PAIRBENCH: ARE VISION-LANGUAGE MODELS RELI-ABLE AT COMPARING WHAT THEY SEE?

Anonymous authorsPaper under double-blind review

000

001

002003004

006

008 009

010 011

012

013

014

015

016

018

019

021

024

025

026

027 028

029

031

033

034

037

038

040

041

043

044

046

047

048

051

052

ABSTRACT

Understanding how effectively large vision language models (VLMs) compare visual inputs is crucial across numerous applications, yet this fundamental capability remains insufficiently assessed. While VLMs are increasingly deployed for tasks requiring comparative judgment, including automated evaluation, re-ranking, and retrieval-augmented generation, no systematic framework exists to measure their performance in these scenarios. We present PAIRBENCH, a simple framework that evaluates VLMs as customizable similarity tools using widely available image datasets. Our approach introduces four key metrics for reliable comparison: alignment with scores derived from human annotations, consistency across pair ordering, distribution smoothness, and controllability through prompting. Our analysis reveals that no model consistently excels across all metrics, with each demonstrating distinct strengths and weaknesses. Most concerning is the widespread inability of VLMs to maintain symmetric similarity scores. Interestingly, we demonstrate that performance on our benchmark strongly correlates with popular benchmarks used for complex reasoning tasks, while providing additional insight into controllability, smoothness and ordering. This makes PAIRBENCH a unique and comprehensive framework to evaluate the performance of VLMs for automatic evaluation, while offering an efficient predictor of model capabilities for more complex tasks. Our evaluation code and dataset are available to the research community at https://anonymous.4open.science/r/pairbench-6C08.

1 Introduction

Vision language models (VLMs) have progressed to the point of having impressive performance on a wide array of tasks (Achiam et al., 2023; Laurençon et al., 2024; Reid et al., 2024; Abdin et al., 2024; Wang et al., 2024c; Grattafiori et al., 2024), ranging from summarization and visual question answering to image captioning and common sense reasoning (Kembhavi et al., 2016; Johnson et al., 2017; Zellers et al., 2019; Lu et al., 2023; Chen et al., 2024b; Liu et al., 2025). While human evaluation remains the gold standard for assessing model outputs, it is expensive, time-consuming, and prone to inconsistency due to annotator variance (Liu et al., 2019; Knox et al., 2024; Feng et al., 2024). Consequently, practitioners increasingly deploy more powerful VLMs as automated evaluators across diverse applications including model assessment, content ranking, and information retrieval systems (Mañas et al., 2024; Liu et al., 2024a; 2025).

The efficacy of VLMs in these comparative tasks fundamentally depends on their ability to function as reliable similarity kernels, consistently measuring the relevance between data pairs regardless of context. However, this critical capability remains insufficiently examined. Current evaluation approaches either fail to isolate comparison abilities or require expensive expert validation, and little to no guidance exists when selecting models for comparison-dependent tasks. As illustrated in Figure 1, even widely used and highly capable commercial models like GPT-40-1120 and Gemini-1.5-Pro demonstrate concerning inconsistencies when comparing visual inputs, sometimes failing to follow similarity assessment instructions or producing asymmetric scores for identical pairs presented in different orders, which exemplifies the extent to which evaluation of comparison skills are lacking.

To address this gap, we introduce PAIRBENCH, a framework designed to evaluate VLMs as similarity estimators using readily available datasets and straightforward transformation techniques. Our approach optimizes the signal-to-evaluation cost ratio by focusing on four essential metrics: **MMScore**

Figure 1: Image order change; prompting GPT-40-1120 and Gemini-1.5-Pro with identical text and image prompts, differing only in image order, leads to varying predicted scores. *Auto evaluators defined by these models will yield drastically different judgments after minor changes in the prompt.* Detailed failure cases of state-of-the-art models are reported in Appendix A.

(alignment with human judgment), ε -RelaxSym (consistency across pair ordering), Smoothness (distribution of scores), and Controllability (response to prompt instructions). We instantiated PAIRBENCH using easily accessible datasets. Namely, ImageNet (Deng et al., 2009), MS-COCO (Lin et al., 2014), and WhatsUp (Kamath et al., 2023) seeded the evaluation suite we built. We further conducted a human study to establish ground truth similarity scores that enable direct measurement of how well model assessments align with human perception. By applying controlled transformations to create synthetic paired images with specific feature differences, PAIRBENCH enables precise examination of model biases and strengths in detecting various types of visual differences.

We carried out an extensive evaluation covering several state-of-the-art VLMs, both proprietary and open-source, multiple dataset configurations, and different prompt templates. Results reveal not only significant variations in comparison capabilities across different architectures and training approaches, but also show concerning asymmetries in how models process the same image pairs when presented in different orders, and highlight which models can be effectively controlled through prompt instructions. Remarkably, despite its simplicity, the performance on PAIRBENCH strongly correlates with results on complex reasoning benchmarks (Yue et al., 2024; Lu et al., 2023; Chen et al., 2024b; Guan et al., 2024; Liu et al., 2024b; Kembhavi et al., 2016), suggesting that many advanced tasks ultimately rely on models functioning as effective similarity kernels.

Our contributions are as follows:

- We propose PAIRBENCH, a framework for evaluating VLMs as similarity kernels, which
 does not require additional expert annotations and is cheap to instantiate.
- We further create and release¹ four instantiations of PAIRBENCH using popular datasets -ImageNet, MS-COCO, and WhatsUp - which consist of 70K data pairs for comparisons.
- We carry out a broad benchmarking of several closed- and open-source VLMs on the
 different configurations within our proposed dataset instantiations to show how models
 differ and give insight into what extent they can be trusted to act as auto evaluators on
 image-image and image-text data pairs.
- Lastly, we report the correlations of the results of our framework with popular benchmarks
 and show the ability to compare, captured by the metrics in PAIRBENCH, have predictive
 power of performance on several tasks and can act as a low-cost surrogate during training or
 validation of VLMs.

¹https://huggingface.co/datasets/feiziaarash/pairbench

Figure 2: Dataset creation pipeline for the image-image datasets, i.e., PB_{COCO}, PB_{IN100}, and PB_{WU-II}. Each original image is used to create three pairs of image: identical, transformed, and irrelevant. Finally, based on the human study, each pair is scores depending on the condition of the prompt.

2 PairBench

2.1 Dataset Creation

To evaluate how well vision-language models can assess similarity under controlled transformations, we construct a dataset using the PAIRBENCH framework, illustrated in Figure 2. For each original image, we generate three types of pairs: (1) Identical pairs where the second image is a near-duplicate, (2) Transformed pairs where a specific transformation (e.g., color jitter or spatial shift) is applied, and (3) Irrelevant pairs with unrelated content. We then gather similarity judgments from over 70 human annotators under two distinct conditions: invariant, where models should ignore transformations and focus on semantic similarity, and sensitive, where models should penalize such transformations. These human ratings verify the assignment of ground-truth similarity scores: both identical and irrelevant pairs are assigned fixed values of 10 and 1, respectively, while transformed pairs receive a score of 10 under invariance and 6 under sensitivity.

The framework is instantiated across image-only datasets (COCO, IN100) and image-text datasets (WhatsUp), using five standard image transformations plus a spatial position shift known to challenge VLMs. Full construction details, including transformation splits, prompt templates used to reduce linguistic bias, and details of the human study procedure, are provided in Appendix D.

2.2 METRICS

To measure the reliability of VLMs in scoring data pairs, we define four metrics that we measure across datasets and models: MMScore, ε -RelaxSym, Smoothness (SM), and Controllability (Cont).

We adopt the following notation to formulate the metrics: we denote the VLM being evaluated as \mathcal{M} and the condition, which determines if the prompt instructs the model to be sensitive or invariant to a visual feature, as $C \in \{\mathtt{sens},\mathtt{inv}\}$. Finally, given a dataset $\mathcal{D}_N = \{(d_1,d_2),(d_3,d_4),\ldots,(d_{2N-1},d_{2N})\}$, we denote the similarity score of a data pair $(d_i,d_j) \in \mathcal{D}_N$ returned by an VLM (\mathcal{M}) for a given condition (C) as:

$$s_{\mathcal{M}}^{C}(d_i, d_j) := \mathcal{M}(C, d_i, d_j),$$

where (d_i,d_j) could be an image-image or image-text pair. Note that we instruct the model to generate the output in a structured format to make sure the predicted score is parsable from the model output. If $s_{\mathcal{M}}^C(d_i,d_j)$ is valid, it would fall in the set $\mathcal{V}=[1,10]$. However, models often do not consistently follow the details of the prompt and may produce scores not in \mathcal{V} or outputs that do not satisfy the output format, in which case we set $s_{\mathcal{M}}^C(d_i,d_j)=-1$. Finally, to evaluate a model \mathcal{M} on \mathcal{D}_N given condition C, we create and annotate the set of all its outputs as:

$$S_{\mathcal{M}}^{C}(\mathcal{D}_{N}) = \left\{ s_{\mathcal{M}}^{C}(d_{i}, d_{j}) \mid (d_{i}, d_{j}) \in \mathcal{D}_{N} \cup \text{rev}(\mathcal{D}_{N}) \right\},\,$$

where $\text{rev}(\mathcal{D}_N) = \{(d_2, d_1), (d_4, d_3), \dots, (d_{2N}, d_{2N-1})\}$ are the data pairs in reverse order.

Figure 3: Examples of transformations (green boxes) applied to the original data points (gray boxes) of each subset instantiated with PAIRBENCH. The first row shows the different splits of PB_{COCO} and PB_{IN100} , the second row for PB_{WU-II} , and the third for PB_{WU-IT} .

2.2.1 MMSCORE

We first introduce *MMScore*, the main metric of PAIRBENCH, which measures the alignment between model predictions and scores derived from human assessments. To this aim, we utilize Kendall's rank correlation coefficient (Kendall, 1938) between the predicted and the ground-truth scores. Instead of accuracy or squared error, we consider *MMScore* as we do not prompt the VLM with examples of the correct scores and hence cannot expect it to predict them directly. In other words, *MMScore* focuses on whether the VLM's scores are consistent with the ranking of the ground-truth scores without penalizing outputs that do not exactly match in magnitude. The better a model preserves the relative ordering and variance in the ground-truth scores, the better it is able to capture that characteristic. Hence we write,

$$\textit{MMScore}(\mathcal{M}, C, \mathcal{D}_N) = \mathsf{KT}(S^C_{\mathcal{M}}(\mathcal{D}_N), \mathit{GT}_C(\mathcal{D}_N)),$$

where KT(.,.) is the Kendall's Tau and $GT_C(.)$ is the ground truth of the input dataset considering the condition of C. We further explore other rank-based metrics in Appendix C.2 and observed Kendall's Tau is the most suitable for this metric.

2.2.2 ε -RelaxSym

The second metric we introduce aims to evaluate how consistent models are with respect to input order. This metric captures a fundamental characteristic when VLMs are used as re-rankers or automatic evaluators. Surprisingly, however, we found that most models do not satisfy exact symmetry, i.e., the equality of sim(a,b) and sim(b,a). We thus introduce ε -RelaxSym, which tolerates a difference of ε between the scores that should be equal. More specifically, to analyze the symmetry of VLMs on a dataset \mathcal{D}_N , we compute the ε -RelaxSym of (M) on \mathcal{D}_N :

$$\varepsilon\text{-RelaxSym}(\mathcal{M}, \mathcal{D}_N) = \frac{1}{N} \sum_{(d_i, d_j) \in \mathcal{D}_N} \text{SoftEq}_\varepsilon(\mathcal{M}, d_i, d_j),$$

where SoftEq_{ε}(\mathcal{M}, d_i, d_j) is defined as:

$$\operatorname{SoftEq}_{\varepsilon}(\mathcal{M}, d_i, d_j) = \begin{cases} \mathbb{1}(|s^C_{\mathcal{M}}(d_i, d_j) - s^C_{\mathcal{M}}(d_j, d_i) \leq \varepsilon|), & s^C_{\mathcal{M}}(d_i, d_j), s^C_{\mathcal{M}}(d_j, d_i) \in \mathcal{V}, \\ 0, & \text{otherwise}. \end{cases}$$

Throughout this paper, we set $\varepsilon=1$ and provide ablation studies covering other cases in Figure 9 in the Appendix.

2.2.3 **SMOOTHNESS**

We aim to measure how smooth the kernels induced by VLMs are. For instance, a non-smooth kernel would assign scores such that pairs are either exactly the same or completely different, while a smoother kernel produces more nuanced distinctions. We measure smoothness via the diversity of the predicted scores. Given $S_{\mathcal{M}}^{C}$, smoothness (SM) is computed as:

$$SM(\mathcal{M}, \mathcal{D}_N, C) = Ent(\{s \mid s \in S^C_{\mathcal{M}}(\mathcal{D}_N) \text{ and } s \in \mathcal{V}\}),$$

where Ent(.) is the entropy of a set relative to its support, i.e., the set of candidate inputs.

2.2.4 CONTROLLABILITY

We measure how **responsive to instructions** models are. To do so, we define controllability based on the difference in *MMScore* between the sensitive and invariant settings. The more controllable a model is, the smaller the discrepancy observed between the sens and invar settings. Hence, when measuring the controllability on \mathcal{D}_N for a model \mathcal{M} is defined as

$$Cont(\mathcal{M}, \mathcal{D}_N) = 1 - \frac{|\mathit{MMScore}(\mathcal{M}, \mathtt{sens}, \mathcal{D}_N) - \mathit{MMScore}(\mathcal{M}, \mathtt{inv}, \mathcal{D}_N)|}{\sqrt{(\mathit{MMScore}(\mathcal{M}, \mathtt{sens}, \mathcal{D}_N) \times \mathit{MMScore}(\mathcal{M}, \mathtt{inv}, \mathcal{D}_N))}}$$

Figure 4: Best models performances on PB_{COCO} , PB_{IN100} , PB_{WU-II} , and PB_{WU-IT} . No model dominates the others as a similarity kernel, hence showing the limitation of defaulting to a single model as a judge for every task and dataset. Note the full symmetry of Phi-3.5-vision, LLaVA-OneVision-7B, and InternVL models on PB_{WU-IT} are due to the lack of flexibility in the prompt structure to take the image anywhere but the beginning.

3 EVALUATION RESULTS

3.1 EXPERIMENTAL SETTING

We choose a comprehensive set of open- and closed-source vision-language models and evaluate them using the instantiations of PAIRBENCH. From the openly available models, we evaluated Chameleon-7B (Lu et al., 2024), LLaVA-OneVision-7B (Li et al., 2024), Pixtral-12B (Agrawal et al., 2024), Phi-3.5-vision (Abdin et al., 2024), four model sizes (1B, 2B, 4B,

and 8B) of InternVL2 (Wang et al., 2024c), four model sizes (1B, 2B, 4B, and 8B) of InternVL2.5 (Chen et al., 2024c), two capacities (2B and 7B) of Qwen2-VL (Wang et al., 2024b), two capacities (3B and 7B) Qwen2.5-VL (Hui et al., 2024), and three versions (MolmoE-1B, Molmo-7B-O, and Molmo-7B-D) of Molmo (Deitke et al., 2024).

We also considered commercial grade models and benchmarked four versions of GPT (Achiam et al., 2023)(GPT-5, GPT-40-0513, GPT-40-0806, GPT-40-1120), GPT-40-mini-0718, and four versions of Gemini (Reid et al., 2024) (Gemini-1.5-Flash, Gemini-1.5-Pro, Gemini-2.0-Flash, Gemini-2.5-Pro). Note that we consider multiple versions of the same architecture, as opposed to using the newest/largest version, to understand better how model capacity affects each of the metrics. We provide an extended analysis of different model versions in Appendix C.3. We run all open-source models on a single NVIDIA H100 GPU using greedy sampling for inference. For closed-source models, we use API access through either OPENROUTER² or OpenAI³, applying the default inference hyperparameters provided by the respective platforms.

Also note that, since PAIRBENCH aims to evaluate VLMs as similarity kernels on image-only or text-image pairs, we do not evaluate text-only reasoning models such as OpenAI-o1 or DeepSeek-R1 (Guo et al., 2025). Further, we do not evaluate Llama3.2-11B (Grattafiori et al., 2024) as its official implementation on HuggingFace⁴ does not support Flash Attention (Dao et al., 2022) and inference was prohibitively slow. As a result, we excluded them from our final results.

Table 1: Aggregated *MMScore*, *1-RS*:1-RelaxSym, *SM*, and *Cont* over all four data splits. No model performs the best across all metrics, showing the importance of PAIRBENCH to rank models based on different abilities.

Model	MMScore(%)	1-RS(%)	SM	Cont(%)
Phi-3.5-vision	62.45	75.07	1.44	90.86
Qwen2-VL-7B	74.94	84.45	1.63	91.56
Qwen2.5-VL-7B	81.51	90.77	1.26	89.62
InternVL2-8B	77.07	74.63	1.32	91.62
InternVL2.5-8B	81.50	95.21	1.42	88.63
Pixtral-12B	68.61	74.84	1.67	88.44
GPT-40-1120	82.86	91.50	1.52	92.28
GPT-5	83.63	96.51	1.39	93.71
Gemini-1.5-Pro	83.44	88.72	1.17	89.93
Gemini-2.5-Pro	80.80	83.67	1.44	90.7

Table 2: Spearman correlation of different metrics of PAIRBENCH with performance on other benchmarks for 23 models. *MMScore* has the highest correlation, making it the main metric.

metre.				
Metric	MMScore	1-RS	SM	Cont
AI2D	79%	30%	26%	77%
HallusionBench	80%	36%	32%	67%
MMBench	77%	29%	33%	71%
MMMU	90%	34%	31%	80%
MMStar	81%	20%	33%	79%
MMVet	81%	28%	38%	68%
MathVista	73%	18%	35%	74%
OCRBench	51%	8%	37%	52%

Figure 5: Closed- and open-source models perform comparable on image-text tasks. From the left to the right, the first three plots are image-image tasks, while the last is an image-text comparison task.

3.2 RESULTS

We analyze and plot the results of the best models in Figure 4 and provide an aggregated version of the metrics over all four datasets in Table 1. We aggregate different splits/datasets by taking the average

²https://openrouter.ai/

³https://platform.openai.com/

⁴https://huggingface.co/

of them to give each sub-dataset equal importance in the final number. The full set of benchmarking results of all models for PAIRBENCH on all datasets and metrics are reported in Appendix C.

3.2.1 General Observations

As illustrated in Figure 4 and Table 1, we observe no model, whether closed- or open-source, is the best performer across all four metrics. Moreover, we further observe that for each metric, no model is the 'best' similarity kernel across the four different datasets either. This shows how features of the dataset and also the metrics a user might want to optimize play a crucial role in which VLM to choose as the best similarity kernel/judge. For instance, among open-source models, although InternVL2.5-8B outperforms the rest in *MMScore*, it is less controllable and smooth than Qwen2-VL-7B or LLaVA-OneVision-7B.

When considering PAIRBENCH's main metric, MMScore, we notice that the performance of models is generally better on image-image pairs rather than image-text pairs. Furthermore, as seen in Figure 5, we observe that although open-source VLMs are roughly comparable to closed-source ones on PB_{WU-IT} , the gap between the two groups is larger in the image-image pairs. However, InternVL2.5-8B is a strong competitor to closed-source models considering all four metrics and could potentially be used as a substitute to closed-source models as a similarity kernel based on the results reported in Table 1.

Interestingly, we further observe a pattern regarding GPT-40-1120, a common default judge used in the literature, and its lower cost version, GPT-40-mini-0718; they both suffer from low 1-RelaxSym when comparing image-text pairs, and the cheaper model's *Cont* and *SM* are higher or comparable to that of the expensive one across datasets. Another fascinating result we observed was the effect the scaling effect on different metrics of PAIRBENCH for a single model family; the larger a model gets, the better it performs on *MMScore* and 1-RelaxSym. However, that does not hold for controllability and smoothness. This emphasizes the importance of PAIRBENCH in analyzing the capabilities of models, both open and closed-source, as similarity kernels to be better used as judges. We analyze and plot these results further in Appendix C and show further qualitative examples of the errors the best VLMs make in these tasks in Appendix A.

3.2.2 CORRELATION WITH BENCHMARKS

To showcase the effectiveness of our metrics and PAIRBENCH in predicting reasoning performance, we compute the Spearman correlation with respect to other popular benchmarks used in the literature. By showing correlations of our metrics with these benchmarks, we show that although the PAIRBENCH framework introduces simple and cost-efficient methods focused on evaluating the ability to compare due to prompted VLMs, these metrics are predictive of an VLM's performance on other tasks, and can provide an alternative for model ranking and validation during development.

We collect all the model performances from the OPENVLM LEADERBOARD(Duan et al., 2024) and filter out the models we evaluate, resulting in all 27 (including different versions/capacities of closed- and open-source) models. By filtering out the benchmarks that have evaluation scores for all 27 models on OpenVLM, we end up with AI2D (Kembhavi et al., 2016), HallusionBench (Guan et al., 2024), MMBench (Liu et al., 2025), MMStar (Chen et al., 2024b), MMMU (Yue et al., 2024), MathVista (Lu et al., 2023), MM-Vet (Yu et al., 2023), OCRBench (Liu et al., 2024b). Each metric is aggregated for each model across all the configurations created by PAIRBENCHbefore computing correlations. Namely, we aggregate all features within each dataset (e.g., CJ, SP, etc.) and across all datasets (e.g., PB_{COCO}, PB_{WU-II}) and end up with an aggregate result per metric for each model.

As seen in Table 2, all metrics in PAIRBENCH have a high positive correlation with performances in benchmarks. More specifically, we observe that *MMScore* has strong correlations with all benchmarks, indicating that it aligns closely with overall model performance. Hence, we select it as the main metric of PAIRBENCH. Furthermore, when analyzing the correlations of PAIRBENCH's other metrics with all benchmarks, we find that the strength of correlation reflects how much of the base skill captured by the metric is required by each benchmark. For example, HallusionBench shows the highest correlation with 1-RelaxSym, which is notable since HallusionBench focuses primarily on evaluating hallucinations in VLMs. This suggests a connection between lack of symmetry and hallucination. Another example is the highest and lowest correlation of *Cont* with MMMU and OCRBench, respectively. MMMU's prompt mostly contain complex questions and multiple answers, whereas OCRBench features simple prompts for most questions. We hypothesize that since *Cont*

Figure 6: The main metric of PAIRBENCH, *MMScore*, strongly correlates with previous multimodal benchmarks, showcasing its predictive power of a model's performance at a lower cost to create.

measures how well models follow the prompt, these differences explain the highest and lowest correlations observed with MMMU and OCRBench.

Note that measuring comparison skills incurs a low cost as it does not require expert-generated annotations. Our results suggest that metrics that assess these skills can serve as a low-cost surrogate of performance in various tasks: an efficient alternative to model selection. We further show scatter plots that highlight correlations in Figure 6, and more comprehensively in Figure 12 in Appendix C.

3.2.3 PROMPT SELECTION

We show the *MMScore* performance of models across datasets in Figure 7 for various prompt templates. As evident from the plots, no single prompt template consistently achieves the best performance across all models. Some models perform better with certain phrasings, while others are negatively affected by the same templates. This variation highlights the significant influence of prompt wording on model behavior. Recent work (Polo et al., 2024b) has emphasized the importance of using diverse prompts. Similarly, our randomized approach offers empirical support for that recommendation. Evaluating models with multiple prompt templates and averaging the results eliminates prompt-induced variance and leads to more reliable and fair comparisons. We recommend this strategy as a stronger and more principled standard for future benchmarking of prompted models, whether multimodal or otherwise.

4 RELATED WORK

Recent work has explored using language models as automated evaluators in NLP and vision-language domains, with approaches like GPTSCORE and G-eval (Fu et al., 2023; Liu et al., 2023) showing alignment with human preferences. However, concerns remain regarding their reliability, especially due to known limitations such as sensitivity to input order (Fang et al., 2024) and failure to infer reversible relationships (Berglund et al., 2023). In the multimodal case, work such as Zheng et al. (2023); Thakur et al. (2024); Murugadoss et al. (2024) evaluates VLMs as judges, highlighting issues of bias, prompt dependency, and limited control over evaluation criteria. Our work extends this line of research by focusing on structured pairwise comparisons, measuring not just performance alignment but also properties like symmetry, smoothness, and controllability.

While benchmarks like Chen et al. (2024a) and Awal et al. (2024) introduce ways to test comparison abilities of VLMs, we aim to provide a more systematic and transformation-aware framework. Prior work also identifies well-known blind spots in discriminative models such as CLIP, including spatial reasoning failures (Kamath et al., 2023) and neglect of logical constructs like negation (Alhamoud et al., 2025). Our goal is to support the development and evaluation of models in these areas through

Figure 7: By using multiple prompt templates, we ensure no model is biased towards a single prompt and the mean capture the overall model performance. Above we show *MMScore*.

a carefully designed testbed. A detailed review of related evaluation benchmarks, model limitations, and pair-comparison studies is included in Appendix B.

5 CONCLUSION AND FUTURE WORK

We introduced PAIRBENCH, a framework that systematically evaluates the fundamental yet overlooked ability of VLMs to compare visual inputs, a capability critical for applications ranging from automated evaluation and re-ranking to retrieval-augmented generation. By focusing on four key metrics (alignment with human judgment, symmetry, smoothness, and controllability), PAIRBENCH provides comprehensive insights into how models process comparative information while intentionally minimizing computational requirements. This cost-efficiency addresses growing concerns around the unsustainable costs of model evaluation, which increasingly constitutes a significant portion of model development budgets (Polo et al., 2024a; Pacchiardi et al., 2024; Yuan et al., 2025).

Our extensive benchmarking revealed that no model excels across all metrics, with even leading commercial systems demonstrating concerning asymmetries when comparing identical pairs in different orders. Particularly noteworthy is our finding that performance on PAIRBENCH strongly correlates with results on complex reasoning benchmarks, suggesting that *comparison capabilities may constitute a fundamental skill* that underlies performance across diverse tasks. This insight offers a more efficient path to model selection and validation without the computational burden of exhaustive evaluations on large-scale benchmarks. As a means to further improve evaluation efficiency while accounting for sensitivity to prompting, we applied a randomized prompting strategy, rendering comparisons across models more reliable at no additional inference cost.

Looking forward, we hypothesize that tailored post-training approaches to focus on improving comparative skills and better model classes may enhance overall capabilities across diverse tasks, given the transferability our results revealed. Future research could explore architectural modifications or specialized fine-tuning techniques that optimize for these metrics, creating more reliable VLMs for critical evaluation tasks.

Ethics Statement We do not foresee any ethical issues with our work and have complied with the conference guidelines. We believe our work will aid in the better and safer usage of VLMs in practice, as we offer means to evaluate and understand model behavior prior to deployment. This can help mitigate potential risks associated with model biases and inconsistencies, leading to more reliable and transparent systems. As per language model usage, besides the evaluations we reported, we restricted ourselves to using these only to refine or rephrase handwritten parts of the manuscript to ensure correctness and clarity.

- **Reproducibility Statement** We disclose all the details needed to carry out our evaluation such as exact prompt templates, exact model versions, and inference settings.
- A sample of the data and example code to compute metrics are included as part of the supplementary material, and the full dataset is made anonymously available at https://anonymous.4open.science/r/pairbench-6C08.

REFERENCES

- Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jessica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al. Pixtral 12b. *arXiv preprint arXiv:2410.07073*, 2024.
- Kumail Alhamoud, Shaden Alshammari, Yonglong Tian, Guohao Li, Philip Torr, Yoon Kim, and Marzyeh Ghassemi. Vision-language models do not understand negation. *arXiv preprint arXiv:2501.09425*, 2025.
- Rabiul Awal, Saba Ahmadi, Le Zhang, and Aishwarya Agrawal. Vismin: Visual minimal-change understanding. *arXiv preprint arXiv:2407.16772*, 2024.
- Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak, and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". *arXiv preprint arXiv:2309.12288*, 2023.
- Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang, Pan Zhou, Yao Wan, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge with vision-language benchmark. *arXiv preprint arXiv:2402.04788*, 2024a.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv preprint arXiv:2403.20330*, 2024b.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv* preprint arXiv:2412.05271, 2024c.
- Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations? *arXiv preprint arXiv:2305.01937*, 2023.
- Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*, 2024.

541

542

543

544

546

547 548

549

550 551

552

553

554

556

559

561

562

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

582

583

584

585

586

588

592

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11198–11201, 2024.

Lizhe Fang, Yifei Wang, Khashayar Gatmiry, Lei Fang, and Yisen Wang. Rethinking invariance in in-context learning. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models, 2024.

Kehua Feng, Keyan Ding, Kede Ma, Zhihua Wang, Qiang Zhang, and Huajun Chen. Sample-efficient human evaluation of large language models via maximum discrepancy competition. *arXiv* preprint arXiv:2404.08008, 2024.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire. *arXiv* preprint arXiv:2302.04166, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya

595

596

597

598

600

601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

623

625

626

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

645

646

647

Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–14385, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms

via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

- Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*, 2024.
- Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2901–2910, 2017.
- Amita Kamath, Jack Hessel, and Kai-Wei Chang. What's" up" with vision-language models? investigating their struggle with spatial reasoning. *arXiv* preprint arXiv:2310.19785, 2023.
- Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, pp. 235–251. Springer, 2016.
- Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.
- W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessandro G Allievi. Models of human preference for learning reward functions. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=hpKJkVoThY.
- Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-language models? *arXiv preprint arXiv:2405.02246*, 2024.
- Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pp. 740–755. Springer, 2014.
- Fan Liu, Zhiyong Cheng, Changchang Sun, Yinglong Wang, Liqiang Nie, and Mohan Kankanhalli. User diverse preference modeling by multimodal attentive metric learning. In *Proceedings of the 27th ACM international conference on multimedia*, pp. 1526–1534, 2019.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024a.
- Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg evaluation using gpt-4 with better human alignment. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 2511–2522, 2023.
- Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In *European conference on computer vision*, pp. 216–233. Springer, 2025.
- Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin, Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large multimodal models. *Science China Information Sciences*, 67(12):220102, 2024b.
- Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv* preprint arXiv:2310.02255, 2023.
- Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. *Advances in Neural Information Processing Systems*, 36, 2024.

- Oscar Mañas, Benno Krojer, and Aishwarya Agrawal. Improving automatic vqa evaluation using large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 4171–4179, 2024.
 - Bhuvanashree Murugadoss, Christian Poelitz, Ian Drosos, Vu Le, Nick McKenna, Carina Suzana Negreanu, Chris Parnin, and Advait Sarkar. Evaluating the evaluator: Measuring Ilms' adherence to task evaluation instructions. *arXiv* preprint arXiv:2408.08781, 2024.
 - Yassine Ouali, Adrian Bulat, Alexandros Xenos, Anestis Zaganidis, Ioannis Maniadis Metaxas, Georgios Tzimiropoulos, and Brais Martinez. Discriminative fine-tuning of lvlms. *arXiv preprint arXiv:2412.04378*, 2024.
 - Lorenzo Pacchiardi, Lucy G Cheke, and José Hernández-Orallo. 100 instances is all you need: predicting the success of a new llm on unseen data by testing on a few instances. *arXiv preprint arXiv:2409.03563*, 2024.
 - Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. tinybenchmarks: evaluating LLMs with fewer examples. In *Forty-first International Conference on Machine Learning*, 2024a. URL https://openreview.net/forum?id=qAml3FpfhG.
 - Felipe Maia Polo, Ronald Xu, Lucas Weber, Mírian Silva, Onkar Bhardwaj, Leshem Choshen, Allysson Flavio Melo de Oliveira, Yuekai Sun, and Mikhail Yurochkin. Efficient multi-prompt evaluation of llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 22483–22512. Curran Associates, Inc., 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/28236482f64a72eec43706b6f3a6c511-Paper-Conference.pdf.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
- Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
- Dylan Sam, Devin Willmott, Joao D Semedo, and J Zico Kolter. Finetuning clip to reason about pairwise differences. *arXiv preprint arXiv:2409.09721*, 2024.
- Shreya Shankar, JD Zamfirescu-Pereira, Björn Hartmann, Aditya G Parameswaran, and Ian Arawjo. Who validates the validators? aligning llm-assisted evaluation of llm outputs with human preferences. *arXiv preprint arXiv:2404.12272*, 2024.
- Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and Dieuwke Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges. *arXiv preprint arXiv:2406.12624*, 2024.
- Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is a picture worth a thousand words? delving into spatial reasoning for vision language models. *arXiv* preprint arXiv:2406.14852, 2024a.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.
- Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large language models via mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024c.
- Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv* preprint arXiv:2308.02490, 2023.

- Peiwen Yuan, Yueqi Zhang, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Jiayi Shi, Chuyi Tan, Boyuan Pan, Yao Hu, and Kan Li. Beyond one-size-fits-all: Tailored benchmarks for efficient evaluation. *arXiv preprint arXiv:2502.13576*, 2025.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.
- Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why vision-language models behave like bags-of-words, and what to do about it? In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=KRLUvxh8uaX.
- Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual commonsense reasoning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6720–6731, 2019.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

Table of Contents - Appendix

Page A. Error Analysis A.1 Gemini Model A.2 GPT4o Model A.4 Pixtral Model A.5 Qwen2-VL Model B. Extended Related Work C. Full Results C.1 All ϵ -RelaxSym for Different ϵ C.2 Variations of MMScore Formulation C.3 Different Versions of Same Model C.4 Correlations C.5 Encoders vs VLMs D. PairBench Details D.1 Dataset Creation D.2 Human Study for Ground Truth Scores D.3 Prompt Templates for Different PairBench Datasets E. LLM Usage

A ERROR ANALYSIS

In this section, we look into the outputs of each model and their errors given different data pairs. More specifically, we look into errors made by Gemini-1.5-Pro, GPT-40-1120, InternVL2.5-8B, Pixtral-12B, Qwen2-VL-7B, and Phi-3.5-vision.

A.1 GEMINI MODEL

Below is an error example of Gemini-1.5-Pro on a data-pair from PB_{COCO} with color jittering (CJ).

Gemini-1.5-Pro Evaluation Instructions

User prompt: Evaluate the similarity of the images based on the following conditions: - *Be invariant to color jittering while evaluating images. Even if one image has been modified with random color changes (e.g., brightness or contrast adjustments), the similarity score should remain high. If the images are different, the similarity score should decrease regardless of the jittering.*

The score should take into account how well the images align with these conditions, as well as their overall resemblance. Even if the images are identical but fail to meet the conditions, they should still receive a higher score than completely different images. Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images that fully satisfy the conditions. Respond only in this format:

Score: <1-10>

Reason: <reason for score>

Nothing else should be included. What score would you give? "data1" "data2"

${\tt Gemini-1.5-Pro}\ Response \ -\ Criginal\ Order\ \ {\tt Gemini-1.5-Pro}\ Response \ -\ Reversed\ Order$

Model response:

Score: 10

Reason: The images are of the same sandwich, one in normal color and the other with a strong purple color filter applied. Despite the heavy color distortion, the content is identical, fulfilling the color invariance requirement.

Model response:

Score: 1

Reason: The first image appears to be a mold of some sort, possibly for dental work or other medical purposes. The second image is a Caprese sandwich. They are entirely different objects. While the layered structure might be vaguely similar, the content, context, and purpose are completely dissimilar.

A.2 GPT40 MODEL

Below is an error example of GPT-40-1120 on a data-pair from PB_{COCO} with color jittering (CJ).

GPT-40-1120 Evaluation Instructions

User prompt: Evaluate the similarity of the images based on the following conditions:

- Be invariant to color jittering while evaluating images. Even if one image has been modified with random color changes (e.g., brightness or contrast adjustments), the similarity score should remain high. If the images are different, the similarity score should decrease regardless of the jittering.

The score should take into account how well the images align with these conditions, as well as their overall resemblance. Even if the images are identical but fail to meet the conditions, they should still receive a higher score than completely different images.

Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images that fully satisfy the conditions.

Respond only in this format:

Score: <1-10>

Reason: <reason for score>

Nothing else should be included. What score would you give? "data1" "data2"

GPT-40-1120 Response - Original Order

Model response:

Score: 8

Reason: The images are of the same sandwich, with similar shapes and arrangements of the bread, tomato, mozzarella, and basil. The second image has substantial color jittering, but since the structural alignment and composition remain consistent, the similarity remains high.

GPT-40-1120 Response - Reversed Order

Model response:

Score: 3

Reason: The images depict similar objects, presumably a sandwich with layers, but there are notable differences. The first image appears distorted with altered coloration, and while it shares structural similarities with the second image, the overall resemblance is weak.

A.3 INTERNVL2.5 MODEL

Below is an error example of InternVL2.5-8B on a data-pair from PB_{COCO} with that are irrelevant to each other.

974 975 976

981 982

984 985 986

983

987 989

990

991 992 993

998 999 1000

1008 1009 1010

1011

1012

1013

1019 1020 1021

1023 1024

1025

InternVL2.5-8B Evaluation Instructions

User prompt: Evaluate the similarity of the images based on the following conditions: - Be invariant to Gaussian blurs while evaluating images. For example, even if both images are the exact same, even if one is more blurred compared to the other, the similarity score should remain high. If the images are different, the similarity score should decrease regardless of how blurred they are. The score should take into account how well the images align with these conditions, as well as their overall resemblance. Even if the images are identical but fail to meet the conditions, they should still receive a higher score than completely different images.

Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images that fully satisfy the conditions. Respond only in this format:

Score: <1-10>

Reason: <reason for score>

Nothing else should be included. What score would you give? "data1" "data2"

InternVL2.5-8B - Original Order

Model response:

Score: 7

Reason: The images are similar in content, featuring parrots, but they are not identical. The first image is a close-up of a spider web on a wooden surface, while the second image shows two parrots on a ledge. The parrots are the main subjects in the second image, and the first image has a different focus and subject matter. The images do not meet the condition of being identical, but they share some visual elements like color and subject type.

InternVL2.5-8B - Reverse Order

Model response:

Score: 1

Reason: The images are completely different in terms of content, subject matter, and context. The first image features colorful parrots, while the second image shows a wooden door with a spider web. There is no similarity in terms of subject, color, or composition.

A.4 PIXTRAL MODEL

Below is an error example of Pixtral-12B on a data-pair from PB_{COCO} with rotation (R).

1027 1028

1029 1030

1035 1036 1037

1043 1044 1045

1046

1074 1075

1073

1077

1078 1079 Pixtral-12B Evaluation Instructions

User prompt: Rate the similarity of these images on a scale of 1 to 10 while considering the following condition:

- Be invariant to rotations while evaluating images. For example, if one image is a rotated version of the other, the similarity score should remain high. If the images are different, the similarity score should decrease regardless of their orientation.

The score should account for both how well the images satisfy the conditions and their overall resemblance. If the images are identical but do not meet the conditions, they should still score higher than unrelated images.

Your response must follow this exact format:

Score: <1-10>

Reason: <reason for score>

Provide nothing else. What's your score? "data1" "data2"

Pixtral-12B Response - Original Order

Model response:

Score: 8

Reason: The images depict similar scenes of people interacting with birds in natural settings. The first image features a group of people sitting on rocks with birds nearby, while the second image has a person extending their hand towards a bird in a mountainous area. Despite slight differences in the environment and specific actions, the overall theme and presence of birds and human interaction score high.

Pixtral-12B Response - Reversed Order

Model response:

Score: 2

Reason: The images depict completely different scenes and subjects, with no recognizable similarity between them. One image shows a bird and people in a rocky area, while the other does not bear any resemblance to it.

OWEN2-VL MODEL A.5

Below is an error example of Qwen2-VL-7B on a data-pair from PB_{COCO} with gaussian blur (GB).

_

Below is an error example of Phi-3.5-vision on a data-pair from PB_{COCO} with elastic transform (ET).

Qwen2-VL-7B Evaluation Instructions

User prompt: As a similarity evaluator, your responsibility is to assess the similarity of the given images while considering these conditions: - *Be sensitive to Gaussian blurs while evaluating images. For example, if both images are the same except one is a blurred version of the other, the similarity score should decrease. If the images are the same and have the same exact sharpness, the similarity score should remain high.*

The similarity score should reflect both how well the images align with the conditions and their overall resemblance. Images that are identical but do not meet the conditions should receive a moderate score, while completely unrelated images should receive the lowest score. Provide your score on a scale of 1 to 10, with 10 being identical images that fully meet the conditions. Ensure your response is in the following format:

Score: <1-10>

Reason: <reason for score>

Provide nothing else. What is your score? "data1" "data2"

Qwen2-VL-7B - Original Order

Model response:

Score: 6

Reason: The images are very similar, with the second image being a slightly blurred version of the first. However, they do not fully meet the conditions as the images are not identical and the blurring is not perfect.

Qwen2-VL-7B - Reverse Order

Model response:

Score: 9

Reason: The images are nearly identical, with only a slight difference in the sharpness of the objects. The overall resemblance is high, and the conditions are

A.6 PHI3.5 MODEL

Phi-3.5-vision Evaluation Instructions

User prompt: Judge the similarity of these images based on: - Be sensitive to elastic transformations while evaluating images. For example, if the images are the same but have differing distortions due to elastic transformations, the similarity score should decrease. If the images are identical and have matching elastic transformations, the similarity score should remain high.

The similarity score should reflect both the overall resemblance of the images and how well they satisfy the conditions. Identical images that do not meet the conditions should still score higher than completely unrelated images.

Provide a score on a scale of 1 to 10, with 1 being no similarity and 10 being identical images that satisfy all conditions. Respond strictly in this format:

Score: <1-10>

Reason: <reason for score>

Do not include additional text. What's your rating? "data1" "data2"

Phi-3.5-vision - Original Order

Model response:

Score: 1

Reason: The images are highly distorted with elastic transformations, making it impossible to accurately compare the content.

Phi-3.5-vision - Reverse Order

Model response:

Score: 10

Reason: The images are identical with no differences in content, color, or composition. They both depict the same scene with motorcycles and people in a bar setting, and the elastic transformations do not alter the image in any way.

B EXTENDED RELATED WORK

Using language models as automatic evaluators has become a somewhat common practice with popular approaches such as GPTSCORE and G-eval (Fu et al., 2023; Liu et al., 2023) being used to rank responses in the NLP domain. Due to that, there has been a significant amount of recent work that has investigated the capabilities and limitations of using LLMs as judges (Thakur et al., 2024; Chiang & Lee, 2023; Murugadoss et al., 2024; Shankar et al., 2024). Chiang & Lee (2023) have shown that LLM evaluations are consistent and reproducible, making them suitable alternatives for human evaluation, they argue that these models inherent biases should prevent them using independently rather than *alongside* human experts. Furthermore, Zheng et al. (2023) reveal that large VLMs, e.g., GPT-4 Turbo, align well with human judgments and Thakur et al. (2024) further states that simpler models may still outperform GPT-4 Turbo in ranking tasks due to superior alignment metrics. Also, recent work assessed how humans can help LLMs evaluate better by testing different instruction

types or designing tools that result in more balanced evaluations (Murugadoss et al., 2024; Shankar et al., 2024).

It is worth noting that known limitations of LLMs such as their lack of invariance to the order of examples given in a prompt, which is a well studied issue of natural language models (Fang et al., 2024), may render auto evaluation unreliable. Similarly, Berglund et al. (2023) show failure cases where models trained on unidirectional relationships do not infer the reverse, indicating systemic limitations even in state-of-the-art LLMs such as GPT-4 (as seen in Figure 1 and in Appendix A for VLMs). Our main goal is to investigate the reliability of automated evaluation in the multimodal context, by probing the models to compare data pairs.

Namely, the evaluations we carry out focus on testing in multiple different ways how good VLMs are when it comes to comparing data instances, such as whether VLMs prompted to compare are symmetric or smooth for instance, and to what extent they can be controlled, i.e., instructed to pay attention to or ignore certain features of the inputs. While the literature is more sparse regarding testing VLMs in this setting, recent work has tested for something along those lines. Chen et al. (2024a) for instance propose a benchmark for evaluating VLMs in multiple different scenarios, including checking whether pairwise comparisons of responses to a query correlated with human judgments. They concluded that although correlations are relatively high on comparison tasks, biases and inconsistencies affect performance on pair scoring and batch ranking. Similarly, Awal et al. (2024) introduced a synthetic dataset containing paired images that differ only along one feature (e.g., the color of an object). We seek to add to this branch of the literature by introducing a framework where controlled experiments can be carried out to anticipate the performance of models when being used as judges, and various different characteristics of automatic judges can be identified (e.g., how smooth they are).

Unlike the case of generative VLMs discussed above, discriminative visual language models such as CLIP (Radford et al., 2021) are covered by a significant amount of recent work, and several failure modes are well reported, mostly deriving from the fact this class of VLMs tends to behave as bag-of-words models, focusing on nouns and ignoring relationships and semantics in their input data (Yuksekgonul et al., 2023). For instance, CLIP was observed to struggle with spatial reasoning (Kamath et al., 2023) and ignore negation (Alhamoud et al., 2025). On the other hand, fine-tuning CLIP to reason about pairwise differences Sam et al. (2024) showed that discriminative VLMs can improve on how well they manage to reason about pairwise differences if training is tailored for enabling so, highlighting the benefits that being able to measure these skills may inform training and improve models as a consequence. Ouali et al. (2024) showed that fine-tuning generative VLMs to turn them into discriminative models results in improved image-retrieval from text, which aligns with results we reported in Section C.5 showing a gap between open-sources VLMs and CLIP-style encoders.

C FULL RESULTS

In this section, we provide the *MMScore* of all models on all the different splits of PB_{COCO} , PB_{IN100} , PB_{WU-II} , and PB_{WU-IT} in Tables 3, 4, 3, 4, 5, 6, and 7. We further report the coverage, the number of times the VLMs give a valid output, of each model on our different proposed datasets.

C.1 All ε -RelaxSymfor different ϵ S

To show the ε -RelaxSym for different values of ε , we plot Figure 9 and show as ε gets higher, the values go higher. However, some models such as the GPT40 models struggle with symmetry. Please note that if $\varepsilon=0$, it is the same as not having a threshold and hence calculating exact symmetry rather than a relaxed version.

C.2 VARIATIONS OF MMSCORE FORMULATION

In this section, we examine how model rankings vary when Kendall's Tau is replaced with other correlation-based metrics, namely Normalized Mutual Information (NMI), Spearman's rank correlation, and Normalized Discounted Cumulative Gain (NDCG). Overall, we find that NMI, Spearman, and NDCG produce rankings consistent with those obtained using Kendall's Tau. However, NDCG

Table 3: Comparison of the *MMScore* metric ($\times 100$) of VLMs on PB_{COCO} and PB_{IN100} benchmarks in the *sensitive* setting. Models are evaluated across multiple criteria: color jitter (CJ), elastic transform (ET), gaussian blur (GB), perspective shift (PS), and rotation (R). Higher scores indicate better performance.

Model			PB _{COCO}	,		PB_{IN100}						
Nouci	CJ	ET	GB	PS	R	CJ	ET	GB	PS	R		
Chameleon-7B	00.37	00.34	00.19	00.31	00.60	00.38	00.26	00.31	00.50	00.52		
LLaVA-OneVision-7B	36.51	44.05	38.57	43.80	41.41	37.05	49.89	40.00	46.01	49.30		
Phi-3.5-vision	38.21	51.61	61.94	47.33	34.56	25.74	43.03	51.40	32.51	23.61		
Pixtral-12B	37.67	56.25	54.32	49.53	36.80	30.75	52.30	51.94	46.04	40.76		
InternVL2-1B	03.23	03.47	03.27	03.63	03.51	02.59	02.38	01.70	02.02	02.23		
InternVL2-2B	23.89	32.76	34.32	31.53	24.76	18.32	34.02	33.35	28.17	23.35		
InternVL2-4B	52.13	69.43	62.46	63.77	52.68	45.25	65.90	59.90	60.28	51.04		
InternVL2-8B	51.58	62.80	62.35	60.27	54.80	47.94	60.18	58.60	56.66	53.00		
InternVL2.5-1B	16.74	25.38	27.67	24.83	16.54	15.63	33.67	39.23	37.97	22.53		
InternVL2.5-2B	12.48	19.58	25.26	18.33	13.84	17.27	38.28	39.21	31.23	21.45		
InternVL2.5-4B	42.61	59.78	54.33	55.34	49.47	41.35	62.35	54.21	56.18	49.90		
InternVL2.5-8B	54.51	73.37	78.31	63.17	60.71	51.76	77.10	76.40	60.40	55.30		
MolmoE-1B	00.40	00.09	01.20	00.03	00.05	00.41	00.01	00.45	00.01	00.01		
Molmo-7B-O	14.32	16.02	48.93	16.12	15.40	12.91	14.20	48.43	13.83	12.16		
Molmo-7B-D	27.06	45.28	34.46	49.60	30.39	22.88	41.06	35.83	44.49	32.22		
Qwen2-VL-2B	09.91	11.82	09.01	13.13	11.95	10.63	13.69	10.41	13.21	12.23		
Qwen2-VL-7B	42.58	61.90	50.22	55.81	51.10	38.24	61.73	50.23	53.07	52.29		
GPT-4o-mini-0718	49.98	65.97	58.29	53.23	53.60	47.06	67.06	56.43	49.97	52.59		
GPT-40-0513	50.96	65.54	61.67	56.69	56.71	48.55	65.68	57.48	54.11	55.00		
GPT-40-0806	42.26	60.58	56.62	50.13	53.63	40.35	60.66	52.65	49.62	49.77		
GPT-40-1120	51.31	63.50	61.35	57.84	57.16	50.88	66.55	58.14	56.25	55.52		
Gemini-1.5-Flash	58.26	82.64	87.41	65.92	61.08	56.25	79.69	85.21	62.07	61.15		
Gemini-1.5-Pro	53.33	87.86	89.56	74.92	71.04	51.19	91.36	92.98	71.56	74.22		

Figure 8: Coverage of each model.

exhibits lower sensitivity, leading to flatter curves that are less informative for our setting. We attribute this to the fact that NDCG was originally designed for retrieval systems, where the top-ranked items dominate the evaluation, and thus the metric emphasizes alignment at the highest scores rather than capturing fine-grained differences across the full ranking. The results can be seen in Fig. 10.

Table 4: Comparison of the *MMScore* metric ($\times 100$) of VLMs on PB_{COCO} and PB_{IN100} benchmarks in the *invariant* setting. Models are evaluated across multiple criteria: color jitter (CJ), elastic transform (ET), gaussian blur (GB), perspective shift (PS), and rotation (R). Higher scores indicate better performance.

Model			PB _{COCO})				PB _{IN100}		
	CJ	ET	GB	PS	R	CJ	ET	GB	PS	R
Chameleon-7B	00.89	00.34	00.44	00.51	00.38	00.57	00.35	00.53	00.58	00.45
LLaVA-OneVision-7B	35.13	37.26	39.22	40.29	38.29	38.09	43.04	41.83	40.86	42.24
Phi-3.5-vision	49.41	40.19	42.93	55.03	47.90	45.88	33.79	39.72	50.41	39.46
Pixtral-12B	48.26	47.34	45.35	60.20	55.65	41.53	45.30	42.84	52.63	52.65
InternVL2-1B	02.69	01.76	02.71	02.00	02.69	01.39	00.82	01.22	00.90	01.40
InternVL2-2B	36.38	31.55	31.99	39.18	37.28	32.68	31.40	30.13	35.98	34.70
InternVL2-4B	59.44	55.47	51.35	59.61	59.02	51.74	52.77	49.60	54.63	53.11
InternVL2-8B	58.69	58.56	53.60	61.91	64.22	58.44	54.48	51.78	61.97	62.90
InternVL2.5-1B	21.39	18.59	21.65	23.19	22.86	22.52	14.63	24.34	22.76	19.24
InternVL2.5-2B	22.85	19.05	21.46	27.62	25.99	32.09	33.03	37.34	34.65	34.75
InternVL2.5-4B	56.24	47.41	43.93	53.71	55.28	61.80	50.50	47.33	51.58	58.56
InternVL2.5-8B	75.11	65.18	66.32	78.56	81.77	72.53	61.61	62.23	65.18	74.27
MolmoE-1B	00.10	00.11	00.06	00.02	00.00	00.02	00.11	00.10	00.07	00.25
Molmo-7B-0	26.86	34.58	33.46	34.70	24.55	25.04	30.81	38.52	32.79	27.65
Molmo-7B-D	47.20	45.02	43.02	50.54	48.64	45.01	45.83	45.47	49.25	40.87
Qwen2-VL-2B	09.55	09.10	10.21	12.65	08.83	09.02	09.61	10.01	14.97	09.33
Qwen2-VL-7B	50.52	51.80	52.70	54.50	53.29	47.86	49.73	51.18	51.55	50.67
GPT-4o-mini-0718	59.76	57.94	56.55	61.31	58.17	56.33	55.56	55.35	60.99	60.83
GPT-40-0513	70.83	61.70	59.40	61.13	62.10	68.82	56.16	56.70	57.79	59.80
GPT-40-0806	55.14	50.31	46.00	52.15	52.45	54.13	45.43	44.25	48.26	52.18
GPT-4o-1120	73.48	69.06	61.51	67.60	63.99	70.16	61.33	58.89	65.06	60.84
Gemini-1.5-Flash	72.11	67.81	68.17	71.88	78.31	70.32	65.94	66.58	69.10	74.77
Gemini-1.5-Pro	68.93	69.64	71.50	72.06	68.42	66.31	70.03	72.17	70.13	69.32

C.3 DIFFERENT VERSIONS OF SAME MODEL

We further examine the effect of model capacity on the different metrics of PAIRBENCH. As seen in Figure 11, larger-capacity models tend to perform better across *MMScore*, ε-RelaxSym, and *Cont*. However, there are exceptions—for example, InternVL2-4B demonstrates greater controllability in rotation (R) and perspective shift (PS) compared to InternVL2-8B. Additionally, smoothness (*SM*) does not increase monotonically with model capacity. This suggests that stronger models may be more confident in their responses, leading to less diversity in their similarity scores compared to lower-capacity models.

On the other hand, Table 2 and Figure 13 show that *SM* correlates positively with model performance and other benchmarks, indicating that better models tend to produce smoother and more diverse outputs than weaker ones. Ultimately, we conclude that *SM* is not strictly a property of model performance but rather a characteristic of a VLM as a judge model that may be desirable (or not) depending on the use case.

C.4 CORRELATIONS

In this section, we further plot the correlations of the different metrics and show them in Figures 12, 13, 13. As seen, all these metrics have positive correlations as seen in the scatter plots.

C.5 ENCODERS VS VLMS

For the image-image task, we explore how image encoders compare to VLMs on our metrics. To this end, three DINOv2 versions (DINOv2-Base, DINOv2-Small, and DINOv2-Large) and the LAION- and OpenAI- CLIP-trained ViTs (base and large) are chosen to encode images. Since

Table 5: Comparison of the *MMScore* metric ($\times 100$) of VLMs on PB_{WU-II} (subset A and B) benchmark in the *sensitive* setting. Models are evaluated across multiple criteria: spatial position (SP), spatial position and color jitter (SP-CJ), spatial position and elastic transform (SP-ET), spatial position and gaussian blur (SP-GB), spatial position and perspective shift (SP-PS), and spatial position and rotation (SP-R). Higher scores indicate better performance.

Model			PAIRBE	NCH_{WU_a}					PAIRBE	NCH_{WU_b}		
1120401	SP	SP-CJ	SP-ET	SP-GB	SP-PS	SP-R	SP	SP-CJ	SP-ET	SP-GB	SP-PS	SP-R
Chameleon-7B	00.28	00.47	00.23	00.52	0.21	00.20	00.34	00.38	00.35	00.26	00.31	00.33
LLaVA-OneVision-7B	38.95	18.83	24.03	26.78	29.46	24.63	19.70	14.03	16.51	16.78	17.76	17.02
Phi-3.5-vision	23.44	08.46	15.70	19.41	13.34	10.83	15.38	12.98	18.91	20.19	11.69	17.06
Pixtral-12B	37.91	26.09	32.05	33.52	32.47	25.00	28.02	19.58	22.32	22.31	23.46	24.50
InternVL2-1B	00.44	00.98	00.79	00.65	00.30	00.28	00.20	-	-	00.41	01.18	00.90
InternVL2-2B	22.85	12.03	14.37	17.84	18.66	15.50	20.72	10.89	11.22	15.74	17.74	13.58
InternVL2-4B	46.89	27.91	36.67	43.03	44.27	27.76	44.89	27.77	33.35	38.12	42.23	36.16
InternVL2-8B	41.99	32.06	35.71	41.02	40.12	29.11	46.36	32.17	39.24	41.90	45.59	40.30
InternVL2.5-1B	25.50	14.16	21.32	15.69	21.49	16.30	24.77	16.16	21.10	19.95	27.89	21.47
InternVL2.5-2B	20.63	11.76	16.75	15.21	18.03	13.79	23.44	09.33	15.90	17.64	18.17	17.56
InternVL2.5-4B	46.15	32.74	39.05	39.24	42.28	32.94	47.93	33.75	40.23	39.82	44.07	42.57
InternVL2.5-8B	44.27	36.99	41.49	42.60	43.65	33.24	41.32	31.69	40.10	39.73	44.03	42.99
MolmoE-1B	00.47	01.03	00.00	00.03	00.14	00.01	00.32	00.36	00.01	00.04	00.04	00.09
Molmo-7B-O	15.94	09.90	11.32	15.38	12.92	12.01	15.15	08.40	11.39	11.33	13.60	12.50
Molmo-7B-D	23.82	17.75	20.41	18.40	22.21	17.81	26.74	18.37	19.55	18.77	18.19	22.21
Qwen2-VL-2B	02.26	01.76	02.58	02.15	03.17	01.68	00.88	00.44	00.73	00.37	00.72	00.82
Qwen2-VL-7B	41.95	29.47	36.32	39.93	40.33	34.11	42.80	28.75	31.42	37.27	39.76	36.25
GPT-4o-mini-0718	42.55	37.21	39.50	40.44	38.83	41.05	48.86	38.38	43.82	45.42	46.32	46.66
GPT-40-0513	40.27	37.83	36.79	38.52	38.84	38.07	44.13	39.46	39.46	43.58	43.49	46.25
GPT-40-0806	37.58	33.72	34.24	33.36	34.80	33.17	40.11	33.36	32.36	34.32	39.91	38.67
GPT-40-1120	40.68	39.06	40.10	40.35	40.96	40.40	47.34	40.91	43.07	47.18	50.22	50.68
Gemini-1.5-Flash	44.63	38.85	37.19	39.11	35.76	34.57	49.91	40.29	42.92	46.34	47.01	46.40
Gemini-1.5-Pro	40.38	36.07	31.52	37.85	29.92	30.37	49.20	38.26	39.16	44.98	41.70	40.72

Figure 9: ε -RelaxSym for different ε s.

feature controllability on image-encoders is limited to the image augmentation transformation (CJ, R, PS, GB, ET), we only compare image-encoders to VLMs on PB_{COCO} and PB_{IN100}.

Table 6: Comparison of the *MMScore* metric ($\times 100$) of VLMs on PB_{WU-II} (subset A and B) benchmark in the *invariant* setting. Models are evaluated across multiple criteria:spatial position (SP), spatial position and color jitter (SP-CJ), spatial position and elastic transform (SP-ET), spatial position and gaussian blur (SP-GB), spatial position and perspective shift (SP-PS), and spatial position and rotation (SP-R). Higher scores indicate better performance.

Model			PAIRBE	NCH_{WU_a}					PAIRBE	NCH_{WU_b}		
1,10401	SP	SP-CJ	SP-ET	SP-GB	SP-PS	SP-R	SP	SP-CJ	SP-ET	SP-GB	SP-PS	SP-R
Chameleon-7B	00.34	00.39	00.76	00.47	00.43	00.41	00.47	00.34	00.56	00.24	00.62	00.34
LLaVA-OneVision-7B	34.79	31.56	30.23	34.14	32.61	28.69	13.12	18.41	16.21	22.69	15.34	17.91
Phi-3.5-vision	23.66	32.84	18.90	21.36	30.14	19.10	19.88	36.74	22.40	23.47	30.04	26.06
Pixtral-12B	36.93	37.32	41.17	35.31	38.52	36.05	36.03	30.44	33.32	29.84	35.48	33.32
InternVL2-1B	00.57	01.08	02.02	01.02	00.89	00.37	00.65	00.81	00.96	00.50	00.56	00.54
InternVL2-2B	26.25	25.53	25.76	21.12	26.57	26.98	26.03	24.52	26.49	25.81	31.01	29.33
InternVL2-4B	39.33	40.23	37.80	42.25	43.10	34.57	51.43	41.55	45.96	50.20	54.94	50.34
InternVL2-8B	43.80	44.31	44.53	43.99	46.02	40.43	60.92	46.63	54.53	51.31	56.94	53.88
InternVL2.5-1B	12.82	13.84	09.34	07.24	12.91	16.93	19.87	24.92	19.36	17.94	22.66	30.60
InternVL2.5-2B	31.38	29.79	30.53	23.16	31.75	24.69	36.01	30.13	35.52	27.07	37.01	31.18
InternVL2.5-4B	48.79	53.58	54.52	48.09	52.78	46.46	50.51	48.71	53.45	52.03	53.77	50.12
InternVL2.5-8B	59.03	55.57	59.70	57.16	58.01	50.84	65.21	51.31	61.10	63.54	62.38	60.83
MolmoE-1B	03.83	00.09	00.02	00.02	00.10	00.17	04.22	00.07	00.02	00.07	00.12	00.00
Molmo-7B-O	18.63	17.50	19.68	16.42	19.58	14.99	15.94	19.46	20.93	17.98	24.21	21.68
Molmo-7B-D	28.21	36.47	31.95	26.89	35.57	33.58	37.50	35.90	34.70	33.51	33.04	34.35
Qwen2-VL-2B	02.63	02.88	03.58	03.53	03.34	02.97	00.79	00.73	00.99	00.88	00.71	00.82
Qwen2-VL-7B	40.21	38.96	39.94	46.88	40.11	39.55	47.65	39.51	40.94	48.63	44.68	41.88
GPT-4o-mini-0718	47.60	48.33	51.04	46.15	48.86	43.75	57.50	49.19	51.38	53.76	55.82	54.07
GPT-40-0513	52.39	51.58	48.78	47.11	47.50	52.68	61.59	59.77	58.08	60.95	61.53	63.74
GPT-40-0806	50.94	47.21	46.52	42.90	45.84	52.50	62.75	54.23	53.20	51.19	58.50	57.21
GPT-40-1120	57.47	56.25	54.40	56.11	54.40	57.93	65.91	62.22	63.93	67.96	66.86	68.10
Gemini-1.5-Flash	46.62	55.28	54.31	57.98	57.01	58.74	62.04	54.43	56.89	62.24	66.88	60.72
Gemini-1.5-Pro	38.07	35.08	35.05	36.11	33.21	33.23	56.43	42.24	43.74	48.41	50.40	45.83

Figure 10: Performance of models on if computed based on other formulations.

To generate the similarity score of a given image-pair with an image-encoder, we compute the cosine similarity of the representation of each image and scale the scores between 1-10, and round them to the nearest integer. To generate the criteria-sensitive similarity score, we create the representations of the image-pair by simply using the representations output by the encoder for each image. On the

Table 7: Comparison of the *MMScore* metric ($\times 100$) of VLMs on the PB_{WU-IT} (Subset A and B) benchmark in the *sensitive* and *invariant* settings. Models are evaluated across the spatial position (SP) criterion. Higher scores indicate better performance.

Model	PAIRB	\mathtt{ENCH}_{WU_a}	PAIRB	${\bf PAIRBENCH}_{WU_b}$		
1110401	Sens.	Invar.	Sens.	Invar.		
Chameleon-7B	00.25	00.34	00.23	00.47		
LLaVA-OneVision-7B	23.35	22.78	27.38	25.98		
Phi-3.5-vision	13.86	12.30	25.67	24.74		
Pixtral-12B	05.14	05.04	03.27	04.58		
InternVL2-1B	06.29	03.75	15.90	08.31		
InternVL2-2B	17.07	14.26	24.46	16.49		
InternVL2-4B	15.69	15.69	24.27	22.96		
InternVL2-8B	22.40	19.27	29.45	31.46		
InternVL2.5-1B	20.80	09.49	16.86	13.23		
InternVL2.5-2B	15.36	11.15	19.69	18.42		
InternVL2.5-4B	23.90	23.85	29.75	32.45		
InternVL2.5-8B	24.16	25.55	24.00	28.22		
MolmoE-1B	00.12	00.04	00.02	00.21		
Molmo-7B-O	07.53	07.45	07.18	08.29		
Molmo-7B-D	09.45	12.26	08.34	11.26		
Qwen2-VL-2B	02.65	03.09	05.09	05.86		
Qwen2-VL-7B	09.43	09.19	15.99	16.13		
GPT-4o-mini-0718	16.18	16.14	16.18	15.30		
GPT-40-0513	11.49	20.48	12.63	20.98		
GPT-40-0806	20.27	31.80	22.97	36.56		
GPT-40-1120	18.97	31.91	20.57	34.99		
Gemini-1.5-Flash	27.46	26.54	26.53	32.07		
Gemini-1.5-Pro	26.89	27.16	28.57	29.23		

other hand, when generating the criteria-invariant score, where the criteria is a specific transformation (T), we generate the representation of each image as the average of the representations of the encoder for k versions of the image where random amounts of T are applied to the image. In our experiments, we set k=5.

We report results in Figure 15. We see encoders do better than open-source VLMs most of the time and are comparable to closed-source models (besides CJ). This shows although significantly smaller, encoders can be at least as good as VLMs, enabling similarity scoring at a much lower cost. Also, encoder-generated scores are trivially symmetric as well since the underlying cosine similarity is symmetric. However, they lack in controllability as they are limited to image-only comparisons and can only consider criteria that can be applied to the image using augmentations, i.e., spatial position transform cannot be applied to images for encoders.

D PAIRBENCH DETAILS

D.1 DATASET CREATION

The PAIRBENCH framework takes in a source dataset and creates augmented versions of the data to obtain data pairs to probe the evaluation skills of a model. In our instances, we use COCO (Lin et al., 2014), IN100 (Deng et al., 2009) and WhatsUp (Kamath et al., 2023) datasets as the source for the original data points. We utilize COCO and IN100 as image-only datasets and WhatsUp as an image-text dataset. We select 500 random images from each of COCO and IN100 and all the

Figure 11: Aggregated PAIRBENCH metrics across different versions of InternVL2.5 models.

Figure 12: Other benchmarks versus PAIRBENCH on 1-RelaxSym.

image-text pairs from both subsets provided by the WhatsUp dataset to be used in our instantiation of PAIRBENCH. Full details of our released datasets are given in Table 8.

To isolate the effect of different data characteristics on model performance, PAIRBENCH creates pairs of image-image and image-text data that are identical except for one or a few controlled features. The generated data consists of points from the original dataset paired with their transformed version. For COCO and IN100, we create a different control sample for each one of the transformations in {color jitter, rotation, gaussian blur, perspective shift, elastic transformation}, which defines the characteristic that differs between images. For the data from WhatsUp, we construct the data pairs by either only using the 'spatial position' transform, or 'spatial position' transform in addition to one of the previous five characteristics to additionally assess coupling effects. However, since transforms

Figure 13: Other benchmarks versus Cont on PAIRBENCH.

Figure 14: Other benchmarks versus Smoothness (SM).

are not well-defined for texts, only 'spatial position' transform is applied for the image-text pairs. Note that the image-image pairs from WhatsUp are the most challenging since they all have at least the 'spatial position' transform, which is a well-known blind-spot of VLMs as shown by previous literature (Kamath et al., 2023; Wang et al., 2024a). As a result, we end up creating five image-image sub-datasets for each of COCO and IN100, six subsets for each of the two subsets of WhatsUp, using each of the transformations, and one image-text sub-dataset for each of the subsets of WhatsUp. The details of the transforms applied to each category are shown in Figure 3.

Next, for each original image, we construct three types of pairs: an identical, a transformed, and an irrelevant pair. In all three versions of these pairs, the first data point is the original (non-transformed) image. For the 'identical' pair, the second data point is another version of the image with 95% of its original size for the image-image pair and the correct caption for the image-text pair. The second data point in the 'transformed' pair is the original image (caption) with the transformation applied to it for the image-image (image-text) pair. Finally, the 'irrelevant' pair's second data point is a transformed version of a random image (caption) from the rest of the dataset.

Figure 15: A simple vision encoder outperforms open-sourced VLMs and has on par performance with closed sourced models which are much more expensive, for image-image tasks (results combine PB_{COCO} and PB_{IN100}), and similar pattern is observed across different transformations.

Table 8: Information of different splits in PB_{COCO}, PB_{IN100}, PB_{WU-II}, and PB_{WU-IT}.

Modality	Source	Number of Selected	Splits	New Data Points / Total Data-Pair Comparisons	
			CJ	1000 / 3000	
			R	1000 / 3000	
	COCO	500	ET	1000 / 3000	
	COCO	300	PS	1000 / 3000	
			GB	1000 / 3000	
			CJ	1000 / 3000	
			R	1000 / 3000	
	IN100	500	ET	1000 / 3000	
	IN100 PB _{II}	300	PS	1000 / 3000	
			GB	1000 / 3000	
PB_{II}			SP	0 / 3344	
			SP & CJ	1254 / 3344	
	WhatsUp (subset A)	418	SP & R	1254 / 3344	
	whatsop (subset A)	410	SP & ET	1254 / 3344	
				SP & PS	1254 / 3344
			SP & GB	1254 / 3344	
			SP	0 / 3264	
			SP & CJ	1224 / 3264	
	WhatsUp (subset B)	408	SP & R	1224 / 3264	
	whatsop (subset b)	400	SP & ET	1224 / 3264	
			SP & PS	1224 / 3264	
			SP & GB	1224 / 3264	
PB _{IT}	WhatsUp (subset A)	418	SP	1254 / 3344	
I DIT	WhatsUp (Subset B)	408	SP	1224 / 3264	
In total	-	1826	all splits	22390 / 69648	

Equipped with the constructed control samples, PAIRBENCH prompts the VLM to score the similarity of each data pair based on a set of criteria. The criteria consists of the conditions indicating whether the model under examination should be 'sensitive' or 'invariant' to the transformations applied for that specific sub-dataset. These two settings (sensitive or invariant) measure how well each model can recognize the differences between the data pair and follow the prompt's criteria. If a model can successfully capture a specific feature, it will have no problem being variant or invariant to it; however, if it cannot detect it or has a bias towards a feature, it will favor being sensitive or invariant to that feature over its opposite. Using a human study, described in Appendix D.2, the ground-truth score of the 'identical' and 'irrelevant' pair are set to 10 and 1, respectively, in both 'sensitive' and 'invariant' settings. However, for the 'transformed' pair, based on the human study we set the score 10 in the 'invariant' version, and '6' in the 'sensitive' version of the prompt. To make sure the performance gap between models is not merely a consequence of biased prompt wording, PAIRBENCH comes with five template prompts with different lengths and wordings but with the same semantic meaning,

that are randomly selected for each data pair, to make sure the prompting does not affect the model's performance. These prompt templates are reported in Appendix D.3.

Ultimately, we end up with 4 different datasets created by PAIRBENCH: PB_{COCO} , PB_{IN100} , PB_{WU-II} , and PB_{WU-IT} . PB_{COCO} and PB_{IN100} compare and score image-pairs and have 5 splits (Color Jitter (CJ), Rotation (R), Gaussian Blur (GB), Perspective Shift (PS), and Elastic Transformation (ET). PB_{WU-II} consists of 2 subsets, each with 6 splits; one split with only the Spatial Position transform (SP), and the rest with SP combined with one of the previous five transformations (CJ, R, GB, PS, and ET). PB_{WU-IT} consists of only the SP split for each of the two subsets in the WhatsUp dataset. Details of each split in Appendix D.

D.2 Human Study for Ground Truth Scores

To validate the alignment between our ground-truth scores and human perception, we conducted a human study on **image-image** pairs from PB_{IN100} . We excluded image-text comparisons due to their trivial nature for human judgment. For example, given an image showing a book to the left of a cap, comparing it to the sentence "book left of cap" (identical), "book right of cap" (transformed), or "can behind candle" (irrelevant) would result in nearly unanimous responses, offering limited insight.

Our study involved 76 volunteer participants and covered 300 image pairs sampled across three transformation types—color jitter, perspective shift, and rotation—under both "sensitive" and "invariant" settings. Results from this evaluation led us to adjust the ground-truth score of transformed pairs in the "sensitive" condition to 6 (on a 1–10 scale), as this better captured the perceptual similarity reported by humans. Furthermore, the study confirmed that "identical" pairs consistently received the highest scores, while "irrelevant" pairs received the lowest, supporting the validity of our scoring protocol. A screenshot of the study can be seen in Figure 16 and the results are reported in Table 9.

Table 9: Human similarity scores (mean \pm std) across different transformation settings, which we used to set our ground truth scores.

Pair Type	pe Colorjitter Perspective				Rotate		
	Sens	Invar	Sens	Invar	Sens	Invar	
Identical	9.8 ± 0.53	9.95 ± 0.23	9.82 ± 0.42	9.9 ± 0.32	10.0 ± 0.0	9.89 ± 0.51	
Transformed	5.5 ± 2.3	9.68 ± 0.85	6.89 ± 1.97	9.06 ± 1.33	6.31 ± 2.01	9.36 ± 1.01	
Irrelevant	1.35 ± 0.74	1.42 ± 0.67	1.33 ± 0.81	1.61 ± 1.17	1.27 ± 0.64	1.23 ± 0.47	

PairBench Human Evaluation ■ User ID: testing Do not refresh page while taking the survey! Sample 1 of 30 Instruction: Score the similarity of the two images on a scale of 1 (least similar) to 10 (completely similar) given the condition[s] below: • - Be invariant to rotations while evaluating images. For example, if one image is a rotated version of the other, the similarity score should remain high. If the images are different, the similarity score should decrease regardless of their orientation. Note: Identical images that do not meet the condtion[s] should score higher than irrelevant images. ∮ Similarity conditions for this pair: • Rotational difference DOES NOT decrease the score. If the images are different, decrease the score regardless. Image 1 Image 2 Select your score (1 = least similarity, 10 = highest similarity): Restart with new samples Progress: 1/30

Figure 16: Example screenshot of the platform used consisting of the type of questions that participants were asked during the study.

D.3 PROMPT TEMPLATES FOR DIFFERENT PAIRBENCH DATASETS

We provide the 5 different templates that we choose at random for each data pair for the image-image and image-text prompts. The following are the templates we utilize for PB_{COCO} and PB_{IN100} , and PB_{WU-II} , i.e., the image-image pairs.

Image-Image Prompt Template V1

User prompt: You are tasked with evaluating the similarity between two images while paying attention to the following conditions: {conditions}. Your goal is to judge the similarity of the images overall, where satisfying the conditions increases the similarity score. If the images are identical but fail to meet any of the conditions, they should still receive a higher score than completely unrelated images. Provide a similarity score on a scale from 1 to 10, where 1 represents entirely dissimilar images and 10 represents identical images that satisfy all conditions. Ensure your response is strictly in the following format:

```
Score: <1-10>
Reason: <reason for score>
```

Do not include anything else in your response. What score would you assign to this pair of images? "data1" "data2".

Image-Image Prompt Template V2

User prompt: As a similarity evaluator, your responsibility is to assess the similarity of the given images while considering these conditions: {conditions}. The similarity score should reflect both how well the images align with the conditions and their overall resemblance. Images that are identical but do not meet the conditions should receive a moderate score, while completely unrelated images should receive the lowest score. Provide your score on a scale of 1 to 10, with 10 being identical images that fully meet the conditions. Ensure your response is in the following format:

```
Score: <1-10>
Reason: <reason for score>
```

Provide nothing else. What is your score? "data1" "data2"

Image-Image Prompt Template V3

User prompt: Evaluate the similarity of the images based on the following conditions: {conditions}. The score should take into account how well the images align with these conditions, as well as their overall resemblance. Even if the images are identical but fail to meet the conditions, they should still receive a higher score than completely different images. Provide a score from 1 to 10, where 1 indicates no similarity and 10 indicates identical images that fully satisfy the conditions. Respond only in this format:

```
Score: <1-10>
Reason: <reason for score>
```

Nothing else should be included. What score would you give? "data1" "data2"

1837 1838

1839 1840 1841

1843

1844 1845 1846

1847 1849

1850

1851

1855 1857

1859 1860 1861

1862 1863 1864

1866 1867 1868

1865

1870 1872

1873 1874 1875

1880 1881

1884 1885

Image-Image Prompt Template V4

User prompt: Judge the similarity of these images based on: {conditions}. The similarity score should reflect both the overall resemblance of the images and how well they satisfy the conditions. Identical images that do not meet the conditions should still score higher than completely unrelated images. Provide a score on a scale of 1 to 10, with 1 being no similarity and 10 being identical images that satisfy all conditions. Respond strictly in this format:

```
Score: <1-10>
Reason: <reason for score>
```

Do not include additional text. What's your rating? "data1" "data2"

Image-Image Prompt Template V5

User prompt: Rate the similarity of these images on a scale of 1 to 10 while considering {conditions}. The score should account for both how well the images satisfy the conditions and their overall resemblance. If the images are identical but do not meet the conditions, they should still score higher than unrelated images. Your response must follow this exact format:

```
Score: <1-10>
Reason: <reason for score>
```

Provide nothing else. What's your score? "data1" "data2"

And these are the image-text versions for PB_{WU-IT}:

Image-Text Prompt Template V1

User prompt: You are assigned the task of determining how accurately a text description represents an image of two objects. Pay special attention to the following conditions: {conditions}. Your goal is to assess the alignment between the image and the text, where adherence to the conditions increases the similarity score. If the text partially describes the image but fails to meet specific conditions, it should still score higher than a text entirely unrelated to the image. Assign a similarity score on a scale from 1 to 10, where 1 signifies no correlation, and 10 denotes perfect alignment satisfying all conditions. The data pair (text and image) will follow this prompt. Respond strictly in the following format:

```
Score: <1-10>
Reason: <reason for score>
```

What score would you assign to this text-image pair? "data1" "data2".

Image-Text Prompt Template V2

User prompt: Figure out how well this image matches the description provided. The image shows two objects, and the text is meant to describe how they're arranged. Look at these specific conditions: {conditions}. If the text captures some parts of the image but misses others, it should still get a better score than something totally off. Score this match on a scale of 1 to 10, where 1 means there's no match and 10 means the description nails it and matches every condition perfectly. The text and image will follow this prompt. Answer in this format only:

```
Score: <1-10>
Reason: <reason for score>
```

What's your score? "data1" "data2".

1892

1894

1898 1899 1900

1901 1902 1903

1905 1907

1904

1909 1910 1911

1912 1913 1914

1915 1916 1917

1918 1919 1920

1921 1922 1923

1926

1927 1928 1929

1930 1931

1932 1933 1934

1935

1938

1941 1942

Image-Text Prompt Template V3

User prompt: Evaluate the degree to which a text description accurately represents an image featuring two objects, taking into account the following conditions: {conditions}. Assign a score based on how well the image-text pair matches, where: - A perfect description that satisfies all conditions scores 10. - Texts that partially align with the image but fail to meet conditions should still score higher than completely unrelated ones. The data pair will follow this prompt. Provide your score on a scale of 1 to 10 using the exact format below:

```
Score: <1-10>
Reason: <reason for score>
```

What score would you give? "data1" "data2".

Image-Text Prompt Template V4

User prompt: You are tasked with reviewing how well a text description aligns with an image of two objects. The score should reflect not only the accuracy of the alignment but also how well the description satisfies the following conditions: {conditions}. Even if the text description captures some parts of the image while failing the conditions, it should still receive a higher score than a completely irrelevant description. The text and image will be provided below. Assign a score on a 1 to 10 scale, where 1 is no similarity and 10 is perfect alignment that meets all conditions. Answer only in this format:

```
Score: <1-10>
Reason: <reason for score>
```

What score would you assign? "data1" "data2".

Image-Text Prompt Template V5

User prompt: Assess the degree to which a text description corresponds to an image of two objects, taking into account the following conditions: {conditions}. The scoring should reflect: - A perfect alignment with the image that satisfies all conditions merits a score of 10. - Descriptions that partially match the image but fail to meet certain conditions should still receive a higher score than entirely unrelated descriptions. - A score of 1 should be reserved for cases where no correlation exists between the text and the image. The text and image pair will be provided below. Provide your evaluation using the following format:

```
Score: <1-10>
Reason: <reason for score>
```

What score would you assign? "data1" "data2".

LLM USAGE

LLMs were used in this work as assistive tools, but did not contribute as co-authors. Their usage was limited to the following areas:

- 1. Benchmark Evaluations: Since PairBench is a benchmark paper, we employed LLMs as evaluators to score and rank model outputs under different conditions.
- 2. Automation of LATEX Tables and Editing: LLMs were used to automate the generation of LATEX tables summarizing results and ablations, as well as for minor editing tasks (e.g., reformatting sections, ensuring consistent style).
- 3. Writing Assistance: LLMs assisted with grammar checking, improving sentence clarity, and smoothing transitions between sections. All scientific claims, analyses, and conclusions were written and verified by the human authors.