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ABSTRACT

Recent breakthroughs in generative modelling have led to a number of works
proposing molecular generation models for drug discovery. While these models
perform well at capturing drug-like motifs, they are known to often produce
synthetically inaccessible molecules. This is because they are trained to compose
atoms or fragments in a way that approximates the training distribution, but they are
not explicitly aware of the synthesis constraints that come with making molecules in
the lab. To address this issue, we introduce SynFlowNet, a GFlowNet model whose
action space uses chemically validated reactions and reactants to sequentially build
new molecules. We evaluate our approach using synthetic accessibility scores and
an independent retrosynthesis tool. SynFlowNet consistently samples synthetically
feasible molecules, while still being able to find diverse and high-utility candidates.
Furthermore, we compare molecules designed with SynFlowNet to experimentally
validated actives, and find that they show comparable properties of interest, such as
molecular weight, SA score and predicted protein binding affinity.

1 INTRODUCTION

Designing molecules with targeted biochemical properties stands as a critical challenge in phar-
maceutical discovery. There has been increased attention towards employing generative models as
a substitute to traditional molecular design methodologies, with the goal of enhancing chemical
space exploration and streamlining the design process. Such works include variational autoencoders
(Gómez-Bombarelli et al., 2018; Alperstein et al., 2019), deep reinforcement learning (Olivecrona
et al., 2017), generative adversarial networks (Guimaraes et al., 2018; Cao & Kipf, 2022), normal-
izing flows (Zang & Wang, 2020; Shi et al., 2020), and diffusion models (Hoogeboom et al., 2022;
Schneuing et al., 2023).

However, most of the de novo design models today do not account for important constraints, such as
physical plausibility (Harris et al., 2023) or synthetic accessibility, thus leaving no guarantee that
the sampled molecules can be created in the real world (Gao & Coley, 2020). Synthetic complexity
scores (Ertl & Schuffenhauer, 2009; Coley et al., 2018) have been proposed as a method to assess
molecules and complement generative models with knowledge on synthetic accessibility, however
these heuristics and learned metrics are often oversimplified. There also have been concurrent efforts
to achieve computer-aided synthesis planning, as a subsequent step to molecule generation (Coley
et al., 2017; Schwaller et al., 2020). However, these approaches encounter obstacles when tasked
with devising synthetic pathways for molecules inherently challenging or impossible to synthesize,
thereby sometimes rendering the proposed synthesis routes impractical.

Synthetically-accessible chemical spaces can be assembled from combinations of reactions involving
readily available reactants, resulting in libraries of tens of billions of molecules (Klarich et al., 2024).
However, virtual screening on these datasets is impractical. It is estimated that screening 10 billion
compounds using a single central processing unit can take more than 3,000 years (Sadybekov et al.,
2022). The size of such spaces grows exponentially with the number of available reactants, and with
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Figure 1: SynFlowNet allows for synthesis-aware molecule generation. (A) The state space of
SynFlowNet generates molecules from purchasable building blocks and chemical reactions. Every
final molecule is associated with a reward. Training trajectories are constructed by sampling the model
forward. (B) Our policy π(a|s) is parameterised as a graph transformer which outputs embeddings
that are passed into 8 separate MLPs to predict the action logits for different action types. (C)
Transitions from a state to the next happens via uni- or bi-molecular reaction templates.

thousands of novel building blocks released each year, new methods to navigate the synthesizable
space are needed.

Given the challenge of synthesisability for atom- and fragment-based generative models, we propose
to formulate the problem of molecule generation in an action space of chemical reactions. A reaction-
based action space guarantees synthesisability, and we show that even a random sampler in this space
is able to produce molecules with competitive scores compared to a fragment-based model.

Secondly, we would like our sampler to maximise desired properties, and at the same time re-
trieve molecules from distinct modes of the available synthetic space. Generative Flow Networks
(GFlowNets) (Bengio et al., 2021) emerged as a framework that, by design, is able to generate diverse
samples. GFlowNets were shown to require fewer evaluation steps of the reward function to generate
samples with high reward and diversity compared to alternatives such as Markov Chain Monte Carlo
or Proximal Policy Optimisation (Bengio et al., 2021).

In this work, we introduce SynFlowNet, a GFlowNet specifically trained to generate molecules
from available chemical reactions and purchasable compounds. Our approach thus constrains
the exploration of targets to a synthetically-accessible chemical space, sampling not only target
compounds, but also synthetic routes that lead to them. In summary, our main contributions are:

• We train a GFlowNet using an action space defined by documented chemical reactions and
purchasable starting materials to generate molecules that are synthesisable.

• We find that SynFlowNet is able to generate molecules with overall better scores (diversity,
drug-likeness, protein binding affinity) compared to a GFlowNet with an action space
composed of molecular fragments, and comparable scores to experimentally validated
molecules.

1.1 BACKGROUND AND RELATED WORK

GFlowNets GFlowNets (Bengio et al., 2021) are a class of probabilistic models that learn a
stochastic policy to generate objects x through a sequence of actions, with probability proportional
to a reward R(x). The sequential construction of objects x can be described as a trajectory τ ∈ T
in a directed acyclic graph (DAG) G = (S, E), starting from an initial state s0 and using actions a
to transition from a state to the next: s a−→ s′. A GFlowNet uses a forward policy PF (−|s), which
is a distribution over the children of state s, to sample a sequence of actions based on the current
states. Similarly, a backward policy PB(−|s) is the distribution over the parents of state s, and can
be used to calculate probabilities of backward actions, leading from terminal to initial states. The
training objective which we adopt in this paper is trajectory balance (Malkin et al., 2022). This learns
the initial state flow Zθ, and the policies PF (−|s; θ) and PB(−|s; θ) parameterized by θ, where
Z = F (s0) =

∑
τ∈T F (τ).
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Bengio et al. (2021) have used GFlowNets to generate molecules with high binding affinity to a protein
target by linking fragments to form a junction tree (Jin et al., 2019). The framework was extended
to multi-objective optimisation (Jain et al., 2023; Roy et al., 2023), where the model was trained
to simultaneously optimise for binding affinity to the protein target, Synthetic Accessibility (SA),
drug likeness (QED) and molecular weight. Recently, Shen et al. (2023) extended the framework to
pocket-conditioned molecular generation, employing the same action space to generate molecules
conditioned on different protein targets.

Synthesis-aware molecule generation The idea of tackling molecule generation and synthesis
simultaneously has been addressed before, first by SYNOPSIS (Vinkers et al., 2003), which generates
molecules from a starting dataset of available compounds, relying on applying chemical modifications
to functional groups and assessing the value of the product with a fitness function. Works such as
Bradshaw et al. (2019); Korovina et al. (2020) followed, which use neural models for one-step
synthetic pathways. Gottipati et al. (2020) used a reinforcement learning setup based on policy
gradient to generate compounds from reactions and commercially available reactants. Gao et al.
(2021) formulate a Markov decision process to model the generation of synthesis trees, which can be
optimized with respect to the desired properties of a product molecule.

Our work resembles a reinforcement learning setting for synthesis-aware molecular generation
(Gottipati et al., 2020; Horwood & Noutahi, 2020). The key difference lies in the sampling distribution
of the learned model. Contrary to RL, the GFlownet objective is not to generate single highest-return
sequence of actions, but rather to maximise both performance and diversity by sampling terminal
states proportionally to their reward. This is especially useful in the context of molecule generation,
where we want to explore different modes of the distribution of interest.

2 METHODS

Problem definition We model synthetic pathways as trajectories in a GFlowNet, starting from
purchasable compounds and ending with molecules that are optimized for some desired properties.
At a given timestep t, the state st represents the current molecule and stepping forward in the
environment consists in sequentially building up on that molecule by applying new pairs of reactions
and reactants until either a termination action is chosen or the path reaches a maximum length. We
encode chemical reactions using SMARTS templates, which are patterns that capture the structural
changes occurring in a reaction by specifying which atoms and bonds are involved and how they are
modified. Our method systematically constructs a synthetic pathway, applying one reaction at a time,
while also optimizing for desired molecular properties captured by a reward function.

Our model is trained in an online fashion, meaning that it learns exclusively from trajectories sampled
from the GFlowNet policy, without relying on an external dataset of trajectories or a set of target
molecules. Note however that this framework allows for training on such datasets (such a scheme is
regarded as offline training).

Action space We define five types of forward actions divided into two hierarchical levels (see Figure
1). The first level includes the actions Stop, AddFirstReactant, ReactUni and ReactBi,
where ReactUni and ReactBi respectively represent uni-molecular and bi-molecular reactions.
The second action level consists of the AddReactant action, which is sampled only if a ReactBi
was sampled in the first level. More precisely, each trajectory starts from an empty molecular graph
which is followed by a building block sampled from AddFirstReactant. We then continue
based on the sampled action type as follows: (a) if the action type is Stop, we reach a terminal state
and end the trajectory; (b) if a ReactUni action is sampled, we apply the uni-molecular reaction
template to the molecule in state s to yield product molecule in state s′; (c) if the action type is
ReactBi, the sampled reaction is used as input to an MLP, together with the state embedding, to
sample a subsequent action of type AddReactant. This action introduces a second molecule which
reacts with the molecule in state s according to the bi-molecular reaction template. Pre-computed
masks ensure that only compatible reaction templates and reactants are sampled.

The backward actions types that we use are BckReactUni, BckReactBi and
BckRemoveFirstReactant. To unfold a reverse trajectory we proceed similarly: (a) if
the action-type is a BckReactUni, the action yields the reactant molecule directly; (b) if the
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SA: 2.78, QED: 0.69

SA: 2.75, QED: 0.51

BA

SA: 4.77, QED: 0.83

Figure 2: (A) Distributions of metrics calculated for molecules generated using SynFlowNet and the
fragment-based GFlowNet. The reward reflects the predicted binding affinity to the protein target we
optimise for. ZINC250k molecules are used as control and a subset of 313 ChEMBL molecules has
been selected for high binding affinity against the SeH target using an IC50 threshold of 1nM. The
model was trained to maximise the reward and the other metrics are used for analysis only. (B) Three
of the highest-reward molecules sampled from SynFlowNet.

action type is BckReactBi, we obtain two reactants, and the molecule that is not a building block
becomes the next state (or previous state in the DAG). If the two resulting reactants are both building
blocks (which happens at the beginning of the forward trajectory), the molecule that populates the
next state is picked at random from the two building blocks. The last action in a backward trajectory
is BckRemoveFirstReactant, leading to the empty molecular graph s0.

Model A graph neural network based on a graph transformer architecture (Yun et al., 2019) is
used to parameterize the forward and backward policies. The model’s action space is defined using
separate MLPs for each action type (see Figure 1). Model hyperparameters and training details are
discussed in the Appendix A.

Reward The reward function is defined as the normalized negative binding energy as predicted by
a pretrained proxy model, available from Bengio et al. (2021) and trained on molecules docked with
AutoDockVina (Trott & Olson, 2010) for the sEH (soluble epoxide hydrolase) protein target, a well
studied protein which plays part in respiratory and heart disease (Imig & Hammock, 2009).

Data and Implementation We use reaction templates from the two publicly available template
libraries (Button et al., 2019; Hartenfeller M, 2012). These give a total of 71 reaction templates: 13
uni- and 58 bi-molecular reactions respectively. We use 6000 randomly selected molecular building
blocks from the Enamine Building Blocks (Global stock, accessed November 28, 2023) (Enamine).
All reactions were run using RDKit’s RunReactants function.

3 EXPERIMENTS

We set out to answer the following questions: (1) Is a GFlowNet trained with an action space
of chemical reactions capable to generate molecules of similar reward and diversity compared to
GFlowNets using the previously-defined molecular-fragment action spaces? (2) Does an action space
of chemical reactions succeed in addressing the challenge of synthesisability in molecular design?

We train the GFlowNet with a reaction templates action space to generate molecules with rewards
proportional to sEH binding affinity and compare the results to a GFlowNet using an action space
defined by the manipulation of molecular fragments (Bengio et al., 2021; Jin et al., 2019). To achieve
comparable vocabularies in the state spaces, we replace the molecular fragments used in the original
GFlowNet paper with fragments generated from the same library of reactants used by our model.
The final evaluation consits of 1600 compounds sampled for each models. We also compare these
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SynFlowNet (SynFlowNet predicted)

Fragments GFlowNet (AiZynthFinder predicted)

SynFlowNet (AiZynthFinder predicted)
BA

C

Figure 3: SynFlowNet generates molecules as well as their synthetic pathways. AiZynthFinder
retrosynthetic analysis was used to further assess synthesisability. Fragment GFlowNet syntheses
are longer on average. (A) SynFlowNet synthesis for the highest reward molecule. Note that an
additional azide reagent is involved in the reaction; (B) AiZynthFinder synthesis (top score) for the
same molecule. (C) AiZynthFinder synthesis (top score) for the top molecule sampled from the
fragments GFlowNet. Molecules with a green frame are purchasable (found in stock), contrary to
those with orange frames.

generated molecules against experimentally validated bioactive molecules from ChEMBL (Zdrazil
et al., 2023).

Evaluation metrics To evaluate the quality of generated molecules, we used the QED (Bickerton
et al., 2012) metric, which estimates drug-likeness, the SA Score and SCScore for synthesisability
(Ertl & Schuffenhauer, 2009; Coley et al., 2018) and relative ligand efficiency, which is a measure of
binding affinity per atom of a ligand to its binding partner. We estimate ligand efficiency by dividing
the predicted reward (which is proportional to binding affinity) by atom count. Additionally, we
report the chemical validity, uniqueness and diversity of the generated molecules. The latter was
estimated using pairwise Tanimoto distances between Morgan fingerprints.

To further assess the synthetic accessibility of our compunds, we use the AiZynthFinder (Genheden
et al., 2020) retrosynthesis tool for validation. This tool attempts to predict reactions ‘backwards’ to
find synthesis pathways for a given molecule and returns a score, success rate and a synthesis tree
of length n. We augment the building blocks library used by AiZynthFinder with the full Enamine
Building Blocks stock (Global stock, accessed November 28, 2023) (Enamine). The reactions
available to the retrosynthesis tool are the US patent office (USPTO) set (Lowe). This means that
any molecule inputted to the retrosynthesis tool will be deemed synthesisable if and only if it can be
synthesised using USPTO reactions and the available building blocks.

Results Figure 2 and Table A.2 summarise our results. SynFlowNet generates molecules with
considerably better SA and SC scores compared to the molecular fragments GFlowNet, and better
QED scores. While the average reward is lower than for our fragment counterpart, this is likely due
to the abundance of nonsensical high-reward molecules in the fragment-tree space. SynFlowNet also
achieves higher ligand efficiency scores on average. The computation of pairwise Tanimoto distances
between molecular fingerprints of molecules generated by the two models yields the same score of
0.81, meaning that SynFlowNet is still able to generate diverse candidates even with a significantly
more constrained action space.

We also benchmark against ZINC250k (Gómez-Bombarelli et al., 2016) molecules (as a control)
and a curated set of compounds sourced from the ChEMBL database, specifically targeting the sEH
protein (ChEMBL2409). Ligand interaction potency to the sEH target is quantified though IC50

values, which indicate the concentration of compound required to inhibit the protein’s biological
activity by 50%. We retrieve the molecules with an IC50 value smaller than 1nM and benchmark
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Figure 4: AiZynthFinder results. Statistics calcu-
lated for molecules generated using SynFlowNet
and the fragments GFlowNet. Top score is the
maximum synthesis score from all suggested
routes per molecule.

Figure 5: Effect of reward exponent (Rβ) on
distributions of reward and molecular diversity of
sampled molecules (where diversity is quantified
as the pairwise Tanimoto distance between the
molecules’ Morgan fingerprints).

the two GFlowNets against them. SynFlowNet molecules exhibit a promising alignment with those
catalogued in ChEBML in all four metrics reported in Figure 2 but QED.

In Figure 4, we report some statistics obtained from running AiZynthFinder on the top 100 molecules.
The score in the first box plot reflects the fraction of solved precursors and the number of reactions
required to synthesise the target compound, and is close to 1.0 for solved compounds and typically less
than 0.8 for unsolved ones (Genheden et al., 2020). 47% of the molecules sampled from SynFlowNet
registered successful syntheses, while none of those generated with the fragments GFlowNet could be
synthesised with the libraries of templates and building blocks used by AiZynthFinder. The number of
steps and search times are also considerably higher on average for the fragments GFlowNet. In Figure
3 we show the synthetic routes for highest-reward molecules, as derived from a SynFlowNet trajectory
or from AiZynthFinder. The synthesis for the molecule sampled from the fragments GFlowNet is
rendered unsuccessful because one of the leaf molecules cannot be purchased.

Figure 2 showcases 3 high-reward molecules sampled from SynFlowNet, and their associated QED
and SA scores. We note that two of them are derived from the same starting building block, meaning
that one of the modes of high reward contains this substructure. Looking at other molecules of high
reward, however, we see more structurally diverse molecules (see Figure A.9). Exploration and
diversity can be controlled by reward exponent β, and the trade-off between diversity and reward is
highlighted in Figure 5. This parameter’s adjustability suggests we can further optimise the model’s
performance to achieve desired trade-offs between rewards and diversity, and such an adjustment
mitigates the model’s tendency to overly exploit rewards.

Limitations The main limitation of our work is the use of the pretrained reward proxy to approxi-
mate binding to sEH. This is both due to the inaccuracy of AutoDock Vina (Trott & Olson, 2010),
and the uncertainty around whether the proxy model would perform well out-of-distribution for novel
molecules. However, retrospective evaluation between our reward function and log(IC50) values
gave a correlation coefficent of -0.3 and an ROC-AUC of 0.69 (Appendix Figures A.7 and A.8).

The available action space is a limiting factor in the performance of SynFlowNet, and this work can
be improved with a broader library of chemical reactions. As drug design aims to simultaneously
optimise for a series of pharmacological features, we aim to adapt our framework to the optimisation
of multiple objectives. See Appendix A.2 for further discussions.

4 CONCLUSION

In this work, we introduce the first application of GFlowNets for de novo molecular design paired
with forward synthesis. We have demonstrated promising results by generating molecules with high
scores in terms of quality and properties, and significantly enhanced synthesisability, by defining an
action space of chemical reactions and commercially available reactants. When comparing against
GFlowNets defined with a molecular fragments action space, we preserve the high diversity score of
generated candidates, despite significantly constraining the action space.
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A IMPLEMENTATION DETAILS

A.1 TRAINING

Model and training details We adapt the framework from Bengio et al. (2021) to train a GFlowNet
sampler over a space of synthesisable molecules, which are assembled from an action space of
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chemical reactions and reactants. A graph neural network with a graph transformer architecture
(Yun et al., 2019) is used to produce a state-conditional distribution over the actions. A state is
represented as a molecular graph in which nodes contain atom features. Edge attributes are bond
type and the indices of the atoms which are its attachment points. This representation is augmented
with a fully-connected virtual node, which is an embedding of the conditional encoding of the
desired sampling temperature, obtained using an MLP. The sampling temperature is controlled by
a temperature parameter β, which also plays a role in reward modulation, allowing for exponential
scaling of the rewards (by making rewards received during training equal to Rβ). We experimented
with sampling β from multiple distributions, and use a constant distribution in the reported results in
this paper. We used a thermometer encoding of the temperature (Buckman et al., 2018).

The model is trained using the trajectory balance objective (Malkin et al., 2022) and thus is pa-
rameterised by forward and backward action distributions PF and PB and an estimation of the
partition function Z =

∑
τ∈T F (τ). The hyperparameters used for training SynFlowNet and the

fragment-based GFlowNet are summarised in Table A.2. A maximum trajectory length of 5 is used.

Hyperparameters Values
SynFlowNet Fragments GFlowNet

Batch size 64 64
GFN temperature parameter β 64 64

Number of training steps 1000 1000
Number of GNN layers 4 4

GNN node embedding size 128 128
Learning rate (PF ) 10−4 10−4

Learning rate (PB) 10−4 10−4

Learning rate (Z) 10−3 10−3

Table A.1: Hyperparameters used in our training pipelines.
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Figure A.1: Average reward recorded during training.

Reward details As mentioned in Section 2, we use a proxy trained on molecules docked with
AutoDock Vina (Trott & Olson, 2010) for the sEH target; we use the weights provided by Bengio
et al. (2021), resulted from training an MPNN (Gilmer et al., 2017) that receives an atom graph as
input. Model architecture is detailed in Bengio et al. (2021). The proxy was trained with a dataset of
300k randomly generated molecules down to a test MSE of 0.6. Note that the reward scale presented
in our findings deviates from that of the original GFlowNet publication. Specifically, the rewards in
our analysis are adjusted by a factor of 1/8.
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A.2 EVALUATION

While we report synthetic accessibility/complexity scores, this is primarily to enable comparison to
baselines. Such scores become less relevant when one finds available synthetic routes for a compound,
which our model achieves for every generated molecule (provided that the reaction can be carried
out with high yield in a synthetic chemistry lab, which is not guaranteed). Figure 2 supports to
some extent the reliability of the heuristics behind the SA score, as it shows a clear distribution in
the lower range of the score’s domain, as expected for molecules that are derived from chemical
reactions. At the same time, high SA scores are also recorded (see Figure 2), exposing the score’s
limitations in assessing the real synthesisability of molecules. Correlation between synthesisability
and heuristic scores have been discussed previously (Gao & Coley, 2020). We sought to further
assess synthesisability using a retrosynthesis software, which validated the enhanced synthesisability
of molecules generated from our model, but such a tool is still limited by the library of templates it is
trained on.

Method Validity Uniqueness Diversity QED (↑) SA (↓) SCS (↓) MW (↓)

SynFlowNet 100% 93.2% 0.81 0.43 3.4 3.8 419.2
Frag GFlowNet 99.8% 100% 0.81 0.26 5.4 4.9 588.9

Table A.2: Comparisons according to sample quality and property statistics of molecules generated
with SynFlowNet and a fragments-based GFlowNet.

Method AiZynthFinder success

SynFlowNet 47%
Frag GFlowNet 0%

Table A.3: Percentages of molecules (out of top 100) for which AiZynthFinder provided successful
retrosynthesis routes.
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Figure A.2: SCScores.
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Figure A.3: Ligand efficiency.
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Figure A.4: Comparison to molecules generated by randomly combining reaction templates and
building blocks.
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Figure A.5: AiZynthFinder statistics for SynFlowNet vs. fragments GFlowNet model. The second
box plot is number of solved routes per molecule, out of all routes generated for that molecule.
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Figure A.6: Histogram for lengths of trajectories sampled from SynFlowNet trained with different
maximum trajectory lengths. Note that the first state in the trajectory is an empty molecular graph,
meaning that a trajectory of length equal to 2 has one building block only, a trajectory of length 3
contains one reaction etc.
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Figure A.7: Correlation between IC50 values
and computed rewards. A Pearson correlation
coefficient of -0.3 was obtained.

Figure A.8: ROC curves for predicted rewards,
with various IC50 thresholds for binding. We
use a threshold of IC50<1nM to select molecules
from ChEMBL to compare against.
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Figure A.9: Top 50 molecules sampled from SynFlowNet (by reward). Rewards for these molecules
range from 0.87 to 0.97.
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