
Deep Polynomial Chaos Expansion

Abstract

Polynomial chaos expansion (PCE) is a classical
and widely used surrogate modeling technique in
physical simulation and uncertainty quantification.
By taking a linear combination of a set of basis
polynomials—orthonormal with respect to the dis-
tribution of uncertain input parameters—PCE en-
ables tractable inference of key statistical quanti-
ties, such as (conditional) means, variances, co-
variances, and Sobol sensitivity indices, which are
essential for understanding the modeled system
and identifying influential parameters and their in-
teractions. As the number of basis functions grows
exponentially with the number of parameters, PCE
does not scale well to high-dimensional problems.
We address this challenge by combining PCE with
ideas from probabilistic circuits, resulting in the
deep polynomial chaos expansion (DeepPCE)—
a deep generalization of PCE that scales effec-
tively to high-dimensional input spaces. DeepPCE
achieves predictive performance comparable to
that of multi-layer perceptrons (MLPs), while re-
taining PCE’s ability to compute exact statistical
inferences via simple forward passes.

1 INTRODUCTION

Numerical simulations for partial differential equations
(PDEs) are key tools in many areas of the physical sciences.
The accuracy of PDE solvers typically depends on several
uncertain input parameters, including boundary conditions,
initial states, and physical properties. A common method
to estimate these parameters is to train a surrogate model
on a limited number of simulations, enabling efficient ex-
ploration of the parameter space. A widely used surrogate
model is the Polynomial chaos expansion (PCE) [Wiener,
1938, Xiu and Karniadakis, 2002].

PCE models a function as a linear combination of polyno-
mial basis functions that are orthonormal with respect to the
input distribution. This orthonormality offers both theoret-
ical and computational advantages. In theory, PCE yields
the optimal polynomial approximation in a least-squares
sense and, in the context of stochastic differential equations,
allows coefficient computation similar to Galerkin projec-
tion [Galerkin, 1915, Ghanem and Spanos, 1991]. In prac-
tice, PCE enhances data efficiency and numerical stability,
and statistical quantities of PCEs such as means, variances,
covariances, and Sobol sensitivity indices [Sobol’, 1990]
have closed-form expressions [Sudret, 2008, Crestaux et al.,
2009]. However, PCE scales poorly to high-dimensional
parameter spaces, as the number of polynomial terms grows
combinatorially with the number of inputs. Neural networks
are thus increasingly used as surrogate models [Raissi et al.,
2019, Karniadakis et al., 2021], as they often achieve better
data fit for complex, high-dimensional physical systems.
One major drawback of neural surrogates is that expecta-
tions and Sobol indices cannot be computed exactly, and
approximations via Monte Carlo is often expensive and
imprecise.

We propose a scalable and principled extension of PCE to
high-dimensional inputs by combining it with a deep cir-
cuit architecture inspired by the framework of probabilistic
circuits [Choi et al., 2020], which generalize shallow mix-
ture models such as Gaussian mixture models (GMMs) into
deep and structured representations. Like PCE, GMMs and
other mixture models suffer from the curse of dimension-
ality. Deep probabilistic circuits overcome this problem by
compactly representing exponentially many mixture compo-
nents through circuit depth, enabling effective modeling of
high-dimensional distributions [Peharz et al., 2020b,a]. We
apply the same principle to introduce deep polynomial chaos
expansion (DeepPCE), which can represent exponentially
many orthogonal polynomial terms compactly. We derive
exact formulas for statistical moments (means, variances, co-
variances) and Sobol sensitivity indices within the DeepPCE
framework and show in experiments that DeepPCE (i) en-
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ables scalable sensitivity analysis on a 100-dimensional syn-
thetic function with analytic Sobol indices, and (ii) serves as
a scalable surrogate for high-dimensional PDE benchmarks
(Darcy flow, steady-state diffusion), matching the predictive
performance of MLPs.

2 BACKGROUND

We denote random variables by uppercase letters (e.g. X ,
Y , Z) and corresponding values by lowercase letters (e.g. x,
y, z). The set of integers {0, . . . ,K} is denoted by [K].

Polynomial Chaos Expansion (PCE) Numerical meth-
ods for modeling physical systems are often governed by a
large number of uncertain input parameters, such as bound-
ary and initial conditions or material properties. We denote
these parameters by X = {X1, X2, . . . , XD}, forming a D-
dimensional random vector following a factorized distribu-
tion p(X) =

∏
d p(Xd). A PCE approximates the response

function f∗(X), i.e., the output of the numerical simulation,
as a polynomial expansion

fPCE(x) =
∑
α∈A

wαΦα(x), (1)

where α = (α1, . . . , αD) ∈ A is a multi-index, each αd ∈
[K] denoting the polynomial degree associated with Xd

where K is the maximum order of the expansion, and A
is a set of multi-indices. Φ are multivariate basis functions
constructed as tensor products of univariate polynomials ϕ:

Φα(x) =

D∏
d=1

ϕαd
(xd). (2)

Crucially, the univariate polynomials ϕαd
are chosen to be

orthonormal with respect to the distribution of Xd. Because
we assume a factorized input distribution p(X), the tensor-
product polynomials are also orthonormal, yielding

EX[Φα(X)Φα′(X)] =

∫
p(x)Φα(x)Φα′(x)dx = δα,α′

(3)
where δα,α′ is the Kronecker delta.

The number of possible basis functions is bounded by
|A| ≤ (K+D)!

K!D! , which grows combinatorially with the num-
ber of inputs D and the polynomial order K, quickly be-
coming infeasible with increasing dimensionality. Trunca-
tion schemes [Mühlpfordt et al., 2017] and sparse adaptive
expansion methods [Blatman and Sudret, 2011] are often
applied to improve scalability, still PCE typically scales to
only a few dozen input parameters.

Sensitivity Analysis PCE has closed-form solutions for
the expectation and variance of f . Since the zeroth-order
polynomial, corresponding to α0 = (0, . . . , 0), is a constant,

it follows from (3) that E[Φα(X)] = 0 ∀α ̸= α0, hence

E[f(X)] = wα0
. (4)

Due to (3), all multiplicative cross-terms cancel under in
expectation and we get

Var[f(X)] = E[f2
PCE(X)− wα0 ] =

∑
α∈A\{α0}

w2
α. (5)

PCE also allows to compute “advanced” statistical quan-
tities, such as variances of conditional expectations: Let
I ⊆ {1, . . . , D} be an index set for some parameters in X
and ¬I = {1, . . . , D} \ I. It can be shown that

VarXI [EX¬I [f(X) | XI ]] =
∑

α∈AI

w2
α, (6)

where AI = {α : ∀j ∈ ¬I : αj = 0}. These variances
of conditional expectations allows to compute prominent
sensitivity measures such as Sobol indices [Sobol’, 1990].
These indices are normalized variances of the so-called
Sobol decomposition, which describes f as a superposition
of all possible 2D interaction terms Saltelli et al. [2008],
including a constant, D individual terms,

(
D
2

)
pair-wise

terms, etc.

The first-order Sobol indices Si describe the direct contri-
bution of each parameter Xi to the variance of the response
function. In PCE it is given via (5) and (6) as

Si =
VarXi(E¬Xi [f(X) | Xi])

Var[f(X)]
. (7)

Other Sobol indices, describing for example pairwise inter-
actions, can also be computed in PCE.

Probabilistic Circuits Probabilistic circuits [Choi et al.,
2020] are computational graphs with structural constraints
that enable tractable inference. Although primarily used
for probabilistic modeling, they can be applied to regres-
sion tasks, in which case they are typically referred to
as (structured) circuits or sum-product networks [Poon
and Domingos, 2012]. Formally, a circuit C is a param-
eterized directed acyclic graph defining a function C(X)
with input variables X. Let ch(c) be the set of children
nodes of some node c ∈ C. There are three types of cir-
cuit nodes. An input node c (i.e. ch(c) = ∅) represents
a parameterized function gc(Xc) over a subset of inputs
Xc ⊆ X, called its scope. Internal nodes (i.e. ch(c) ̸= ∅)
are either product nodes or sum nodes, representing oper-
ations

∏
c′∈ch(c) fc′(Xc′) and

∑
c′∈ch(c) wc,c′fc′(Xc′), re-

spectively, where wc,c′ are the sum node parameters. The
scope of a sum or product node is recursively given as
Xc =

⋃
c′∈ch(c) Xc′ . To enable tractable inference, circuits

have to be smooth and decomposable. A circuit is smooth
when the children of every sum node have identical scope.
Formally, Xc′ = Xc′′ ∀c′, c′′ ∈ ch(c) ∀c ∈ Σ, where Σ is
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the set of sum nodes. A circuit is decomposable when the
children of every product node have pairwise disjoint scope,
Xc′ ∩Xc′′ = ∅ ∀c′, c′′ ∈ ch(c) ∀c ∈ Π, where Π is the set
of product nodes.

3 DEEP POLYNOMIAL CHAOS

Figure 1: A DeepPCE with two PCE input nodes over scopes
{Xn, Xm} and {Xu, Xv}. Inputs are expanded as orthogo-
nal polynomials ϕi. A layer of outer-product nodes ⊗ forms
the multivariate basis functions (tensor-products). A sum
layer ⊕ composes a PCE with trainable network weights,
followed by one or several blocks of element-wise products
⊙ and weighted sums ⊕ over these products.

The core idea is to define the input nodes in probabilistic cir-
cuits using orthonormal PCE basis functions (see Figure 1).
Circuits can be interpreted as representations of polynomi-
als [Choi et al., 2020, Vergari et al., 2021], and conversely,
a PCE can naturally be viewed as a circuit. The integrals
for the expectation E[f(X)] and the variance Var(f(X))
in PCEs can be computed very efficiently even for high
dimensional input spaces (4, 5). Constructing a PCE via
hierarchical sums and products of PCEs with smaller scopes
enables the modeling of high-dimensional functions beyond
the reach of traditional PCE approaches. We implement the
circuit as a layerwise tensorized computational graph Lo-
conte et al. [2024], following the structure of modern imple-
mentations Vergari et al. [2019], Peharz et al. [2020a]. We
denote the multivariate circuit output as Y = {Y1, . . . , YO},
representing the function Y = f(X), where the input nodes
are defined as PCEs.

PCE layer The first layer of the circuit consists of mul-
tiple input units, each associated with a scope Xc ⊆ X.
In contrast to probabilistic circuits, where input nodes en-
code probability distributions, DeepPCE input nodes each
represent a PCE, denoted as gc(Xc) (see Eq. 1). We use
overparameterized circuits Loconte et al. [2024], with mul-
tiple input nodes encoding a PCE gc,n(Xc) over the same

scope, each with a distinct set of weights. In the special
case where Xc = X, the entire input space is used as a
single scope, recovering a shallow PCE. We adopt a random
partitioning strategy for assigning scopes to the input nodes,
similar to the RAT-SPN architecture [Peharz et al., 2020b].
However, rather than mixing multiple randomly partitioned
circuits at the root node, we restrict the model to a single
random partition of the input vector X to preserve circuit de-
composability for tractable inference [Vergari et al., 2021].

Sum-product layer We abstract product and sum opera-
tions in one single module for computational efficiency as
shown in Peharz et al. [2020a]. Each product unit computes
the element-wise product from its input vectors u,v with
length M and scopes Xc′ and Xc′′ respectively, based on a
Hadamard product layer [Loconte et al., 2024]. The scope of
a product node output is the union of the scope of its inputs
Xc′ ∪Xc′′ , the output is on = u⊙v. For each product node
pn, there exist K ≥ 1 individual sum nodes, each comput-
ing a sum over the same scope induced by the input node
pn but with a distinct set of weights. The output of a sum
node is sn,k =

∑M
m wk,n

m om, where wk,n
m are the elements

of the sum units’ weight vector wk,n ∈ WK×N×M and W
is the complete weight tensor of the sum layer. The number
of sum nodes K for each product node is a hyperparameter
controlling the overparameterization of the circuit. At the
output layer, K = 1 and each sum sn simply corresponds to
one output dimension Yn ∈ Y. The depth of the DeepPCE
is determined by the input dimensionality D and the size of
the input scopes Xc.

Inference By building on both PCE and circuit proper-
ties, the DeepPCE retains the ability to compute exact sta-
tistical moments and sensitivity indices. We show how to
compute the total model expectation E[f(X)] and covari-
ances cov(f(X)). Under the assumption that p(X) factor-
izes, the expectation is represented by the same circuit as
f(X), following from the fact that (i) sums commute with
expectations and (ii) factorized expectations distribute over
decomposable products. The single-dimensional expecta-
tions can hence be “pulled down” to the input nodes [Choi
et al., 2020, Vergari et al., 2021]. At the input nodes, the
expectation E[g(Xc)] of a PCE node with scope Xc can
be estimated directly from the weights as shown in (4) by
simply setting all weights wαi

= 0 ∀i > 0. We get E[f(X)]
by using E[g(Xc)] and performing a standard forward pass
through the circuit. Similarly, we get cov(f(X), f(X)) by
computing cov(g(Xc), g(Xc)) at the input PCE — multi-
plicative cross-terms cancel due to orthogonality — accord-
ing to 5, followed by a forward pass. Applying the same
rationale, we are able compute other statistical quantities,
such as conditional expectations, conditional covariances,
expectations of conditional covariances and covariances of
conditional expectations, as shown in Appendix A.
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Figure 2: First order Sobol indices for the PCE benchmark dataset using 10000 data samples. Indices are normalized by
their total sum for better comparability. Computation times (wall clock time) for Monte Carlo approximated Sobol indices
for the MLP are larger by a factor of 104 compared to the tractable operations with the DeepPCE.

4 EXPERIMENTS

We test our DeepPCE on a common PCE benchmark func-
tion and two high-dimensional PDE benchmarks and com-
pare it to a standard MLP and different variants of a shallow
PCE. The DeepPCE is domain-agnostic and similary ap-
plicable to different types of input data, hence we consider
MLPs the most adequate baseline. We report best perform-
ing results for both MLP and DeepPCE based on multiple

training runs. Relative MSEs are computed by
1
N

∑N
i (y−ŷ)2

1
N

∑N
i y2 .

Inputs for both two-dimensional PDE datasets are 32× 32
dimensional fields — PCEs have so far not been applicable
to such high-dimensional problems.

PCE Benchmark The 100D function f : R100 7→ R is
a common benchmark for sensitivity analysis with PCEs
[Lüthen et al., 2021]. We compare the DeepPCE to two
standard PCEs using different truncations, (i) a truncation
based on the total order of the expansion (||α||1 ≤ K)
(‘PCE q = 1’), (ii) a PCE using a hyperbolic truncation
scheme (||α||0.8 ≤ K) (‘PCE q = 0.8’) [Blatman and
Sudret, 2011] with K = 3. First order Sobol indices (7) are
presented in Figure 2, showing that the DeepPCE performs
on-par with the best shallow PCE in identifying variance
contributions of single input variables. For the MLP, Sobol
indices are approximated using Monte Carlo with a grid-
based sampling approach. For each Xi, we use 109 samples
to compute VarXi

(E¬Xi
[Y |Xi]). Measured wall clock time

for computing MLP Sobol indices is longer by a factor
of 104 compared to the analytical computation with the
DeepPCE (hours vs. a single second).

Darcy flow This two-dimensional PDE is a common
benchmark for data-driven physics models. We use the
dataset provided by Zhu and Zabaras [2018]. The input
is a random permeability field, the output is a velocity field.
Training was performed using 5000 training samples, while
5000 data samples were used for validation and evalua-

tion. Another 2000 samples were used as holdout test set.
The DeepPCE shows competitive predictive performance
compared to a MLP, with relative MSEs of 0.0550 for the
DeepPCE and 0.0489 for the MLP. Randomly selected test
samples are shown in appendix D.

Steady-state diffusion The two-dimensional PDE con-
sists of a random diffusion coefficient modeled as a Gaus-
sian random field and a corresponding pressure field as
output. The data was generated using the solver provided
by Tripathy and Bilionis [2018]. We generate a dataset with
10000 samples and a holdout test set with 2000 samples.
As in the Darcy flow experiment, we train each network
with 5000 samples and use the remaining 5000 samples for
validation and evaluation. The DeepPCE shows predictive
performance on par with the MLP on the holdout test set —
both models manage to fit the data almost perfectly (relative
MSEs of 0.0001 for the DeepPCE and 0.0002 for the MLP).
Randomly selected test samples are shown in appendix D.

5 CONCLUSION

We introduce Deep Polynomial Chaos Expansion (Deep-
PCE), a generalization of classical PCE that embeds or-
thonormal polynomial bases within a deep circuit archi-
tecture. DeepPCE enables exact computation of statistical
moments and Sobol sensitivity indices while scaling to high-
dimensional inputs, achieving predictive accuracy compara-
ble to MLPs. DeepPCE supports fully analytical uncertainty
quantification via simple forward passes and overcomes the
curse of dimensionality of PCEs using hierarchical tensor
products. Limitations include sensitivity to initialization and
reliance on factorized input distributions, suggesting future
work on robustness and correlated inputs. Overall, DeepPCE
provides (i) a principled, fast mechanism for feature impor-
tance analysis and (ii) a scalable and tractable alternative
for surrogate modeling in science and engineering.
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Deep Polynomial Chaos Expansion
(Supplementary Material)

A INFERENCE

A.1 CIRCUIT PRELIMINARIES

Our goal is to compute expectations and covariances to perform sensitivity analysis and uncertainty quantification with
the DeepPCE. The DeepPCE represents a function f(X) = Y, where Y = {Y1, . . . , YO} is the O-dimensional vector
of outputs and the input X = {X1, . . . , XD} is a D-dimensional vector of random variables, following a factorized
distribution:

p(X) =

D∏
d=1

p(Xd). (8)

The DeepPCE shares its structure with (probabilistic) circuits — the constraints imposed on the structure of circuits allow to
perform tractable inference. For detailed explanations and proofs of the theoretical foundations and necessary and sufficient
conditions for tractability, we refer to Choi et al. [2020], Vergari et al. [2021], Loconte et al. [2024]. Here, we will provide a
higher-level summary of the important concepts. Similar to other frameworks [Peharz et al., 2020a, Loconte et al., 2024],
the DeepPCE is implemented as layerwise tensorized computational graph, parallelizing the operations inside the circuit. It
still consists of the same basic computational nodes, which we explain briefly. An inner node (a node that is not an input
node) in the circuit receives inputs from one or more other circuit nodes, its children. We denote the children of a node n as
ch(n). Each node encodes a function, denoted as hn over a subset of input variables Xc ⊆ X, also called the scope of a
node. A circuit has only three distinct computational nodes:

Input node The input node or leaf node encodes an integrable parameterized function over input variables Xc ⊆ X.
While the input node in probabilistic circuits encodes a probability distribution, in the case of DeepPCE it encodes a PCE,
which we denote as g. Recalling Section 2, a PCE over scope Xc has the form

g(Xc) =
∑

α∈Ac

wαΦα(Xc). (9)

Product node The product node represents a product
∏

c∈ch(n) hc(Xc). The scope of the product node is the union of
the scope of its input nodes,

⋃
c∈ch(n) Xc. For tractable inference, it is required that a circuit is structured-decomposable.

A circuit is decomposable if all children of product units have disjoint scopes, so that Xc ∩Xc′ = ∅ ∀c, c′ ∈ ch(n). For
structural decomposability, it is further required that all pairs of product nodes n,m with same scope decompose the scope
in the same way, so that Xchi(n) = Xchi(m) ∀i ∈ {1, . . . , C}, where C is the number of children in ch(n) and ch(m).

Sum node The sum node computes the sum s(Xc) =
∑

c∈ch(n) wn,chc(Xc), where wn = [wn,1, . . . , wn,C ] are the
trainable parameters of the node and C are the number of children of that node. All sum nodes in a circuit have to satisfy the
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structural condition smoothness for tractable inference. A circuit is smooth if, for all sum nodes, the children of a sum node
have same scope, so Xc = Xc′ ∀c, c′ ∈ ch(n).

If a circuit satisfies the structural properties of smoothness and decomposability, statistical moments of f(X) can be
computed by decomposing the complex integral into smaller, easier to solve integrals based on the observation that
integration interchanges with summation and integration interchanges with decomposable multiplication [Choi et al., 2020].
Essentially, the integral gets ’pushed down’ to the input nodes of the circuit, which can be evaluated easily. It is then
sufficient to perform a forward pass through the circuit using the evaluated integrals at the circuit leaves to compute the
desired statistical moment of the whole circuit f(X).

In tensorized circuit representations, multiple nodes are parallelized and grouped to circuit layers. Usually, a layer includes
multiple nodes encoding the same function over the same scope, but each with a distinct set of parameters [Peharz et al.,
2020a], increasing the number of parameters and expressivity of the circuit. The layerwise representation yields two types of
product layers: (i) product layers that compute the outer product AN×N = u⊗ v, where u is the vector of all N outputs
from children nodes with scope Xc and v is the vector of all N outputs from children nodes with scope Xc′ , also referred to
in the circuit literature as a Kronecker product, (ii) product layers computing the Hadamard product a = u⊙ v [Loconte
et al., 2024]. Aside from the PCE input layer computing the tensor products Φ, we use Hadamard product layers in the
DeepPCE.

A.2 EXPECTATIONS

First, we want to compute the expectation of the whole circuit f(X) = Y:

E[Y] =

∫
p(x)f(x)dx (10)

We first compute the expectation at the input nodes of the circuit and show how we can pass them through product and sum
nodes to get the result at the output.

A.2.1 PCE input layer

We recall that, following from the orthogonality property of PCE, the expectation of a single input node PCE gn over scope
Xc is

E[gn(Xc)] = wn,α0
(11)

To compute the expectation for an input node, we thus simply have to set all wn,αi
= 0 ∀ i > 0.

A.2.2 Product layer

As shown in section A.1, the DeepPCE is a decomposable circuit — inputs to product nodes always have disjoint scopes
Xc ∩Xc′ = ∅. The product pn,m of two inputs gn, gm is

pn,m = gn(Xc)gm(Xc′) (12)

Because the circuit is decomposable and the input distribution p(X) factorizes, we get that gn(Xc) ⊥⊥ gm(Xc′). We can
thus decompose the expectation of the product:

E[pn,m] = E[gn(Xc)gm(Xc′)]

= E[gn(Xc)]E[gm(Xc′)] gn(Xc) ⊥⊥ gm(Xc′) (13)

We only have to pass the expectations computed in A.2.1 to the product node to compute its expectation.
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A.2.3 Sum layer

Recall that the circuit satisfies the structural property of smoothness — sums are always computed over inputs with same
scope. In case of a outer product layer (sec. A.1), a sum node with index k computes the sum

sk =
∑
n,m

wk,n,mpn,m (14)

The expectation is then

E[sk] =
∑
n,m

wk,n,mE[pn,m] (15)

We know the expectation of the product E[pn,m] from A.2.2. As deeper circuits are only sequences of sum and product
nodes, it sufficies to compute the expectations at the input nodes and perform a forward pass through the circuit to compute
E[Y].

A.3 COVARIANCES

Next we want to compute the covariance of all DeepPCE outputs cov(Y,Y), which is a O ×O positive definite matrix. We
show how covariances are computed at the input layer can be propagated through the network.

A.3.1 PCE input layer

First, we compute the covariances at the input nodes, which are:

cov(gn(Xc), gm(Xc′)) = E[gn(Xc) gm(Xc′)]− E[gn(Xc′)]E[gm(Xc′)] (16)

Recall that we assume a factorized distribution of the inputs X. The covariance for all pairs of input node PCEs
gn(Xc), gm(Xc′) with disjoint scopes Xc ̸= Xc′ is thus zero, so we only have to compute the covariances from in-
put nodes that share the same scope. We know how to compute E[gn(Xc)] and E[gm(Xc)] from (11). For a PCE input node,
we can compute the second moment, i.e. the expectation of a product of two PCEs gn, gm, over the same scope as

E[gn(Xc) gm(Xc)] = E

 ∑
α∈Ac

∑
β∈Ac

wn,αwm,βΦα(Xc)Φβ(Xc)


=

∑
α,β∈Ac

wn,αwm,β E[Φα(Xc,I)Φβ(Xc,I)]︸ ︷︷ ︸
=δα,β

(17)

where α is the multi-index of the PCE gn and β is the multi-index of the PCE gm. We know again from the orthogonality
property that E[Φα(X)Φβ(X)] = δα,β, where δα,β is the Kronecker delta. The second moment is thus

E[gn(Xc) gm(Xc)] =
∑

α∈Ac

wn,αwm,α (18)

We get the covariance using the result from (11):
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cov(gn(Xc), gm(Xc)) = E[gn(Xc)gm(Xc)]− E[gn(Xc)]E[gm(Xc)]

=
∑

α∈Ac

wn,αwm,α − wn,α0
wm,α0

=
∑

α∈Ac\{α0}

∑
β∈Ac\{β0}

wn,αwm,β (19)

A.3.2 Product layer

To compute second moments at the product layer, we again use g(Xc) ⊥⊥ g(Xc′) due to decomposability:

E[pn,mpk,l] = E[gn(Xc)gm(Xc′)gk(Xc)gl(Xc′)]

= E[gn(Xc)gk(Xc)]E[gm(Xc′)gl(Xc′)] (20)

We know how to compute the expectation of products over the same scope from (18). We can now compute the covariance

cov(pn,m, pk,l) = E[pn,mpk,l]− E[pn,m]E[pk,l] (21)

by applying (20) and (13). We are thus able to compute second moments at a product node by propagating second moments
from the child nodes. Covariances can be computed similarly, with the additional need of computing expectations.

A.3.3 Sum layer

Second moments of two sums si, sj over same scope are

E[sisj ] = E

∑
n,m

wi,n,mpn,m
∑
k,l

wj,k,lpk,l


=

∑
n,m,k,l

wi,n,mwj,k,lE [pn,mpk,l] (22)

We know how to compute the expectation of the product of two product nodes from (20). We finally are able to compute the
covariance

cov(si, sj) = E[sisj ]− E[si]E[sj ] (23)

using the result for the second moment of sums (22) and the expectation of sums (15). We show that statistical queries for
the second moment E[YY] and the covariance cov(Y,Y) can be answered by computing those quantities at the input node
PCEs. Leveraging the orthogonality property, they reduce to simple operations only involving the learned weights of the
input nodes.

A.4 CONDITIONAL EXPECTATIONS

Now, we consider the case of the conditional expectation E[Y|xI ], where I ⊆ {1, . . . , D} is an index set of some parameters
in X. The set of unconditioned variables is denoted as X¬I with ¬I = {1, . . . , D} \ I, so that XI ∪ X¬I = X. The
conditional expectation is
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EX¬I [Y|xI ] =

∫
p(x¬I |xI)f(

x︷ ︸︸ ︷
x¬I ,xI)dx¬I

=

∫
p(x¬I)f(x¬I ,xI)dx¬I (24)

The second step again follows from the assumption that p(X) factorizes, so that p(x¬I |xI) = p(x¬I). We can write the
conditional expectation of a PCE at the leaf layer as

EXc,¬I [gn(Xc)|xc,I ] = EXc,¬I

[ ∑
α∈Ac

wn,αΦα(Xc,¬I)Φ̂α(xc,I)

]
(25)

where Φ̂α(xc,¬I) is the tensor product of the conditional variables:

Φ̂α(xc,I) =
∏

xe∈xc,I

ϕαe
(xe) (26)

Based on (25), we get

EXc,¬I [gn(Xc)|xc,I ] =
∑

α∈Ac

wn,αΦ̂α(xc,I) E[Φα(Xc,¬I)]︸ ︷︷ ︸
=1 if αi=0 ∀ αi ∈α,

else 0

=
∑

α∈Ac,I

wn,αΦ̂α(xc,I) with Ac,I = {α : ∀j ∈ ¬I : αj = 0} (27)

It follows from the orthogonality property of the PCE that E[Φα(Xc,¬I)] = 1 only if {α : ∀j ∈ ¬I : αj = 0}. To
compute the conditional expectation, we set all leaf layer PCE weights to zero not meeting this requirement. Recycling
our computations for expectations in product and sum layers (A.2), we only have to perform a forward pass to compute
EXc,¬I [Y|xI ].

A.5 CONDITIONAL COVARIANCES

We compute the conditial covariance covX¬I (Y,Y|xI) using the same method as described in A.3. The PCE conditional
second moment is

EXc,¬I [gn(Xc,¬I |xI) gm(Xc,¬I |xI)] =

= EXc,¬I

 ∑
α,β∈Ac

wn,αwm,βΦ̂α(xI)Φ̂β(xI)Φα(Xc,¬I)Φβ(Xc,¬I)


=

∑
α,β∈Ac

wn,αwm,βΦ̂α(xI)Φ̂β(xI)E [Φα(Xc,¬I)Φβ(Xc,¬I)]︸ ︷︷ ︸
=δα,β

=
∑

α∈Ac\{α0}

∑
β∈Ac\{β0}

wn,αwm,βΦ̂α(xI)Φ̂β(xI) (28)

We can now compute the covariance using (16). Based on A.3, we perform a forward pass to compute covX¬I (Y,Y|xI).
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A.6 EXPECTATIONS OF COVARIANCES AND COVARIANCES OF EXPECTATIONS

Additional to computing statistical moments, we are interested in performing sensitivity analysis by identifying the input
variables Xd ∈ X that contribute most to the variance of f(X) = Y represented by the DeepPCE. First order Sobol indices
are given by

Si =
VarXi

(EX¬i
[Y | Xi])

Var(Y)
, (29)

quantifying the contribution of only Xi to the total variance of Y. We thus are ultimately interested in computing the
covariance of expectations conditioned on the random variables XI ⊂ X: covXI (EX¬I [Y|XI ]), quantifying the covariance
based only on the randomness of XI . We again apply the standard formula for the covariance

covXI (EX¬I [Y|XI ],EX¬I [Y|XI ]) = EXI [EX¬I [Y|XI ] EX¬I [Y|XI ]]− EXI [EX¬I [Y|XI ]]
2

= EXI [EX¬I [Y|XI ] EX¬I [Y|XI ]]− E[Y]2 (30)

For the simplification in the second step, we use the law of total expectation, which states that E[E[Y |X]] = E[Y ]. We know
how to compute E[Y] based on the derivation in A.2. We further apply our results from 27 to compute the second moment
of the distribution of the conditional expectation at the PCE leaves:

EXc,I

[
EXc,¬I [gn(Xc,¬I)|Xc,I ] EXc,¬I [gm(Xc,¬I)|Xc,I ]

]
=

= E

 ∑
α∈Ac,I

wn,αΦ̂α(XI)
∑

β∈Ac,I

wm,βΦ̂β(XI)


=

∑
α,β∈Ac,I

wn,αwm,β E
[
Φ̂α(XI)Φ̂β(XI)

]
︸ ︷︷ ︸

=δα,β

(31)

where Ac,I = {α : ∀j ∈ ¬I : αj = 0} as defined in (27). Based the orthogonality property of the PCE, the equation
reduces to

EXc,I

[
EXc,¬I [gn(Xc,¬I |Xc,I)] EXc,¬I [gm(Xc,¬I |Xc,I)]

]
=

=
∑

α∈Ac,I

wn,αwm,α E
[
Φ̂α(XI)Φ̂α(XI)

]
︸ ︷︷ ︸

=1

=
∑

α∈Ac,I

wn,αwm,α (32)

We are now able to compute the covariance of conditional expectations at the PCE leaves using (34) by inserting (32):

covXc,I (EXc,¬I [gn(Xc)|Xc,I ],EXc,¬I [gn(Xc)|Xc,I ]) =
∑

α∈Ac,I

wn,αwm,α − wn,α0wm,α0

=
∑

α∈Ac,I\{α0}

wn,αwm,α (33)

Finally, we are also able to compute the expectation of conditional covariances using the law of total covariance:

EXI [covX¬I (Y,Y|XI)] = cov(Y,Y) + covXI (EX¬I [Y|XI ],EX¬I [Y|XI ]). (34)

by computing the covariance according to (16) and the covariance of conditional expectations according to (33).
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B MONTE CARLO EVALUATION

We test all inference queries by comparing the analytical results with Monte Carlo approximations of those quantities
from the same DeepPCE. We compute Monte Carlo approximations with different sample sizes S = [105, 106, 107, 108],
performing 30 individual Monte Carlo runs per sample size setting. We then test the convergence with increasing sample
size and compare it to the analytical solution derived earlier by performing one sample t-tests for all outputs, showing that
the difference between the analytical solutions and the Monte Carlo approximations is not statistical significant for any
outputs (Table 1). Figure 3 shows results for a DeepPCE with 8 inputs X ∼ N (0, I) and 8 outputs, from which we randomly
chose a single output for visualization. We iteratively validate the analytical solutions and use them in further Monte Carlo
tests as described below.

Table 1: P-values computed using one sample t-tests, comparing the analytical solution of the statistical inferences to Monte
Carlo approximations. The results are not statistical significant for any outputs, indicating that the analytical solution is not
different from the Monte Carlo solution.

Outputs E [Y ] Var(Y ) E [Y |x] Var(Y |x) E [Var(Y |X)]

Y1 0.875 0.950 0.581 0.172 0.493
Y2 0.300 0.119 0.575 0.583 0.986
Y3 0.108 0.158 0.643 0.660 0.873
Y4 0.132 0.223 0.706 0.495 0.970
Y5 0.915 0.816 0.521 0.204 0.522
Y6 0.093 0.058 0.679 0.776 0.916
Y7 0.382 0.148 0.567 0.559 0.951
Y8 0.250 0.104 0.591 0.610 0.964

B.1 EXPECTATION AND COVARIANCE

We first test the analytical computation of E[Y] by comparing it with the Monte Carlo estimate

E[Y]MC =
1

n

N∑
i

M(X) (35)

After confirming that E[Y] = E[Y]MC , we apply the analytical expectation in the Monte Carlo approximation of the
covariance:

cov(Y,Y)MC =
1

n− 1

N∑
i

(M(X)− E[Y]︸ ︷︷ ︸
tested

)2 (36)

B.2 CONDITIONAL EXPECTATION AND CONDITIONAL COVARIANCE

For the validation of conditional moments, we condition on variables XI = {X1, X2, X3, X5}. For tests with fixed
conditional values, we chose conditioned values as XI ∼ U(−2, 2). We test the conditional expectation similar to (35):

E[Y|xI ]MC =
1

n

N∑
i

M(X¬I ,xI) (37)

After confirming the results, we use it for the Monte Carlo approximation of the conditional covariance

cov(Y,Y|xI)MC =
1

n− 1

N∑
i

(M(X¬I ,xI)− E[Y|xI ])
2︸ ︷︷ ︸

tested

(38)
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The Monte Carlo approximation for the expected conditional covariance is then simply

E[cov(Y,Y|XI)]MC =
1

n

N∑
i

cov(Y,Y|xi)︸ ︷︷ ︸
tested

(39)

Because we get the covariance of conditional expectations just from known quantities (34), we don’t need to compare it to a
Monte Carlo approximation.
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Figure 3: Inference pass evaluation comparing the analytical solution (grey line) to Monte Carlo approximations (blue/orange
circles). The first row show unconditional expectation E[Y ] (left) and unconditional variance Var(Y ), the second row
conditional expectation E[Y |x] and conditional variance Var(Y |x), the third row shows the expectation of the conditional
variance E[Var(Y |XI)]

13



C BATCH NORMALIZATION AND ORTHOGONALITY

The DeepPCE formalization assumes that the input distribution factorizes, so that p(X) =
∏

d p(Xd). We show that
orthogonality is preserved in the DeepPC also when batch normalization is applied at the sum layer. Batch normalization,
denoted as the function z, applies an affine transformation at inference time:

z(Y) = γ
Y − E[Y]√
Var(Y) + ε

+ β (40)

where Y is previous hidden layer’s output, γ and β are learnable parameters of the batch norm layer and E[Y] and Var(Y)
are the estimates for batch mean and variance respectively and ε is a small constant added for numerical stability. At
inference time, the batch statistics are independent from the inputs. The equation can be reformulated as

z(Y) = γ̂Y + β̂ (41)

with γ̂ =
γ√

Var[Y] + ε
, β̂ = β − γE[Y]√

Var[Y] + ε
(42)

Applied to a PCE f(X) =
∑

α∈A wαΦα(X) we get:

z(f(X)) = γ̂

( ∑
α∈A

wαΦα(X)

)
+ β̂ (43)

The batch norm coefficients γ and β can be subsumed in the weights and the zeroth-order term of the expansion, i.e. the
constant wα0

, respectively, thus not affecting orthogonality:

z(f(X)) =
∑
α∈A

γ̂ wαΦα(X) + bα with bα =

{
β̂ if αi = 0 ∀αi ∈ α

0 otherwise
(44)

D EXPERIMENT DETAILS

D.1 TRAINING

Unlike classical PCE, DeepPCE does not admit a closed-form solution for the maximum likelihood estimate of the weights.
Training therefore relies on standard MLP-style optimization, using gradient descent to minimize the L2 loss. Because
polynomial chaos expansions are computed at the DeepPCE input layer, the values at the leaf nodes can span several
orders of magnitude, potentially destabilizing training. This issue is further amplified by the multiplicative interactions in
product nodes, which, in high-dimensional settings, often lead to vanishing or exploding outputs. As a result, DeepPCE
may converge to poor local minima or diverge entirely. This challenge is not unique to DeepPCE; training circuit-based
models in high-dimensional regimes is known to be difficult with existing optimizers [Liu et al., 2022]. To mitigate the
impact of large values introduced by higher-order polynomial terms, we draw inspiration from truncation strategies in the
PCE literature [Blatman and Sudret, 2011]. Specifically, we initialize the weights of higher-degree polynomial terms with
lower variances than those of lower-degree terms. We find that this variance scaling improves both training stability and
convergence, but does not mitigate the problem entirely. Robust parameter initalization strategies for the DeepPCE are thus
an important part of further research. We further apply batch normalization after each sum layer. Importantly, the learned
batch normalization parameters can be absorbed into the constant (zeroth-degree) term of the polynomial expansion during
inference, preserving both orthogonality and tractability of the inference pass (see Appendix C). For the experiments, we
perform randomized training of multiple models, dropping runs with bad parameter sets.

D.2 HYPERPARAMETERS

For each experiment, DeepPCE and MLP were tuned over the same set of hyperparameters (learning rate, batch
size). Additionally, tuned parameters for the DeepPCE include the number of sum nodes per region (num sums),
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the number of input variables per leaf scope (scope size) and the maximum order of the polynomial expansion (max
order). Additional MLP tuning parameters include the number of hidden layers (num hidden layers) and the number
of units per hidden layer (num units). We used early stopping to determine the end of training runs. All experiments
were performed on a server with 252 GB RAM using a NVIDIA RTX A6000 GPU (48 GB Memory).

Table 2: Hyperparameters for the polynomial chaos benchmark experiment.

DeepPCE

optimizer adam
amsgrad True
learning rate 8.5e-3
batch size 16
num sums 40
scope size 1
max order 3

MLP

optimizer adam
amsgrad True
learning rate 1.15e-3
batch size 128
num hidden layers 1
num units 3700

Table 3: Hyperparameters for the Darcy flow experiment.

DeepPCE

optimizer adam
amsgrad True
learning rate 2.5e-3
batch size 16
num sums 25
scope size 1
max order 3

MLP

optimizer adam
amsgrad True
learning rate 1.1e-3
batch size 64
num hidden layers 1
num units 600

Table 4: Hyperparameters for the steady state diffusion experiment.

DeepPCE

optimizer adam
amsgrad True
learning rate 3.0e-2
batch size 16
num sums 30
scope size 1
max order 3

MLP

optimizer adam
amsgrad True
learning rate 1.1e-3
batch size 128
num hidden layers 3
num units 3200

D.3 POLYNOMIAL CHAOS BENCHMARK

The benchmark 100D function [Lüthen et al., 2021] is defined as

f(X) = 3− 5

d

d∑
i=1

iXi +
1

d

d∑
i=1

iX3
i +

1

3d

d∑
i=1

i ln(X2
i +X4

i ) +X1X
2
2 +X2X4 −X3X5 +X51 +X50X

2
54 (45)

where inputs X = {X1, . . . XD} are sampled from uniform distributions Xi ∼ U(1, 2) ∀i ̸= 20 and X20 ∼ U(1, 3).
Hyperparameters for the DeepPCE and the benchmark MLP are shown in 2. We compute additional Sobol indices for the
DeepPCE, MLP, PCE(q=1) and PCE(q=0.8) models for different dataset sizes of N = [1000, 5000, 50000] (Figure 4). It
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can be observed that the performance of the DeepPCE is comparable to the PCE with q = 0.8, outperforming the shallow
PCE variants at N = 5000. Using N = 50000, the DeepPCE and the PCE with q = 0.8 converge to a similar result. Results
for PCE with q = 1 are not shown in this setting because they could not be computed with the available memory.
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Figure 4: Sobol indices computed from models fitted with 1000, 5000 and 50000 training samples.
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D.4 DARCY FLOW

Hyperparameters for DeepPCE and MLP are shown in Table 3. Due to small absolute MSE values, we compute relative
MSEs as

R =
1
N

∑N
i (y − ŷ)2

1
N

∑N
i y2

(46)

where y are the true values and ŷ are the model predictions. Relative MSEs for all test runs are shown in Table 5. Figure 5
shows random samples from the test set. In many cases, DeepPCE predictions are less noisy than MLP predictions, indicating
the DeepPCEs applicability to approximate continuous problems such as PDEs. Train loss curves for the DeepPCE for all
20 runs are shown in Figure 6, showing that the DeepPCE is sensitive to certain parameter initializations.

Input True DeepPCE MLP Input True DeepPCE MLP
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Figure 5: Random test samples for the Darcy flow experiment.

Table 5: Relative MSEs of DeepPCE and MLP on the Darcy flow dataset for all 20 test runs.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

DeepPCE 0.0573 0.0688 0.2076 0.2075 0.1200 0.1423 0.0831 0.2077 0.0924 0.1676
MLP 0.0420 0.0444 0.0431 0.0437 0.0417 0.0425 0.0472 0.0476 0.0513 0.0441

run 11 run 12 run 13 run 14 run 15 run 16 run 17 run 18 run 19 run 20

DeepPCE 0.1088 0.0637 0.1052 0.0667 0.0644 0.0550 0.1747 0.0961 0.0523 0.0634
MLP 0.0428 0.0489 0.0429 0.0488 0.0457 0.0455 0.0453 0.0473 0.0479 0.0447
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Figure 6: Train loss curves for all 20 runs of the DeepPCE for the Darcy flow experiment.
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D.5 STEADY STATE DIFFUSION

Hyperparameters for DeepPCE and MLP are shown in Table 4. We compute relative MSEs according to (46) for all runs,
which are shown in Table 6. Random samples from the holdout test set are presented in Figure 7. DeepPCE train loss curves
for all 20 runs are shown in Figure 8, showing that the DeepPCE is sensitive to certain parameter initializations.
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Figure 7: Random test samples for the steady-state diffusion experiment.

Table 6: Relative MSEs of DeepPCE and MLP on the steady state diffusion dataset for all 20 test runs.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

DeepPCE 0.0005 0.0005 0.6792 0.0059 0.0004 0.0024 0.0001 0.0054 0.0038 0.0049
MLP 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

run 11 run 12 run 13 run 14 run 15 run 16 run 17 run 18 run 19 run 20

DeepPCE 0.0510 0.0032 0.0050 0.0028 0.0005 0.0087 0.0513 0.0047 0.0002 0.0003
MLP 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
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Figure 8: Train loss curves for all 20 runs of the DeepPCE for the steady state diffusion experiment.
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