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Abstract

In large language model (LLM) reasoning,001
multi-step processes have proven effective for002
solving complex tasks. However, the depth003
of exploration can significantly affect the rea-004
soning performance. Existing methods to au-005
tomatically decide the depth often bring high006
cost and lack flexibility, and thus undermine007
the model’s reasoning accuracy. To address008
these issues, we propose Entropy-based Ex-009
ploration Depth Conduction (Entro-duction),010
a novel method that dynamically adjusts the011
exploration depth during multi-step reason-012
ing by monitoring LLM’s output entropy and013
variance entropy. We employ these two met-014
rics to capture the model’s current uncertainty015
and the fluctuation of uncertainty across con-016
secutive reasoning steps. Based on the ob-017
served changes, the LLM selects whether to018
deepen, expand or stop exploration according019
to the probability. In this way, we balance the020
reasoning accuracy and exploration effective-021
ness. Experimental results across four bench-022
mark datasets demonstrate the efficacy of Entro-023
duction. We further conduct experiments and024
analysis on the components of Entro-duction to025
discuss their contributions to reasoning perfor-026
mance.027

1 Introduction028

Large language models (LLMs) have demonstrated029

remarkable reasoning capabilities across various030

domains (Brown et al., 2020; Touvron et al., 2023;031

Patterson et al., 2022; Fu et al., 2022; Wei et al.,032

2022). Meanwhile, facing complex tasks, they en-033

counter challenges in generating accurate and effec-034

tive multi-step reasoning. Specifically, LLMs may035

exhibit over-reasoning or under-reasoning, which036

both indicate the depth of exploration for a given037

problem does not match expectations (Ahn et al.,038

2024; Mirzadeh et al., 2024; Huang and Chang,039

2022; Fu et al., 2023). This mismatch could lead040

to several issues: (1) inaccurate, insufficient, or041

redundant reasoning outcomes; (2) unnecessary 042

computation costs (Yeo et al., 2025; Yang et al., 043

2024; Lightman et al., 2023). These issues exist 044

because i) LLMs lack evaluation and regulatory 045

mechanisms for their reasoning process; ii) there 046

are significant variations in the reasoning process 047

required for different tasks, and LLMs are unable to 048

accurately judge and adjust the depth of exploration 049

for a task solely based on their training knowledge. 050
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Figure 1: Reasoning depth mismatching solution space.

Existing methods for optimizing the exploration 051

depth of multi-step reasoning in LLMs fall into two 052

types: outcome-based optimization and process- 053

based optimization. Outcome-based optimization 054

aligns the LLM’s reasoning exploration with hu- 055

man expectation after it has generated complete 056
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reasoning and reached conclusions (Jin et al., 2024;057

Liu et al., 2024a; Ton et al., 2024; Yu et al., 2024).058

These approaches rely on post-training of LLMs,059

which is costly and does not provide an immedi-060

ate improvement on the current task. Further, due061

to the diversity of reasoning tasks, the enhance-062

ment gain is task-specific. In process-based opti-063

mization, the LLMs supervise and evaluate their064

own reasoning process through self-critique or by065

labeling reasoning steps to enhance outputs (Ma066

et al., 2025; Yang et al., 2024; Pan et al., 2023).067

The advantages of process-based optimization are068

the immediacy of optimization and its low cost.069

However, it requires the LLMs to have high reason-070

ing capabilities and a substantial knowledge base.071

Moreover, since the process is usually opaque, it072

is difficult for humans to effectively supervise and073

interpret these optimization processes. And the074

model’s own illusions, biases, and errors may be075

reinforced during this process (Stechly et al., 2023,076

2024b; Liang et al., 2024b; Song et al., 2025).077

Our Target. Given the existing challenges, we078

want to develop a method that guides LLMs to079

automatically, concisely, and transparently deter-080

mine the appropriate depth of exploration based on081

task information and the model’s reasoning state.082

We aim to enable the model to look ahead during083

reasoning, plan dynamically, and decide whether084

further exploration is necessary to achieve optimal085

reasoning outcomes. Our target involves enhanc-086

ing multi-step reasoning performance and reducing087

unnecessary exploration.088

Our Method. To tackle these challenges,089

we propose Entropy-based Exploration Depth090

Conduction (Entro-duction), a novel method to091

help LLM assess the adequacy of exploration dur-092

ing multi-step reasoning processes, thus enhancing093

reasoning outcomes. Inspired by Entropy Uncer-094

tainty Measurement, we employ entropy changes095

in the LLM’s reasoning process to evaluate the096

model’s uncertainty of reasoning, which reflects097

the LLM’s reasoning confidence, and accordingly098

switch exploration strategy. Specifically, we use099

entropy and variance entropy as rewards to update100

the LLM’s probability distribution for its next ex-101

ploratory action, whether to deepen, stop, or ex-102

pand exploration. This distribution then drives a103

behavior selection mechanism that enhances rea-104

soning when exploration is insufficient and avoids105

redundant reasoning when it is sufficient.106

In summary, our contributions involve:107

1. We propose Entro-duction to help LLMs dy- 108

namically evaluate the adequacy of explo- 109

ration based on LLMs’ reasoning uncertainty 110

to enhance reasoning performance and avoid 111

unnecessary exploration. 112

2. We further design an entropy-based explo- 113

ration behavior selection mechanism, which 114

refers to LLMs’ expectancy and confidence in 115

reasoning. 116

3. We conduct a series of experiments to demon- 117

strate the effectiveness of Entro-duction on 118

various reasoning tasks. Our results and anal- 119

ysis show that the Entro-duction outperforms 120

baseline methods. 121

2 Related Work 122

Reasoning Steps and Structures. When re- 123

sponding to queries, LLMs typically provide direct 124

outputs. For complex questions, direct outputs of- 125

ten fail to deliver correct answers because they may 126

overlook deeper logical connections or contextual 127

information (Xia et al., 2024; Minaee et al., 2024). 128

Multi-step reasoning involves instructing LLMs 129

to decompose and progressively address problems, 130

breaking down complex tasks into smaller, man- 131

ageable units to significantly enhance reasoning 132

capabilities (Chu et al., 2023). The simplest struc- 133

ture of multi-step reasoning is the Chain of Thought 134

(CoT) (Wei et al., 2022; Wang and Zhou, 2024), 135

which links reasoning steps by connecting distinct 136

thoughts into a linear, coherent sequence. (Li et al., 137

2024; Jin and Lu, 2024; Sprague et al., 2024). 138

To enable more comprehensive exploratory rea- 139

soning, some studies based on CoT have devel- 140

oped structured reasoning methods, such as self- 141

consistent CoT (CoT-SC), Complex CoT, and Tree- 142

of-Thought (ToT) (Wang et al., 2022; Zhang et al., 143

2024b; Yao et al., 2024; Liu et al., 2024b; Mo and 144

Xin, 2024; Zhang et al., 2024a). These methods 145

are called reasoning structures. They guide LLMs 146

to do multi-directional exploration of problem so- 147

lution spaces for superior reasoning solutions by 148

capturing more complex and varied logical relation- 149

ships (Xia et al., 2024; Stechly et al., 2024a; Liang 150

et al., 2024a). However, the breadth and depth of 151

these reasoning structures highly depend on pre- 152

defined settings and vary greatly across different 153

tasks, limiting their generalizability and flexibility. 154

Optimization of Reasoning Depth. The depth 155

of reasoning structures refers to the number of lay- 156
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ers or steps in the reasoning process, namely, the157

number of reasoning steps an LLM must under-158

take before reaching a final answer (Plaat et al.,159

2024; Gomez, 2023). For any given task, the op-160

timal number of reasoning layers often correlates161

with the task’s complexity and the level of detail162

required (Zhang et al., 2024b). Current methods163

in determining these layers or optimize reasoning164

structures automatically. These methods include165

using reinforcement learning algorithms to opti-166

mize the number of reasoning steps or dynamically167

adjusting the depth of exploration during the rea-168

soning process(Jin et al., 2024; Liu et al., 2024a;169

Hoffmann et al., 2022).170

The main issues of these methods include: (1)171

the automated algorithms may lack precision due172

to the lack of precision; (2) making dynamic ad-173

justments without fully understanding task char-174

acteristics could harm the reasoning process; (3)175

for highly complex or novel tasks, preset reasoning176

structures may be inappropriate, and could limit177

the model’s applicability and flexibility. These is-178

sues together ultimately affect the LLM’s reasoning179

reliability and efficiency, and lead to inaccurate rea-180

soning outcomes or redundant exploration.181

3 Methodology182

3.1 Problem Formulation183

Given a reasoning task Q and an LLMR as the rea-184

soner, the multi-step reasoning process is to gener-185

ate a reasoning structure S . Structure S comprises186

directed links connecting sentence-level reasoning187

nodes. A reasoning chain is a unidirectional se-188

quence that begins at an initial reasoning node and189

concludes at a terminal node:190

Ci = Ti1 → Ti2 → · · · → Ti,j → · · · , i = 1, ...,m,
(1)191

where Ti,j is the j-th node in the i-th chain,m is the192

total number of chains in S. The chain length |Ci|193

is the total number of nodes within Ci. We define194

the depth Sd of S as the maximum length of any195

reasoning chain within the structure:196

Sd = max{|Ci|}. (2)197

Since S could contain several valid reasoning198

chains, the reasoning conclusion L is made through199

a voting mechanism V :200

L = V (S,R). (3)201

In this paper, our goal is to generate a structure S 202

such that it achieves optimal reasoning accuracy, 203

denoted as Acc(L), with an optimal depth Sd. 204

3.2 Reasoning State Evaluation 205

The essence of the multi-step reasoning process 206

is to explore the solution space of task Q. Our 207

exploration goal is to cover as many potential rea- 208

soning paths as possible to ensure the accuracy and 209

completeness of the solution. However, exhaustive 210

exploration is inefficient and often impractical. As 211

the problem’s complexity grows, the solution space 212

expands exponentially, driving the computational 213

and time costs to untenable levels. Consequently, 214

we must balance the breadth and depth of explo- 215

ration. Achieving this balance calls for a method 216

that can look forward from each current reasoning 217

state, predicting and adjusting subsequent explo- 218

ration steps, so that we do not miss crucial paths or 219

waste resources on unnecessary ones. 220

We employ uncertainty and stability to describe 221

the reasoning state. Uncertainty measures the di- 222

vergence of current thought processes, as shown in 223

Figure 2. In a reasoning step, a high uncertainty in- 224

dicates the presence of multiple possible directions 225

or conclusions, this means a wide scope of explo- 226

ration is necessary. Conversely, low uncertainty, 227

where there are few or even a single possible out- 228

come, indicates a more focused path. Specifically, 229

we employ entropy as a metric for uncertainty to 230

quantify the number of potential paths that need 231

exploration at any given moment and to gauge the 232

confidence level in the conclusions. 233

Definition 1: Entropy. Consider a reasoning 234

step represented by a sentence, denoted as Ti,j , 235

which consists of a sequence of n tokens: 236

Ti,j = {tij1, tij2, . . . , tijn}. (4) 237

Each token tijk matches a logit lijk, which is the 238

model’s raw output before the softmax function. 239

The collection of logits for the entire sentence is: 240

lij = {lij1, lij2, . . . , lijn}. (5) 241

We calculate the probability pijk of each token 242

tijk by applying the softmax function to its corre- 243

sponding logit lijk: 244

pijk =
exp(lijk)∑n
r=1 exp(lijr)

. (6) 245
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Figure 2: Framework of Entro-duction. We obtain two metrics, entropy and variance entropy, by calculating the
probabilities of the logits at each reasoning step. Subsequently, we employ the epsilon-greedy method to select the
appropriate exploration behavior based on changes in both metrics.

Then the entropy of the sentence Ti,j is:246

H(Ti,j) = −
n∑

k=1

pijk log2(pijk). (7)247

This measures the uncertainty or information248

content encoded in the probability distribution249

{pij1, pij2, . . . , pijn}.250

To compare the entropies across reasoning steps251

of varying lengths, we define the normalized en-252

tropy as:253

H̃(Ti,j) =
H(Ti,j)
log2(n)

. (8)254

Here, log2(n) is the maximum possible entropy255

when all n tokens have uniform probability. Hence,256

the normalized entropy is bounded between 0 and257

1 for consistent comparisons.258

Similarly, we employ variance entropy to capture259

how much uncertainty fluctuates across consecutive260

reasoning steps. It indicates the consistency or261

divergence of the thought process.262

Definition 2: Variance Entropy. For reasoning263

step Ti,j of length n, let:264

H(Ti,j) =
1

n

n∑
k=1

H(tijk), (9)265

be the average token-level entropy in Ti,j . We de-266

fine the variance entropy as:267

σ2
H(Ti,j) =

1

n

n∑
k=1

[
H(tijk)−H(Ti,j)

]2
. (10)268

For comparisons, we define the normalized vari-269

ance entropy:270

σ̃2
H(Ti,j) =

σ2
H(Ti,j)
log2(n)

. (11)271

In this way, we have a normalized concise metric 272

for tracking fluctuations in uncertainty within each 273

reasoning step. 274

3.3 Exploration Behaviors 275

With two metrics for reasoning state defined above, 276

we further consider how to use changes in these 277

metrics to determine exploration behavior strate- 278

gies. The possible scenarios are listed below: 279

1. Entropy ↓ , Variance Entropy ↓: The reason- 280

ing step becomes more certain, and the overall 281

thought process more coherent. This indicates 282

that information is becoming more focused, 283

and the reasoning process is stable and effec- 284

tive. The LLM should continue to explore in 285

this direction. 286

2. Entropy ↑ , Variance Entropy ↓: The rea- 287

soning step introduces more uncertainty, but 288

the fluctuations between different steps are de- 289

creasing. This suggests that while a broader 290

range of possibilities has emerged, the overall 291

direction has not become dispersed. The LLM 292

should continue to explore in this direction. 293

3. Entropy ↓ , Variance Entropy ↑: The uncer- 294

tainty of reasoning is decreasing, but the fluc- 295

tuation between reasoning steps is increasing. 296

This indicates potential divergences in local 297

steps, and we should consider increasing ex- 298

ploration in different directions to cover pos- 299

sible solutions. 300

4. Entropy ↑ , Variance Entropy ↑: The rea- 301

soning process becomes simultaneously more 302

complex and more unstable. This indicates 303

that current exploration might have strategic 304

deviations, but another possibility is that the 305
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model is exploring a new or more challeng-306

ing direction. We need to consider avoiding307

ineffective exploration while maintaining the308

potential for the model to tackle challenging309

problems.310

Accordingly, we design a mechanism that ad-311

justs the probability of exploration behaviors based312

on entropy and variance entropy changes. We de-313

fine the exploration behaviors as follows:314

Deepen: This behavior extends the current rea-315

soning chain Ci by adding a new node Ti,j+1:316

Ci → Ci ∪ {Ti,j+1}. (12)317

Expand: This behavior divides the current rea-318

soning chain at Ti,j , creates two separate chains Ci319

and C′i. Each chain extending from the split point320

generates a new node:321

Ci → (Ci ∪ {Ti,j+1}) , C′i →
(
Ci ∪ {T ′

i,j+1}
)
.

(13)322

Stop: This behavior terminates the extension of323

the current chain Ci at the current node Ti,j :324

Ci → Ci \ {Ti,j+1}. (14)325

3.4 Behavior Selection Mechanism326

At the j-th reasoning step, we define:327

∆Hj = H(Tj+1)−H(Tj), (15)328

329
∆σ2

H,j = σ2
H(Tj+1)− σ2

H(Tj), (16)330

which denotes the changes in entropy and variance331

entropy, respectively. We define the state:332

sj =
(
∆Hj ,∆σ2

H,j

)
, (17)333

and the set of possible actions as334

A = {Deepen,Expand, Stop}. (18)335

We introduce a mapping Φ : R2 → A that as-336

signs to each state (∆Hj , ∆σ2
H,j) a “best” action337

a∗j :338

Φ(∆H,∆σ2
H) =


Deepen,

if (∆H < 0,∆σ2
H < 0)

or (∆H > 0,∆σ2
H < 0),

Expand, if ∆H < 0,∆σ2
H > 0,

Stop, if ∆H > 0,∆σ2
H > 0.

(19)339

Algorithm 1 Entro-duction
1: Input: Reasoning task Q; LLM reasoner R;

max steps J ; exploration rate ϵ.
2: Output: Reasoning structure S and conclusion

L.
3: Initialize S; set j ← 1; initialize chains {Ci}.
4: while j ≤ J do
5: for each active chain Ci do
6: Compute H(Tj) and σ2

H(Tj) accord-
ing to Eqs. 7, 10.

7: Compute ∆Hj and ∆σ2
H,j according

to Eqs. 15, 16).
8: Determine a∗j ← Φ(∆Hj ,∆σ2

H,j) ac-
cording to Eq. 19.

9: Sample action aj with probability
πj(a | sj) according to Eq. 20).

10: Execute aj :
i) Deepen: append Tj+1 to Ci.

ii) Expand: branch Ci into two chains with
Tj+1 and T ′

j+1.
iii) Stop: finalize Ci (no further expansion).

11: end for
12: if all chains stopped or j = J then
13: break
14: end if
15: j ← j + 1
16: end while
17: L ← V (S,R) (final conclusion via consen-

sus).
18: return S, L

Then, at each step j, we sample the actual action 340

aj according to an ϵ-greedy rule: 341

πj
(
a | sj

)
=

1− ϵ, a = a∗j ,
ϵ

|A| − 1
, a ̸= a∗j .

(20) 342

Given the current state sj = (∆Hj ,∆σ2
H,j), we 343

first compute a∗j = Φ(sj), then draw aj from πj(· | 344

sj). If aj = Stop, the reasoning ends; otherwise, 345

the system transitions to the next state sj+1, where 346

the new entropy measures yield an updated state. 347

4 Experiments 348

In this section, we first compare the reasoning per- 349

formance and reasoning steps used between base- 350

line methods and Entro-duction. Subsequently, we 351

present ablation studies to analyze the contributions 352

of each part of our strategies. Following this, we 353
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examine how different parameter settings impact354

Entro-duction’s overall robustness.355

4.1 Experiment Settings356

Datasets. Entro-duction is a general approach357

applicable to various LLMs and reasoning tasks.358

Here, we test across four reasoning tasks with359

benchmark datasets, including two mathematical360

tasks (GSM8K (Cobbe et al., 2021), SVAMP (Pa-361

tel et al., 2021)) and two commonsense question-362

answering tasks (StrategyQA (Geva et al., 2021),363

CommonsenseQA (Talmor et al., 2018)). Here,364

GSM8K challenges language models with multi-365

step math reasoning tasks, assessing their complex366

reasoning capabilities, while SVAMP focuses on367

simpler, one-step math reasoning tasks. Strate-368

gyQA tests strategic reasoning skills for deriving369

implicit strategies and using deductive reasoning to370

answer questions. CommonsenseQA (CSQA) tests371

the ability to handle commonsense reasoning with372

everyday knowledge. In evaluating performance373

on these datasets, we primarily focus on reasoning374

accuracy (%) as the key metric.375

Baselines. We compare Entro-duction with two376

strong baseline types: (1) Reasoning structures, in-377

cluding Chain of Thought (CoT), Chain of Thought378

with Self-Consistency (CoT-SC), Tree of Thought379

(ToT) and Complex CoT:380

• CoT: Guides the model to solve problems step-381

by-step and generates a coherent reasoning382

chain that leads to a conclusion.383

• CoT-SC: Generates multiple reasoning chains384

and uses a majority vote to determine the final385

output. We sample answer 8 (CoT-SC@maj8)386

and 64 (CoT-SC@maj64 ) times to employ387

majority vote for selection.388

• ToT: Expands the reasoning process into a389

tree-like structure where multiple branches390

represent different reasoning pathways.391

• Complex CoT: Engages with complex sam-392

ples and selects the best solution from various393

intricate reasoning paths for tackling multi-394

faceted and challenging problems.395

And (2) Reasoning depth optimization methods, in-396

cluding Self-talk (Shwartz et al., 2020; Molfese397

et al., 2024) and Distillation-Reinforcement-398

Reasoning (DRR) (Yang et al., 2024):399

• Self-talk: Enhances reasoning by eliciting 400

LLMs to generate exploratory questions, un- 401

covering implicit background knowledge and 402

selecting the best answer. 403

• DRR: Distills LLM reasoning processes into 404

synthetic data by training a lightweight model 405

to provide feedback. 406

For detailed settings of baselines, please refer to 407

Appendix A. 408

Implementation Details. We conduct the ex- 409

periments utilizing the Llama-3.1-8B-Instruct1. 410

The temperature for all models is set to the default 411

value of 0.7, with a maximum token limit of 128. 412

All tasks are performed on an NVIDIA 4090 GPU. 413

4.2 Overall Performance 414

The overall performance is reported in Table 1. For 415

the baselines, we compare reasoning accuracies 416

across four datasets, and for reasoning structures, 417

we additionally measure the number of steps re- 418

quired. Since each structure’s steps and branches 419

are predefined, we adopt configurations that can 420

perform well and that further increasing the step 421

count often does not bring significant gains. Specif- 422

ically, for math tasks, CoT is set to 8 steps, CoT-SC 423

adopts 3 parallel chains of 8 steps each, and ToT 424

generates three branches per step for five layers. 425

For commonsense tasks, CoT is set to 5 steps, CoT- 426

SC adopts 3 parallel chains of 5 steps each, and ToT 427

generates three branches per step for five layers. 428

Compared to reasoning structures, our Entro- 429

duction approach achieves both higher accu- 430

racy and fewer reasoning steps. For instance, 431

on GSM8K, CoT reaches 0.75 accuracy, CoT- 432

SC@maj64 0.80, and Complex CoT 0.81, while 433

Entro-duction attains 0.85. A similar advantage 434

appears on SVAMP (up to 0.92), and on the com- 435

monsense tasks StrategyQA and CSQA, Entro- 436

duction scores 0.70 and 0.79 respectively, surpass- 437

ing most baselines. Moreover, tree-structured meth- 438

ods ToT require hundreds of steps (over 100 in sev- 439

eral cases), while Entro-duction needs much fewer 440

steps, only more than CoT. Even compared to fixed- 441

step approaches such as CoT and Complex CoT, 442

Entro-duction delivers higher accuracy in a similar 443

or slightly increased number of steps. 444

Compared to reasoning depth optimization meth- 445

ods, Entro-duction consistently attains higher per- 446

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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Method
Math Commonsense

GSM8K SVAMP StrategyQA CSQA
Accuracy # Steps Accuracy # Steps Accuracy # Steps Accuracy # Steps

CoT 75.2 8.0 83.4 8.0 57.7 5.0 75.6 5.0
CoT-SC@maj8 78.1 24.0 87.5 24.0 68.3 15.0 78.2 15.0
CoT-SC@maj64 80.2 24.0 89.6 24.0 67.1 15.0 78.7 15.0
ToT 72.6 121.0 83.3 121.0 65.8 121.0 73.5 121.0
Complex CoT 81.4 8.0 86.2 8.0 65.7 5.0 73.9 5.0

Self-talk 79.1 / 83.7 / 61.5 / 70.0 /
DRR 83.0 / 90.2 / 67.7 / 82.1 /

Entro-duction 85.4 9.5 92.0 11.20 70.3 9.6 79.6 7.1

Table 1: Performance comparison across different reasoning methods with accuracy and number of steps.

formance. Self-talk achieves accuracies of 0.79,447

0.61, and 0.70 on GSM8K, StrategyQA, and448

CSQA, all below Entro-duction ’s 0.85, 0.70, and449

0.79. DRR demonstrates decent performance on450

SVAMP (0.90) and CSQA (0.82), but still trails451

Entro-duction on GSM8K (0.83 vs. 0.85) and Strat-452

egyQA (0.67 vs. 0.70). Moreover, these methods453

often rely on additional training or separate mod-454

els, while Entro-duction balances accuracy and a455

relatively low reasoning overhead without training.456

4.3 Ablation Study457

4.3.1 Impact of Jointly Using Entropy and458

Variance Entropy459

To validate the necessity of jointly using entropy460

and variance entropy, we conduct experiments461

across four datasets to validate the necessity of462

jointly using entropy and variance entropy. We set463

four different scenarios: Base (neither used), En-464

tropy (only entropy used), Variance (only variance465

entropy used), and Both (both used).466

As shown in Figure 3, when using only entropy,467

the model tends to stop reasoning prematurely in468

scenarios with many potential outcomes but fewer469

overall fluctuations (Scenario 2). Using only vari-470

ance entropy can capture changes in fluctuations471

between reasoning steps. It slightly outperforms472

using entropy alone, but still proves inadequate for473

handling various uncertainty scenarios Scenario 3),474

with accuracies mostly close to or below Base.475

4.3.2 Impact of Expansion in Reasoning476

Compared with Deepen and Stop that directly af-477

fect reasoning depth, Expand is a key behavior in478

Entro-duction to branch out the current reasoning479

path to cover more potential solutions. We further480

validate the necessity of the behavior Expand by481
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Figure 3: Comparison of adjusting with entropy and/or
variance entropy.

comparing three settings across datasets: Base (no 482

behavior selection), w/o (only using Deepen and 483

Stop), and w/ (enabling Expand). 484

As shown in Figure 4, the accuracies of w/o are 485

generally lower than those of w/, particularly in 486

tasks requiring multiple reasoning paths or branch- 487

ing thought processes, such as SVAMP and Strate- 488

gyQA. The result indicates that using only Deepen 489

and Stop limits the exploration of potential direc- 490

tions, while expanding the exploration contributes 491

to improving the completeness of the reasoning. 492

4.3.3 Impact of Soft Stop 493

In some complex tasks, we notice that the initial 494

reasoning process could see an increase in both 495

entropy and variance entropy. However, the model 496

may still expect valid exploration in the contin- 497

ued reasoning. In this case, if we adopt a “hard 498

stop”, which means immediate shutdown, it could 499

terminate exploration in advance of arriving at the 500
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Figure 4: Impact of the behavior Expand.

correct conclusion. Instead, we introduce a “soft501

stop” mechanism to balance the need for thorough502

exploration and the risk of redundant reasoning.503

The model continues for several additional steps504

before stopping. In our experiments, we imple-505

ment four settings: Base (no stopping strategy),506

Stop@1 (hard stop with immediate termination),507

Stop@2 (soft stop with one more reasoning step508

before stopping) and Stop@3 (soft stop with two509

more reasoning steps before stopping).
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Figure 5: Comparison of stopping strategies.

510
As shown in Figure 5, we can see that the hard511

stop strategy has the lowest outcomes across all512

four datasets, lower than not employing any stop-513

ping strategy. The soft stop strategy consistently514

has the best results. Moreover, on datasets SVAMP515

and CSQA, Stop@2 performs as well or better than516

Stop@3. This result suggests that a soft stop ex-517

tending two to three steps is sufficient to complete518

effective exploration without the need for extensive519

further reasoning.520

4.4 Robustness Study 521

We further discuss the impact of ϵ-greedy strategy 522

by testing four ϵ values (0.05, 0.1, 0.25, 0.5).
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Figure 6: Comparison of choice of ϵ.
523

As shown in Figure 6, ϵ = 0.25 consis- 524

tently achieves the highest accuracy across all four 525

datasets. This result demonstrates that this value 526

enhances the model’s performance by effectively 527

exploring the solution space. Specifically, when ϵ 528

is set too low (ϵ = 0.05), the model’s performance 529

is poor. This is likely due to insufficient explo- 530

ration that relies heavily on the known strategy, 531

thus unable to explore potential solutions hidden 532

in the space. Meanwhile, when ϵ = 0.5, it outper- 533

forms ϵ = 0.1 in mathematical tasks and underper- 534

forms in commonsense tasks. This result indicates 535

that tasks requiring reasoning with stringent logical 536

structure and relatively more steps need broader 537

exploration to identify the correct solutions. For 538

commonsense tasks, which require more precise 539

adopting of knowledge for quick decision-making. 540

In this type of task, over-exploration may lead the 541

model away from the question background and thus 542

miss the intuitive commonsense answers. 543

5 Conclusion 544

In this study, we introduce Entro-duction, a novel 545

approach that dynamically adjusts the exploration 546

depth during LLM multi-step reasoning by mon- 547

itoring the entropy and variance entropy. Entro- 548

duction leverages the change of both metrics to 549

select exploration behavior to enhance reasoning 550

performance and avoid redundant reasoning steps. 551

Our experiments across multiple reasoning datasets 552

demonstrate the effectiveness of the Entro-duction 553

and its components. 554
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Limitations555

We develop a framework with dynamic depth ad-556

justment strategies for LLMs. If not precisely cali-557

brated, it might lead to suboptimal reasoning perfor-558

mance.. This may limit the Entro-duction method’s559

ability to adaptively balance exploration and ex-560

ploitation in real-time. Besides, the experiments561

are conducted on four benchmark datasets on one562

Llama model, which may not provide a compre-563

hensive view of the Entro-duction’s generalization564

capability across LLMs with varying sizes and pre-565

training processes. Moreover, the Entro-duction is566

mainly evaluated on specific tasks and these tasks567

cannot fully reflect the complexities of real-world568

scenarios where reasoning tasks can be variable and569

with more complex and external solution spaces.570

We left these potential explorations as future work.571

References 572

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui 573
Zhang, and Wenpeng Yin. 2024. Large language 574
models for mathematical reasoning: Progresses and 575
challenges. arXiv preprint arXiv:2402.00157. 576

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 577
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 578
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 579
Askell, et al. 2020. Language models are few-shot 580
learners. Advances in neural information processing 581
systems, 33:1877–1901. 582

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang 583
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu, 584
Bing Qin, and Ting Liu. 2023. A survey of chain of 585
thought reasoning: Advances, frontiers and future. 586
arXiv preprint arXiv:2309.15402. 587

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 588
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 589
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 590
Nakano, Christopher Hesse, and John Schulman. 591
2021. Training verifiers to solve math word prob- 592
lems. arXiv preprint arXiv:2110.14168. 593

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and 594
Tushar Khot. 2023. Specializing smaller language 595
models towards multi-step reasoning. In Inter- 596
national Conference on Machine Learning, pages 597
10421–10430. PMLR. 598

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 599
Tushar Khot. 2022. Complexity-based prompting for 600
multi-step reasoning. In The Eleventh International 601
Conference on Learning Representations. 602

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 603
Dan Roth, and Jonathan Berant. 2021. Did aristotle 604
use a laptop? a question answering benchmark with 605
implicit reasoning strategies. Transactions of the 606
Association for Computational Linguistics, 9:346– 607
361. 608

Kye Gomez. 2023. Tree of thoughts. https://github. 609
com/kyegomez/tree-of-thoughts. 610

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men- 611
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther- 612
ford, Diego de Las Casas, Lisa Anne Hendricks, 613
Johannes Welbl, Aidan Clark, et al. 2022. Train- 614
ing compute-optimal large language models. arXiv 615
preprint arXiv:2203.15556. 616

Jie Huang and Kevin Chen-Chuan Chang. 2022. To- 617
wards reasoning in large language models: A survey. 618
arXiv preprint arXiv:2212.10403. 619

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, 620
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and 621
Mengnan Du. 2024. The impact of reasoning step 622
length on large language models. arXiv preprint 623
arXiv:2401.04925. 624

Ziqi Jin and Wei Lu. 2024. Self-harmonized chain of 625
thought. arXiv preprint arXiv:2409.04057. 626

9

https://github.com/kyegomez/tree-of-thoughts
https://github.com/kyegomez/tree-of-thoughts
https://github.com/kyegomez/tree-of-thoughts


Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.627
2024. Chain of thought empowers transformers to628
solve inherently serial problems. arXiv preprint629
arXiv:2402.12875.630

Xun Liang, Shichao Song, Zifan Zheng, Hanyu Wang,631
Qingchen Yu, Xunkai Li, Rong-Hua Li, Feiyu Xiong,632
and Zhiyu Li. 2024a. Internal consistency and self-633
feedback in large language models: A survey. arXiv634
preprint arXiv:2407.14507.635

Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiax-636
ing Zhang. 2024b. Learning to trust your feelings:637
Leveraging self-awareness in llms for hallucination638
mitigation. arXiv preprint arXiv:2401.15449.639

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri640
Edwards, Bowen Baker, Teddy Lee, Jan Leike,641
John Schulman, Ilya Sutskever, and Karl Cobbe.642
2023. Let’s verify step by step. arXiv preprint643
arXiv:2305.20050.644

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-645
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.646
2024a. Can language models learn to skip steps?647
Preprint, arXiv:2411.01855.648

Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Xingyu649
Wang, Jiaxing Wang, Hailong Yang, and Jing Li.650
2024b. Logic-of-thought: Injecting logic into con-651
texts for full reasoning in large language models.652
arXiv preprint arXiv:2409.17539.653

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan654
Fang, and Xinchao Wang. 2025. Cot-valve: Length-655
compressible chain-of-thought tuning. Preprint,656
arXiv:2502.09601.657

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,658
Meysam Chenaghlu, Richard Socher, Xavier Am-659
atriain, and Jianfeng Gao. 2024. Large language660
models: A survey. arXiv preprint arXiv:2402.06196.661

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,662
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.663
2024. Gsm-symbolic: Understanding the limitations664
of mathematical reasoning in large language models.665
arXiv preprint arXiv:2410.05229.666

Shentong Mo and Miao Xin. 2024. Tree of uncer-667
tain thoughts reasoning for large language models.668
In ICASSP 2024-2024 IEEE International Confer-669
ence on Acoustics, Speech and Signal Processing670
(ICASSP), pages 12742–12746. IEEE.671

Francesco Maria Molfese, Simone Conia, Riccardo Or-672
lando, and Roberto Navigli. 2024. Zebra: Zero-673
shot example-based retrieval augmentation for com-674
monsense question answering. arXiv preprint675
arXiv:2410.05077.676

Liangming Pan, Michael Saxon, Wenda Xu, Deepak677
Nathani, Xinyi Wang, and William Yang Wang. 2023.678
Automatically correcting large language models: Sur-679
veying the landscape of diverse self-correction strate-680
gies. Preprint, arXiv:2308.03188.681

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 682
2021. Are nlp models really able to solve 683
simple math word problems? arXiv preprint 684
arXiv:2103.07191. 685

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc 686
Le, Chen Liang, Lluis-Miquel Munguia, Daniel 687
Rothchild, David R So, Maud Texier, and Jeff Dean. 688
2022. The carbon footprint of machine learning train- 689
ing will plateau, then shrink. Computer, 55(7):18– 690
28. 691

Aske Plaat, Annie Wong, Suzan Verberne, Joost 692
Broekens, Niki van Stein, and Thomas Back. 2024. 693
Reasoning with large language models, a survey. 694
arXiv preprint arXiv:2407.11511. 695

Vered Shwartz, Peter West, Ronan Le Bras, Chan- 696
dra Bhagavatula, and Yejin Choi. 2020. Unsuper- 697
vised commonsense question answering with self- 698
talk. arXiv preprint arXiv:2004.05483. 699

Xiaoshuai Song, Yanan Wu, Weixun Wang, Jiaheng Liu, 700
Wenbo Su, and Bo Zheng. 2025. Progco: Program 701
helps self-correction of large language models. arXiv 702
preprint arXiv:2501.01264. 703

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, 704
Dongwei Jiang, Manya Wadhwa, Prasann Singhal, 705
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur- 706
rett. 2024. To cot or not to cot? chain-of-thought 707
helps mainly on math and symbolic reasoning. arXiv 708
preprint arXiv:2409.12183. 709

Kaya Stechly, Matthew Marquez, and Subbarao Kamb- 710
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An 711
analysis of iterative prompting for reasoning prob- 712
lems. Preprint, arXiv:2310.12397. 713

Kaya Stechly, Karthik Valmeekam, and Subbarao 714
Kambhampati. 2024a. Chain of thoughtlessness: 715
An analysis of cot in planning. arXiv preprint 716
arXiv:2405.04776. 717

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb- 718
hampati. 2024b. On the self-verification limitations 719
of large language models on reasoning and planning 720
tasks. arXiv preprint arXiv:2402.08115. 721

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 722
Jonathan Berant. 2018. Commonsenseqa: A question 723
answering challenge targeting commonsense knowl- 724
edge. arXiv preprint arXiv:1811.00937. 725

Jean-Francois Ton, Muhammad Faaiz Taufiq, and 726
Yang Liu. 2024. Understanding chain-of-thought 727
in llms through information theory. Preprint, 728
arXiv:2411.11984. 729

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 730
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 731
Baptiste Rozière, Naman Goyal, Eric Hambro, 732
Faisal Azhar, et al. 2023. Llama: Open and effi- 733
cient foundation language models. arXiv preprint 734
arXiv:2302.13971. 735

10

https://arxiv.org/abs/2411.01855
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984


Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,736
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and737
Denny Zhou. 2022. Self-consistency improves chain738
of thought reasoning in language models. arXiv739
preprint arXiv:2203.11171.740

Xuezhi Wang and Denny Zhou. 2024. Chain-of-741
thought reasoning without prompting. arXiv preprint742
arXiv:2402.10200.743

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten744
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,745
et al. 2022. Chain-of-thought prompting elicits rea-746
soning in large language models. Advances in neural747
information processing systems, 35:24824–24837.748

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang749
Chen, Julian McAuley, and Shuai Li. 2024. Beyond750
chain-of-thought: A survey of chain-of-x paradigms751
for llms. arXiv preprint arXiv:2404.15676.752

Diji Yang, Linda Zeng, Kezhen Chen, and Yi Zhang.753
2024. Reinforcing thinking through reasoning-754
enhanced reward models. arXiv preprint755
arXiv:2501.01457.756

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,757
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.758
2024. Tree of thoughts: Deliberate problem solving759
with large language models. Advances in Neural760
Information Processing Systems, 36.761

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-762
big, and Xiang Yue. 2025. Demystifying long763
chain-of-thought reasoning in llms. arXiv preprint764
arXiv:2502.03373.765

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.766
2024. Distilling system 2 into system 1. Preprint,767
arXiv:2407.06023.768

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang,769
Dongjie Wang, and Kunpeng Liu. 2024a. Ratt:770
Athought structure for coherent and correct llmrea-771
soning. arXiv preprint arXiv:2406.02746.772

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao.773
2024b. On the diagram of thought. arXiv preprint774
arXiv:2409.10038.775

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,776
Nathan Scales, Xuezhi Wang, Dale Schuurmans,777
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.778
Least-to-most prompting enables complex reason-779
ing in large language models. arXiv preprint780
arXiv:2205.10625.781

11

https://arxiv.org/abs/2407.06023


A Experimental Settings782

A.1 Baselines783

In CoT, we prompt the model with the sentense784

“Let’s think step-by-step.”. For CoT-SC, we785

use a majority vote to identify the most probable786

correct solution, with the same few-shot examples787

as the standard CoT method. For Complex CoT788

we follow the setting in (Zhou et al., 2022). The789

setting of Self-talk and DRR method follows the790

setting in (Yang et al., 2024).791

A.2 Answer-Cleaning792

We showcase our answer-cleaning process with793

GSM8K as an example. In the context of the

Algorithm 2 Answer Cleansing for GSM8K
Dataset

1: Input: pred ▷ Raw prediction from the model
2: Output: cleansed_pred ▷ Cleansed numerical

prediction
3: Remove commas from pred
4: Extract all numbers from pred using regex
5: Select the first or last number based on context
6: return cleansed_pred

794
GSM8K dataset, the answer-cleansing process is795

crucial for ensuring the accuracy and usability of796

predictions from large language models. Initially,797

the raw prediction, referred to as pred, often con-798

tains numerical answers formatted with commas or799

mixed with textual content. To standardize these800

predictions, we first remove any commas to nor-801

malize the numbers. Subsequently, we use regular802

expressions to extract all numerical values from803

this cleaned string. Given the nature of GSM8K804

tasks, where a specific numerical answer is typi-805

cally required, our algorithm strategically selects806

either the first or last number based on predefined807

logic tailored to the dataset’s requirements. This808

selection process is designed to pick the most rel-809

evant number based on its position in the model’s810

output. The final step produces a cleansed_pred,811

which is the processed and formatted numerical812

answer ready for evaluation against the dataset’s813

ground truth.814
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