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Abstract—Support Vector Machine (SVM) is a prevalent clas-
sifier within machine learning, yet its robustness is compromised
by the presence of contaminated samples. Such samples, often
encountered in practical scenarios, represent deviations from
expected data distribution and can include irrelevant or ad-
versarial instances. To enhance SVM’s resilience, Fuzzy SVM
(FSVM) was introduced, leveraging sample weights to mitigate
the impact of outliers. However, FSVM has been criticized for
its tendency to sacrifice accuracy, leading to inconsistent perfor-
mance gains. To address this issue, we introduce a novel robust
SVM framework designed to counteract the effects of adversarial
samples during training. Our approach involves dynamically
setting the weights of samples with substantial loss values to zero,
thereby diminishing the influence of outliers. It can be viewed
as incorporating sample screening during training process, thus
decreasing training time. This modification is particularly effec-
tive in scenarios where training data may be tainted with labels
that are intentionally misleading. The experimental findings
demonstrate that this strategy significantly enhances classifier’s
robustness against contaminated data, without compromising
accuracy. This robust SVM presents a promising solution for
improving the reliability of SVMs in real-world applications,
where data integrity can be a critical concern.

Index Terms—Support Vector Machine, Robust Support Vector
Machine, Fuzzy Support Vector Machine, Sample Screening

I. INTRODUCTION

Support Vector Machine (SVM) [1]-[3] is a machine learn-
ing algorithm widely used in pattern recognition, data mining,
and statistical learning. Its basic principle involves finding
support vectors within a dataset to construct a hyperplane
that effectively separates different categories. SVM exhibits
excellent performance in handling high-dimensional data and
nonlinear problems, making it a powerful and versatile classi-
fier.

Significant achievements in SVM have been made in various
domains, such as disease diagnosis [4], [5], mechanical fault
detection [6], [7], human behavior detection [8], and text clas-
sification [9]. Although SVM has been successfully applied in
various domains, its standard loss function is still unbounded,
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making it sensitive to outliers and lacking sufficient robustness.
Robustness is crucial for handling noise and outliers for real-
world applications and adapting to different data distribu-
tions. In machine learning, robustness refers to a model’s
resistance to perturbations or noise in input data. A robust
model maintains stable and reliable performance in the face of
various challenges, including noise, missing values, or outliers.
Robustness also helps prevent a model from being overly
sensitive to attacks or malicious interference, particularly in
security-sensitive domains such as finance, healthcare, and
safety.

To enhance the robustness of SVM, researchers have pro-
posed the following approaches:

1) Robustness can be enhanced by adjusting the weights
of training samples. Fuzzy SVM [10] reassigned sam-
ple weights based on their distance to the separating
hyperplane, making the model less sensitive to outliers
by reducing their impact.

2) Robustness can be enhanced by enhancing the loss
function. Truncated hinge loss function [11] and rescaled
hinge loss function [12] set an upper limit on the loss
value to limit the influence of samples with large losses
on training. Other loss functions such as Pinball hinge
loss function [13], [14] SCAD (smoothly clipped abso-
lute deviation) loss function [15] and truncated Huber
loss function [16] are also used to improve robustness.

3) Robustness can be enhanced by performing sample
selection or feature selection. Selecting training sam-
ples during the training process [17]-[20] reduces the
influence of outliers on the model but also shrinks the
training scale, which is conducive to reducing training
time and cost.

4) Robustness can be enhanced by combining SVM with
other machine-learning approaches. Combination of
SVM and ensemble learning [21]-[23] constructs a more
powerful and generalizable overall model by combining
multiple SVM models, reduces the risk of overfitting
of individual models, and improves robustness of the
overall model. Leveraging deep learning for feature
extraction leads to more accurate and reliable results, es-
pecially in complex tasks like brain tumor classification



[5]. Combining multiview learning (MVL) with SVM
tackles the challenges of handling data from multiple
perspectives or feature sets and enhances classifier’s
ability to perform robustly across different views [24].

Inspired by the truncated hinge loss function, our approach
introduces a novel sample weight iteration strategy to mitigate
the influence of outliers on the SVM model. This innovative
approach transforms the training process of SVM into a dy-
namic sample screening procedure. In this new SVM (sample
screening SVM), we begin by pretraining a standard SVM,
which is the foundation for subsequent sample weighting. We
then introduce a threshold parameter, d, determining the cutoff
point for sample inclusion. This adaptive sample selection
process is a robust mechanism for outlier removal, enhanc-
ing the model’s resilience to external interference. Moreover,
reducing the number of samples considered during the training
process not only improves robustness of the SVM model but
also yields significant computational advantages. In summary,
our proposed SVM effectively balances outlier removal with
model robustness, paving the way for enhanced performance
in real-world applications.

This paper makes following notable contributions to en-
hance robustness of SVM:

1) Novel sample weight strategy: We propose a unique
sample weight iteration method that effectively reduces
the impact of outliers on the SVM model. Unlike tradi-
tional approaches, our approach reduces the weights of
some target samples to 0, which improves the accuracy
of the model.

2) Integration of sample screening in SVM training: By
incorporating sample screening directly into the SVM
training process, our approach improves robustness and
significantly reduces computational costs. This approach
prunes non-essential support vectors, which decreases
the overall training time without sacrificing performance
accuracy.

3) Empirical validation across multiple domains: We con-
duct extensive experiments across various datasets to
demonstrate versatility and effectiveness of our ap-
proach. Results show superior robustness and compu-
tational efficiency compared to existing fuzzy SVM
approaches.

The remainder of this paper is organized as follows: In
Section 2, we briefly introduce FSVM and the sample screen-
ing approach. In Section 3 we propose a novel RSVM-SS
algorithm and discuss its relationship with FSVM and other
approaches. Section 4 conducts numerical analysis on specific
datasets. Finally, in Section 5, we summarize and conclude
our findings.

II. RELATED WORKS

A. FSVM: Fuzzy support vector machine

Let’s consider a training set 7  with N
training samples, which is represented as T =
{(z1,01), (x2,92) -, (xn,yn)}, where z; € %Y

y; € {1,—1},i = 1,2,..., N. For a model f, the predicted
value y; of sample x; is given by y; = sgn(f (x;)). The
solution of FSVM [25] involves first training a standard
SVM, then assigning corresponding sample weights w; based
on the function values f (x;) of samples x; . At this point,
the original problem and the dual problem of SVM take the
following forms:
Original Problem:

N
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where C' is the regularization parameter, [(-) represents the
loss function, which usually uses the hinge loss function
(lhinge(v) = max{0,1 — u}), «; represents the Lagrange
coefficient corresponding to sample x;, and (-, -) denotes the
inner product.

In the case of linear SVM, f(z) = w” x + b. For nonlinear
SVM problems, the inner product (-,-) is replaced by the
kernel function K(-,-). A common kernel function is the
Radial Basis Function (RBF), also known as the Gaussian
kernel, defined as:

K (@) = exp (= |}z — ;) ©)

where v is a parameter used to control the width of the kernel
function.
Various types of sample weights are proposed [25], [26]:
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where A is a tiny constant to prevent division by zero, and p
is a predefined parameter used to control the decay rate.

In [12], RSVM-RHHQ (robust support vector machine
using rescaled hinge loss function and half-quadratic) modifies
the loss function (lhinge (1) = max{0, 1—u}) to a bounded loss
function (Iinge (1) = B [1 — exp (—Nlhinge (1))]). According to
[12], the solution of RSVM-RHHAQ is equivalent to an iterative
FSVM. The iterative sample weights correspond to:

{Dgsﬂ) = exp (—nl (f(s) (z))) N

where s represents the iteration step, f(*) (x;) is the function
value of sample x; at the s-th iteration, and 7 is a predefined
constant.



B. Sample screening

Based on the SVM formulation, its prediction values depend
only on the final support vectors, which typically constitute
a small subset of all samples. Sample screening [17] is an
approach derived from this insight, aiming to filter out non-
support vectors during the training process, thereby reducing
training time and enhancing the model’s efficiency and accu-
racy. It proposed a safe sample screening method that estimates
the contribution of each sample to the optimal hyperplane
to exclude those unlikely to become support vectors. [18]
further extended this idea by introducing a robust SVM sample
screening technique to handle datasets containing noise and
outliers. Common goal of these methods is to reduce the
size of the training set, lower computational complexity, and
maintain or even enhance the model’s performance.

III. RSVM-SS: ROBUST SUPPORT VECTOR MACHINE
BASED ON SAMPLE SCREENING

In standard SVM, sample weights can be considered fixed
to 1. In FSVM, the model pretrains a standard SVM as the
basis for subsequent sample weighting. (4), (5), and (6) assign
smaller sample weights to points with larger values of | f (x;)|,
which implies that these points are farther from the separating
hyperplane. Since the loss value of points correctly classified
outside the support vectors is 0, motivated by FSVM, we
propose RSM-SS (Robust support vector machine based on
sample screening), which reduces the sample weights to O
for certain samples after training the standard SVM. These
weights are defined as follows:

0,
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otherwise
where § is a predefined threshold, and typically, § takes a
negative value. The smaller the absolute value of §, the more
sample weights of misclassified points are assigned as 0. If §
is set to 0, all sample weights of misclassified points are set
to 0.

When substituting (8) into (1), the resulting optimization
problem resembles the self-paced learning (SPL) approach.
SPL [27], [28] begins training with a small subset of samples,
progressively relaxing the selection criteria to include all
samples eventually. The main goal of SPL is to help the model
escape local optima and achieve better overall performance.
In contrast, our RSVM-SS algorithm focuses on training with
screened samples, aiming to reduce the impact of outliers on
the model. It can be considered a sample selection to remove
potential outliers. Unlike the approaches in [17], [18], which
aim to filter out non-support vectors as much as possible,
our approach retains correctly classified non-support vectors.
Although this increases training time, it experimentally results
in higher generalization performance and better accuracy on
the test set.

Like FSVM, our RSVM-SS algorithm consists of the fol-
lowing steps:

Step 1 : Initialization. Set all sample weights w; to 1. Train a
standard SVM and compute f (x;) for each sample.

®)

Step 2 : Tteration. Update w; based (8). Then train another
SVM.

Step 3 : Stop when the stop condition is met or the maximum
number of iterations is reached.

IV. EXPERIMENTS

In this section, we conduct experiments for our RSVM-SS
model on 7 datasets. Table I shows the basic information of
these datasets.

TABLE I
DETAILS OF BENCHMARK DATASETS
Dataset Samples  Positive ~ Negative  Features
Wdbc 569 357 212 30
Transfusion 748 178 570 4
Pima Indians Diabetes 768 268 500 8
ASa 6414 1569 4845 122
Musk 6598 1017 5581 166
Svmguidel 3089 2000 1089 4
Magic Gamma 19020 12332 6688 10

We conducted experiments with various § values, includ-
ing -0.2, -0.5, -1, and -2. Through our experimentation, we
determined that a threshold value of -1 proved to be par-
ticularly effective. Since the features were normalized before
the experiment, setting § to -1 resulted in an optimal number
of screened samples. This balance ensured that the benefits
of improving robustness and reducing computation time were
not compromised. Moreover, this threshold selection mitigated
concerns about the model’s generalization, as it struck a
suitable balance between outlier removal and preserving the
representativeness of the dataset. Overall, this approach not
only enhances robustness of the model but also improves
computational efficiency.

In practical experiments, we found that when J is set to a
relatively large value (e.g., 0), it may lead to all remaining
samples belonging to the same class, rendering training infea-
sible. One solution is to set the weight adjustment to a very
small value instead of 0 when performing sample screening,
and then continue training. Another approach is to make § not
fixed. For instance, we can sequentially calculate the violation
degree of misclassified samples and set the g-th quantile as
the threshold 6,. By doing so, samples with smaller violation
degrees are preserved, avoiding excessive filtering.

For comparison with other robust SVMs, we employ the
following SVM models:

e Standard SVM

e RSVM-RHHQ: Sample weights use (7). Referring to [12],
when interference samples are relatively few (0 % and 10 %),
7 is set to 0.5 ; while interference samples are more abundant
(20%), n is set to 2 . The optimization method adopts the
iterative FSVM method in (7) with two iterations.

e FSVM-7: Sample weights use (4), referring to [26].

e FSVM-8: Sample weights use (5), referring to [26], with
w set to 0.7.

e FSVM-9: Sample weights use (6), referring to [25].

e Our RSVM-SS: Sample weights use (8). For a fixed
screening threshold, ¢ is set to -1, and the corresponding SVM



model is named RSVM-SS-1 (denoted as RS-1 in Fig. 1 to
15). For the quantile screening method, quantile is set to 0.5,
and the corresponding SVM model is named RSVM-SS-q0.5
(denoted as RS-q0.5 in Fig. 1 to 15).

Other parameters are set as follows: C' in SVM is set
to 1. When using the Gaussian kernel, v is calculated as
v =1/ (d . Jg() , where d is the dimensionality of the
feature space, and 0% is the feature variance of the training
samples. The experiments utilize 10-fold cross-validation. For
each dataset, we sequentially take 0 %, 10 %, and 20 % of the
samples with opposite labels as interference data. Accuracy of
models on the test set is used as a metric for evaluating their
robustness. All datasets are standardized before training.

A. Model robustness

First, we compare the accuracy of different models when
interference samples are present in the dataset. In Fig. 1 to 7,
we will compare the accuracy of each model (mean%). Each
dataset corresponds to six scenarios, which are combinations
of two types of kernels and three levels of noise, namely,
(linear, 0%), (linear, 10%), (linear, 20%), (rbf, 0%), (rbf, 10%),
and (rbf, 20%).

Average accuracy for the Wdbc dataset
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Fig. 1. Average accuracy of the Wdbc dataset. The horizontal axis represents
the combinations of different noise levels and kernel function types, where
“linear” represents the linear kernel, ’rbf” represents the radial basis function
kernel, and the numbers represent the proportion of interference samples. The
vertical axis represents the average accuracy of the models.Fig. 2 to 7 take
the same horizontal and vertical axes.

By analyzing results obtained from our experiments, it is
evident that our proposed model significantly enhances the
accuracy of SVM in the presence of interference samples.
This improvement is particularly noteworthy as it effectively
counters the adverse effects of increased noise levels in
the dataset. Notably, our model consistently outperforms the
traditional SVM model across various datasets, indicating its
robustness and efficacy in handling challenging scenarios.

Upon thorough examination, it’s evident that our model
consistently demonstrates superior performance, manifesting
the highest accuracy improvement across five of the datasets
analyzed. However, RSVM-RHHQ displays the highest accu-
racy improvement in the remaining two datasets; nevertheless,
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Fig. 2. Average accuracy for the Transfusion dataset .

Average accuracy for the Pima dataset

FEbEvEirEiE e e iEE by

® 2 - = DENE SRR
inear(0%) inear(10%) inear(20%) rbf(0%) rbf{ 10%) rbfi 20%)
“5VM = RSVM-RHHO = FSVM-7 =FSVM-8 ~FSVM-8 =R51 #&RS5qgl5

Fig. 3. Average accuracy for the Pima dataset .

Average accuracy for the A5a dataset
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Fig. 5. Average accuracy for the Musk dataset .

Average accuracy for the Svymguidel dataset
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Fig. 6. Average accuracy for the Svmguidel dataset .

Average accuracy for the Magic Gamma dataset
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Fig. 7. Average accuracy for the Magic Gamma dataset .

its performance fluctuates in certain cases, indicating incon-
sistency in accuracy enhancement. In contrast, our method
consistently enhances accuracy across diverse datasets, un-
derscoring its reliability and robustness. This highlights the
efficacy of our approach, especially in real-world scenarios
vulnerable to interference and noise.

Furthermore, when comparing the performance of RSVM-
SS-1 with RSVM-SS-q0.5, we observe that the latter demon-
strates greater stability and achieves a more substantial en-
hancement in accuracy. This preference for using quantiles as
the filtering threshold suggests that it offers a more rational
approach to sample selection, thereby contributing to the
overall robustness and reliability of our model.

In conclusion, our experimental findings provide compelling
evidence of the effectiveness and versatility of our proposed
model in enhancing the robustness and accuracy of SVM in
the face of interference. These results pave the way for its
application in a wide range of domains where reliable and
robust classification models are essential for accurate decision-
making.

B. Model training time

Efficiency of model training is a crucial aspect in practi-
cal applications, impacting resource allocation and real-time
decision-making. In this section, we investigate the training
time of each model across various datasets and scenarios.
Understanding the computational efficiency of each model
is essential for assessing its practical viability. Fig. 9 to 15
present the training time of each model, measured in seconds.
During experiments, we maintained a consistent number of
iterations at 2, ensuring comparability among all models
except the standard SVM. The same as Section 4.1, each
dataset has six scenarios, namely, (linear, 0%), (linear, 10%),
(linear, 20%), (rbf, 0%), (1bf, 10%), and (rbf, 20%).

Average training time for the Wdbc dataset
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Fig. 8. Average training time for the Wdbc dataset .

Fig. 9. Average training time for the Wdbc dataset. The horizontal axis
represents the combinations of different noise levels and kernel function types,
where “linear” represents the linear kernel, “rbf” represents the radial basis
function kernel, and the numbers represent the proportion of interference
samples. The vertical axis represents the average training time of the models
in seconds. Fig. 10 to 15 take the same horizontal and vertical axes.
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Average training time for the Svmguidel dataset
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Average training time for the Magic Gamma
dataset
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From the above results, it is evident that RSVM-SS-1
consistently exhibits the shortest training time across all
datasets, reflecting its efficiency in model convergence and
parameter optimization. This efficiency is particularly notable
given its competitive performance in accuracy improvement,
as showcased in previous sections. While RSVM-SS-q0.5 may
not match RSVM-SS-1 in terms of training time efficiency,
it consistently outperforms other benchmark models, striking
a balance between computational speed and predictive capa-
bility. This suggests that RSVM-SS-q0.5 offers a compelling
trade-off between efficiency and accuracy, making it a practical
choice for scenarios where both factors are crucial.

Moreover, the observed variations in training time among
different models underscore the importance of considering
computational efficiency alongside predictive performance. In
real-world applications where computational resources are
limited or time constraints are stringent, the choice of model
can significantly impact operational efficiency and resource
allocation. Therefore, a comprehensive evaluation that consid-
ers both accuracy and training time is essential for informed
decision-making in model selection.

In conclusion, while RSVM-SS-1 stands out for its excep-
tional training time efficiency, RSVM-SS-q0.5 emerges as a
strong contender, offering a pragmatic solution that balances
computational speed with predictive accuracy. By integrating
these findings into model selection processes, practitioners can
optimize both computational resources and predictive perfor-
mance, thereby enhancing the effectiveness and efficiency of
machine learning applications.

V. CONCLUSION

This paper has introduced a novel SVM (RSVM-SS al-
gorithm) by proposing a new form of weights, resulting in
the development of FSVM, which can be interpreted as an
SVM with partial sample screening. Our experimental findings
highlight the robustness of the proposed model in handling
datasets prone to interference, underscoring its effectiveness in
real-world scenarios characterized by noisy or complex data.
Moreover, comparative analysis against other FSVM variants
has revealed that our model not only demonstrates superior
performance but also requires less training time, enhancing
computational efficiency without compromising predictive ac-
curacy.

Future research may explore alternative approaches for
weight selection and investigate the performance of FSVM
in scenarios requiring multiple iterations. Additionally, scal-
ability and adaptability assessments across diverse datasets
and application domains would enhance our understanding of
FSVM’s utility in practical machine learning tasks. Through
continued exploration and refinement, FSVM shows promise
for effectively addressing complex data challenges and facili-
tating decision-making across various domains.
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