.99 41.49 42.60 43.65 33.24 41.32 31.69 40.10 39.73 44.03 42.99
MolmoE-1B 00.47 01.03 00.00 00.03 00.14 00.01 00.32 00.36 00.01 00.04 00.04 00.09
Molmo-7B-O 15.94 09.90 11.32 15.38 12.92 12.01 15.15 08.40 11.39 11.33 13.60 12.50
Molmo-7B-D 23.82 17.75 20.41 18.40 22.21 17.81 26.74 18.37 19.55 18.77 18.19 22.21
Qwen2-VL-2B 02.26 01.76 02.58 02.15 03.17 01.68 00.88 00.44 00.73 00.37 00.72 00.82
Qwen2-VL-7B 41.95 29.47 36.32 39.93 40.33 34.11 42.80 28.75 31.42 37.27 39.76 36.25

GPT-4o-mini-0718 42.55 37.21 39.50 40.44 38.83 41.05 48.86 38.38 43.82 45.42 46.32 46.66
GPT-4o-0513 40.27 37.83 36.79 38.52 38.84 38.07 44.13 39.46 39.46 43.58 43.49 46.25
GPT-4o-0806 37.58 33.72 34.24 33.36 34.80 33.17 40.11 33.36 32.36 34.32 39.91 38.67
GPT-4o-1120 40.68 39.06 40.10 40.35 40.96 40.40 47.34 40.91 43.07 47.18 50.22 50.68
Gemini-1.5-Flash 44.63 38.85 37.19 39.11 35.76 34.57 49.91 40.29 42.92 46.34 47.01 46.40
Gemini-1.5-Pro 40.38 36.07 31.52 37.85 29.92 30.37 49.20 38.26 39.16 44.98 41.70 40.72
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Figure 9: ε-RelaxSym for different εs.

feature controllability on image-encoders is limited to the image augmentation transformation (CJ, R,
PS, GB, ET), we only compare image-encoders to VLMs on PBCOCO and PBIN100.
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Table 6: Comparison of the MMScore metric (×100) of VLMs on PBWU-II (subset A and B) bench-
mark in the invariant setting. Models are evaluated across multiple criteria:spatial position (SP),
spatial position and color jitter (SP-CJ), spatial position and elastic transform (SP-ET), spatial position
and gaussian blur (SP-GB), spatial position and perspective shift (SP-PS), and spatial position and
rotation (SP-R). Higher scores indicate better performance.

Model PAIRBENCHWUa PAIRBENCHWUb

SP SP-CJ SP-ET SP-GB SP-PS SP-R SP SP-CJ SP-ET SP-GB SP-PS SP-R

Chameleon-7B 00.34 00.39 00.76 00.47 00.43 00.41 00.47 00.34 00.56 00.24 00.62 00.34
LLaVA-OneVision-7B 34.79 31.56 30.23 34.14 32.61 28.69 13.12 18.41 16.21 22.69 15.34 17.91
Phi-3.5-vision 23.66 32.84 18.90 21.36 30.14 19.10 19.88 36.74 22.40 23.47 30.04 26.06
Pixtral-12B 36.93 37.32 41.17 35.31 38.52 36.05 36.03 30.44 33.32 29.84 35.48 33.32
InternVL2-1B 00.57 01.08 02.02 01.02 00.89 00.37 00.65 00.81 00.96 00.50 00.56 00.54
InternVL2-2B 26.25 25.53 25.76 21.12 26.57 26.98 26.03 24.52 26.49 25.81 31.01 29.33
InternVL2-4B 39.33 40.23 37.80 42.25 43.10 34.57 51.43 41.55 45.96 50.20 54.94 50.34
InternVL2-8B 43.80 44.31 44.53 43.99 46.02 40.43 60.92 46.63 54.53 51.31 56.94 53.88
InternVL2.5-1B 12.82 13.84 09.34 07.24 12.91 16.93 19.87 24.92 19.36 17.94 22.66 30.60
InternVL2.5-2B 31.38 29.79 30.53 23.16 31.75 24.69 36.01 30.13 35.52 27.07 37.01 31.18
InternVL2.5-4B 48.79 53.58 54.52 48.09 52.78 46.46 50.51 48.71 53.45 52.03 53.77 50.12
InternVL2.5-8B 59.03 55.57 59.70 57.16 58.01 50.84 65.21 51.31 61.10 63.54 62.38 60.83
MolmoE-1B 03.83 00.09 00.02 00.02 00.10 00.17 04.22 00.07 00.02 00.07 00.12 00.00
Molmo-7B-O 18.63 17.50 19.68 16.42 19.58 14.99 15.94 19.46 20.93 17.98 24.21 21.68
Molmo-7B-D 28.21 36.47 31.95 26.89 35.57 33.58 37.50 35.90 34.70 33.51 33.04 34.35
Qwen2-VL-2B 02.63 02.88 03.58 03.53 03.34 02.97 00.79 00.73 00.99 00.88 00.71 00.82
Qwen2-VL-7B 40.21 38.96 39.94 46.88 40.11 39.55 47.65 39.51 40.94 48.63 44.68 41.88

GPT-4o-mini-0718 47.60 48.33 51.04 46.15 48.86 43.75 57.50 49.19 51.38 53.76 55.82 54.07
GPT-4o-0513 52.39 51.58 48.78 47.11 47.50 52.68 61.59 59.77 58.08 60.95 61.53 63.74
GPT-4o-0806 50.94 47.21 46.52 42.90 45.84 52.50 62.75 54.23 53.20 51.19 58.50 57.21
GPT-4o-1120 57.47 56.25 54.40 56.11 54.40 57.93 65.91 62.22 63.93 67.96 66.86 68.10
Gemini-1.5-Flash 46.62 55.28 54.31 57.98 57.01 58.74 62.04 54.43 56.89 62.24 66.88 60.72
Gemini-1.5-Pro 38.07 35.08 35.05 36.11 33.21 33.23 56.43 42.24 43.74 48.41 50.40 45.83
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Figure 10: Performance of models on if computed based on other formulations.

To generate the similarity score of a given image-pair with an image-encoder, we compute the cosine
similarity of the representation of each image and scale the scores between 1-10, and round them to
the nearest integer. To generate the criteria-sensitive similarity score, we create the representations
of the image-pair by simply using the representations output by the encoder for each image. On the
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Table 7: Comparison of the MMScore metric (×100) of VLMs on the PBWU-IT (Subset A and B)
benchmark in the sensitive and invariant settings. Models are evaluated across the spatial position
(SP) criterion. Higher scores indicate better performance.

Model PAIRBENCHWUa
PAIRBENCHWUb

Sens. Invar. Sens. Invar.

Chameleon-7B 00.25 00.34 00.23 00.47
LLaVA-OneVision-7B 23.35 22.78 27.38 25.98
Phi-3.5-vision 13.86 12.30 25.67 24.74
Pixtral-12B 05.14 05.04 03.27 04.58
InternVL2-1B 06.29 03.75 15.90 08.31
InternVL2-2B 17.07 14.26 24.46 16.49
InternVL2-4B 15.69 15.69 24.27 22.96
InternVL2-8B 22.40 19.27 29.45 31.46
InternVL2.5-1B 20.80 09.49 16.86 13.23
InternVL2.5-2B 15.36 11.15 19.69 18.42
InternVL2.5-4B 23.90 23.85 29.75 32.45
InternVL2.5-8B 24.16 25.55 24.00 28.22
MolmoE-1B 00.12 00.04 00.02 00.21
Molmo-7B-O 07.53 07.45 07.18 08.29
Molmo-7B-D 09.45 12.26 08.34 11.26
Qwen2-VL-2B 02.65 03.09 05.09 05.86
Qwen2-VL-7B 09.43 09.19 15.99 16.13

GPT-4o-mini-0718 16.18 16.14 16.18 15.30
GPT-4o-0513 11.49 20.48 12.63 20.98
GPT-4o-0806 20.27 31.80 22.97 36.56
GPT-4o-1120 18.97 31.91 20.57 34.99
Gemini-1.5-Flash 27.46 26.54 26.53 32.07
Gemini-1.5-Pro 26.89 27.16 28.57 29.23

other hand, when generating the criteria-invariant score, where the criteria is a specific transformation
(T ), we generate the representation of each image as the average of the representations of the encoder
for k versions of the image where random amounts of T are applied to the image. In our experiments,
we set k = 5.

We report results in Figure 15. We see encoders do better than open-source VLMs most of the time
and are comparable to closed-source models (besides CJ). This shows although significantly smaller,
encoders can be at least as good as VLMs, enabling similarity scoring at a much lower cost. Also,
encoder-generated scores are trivially symmetric as well since the underlying cosine similarity is
symmetric. However, they lack in controllability as they are limited to image-only comparisons and
can only consider criteria that can be applied to the image using augmentations, i.e., spatial position
transform cannot be applied to images for encoders.

C.6 PROMPT DIVERSITY ANALYSIS

To quantify the impact of prompt phrasing on model performance, we extend the visual analysis
presented in Figure 7 (see main text) with the detailed numerical results in Table 8. This table reports
the mean MMScore alongside the standard deviation across multiple prompt templates for each
evaluated model. The data reveals that sensitivity to prompting is not uniform; the standard deviation
varies considerably across different architectures. Furthermore, consistent with the trends observed in
Figure 7, no single prompt template yields universally superior performance. These findings highlight
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Figure 11: Aggregated PAIRBENCH metrics across different versions of InternVL2.5 models.
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Figure 12: Other benchmarks versus PAIRBENCH on 1-RelaxSym.

the inherent variability in model responses and underscore the necessity of utilizing multiple prompt
templates to mitigate selection bias and ensure a robust, fair comparison.
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Figure 13: Other benchmarks versus Cont on PAIRBENCH.
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Figure 14: Other benchmarks versus Smoothness (SM).

Table 8: Model performance across datasets for different prompt templates. Values
are reported as Mean ± Std.

Model Dataset
MMScore 0-Relaxed Smoothness Controllability
(Kendall τ ) Symmetry

InternVL2-8B

COCO 80.69%± 1.02% 76.99%± 5.42% 1.09± 0.05 89.96%± 2.77%

IN100 80.72%± 1.38% 71.68%± 5.21% 1.16± 0.03 89.30%± 3.00%

WU-II 77.98%± 0.64% 47.27%± 8.46% 1.47± 0.05 91.75%± 1.26%

WU-IT 63.11%± 1.06% 100.00%± 0.00% 1.05± 0.26 91.65%± 4.29%

Continued on next page
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Table 8 – continued from previous page

Model Dataset
MMScore 0-Relaxed Smoothness Controllability
(Kendall τ ) Symmetry

InternVL2.5-8B

COCO 86.21%± 0.89% 90.06%± 1.46% 0.99± 0.03 84.41%± 0.10%

IN100 84.71%± 0.64% 88.07%± 0.68% 1.11± 0.03 83.30%± 1.25%

WU-II 81.34%± 0.34% 68.58%± 1.18% 1.71± 0.01 90.96%± 1.03%

WU-IT 64.78%± 2.23% 100.00%± 0.00% 1.33± 0.18 96.31%± 1.87%

Phi3.5-Vision

COCO 73.70%± 5.52% 76.27%± 4.47% 0.88± 0.16 88.86%± 2.54%

IN100 69.08%± 6.68% 73.31%± 2.95% 0.80± 0.19 83.72%± 8.25%

WU-II 52.81%± 9.40% 75.84%± 4.92% 0.29± 0.25 74.99%± 7.75%

WU-IT 52.80%± 2.13% 100.00%± 0.00% 0.97± 0.26 95.03%± 2.24%

Pixtral-12B

COCO 78.57%± 3.67% 58.75%± 9.09% 1.36± 0.13 87.06%± 2.13%

IN100 77.56%± 3.34% 56.67%± 8.57% 1.38± 0.11 86.86%± 2.52%

WU-II 69.53%± 2.16% 40.26%± 3.63% 1.81± 0.05 88.64%± 1.37%

WU-IT 29.35%± 3.46% 18.29%± 1.90% 1.93± 0.06 88.31%± 9.29%

Qwen2.5-VL-32B

COCO 83.40%± 1.92% 78.30%± 2.19% 1.08± 0.05 87.69%± 1.61%

IN100 82.16%± 1.21% 76.59%± 1.04% 1.17± 0.06 87.07%± 1.08%

WU-II 79.59%± 1.48% 63.66%± 1.96% 1.76± 0.04 90.78%± 1.41%

WU-IT 59.21%± 10.09% 26.81%± 24.50% 1.75± 0.12 89.51%± 13.00%

Qwen2.5-VL-3B

COCO 73.55%± 1.37% 73.94%± 1.03% 1.40± 0.06 84.87%± 3.40%

IN100 75.07%± 2.79% 74.06%± 1.93% 1.31± 0.07 81.89%± 2.19%

WU-II 57.15%± 1.38% 42.48%± 2.51% 1.44± 0.03 91.71%± 1.82%

WU-IT 37.94%± 1.78% 51.49%± 8.77% 1.02± 0.12 87.69%± 11.31%

Qwen2.5-VL-7B

COCO 88.56%± 0.31% 89.80%± 1.57% 0.99± 0.04 87.52%± 1.10%

IN100 88.22%± 0.36% 91.06%± 0.96% 0.96± 0.04 85.68%± 1.48%

WU-II 80.42%± 0.54% 70.66%± 1.77% 1.46± 0.03 91.01%± 1.33%

WU-IT 55.61%± 2.52% 59.81%± 3.50% 1.24± 0.10 90.53%± 5.49%

Qwen2-VL-7B

COCO 80.83%± 1.79% 68.48%± 2.26% 1.43± 0.05 91.14%± 1.43%

IN100 80.23%± 2.15% 66.16%± 2.79% 1.38± 0.03 92.24%± 2.34%

WU-II 76.77%± 0.45% 54.57%± 2.18% 1.75± 0.06 89.76%± 1.34%

WU-IT 47.45%± 2.84% 34.87%± 3.40% 1.55± 0.10 94.09%± 3.01%

GPT-4o-mini-0718

COCO 84.37%± 1.14% 69.27%± 2.91% 1.16± 0.04 90.04%± 0.80%

IN100 83.15%± 0.86% 67.28%± 2.67% 1.20± 0.03 89.14%± 1.43%

WU-II 82.45%± 0.39% 53.52%± 2.56% 1.81± 0.03 92.53%± 1.10%

WU-IT 53.77%± 6.44% 21.24%± 5.63% 2.11± 0.05 95.72%± 2.78%

GPT-4o-0513

COCO 85.54%± 1.09% 73.40%± 1.51% 1.03± 0.04 93.29%± 0.48%

IN100 83.80%± 1.20% 70.65%± 1.64% 1.12± 0.02 92.92%± 0.92%

WU-II 82.75%± 0.28% 53.42%± 0.81% 1.78± 0.01 94.73%± 0.49%

WU-IT 52.47%± 4.86% 22.39%± 3.87% 1.99± 0.08 88.03%± 7.59%

GPT-4o-0806

COCO 73.70%± 4.35% 24.38%± 18.29% 0.95± 0.05 82.50%± 5.80%

IN100 72.66%± 3.23% 24.73%± 18.83% 0.98± 0.07 79.32%± 7.92%

WU-II 74.34%± 5.40% 18.06%± 12.27% 1.62± 0.08 85.94%± 4.17%

WU-IT 69.06%± 0.91% 11.89%± 9.10% 2.00± 0.09 85.32%± 7.09%

GPT-4o-1120

COCO 86.58%± 1.00% 77.32%± 1.93% 1.04± 0.03 91.89%± 1.23%

IN100 85.10%± 1.35% 74.24%± 2.39% 1.11± 0.04 91.45%± 0.37%

WU-II 83.82%± 0.33% 59.05%± 1.08% 1.77± 0.03 93.85%± 0.61%

WU-IT 65.78%± 2.80% 28.51%± 4.42% 1.92± 0.09 79.85%± 5.87%

Continued on next page
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Table 8 – continued from previous page

Model Dataset
MMScore 0-Relaxed Smoothness Controllability
(Kendall τ ) Symmetry

Gemini-1.5-Flash

COCO 87.75%± 0.63% 89.08%± 0.71% 0.87± 0.02 85.41%± 1.08%

IN100 87.40%± 0.27% 89.38%± 1.06% 0.91± 0.05 83.86%± 1.01%

WU-II 81.72%± 0.31% 68.75%± 1.43% 1.60± 0.03 91.44%± 1.09%

WU-IT 66.40%± 4.17% 69.39%± 3.51% 1.70± 0.13 94.32%± 2.56%

Gemini-2.0-Flash

COCO 85.79%± 2.56% 75.57%± 8.20% 1.09± 0.13 90.45%± 1.36%

IN100 85.91%± 2.37% 76.99%± 6.52% 1.10± 0.09 89.44%± 1.06%

WU-II 78.08%± 0.96% 51.18%± 1.14% 1.81± 0.03 93.78%± 1.02%

WU-IT 71.12%± 2.08% 51.23%± 4.22% 1.71± 0.05 95.29%± 2.50%

Gemini-1.5-Pro

COCO 90.97%± 0.50% 93.58%± 1.68% 0.76± 0.04 83.31%± 1.47%

IN100 90.99%± 0.79% 93.72%± 0.75% 0.76± 0.02 83.49%± 1.42%

WU-II 80.40%± 1.97% 69.79%± 2.64% 1.41± 0.08 93.26%± 3.55%

WU-IT 68.74%± 3.71% 71.81%± 6.28% 1.37± 0.12 93.86%± 2.05%

D PAIRBENCH DETAILS

D.1 DATASET CREATION

The PAIRBENCH framework takes in a source dataset and creates augmented versions of the data
to obtain data pairs to probe the evaluation skills of a model. In our instances, we use COCO (Lin
et al., 2014), IN100 (Deng et al., 2009) and WhatsUp (Kamath et al., 2023) datasets as the source
for the original data points. We utilize COCO and IN100 as image-only datasets and WhatsUp as
an image-text dataset. We select 500 random images from each of COCO and IN100 and all the
image-text pairs from both subsets provided by the WhatsUp dataset to be used in our instantiation of
PAIRBENCH. Full details of our released datasets are given in Table 9.

To isolate the effect of different data characteristics on model performance, PAIRBENCH creates pairs
of image-image and image-text data that are identical except for one or a few controlled features.
The generated data consists of points from the original dataset paired with their transformed version.
For COCO and IN100, we create a different control sample for each one of the transformations in
{color jitter, rotation, gaussian blur, perspective shift, elastic transformation}, which defines the
characteristic that differs between images. For the data from WhatsUp, we construct the data pairs by
either only using the ‘spatial position’ transform, or ‘spatial position’ transform in addition to one of
the previous five characteristics to additionally assess coupling effects. However, since transforms
are not well-defined for texts, only ‘spatial position’ transform is applied for the image-text pairs.
Note that the image-image pairs from WhatsUp are the most challenging since they all have at least
the ‘spatial position’ transform, which is a well-known blind-spot of VLMs as shown by previous
literature (Kamath et al., 2023; Wang et al., 2024a). As a result, we end up creating five image-image
sub-datasets for each of COCO and IN100, six subsets for each of the two subsets of WhatsUp, using
each of the transformations, and one image-text sub-dataset for each of the subsets of WhatsUp. The
details of the transforms applied to each category are shown in Figure 3.

Next, for each original image, we construct three types of pairs: an identical, a transformed, and an
irrelevant pair. In all three versions of these pairs, the first data point is the original (non-transformed)
image. For the ‘identical’ pair, the second data point is another version of the image with 95% of its
original size for the image-image pair and the correct caption for the image-text pair. The second data
point in the ‘transformed’ pair is the original image (caption) with the transformation applied to it for
the image-image (image-text) pair. Finally, the ‘irrelevant’ pair’s second data point is a transformed
version of a random image (caption) from the rest of the dataset.

Equipped with the constructed control samples, PAIRBENCH prompts the VLM to score the similarity
of each data pair based on a set of criteria. The criteria consists of the conditions indicating whether
the model under examination should be ‘sensitive’ or ‘invariant’ to the transformations applied for
that specific sub-dataset. These two settings (sensitive or invariant) measure how well each model
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Figure 15: A simple vision encoder outperforms open-sourced VLMs and has on par performance
with closed sourced models which are much more expensive, for image-image tasks (results combine
PBCOCO and PBIN100), and similar pattern is observed across different transformations.

Table 9: Information of different splits in PBCOCO, PBIN100, PBWU-II, and PBWU-IT.
Modality Source Number of Selected Splits New Data Points / Total Data-Pair Comparisons

PBII

COCO 500

CJ 1000 / 3000
R 1000 / 3000

ET 1000 / 3000
PS 1000 / 3000
GB 1000 / 3000

IN100 500

CJ 1000 / 3000
R 1000 / 3000

ET 1000 / 3000
PS 1000 / 3000
GB 1000 / 3000

WhatsUp (subset A) 418

SP 0 / 3344
SP & CJ 1254 / 3344
SP & R 1254 / 3344

SP & ET 1254 / 3344
SP & PS 1254 / 3344
SP & GB 1254 / 3344

WhatsUp (subset B) 408

SP 0 / 3264
SP & CJ 1224 / 3264
SP & R 1224 / 3264

SP & ET 1224 / 3264
SP & PS 1224 / 3264
SP & GB 1224 / 3264

PBIT
WhatsUp (subset A) 418 SP 1254 / 3344
WhatsUp (Subset B) 408 SP 1224 / 3264

In total - 1826 all splits 22390 / 69648

can recognize the differences between the data pair and follow the prompt’s criteria. If a model can
successfully capture a specific feature, it will have no problem being variant or invariant to it; however,
if it cannot detect it or has a bias towards a feature, it will favor being sensitive or invariant to that
feature over its opposite. Using a human study, described in Appendix D.2, the ground-truth score of
the ‘identical’ and ‘irrelevant’ pair are set to 10 and 1, respectively, in both ‘sensitive’ and ‘invariant’
settings. However, for the ‘transformed’ pair, based on the human study we set the score 10 in the
‘invariant’ version, and ‘6’ in the ‘sensitive’ version of the prompt. To make sure the performance
gap between models is not merely a consequence of biased prompt wording, PAIRBENCH comes
with five template prompts with different lengths and wordings but with the same semantic meaning,
that are randomly selected for each data pair, to make sure the prompting does not affect the model’s
performance. These prompt templates are reported in Appendix D.3.

Ultimately, we end up with 4 different datasets created by PAIRBENCH: PBCOCO, PBIN100, PBWU-II,
and PBWU-IT. PBCOCO and PBIN100 compare and score image-pairs and have 5 splits (Color Jitter
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(CJ), Rotation (R), Gaussian Blur (GB), Perspective Shift (PS), and Elastic Transformation (ET).
PBWU-II consists of 2 subsets, each with 6 splits; one split with only the Spatial Position transform
(SP), and the rest with SP combined with one of the previous five transformations (CJ, R, GB, PS,
and ET). PBWU-IT consists of only the SP split for each of the two subsets in the WhatsUp dataset.
Details of each split in Appendix D.

D.2 HUMAN STUDY FOR GROUND TRUTH SCORES

To validate the alignment between our ground-truth scores and human perception, we conducted a
human study on image-image pairs from PBIN100. We excluded image-text comparisons due to their
trivial nature for human judgment. For example, given an image showing a book to the left of a cap,
comparing it to the sentence “book left of cap” (identical), “book right of cap” (transformed), or “can
behind candle” (irrelevant) would result in nearly unanimous responses, offering limited insight.

Our study involved 76 volunteer participants and covered 300 image pairs sampled across three trans-
formation types—color jitter, perspective shift, and rotation, under both “sensitive” and “invariant”
settings. Results from this evaluation led us to adjust the ground-truth score of transformed pairs
in the “sensitive” condition to 6 (on a 1–10 scale), as this better captured the perceptual similarity
reported by humans. Furthermore, the study confirmed that “identical” pairs consistently received the
highest scores, while “irrelevant” pairs received the lowest, supporting the validity of our scoring
protocol. A screenshot of the study can be seen in Figure 16 and the results are reported in Table 10.

To assess the consistency of these judgments and account for potential subjectivity, we calculated
Krippendorff’s alpha Hayes & Krippendorff (2007) on the gathered human data following recent
methodologies Wiles et al. (2024); Hu et al. (2023). We obtained an alpha of 0.9396, which indicates
strong reliability in the conclusions drawn from the study. Additionally, we measured the leave-one-
rater-out noise ceiling using Spearman correlation and achieved an average of 0.9166. This further
confirms that the raters exhibit high agreement and that individual human judgments are highly
predictable from the average of the group.

Table 10: Human similarity scores (mean ± std) across different transformation settings, which we
used to set our ground truth scores.

Pair Type Colorjitter Perspective Rotate
Sens Invar Sens Invar Sens Invar

Identical 9.8 ± 0.53 9.95 ± 0.23 9.82 ± 0.42 9.9 ± 0.32 10.0 ± 0.0 9.89 ± 0.51
Transformed 5.5 ± 2.3 9.68 ± 0.85 6.89 ± 1.97 9.06 ± 1.33 6.31 ± 2.01 9.36 ± 1.01
Irrelevant 1.35 ± 0.74 1.42 ± 0.67 1.33 ± 0.81 1.61 ± 1.17 1.27 ± 0.64 1.23 ± 0.47
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Figure 16: Example screenshot of the platform used consisting of the type of questions that partici-
pants were asked during the study. In the current sample, although both images depict birds, given
that they are not a transformation (e.g., rotation) of each other, they represent an irrelevant pair; so
the ground truth score would be the minimum score.
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D.3 PROMPT TEMPLATES FOR DIFFERENT PAIRBENCH DATASETS

We provide the 5 different templates that we choose at random for each data pair for the image-image
and image-text prompts. The following are the templates we utilize for PBCOCOand PBIN100, and
PBWU-II, i.e., the image-image pairs.

Image-Image Prompt Template V1

User prompt: You are tasked with evaluating the similarity between two images while paying
attention to the following conditions: {conditions}. Your goal is to judge the similarity
of the images overall, where satisfying the conditions increases the similarity score. If the
images are identical but fail to meet any of the conditions, they should still receive a higher
score than completely unrelated images. Provide a similarity score on a scale from 1 to 10,
where 1 represents entirely dissimilar images and 10 represents identical images that satisfy
all conditions. Ensure your response is strictly in the following format:

Score: <1-10>
Reason: <reason for score>

Do not include anything else in your response. What score would you assign to this pair of
images? "data1" "data2".

Image-Image Prompt Template V2

User prompt: As a similarity evaluator, your responsibility is to assess the similarity of
the given images while considering these conditions: {conditions}. The similarity
score should reflect both how well the images align with the conditions and their overall
resemblance. Images that are identical but do not meet the conditions should receive a
moderate score, while completely unrelated images should receive the lowest score. Provide
your score on a scale of 1 to 10, with 10 being identical images that fully meet the conditions.
Ensure your response is in the following format:

Score: <1-10>
Reason: <reason for score>

Provide nothing else. What is your score? "data1" "data2"

Image-Image Prompt Template V3

User prompt: Evaluate the similarity of the images based on the following conditions:
{conditions}. The score should take into account how well the images align with these
conditions, as well as their overall resemblance. Even if the images are identical but fail to
meet the conditions, they should still receive a higher score than completely different images.
Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images
that fully satisfy the conditions. Respond only in this format:

Score: <1-10>
Reason: <reason for score>

Nothing else should be included. What score would you give? "data1" "data2"

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Image-Image Prompt Template V4

User prompt: Judge the similarity of these images based on: {conditions}. The similarity
score should reflect both the overall resemblance of the images and how well they satisfy the
conditions. Identical images that do not meet the conditions should still score higher than
completely unrelated images. Provide a score on a scale of 1 to 10, with 1 being no similarity
and 10 being identical images that satisfy all conditions. Respond strictly in this format:

Score: <1-10>
Reason: <reason for score>

Do not include additional text. What’s your rating? "data1" "data2"

Image-Image Prompt Template V5

User prompt: Rate the similarity of these images on a scale of 1 to 10 while considering
{conditions}. The score should account for both how well the images satisfy the condi-
tions and their overall resemblance. If the images are identical but do not meet the conditions,
they should still score higher than unrelated images. Your response must follow this exact
format:

Score: <1-10>
Reason: <reason for score>

Provide nothing else. What’s your score? "data1" "data2"

And these are the image-text versions for PBWU-IT:

Image-Text Prompt Template V1

User prompt: You are assigned the task of determining how accurately a text descrip-
tion represents an image of two objects. Pay special attention to the following conditions:
{conditions}. Your goal is to assess the alignment between the image and the text, where
adherence to the conditions increases the similarity score. If the text partially describes the
image but fails to meet specific conditions, it should still score higher than a text entirely
unrelated to the image. Assign a similarity score on a scale from 1 to 10, where 1 signifies no
correlation, and 10 denotes perfect alignment satisfying all conditions. The data pair (text
and image) will follow this prompt. Respond strictly in the following format:

Score: <1-10>
Reason: <reason for score>

What score would you assign to this text-image pair? "data1" "data2".

Image-Text Prompt Template V2

User prompt: Figure out how well this image matches the description provided. The image
shows two objects, and the text is meant to describe how they’re arranged. Look at these
specific conditions: {conditions}. If the text captures some parts of the image but misses
others, it should still get a better score than something totally off. Score this match on a scale
of 1 to 10, where 1 means there’s no match and 10 means the description nails it and matches
every condition perfectly. The text and image will follow this prompt. Answer in this format
only:

Score: <1-10>
Reason: <reason for score>

What’s your score? "data1" "data2".
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Image-Text Prompt Template V3

User prompt: Evaluate the degree to which a text description accurately represents an
image featuring two objects, taking into account the following conditions: {conditions}.
Assign a score based on how well the image-text pair matches, where: - A perfect description
that satisfies all conditions scores 10. - Texts that partially align with the image but fail to
meet conditions should still score higher than completely unrelated ones. The data pair will
follow this prompt. Provide your score on a scale of 1 to 10 using the exact format below:

Score: <1-10>
Reason: <reason for score>

What score would you give? "data1" "data2".

Image-Text Prompt Template V4

User prompt: You are tasked with reviewing how well a text description aligns with an image
of two objects. The score should reflect not only the accuracy of the alignment but also
how well the description satisfies the following conditions: {conditions}. Even if the
text description captures some parts of the image while failing the conditions, it should still
receive a higher score than a completely irrelevant description. The text and image will be
provided below. Assign a score on a 1 to 10 scale, where 1 is no similarity and 10 is perfect
alignment that meets all conditions. Answer only in this format:

Score: <1-10>
Reason: <reason for score>

What score would you assign? "data1" "data2".

Image-Text Prompt Template V5

User prompt: Assess the degree to which a text description corresponds to an image of two
objects, taking into account the following conditions: {conditions}. The scoring should
reflect: - A perfect alignment with the image that satisfies all conditions merits a score of 10.
- Descriptions that partially match the image but fail to meet certain conditions should still
receive a higher score than entirely unrelated descriptions. - A score of 1 should be reserved
for cases where no correlation exists between the text and the image. The text and image pair
will be provided below. Provide your evaluation using the following format:

Score: <1-10>
Reason: <reason for score>

What score would you assign? "data1" "data2".

E LLM USAGE

LLMs were used in this work as assistive tools, but did not contribute as co-authors. Their usage was
limited to the following areas:

1. Benchmark Evaluations: Since PairBench is a benchmark paper, we employed LLMs as
evaluators to score and rank model outputs under different conditions.

2. Automation of LATEX Tables and Editing: LLMs were used to automate the generation
of LATEX tables summarizing results and ablations, as well as for minor editing tasks (e.g.,
reformatting sections, ensuring consistent style).

3. Writing Assistance: LLMs assisted with grammar checking, improving sentence clarity,
and smoothing transitions between sections. All scientific claims, analyses, and conclusions
were written and verified by the human authors.
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