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Abstract
While denoising diffusion and flow matching have
driven major advances in generative modeling,
their application to tabular data remains limited,
despite its ubiquity in real-world applications. To
this end, we develop TabbyFlow, a variational
Flow Matching (VFM) method for tabular data
generation. To apply VFM to data with mixed
continuous and discrete features, we introduce Ex-
ponential Family Variational Flow Matching (EF-
VFM), which represents heterogeneous data types
using a general exponential family distribution.
We hereby obtain an efficient, data-driven objec-
tive based on moment matching, enabling princi-
pled learning of probability paths over mixed con-
tinuous and discrete variables. We also establish
a connection between variational flow matching
and generalized flow matching objectives based
on Bregman divergences. Evaluation on tabu-
lar data benchmarks demonstrates state-of-the-art
performance compared to baselines.

1. Introduction
Generative modeling has become a fundamental task in ma-
chine learning, enabling the synthesis of complex and high-
fidelity data across various domains. At the forefront of this
evolution, different frameworks have been proposed, which
focus on classical data modalities (e.g., images, text) for
deep learning (Ramesh et al., 2022; Rombach et al., 2022).
Flow-based approaches have shown remarkable progress in
recent research, demonstrating increasing effectiveness and
scalability. Building on foundations in continuous normal-
izing flows (CNF) (Chen et al., 2018; Song et al., 2021),
these methods have steadily advanced in their capabilities,
though often requiring significant computational resources
(Ben-Hamu et al., 2022; Rozen et al., 2021; Grathwohl et al.,
2019).

*Equal contribution 1Vector Institute 2Bosch-Delta Lab.
Correspondence to: Andrés Guzmán-Cordero <andres-
guzco@gmail.com>, Floor Eijkelboom <f.eijkelboom@uva.nl>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Among these approaches, Flow Matching has emerged as a
particularly promising direction, proposing to learn a con-
ditional vector field that can transport a source distribution
to a target distribution in a simulation-free manner (Lipman
et al., 2023). To do this, it uses an interpolation of noise
and real data. This framework has been further expanded to
general geometries (Chen & Lipman, 2024), discrete prob-
ability paths (Gat et al., 2024), and different applications
(Wildberger et al., 2024; Dao et al., 2023; Kohler et al.,
2023). Recent theoretical work has established connections
between flow matching and other generative approaches,
showing equivalences under certain conditions that help
unify the understanding of these methods (Albergo et al.,
2023). Variational Flow Matching (VFM) (Eijkelboom et al.,
2024) generalizes flow matching as a general variational
inference problem over trajectories induced by the used in-
terpolation in flow matching. Recent theoretical work has
also highlighted deep connections between flow matching,
score-based methods, and likelihood training, showing that
these approaches can be viewed as special cases within a
broader variational framework (Albergo et al., 2023).

In this paper, we consider the application of flow matching
to the modeling of tabular data, a ubiquitous data modality
in a range of domains including finance, healthcare, and
marketing. Tabular data pose unique modeling challenges
due to heterogeneous features, potential missing values, and
varying scales (Borisov et al., 2024; Wang et al., 2024).
While some diffusion-based approaches have been devel-
oped (Kotelnikov et al., 2023; Zhang et al., 2024; Shi et al.,
2024), models for tabular data are less widespread than
their counterparts for images and text. In this context, re-
cent work on variational flow matching (Eijkelboom et al.,
2024; Zaghen et al., 2025) presents a promising avenue for
generating mixed continuous and discrete features. VFM
frames flow matching as an inference problem, in which
the goal is to learn a variational posterior over data points
that can be associated with the current interpolation point.
This presents an opportunity to model heterogeneous data,
which can be represented in a conceptually straightforward
manner by matching the variational distribution to the data
type for each variable.

To realize this potential, we propose Exponential Family
Variational Flow Matching (EF-VFM), an extension of VFM
that incorporates exponential family distributions. Tabular
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Figure 1. Exponential Family Variational Flow Matching (EF-VFM) is a generative modeling framework designed for mixed continuous
and discrete variables. By leveraging the exponential family and a mean-field assumption, EF-VFM efficiently matches the sufficient
statistics of the distributions via learned probability paths, ensuring state-of-the-art fidelity and diversity in synthetic data.

data inherently consists of mixed variable types – continu-
ous, categorical, and binary – necessitating a framework that
can model these structures in a principled and unified way.
Exponential families provide a natural solution by param-
eterizing data through sufficient statistics, enabling direct
integration into the VFM paradigm. This approach not only
facilitates efficient training via moment matching but also
establishes deep connections between VFM and a general-
ized flow matching objective through the lens of Bregman
divergences, offering a theoretical foundation for learning
probability paths over mixed data types. To demonstrate the
effectiveness of EF-VFM, we introduce TabbyFlow, a model
that achieves state-of-the-art performance on standard tab-
ular benchmarks, improving both fidelity and diversity in
synthetic data generation.

2. Background
2.1. Transport Framework for Generative Modeling

A central perspective in modern generative modeling in-
terprets the task of sampling from a target distribution p1
as transporting a base distribution p0 along a (continuous)
time path. Typically, p0 is chosen to be a simple, tractable
distribution, such as a standard Gaussian on RD. The trans-
formation is defined through a time-dependent mapping

φt : r0, 1s ˆ RD Ñ RD, (1)

where φ0 is the identity map and φ1 pushes p0 onto p1. In
normalizing flows, this evolution is governed by an ordinary
differential equation (ODE):

d

dt
φtpxq “ utpφtpxqq, φ0pxq “ x, (2)

where ut : r0, 1s ˆ RD Ñ RD is a time-dependent velocity
field. Given a parameterized model vθt (e.g., a neural net-
work), the goal is to approximate the transport dynamics
that map samples from p0 to p1.

If ut is locally Lipschitz, the ODE admits a unique global
solution, ensuring invertibility of φt. This allows for den-
sity estimation via the change-of-variables formula, which
underpins likelihood-based training in normalizing flows.
However, solving ODEs during training is computationally
expensive, motivating alternative approaches that avoid ex-
plicit integration.

2.2. Flow Matching

Flow Matching (FM) circumvents the need for solving
ODEs during training by directly learning the velocity field
via regression:

LFMpθq “ Et,x
“

}utpxq ´ vθt pxq}2
‰

. (3)

Here, the expectation is typically uniform in t P r0, 1s and
sampled from the law of φtpx0q with x0 „ p0. While ut
is not known explicitly, it can be expressed in terms of a
conditional velocity field utpx | x1q, which describes the
motion of x towards a designated endpoint x1. The marginal
velocity is then given by:

utpxq “ Eptpx1|xq

“

utpx | x1q
‰

, (4)

where ptpx1 | xq is the (unknown) posterior over endpoints.
In practice, one can estimate utpxq via Monte Carlo sam-
pling of utpx | x1q, leading to the Conditional Flow Match-
ing (CFM) objective:

LCFMpθq “ Et,x1,x

“

}utpx | x1q ´ vθt pxq}2
‰

. (5)
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A key property of CFM is that minimizing this conditional
loss provides an unbiased gradient estimate of LFMpθq, en-
suring that the learned model approximates the true marginal
velocity. By avoiding ODE integration during training, Flow
Matching offers a computationally efficient alternative to
diffusion and score-based models.

2.3. Flow Matching as a Variational Inference Problem

Variational Flow Matching (VFM) extends Flow Matching
by introducing a variational distribution qθt px1 | xq in place
of the unknown posterior ptpx1 | xq. Instead of estimating
utpxq via an expectation over ptpx1 | xq, VFM replaces it
with an expectation over qθt :

vθt pxq “ Eqθt px1|xq

“

utpx | x1q
‰

. (6)

To ensure that qθt px1 | xq accurately approximates the poste-
rior ptpx1 | xq, VFM minimizes the KL divergence between
their joint distributions:

LVFMpθq “ Et
“

KL
`

ptpx1, xq } qθt px1, xq
˘‰

(7)

“ ´Et,x1,x

“

log qθt px1 | xq
‰

` const. (8)

Minimizing LVFMpθq ensures that qθt px1 | xq approximates
ptpx1 | xq, causing vθt pxq to converge to utpxq.

This variational formulation is particularly effective when
utpx | x1q is linear in x1, e.g., if ut corresponds to straight-
line interpolation of diffusion, as then we obtain:

Eptpx1|xqrutpx | x1qs “ ut
`

x | Eptpx1|xqrx1s
˘

.

This implies that modeling only the mean of ptpx1 | xq

under qθt suffices to recover the true marginal velocity. Con-
sequently, VFM can be implemented with a mean-field pa-
rameterization without loss of generality:

LMF´VFMpθq “ ´Et,x1,x

«

D
ÿ

d“1

log qθt pxd1 | xq

ff

. (9)

This factorization simplifies learning, reducing the problem
of estimating a high-dimensional distribution to learning D
univariate distributions.

A key advantage of VFM is its flexibility in choosing qθt .
By selecting the ‘right’ distributions – such as categorical
distributions for discrete features or Gaussian for continu-
ous ones – VFM provides a unified treatment of discrete
and continuous generative modeling. This generalization,
combined with its computational efficiency, makes VFM
particularly well-suited for tasks of mixed modality.

2.4. Exponential Family

The exponential family is a class of probability distributions
that is widely used in statistics and machine learning due to

its mathematical convenience and flexibility. Its structure
simplifies parameter estimation, enables efficient inference,
and unifies many commonly used distributions under a sin-
gle framework. A distribution belongs to the exponential
family if it can be written in the form

ppx | ηq “ hpxq exp pτpxq ¨ η ´Apηqq , (10)

where hpxq is the base measure, η are the natural parameters,
τpxq represents the sufficient statistics, and Apηq is the log-
partition function ensuring normalization. Examples of
distributions in this family include the Gaussian, Bernoulli,
Poisson, and exponential distributions.

Exponential families can be understood through two equiv-
alent parameterizations: the natural parameters η and the
mean parameters µ. While natural parameters define the ex-
ponential family form directly, mean parameters arise from
expectations of the sufficient statistics, i.e.

µ “ Erτpxqs “ ∇Apηq, (11)

where ∇Apηq is the gradient of the log-partition function.
This relationship can be inverted through the conjugate dual
A˚ of the log-partition function, giving η “ ∇A˚pµq. The
mean parameterization is particularly useful in practice as
mean parameters often have direct interpretations – for in-
stance, in a Gaussian distribution, they correspond to the
mean and variance. This makes them especially valuable for
maximum likelihood estimation, where empirical sufficient
statistics directly estimate the mean parameters.

Throughout this work, we assume our exponential families
are minimal, meaning their sufficient statistics are linearly
independent. This ensures the relationship between natu-
ral and mean parameters is bijective, enabling the clean
theoretical results and practical algorithms that follow.

3. Exponential Family VFM
3.1. Motivation

Tabular data presents a unique challenge for generative mod-
eling: each column may contain different types of data –
continuous, categorical, or binary – all of which must be
modeled jointly. The key insight of our work is that expo-
nential families provide a natural framework for extending
VFM to tabular data. Exponential families offer two criti-
cal advantages in this setting. First, they include distribu-
tions suitable for each data type commonly found in tables
– Gaussian distributions for continuous variables like age
or income, categorical distributions for discrete variables
like education level or occupation, Bernoulli distributions
for binary indicators like purchase history or customer sta-
tus, and Poisson or exponential distributions for count or
time-based data. Second, they admit a unified mathematical
treatment through their mean parameterization, which, as
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we show in Section 3.2, enables efficient training through
sufficient statistics matching. This exponential family per-
spective not only provides practical benefits for tabular data
generation but also deepens our theoretical understanding
of flow matching. As we demonstrate in Section 3.3, it
reveals a fundamental connection between VFM and Breg-
man divergences, providing a principled justification for our
approach while establishing links to classical flow matching
objectives.

3.2. Exponential Families for VFM

Moment Matching. To handle the diverse data types
present in tabular data, we use exponential families as our
variational distributions, as they naturally accommodate
both continuous and discrete variables. For each column
type, we learn a parameterization (either through natural or
mean parameters) using a neural network θ. Formally, this
distribution can be written as

qθt px1 | xtq “ exp
`

τpx1q ¨ ηθt pxq ´Apηθt pxqq
˘

. (12)

As such, the VFM loss (as given by a log-likelihood style
objective) reduces to

Lpθq “ ´Et,x1,x

“

log qθt px1 | xq
‰

(13)

“ ´Et,x1,x

“

τpx1q ¨ ηθt pxq ´Apηθt pxqq
‰

. (14)

A key advantage of this formulation for tabular data is that
optimizing this loss reduces to a simple and efficient objec-
tive for training VFM, which we term statistics matching.
The gradient of the loss depends solely on the difference
between the empirical sufficient statistics and the model’s
predicted sufficient statistics - a property that proves crucial
for handling heterogeneous column types efficiently. This
reduction in complexity not only streamlines the training
process but also enhances scalability across columns with
different distributions, allowing for the practical applica-
tion of VFM to real-world tabular datasets. Formally, the
following holds:

Proposition 3.1. Let qθt px1 | xq be a variational distribu-
tion from an exponential family, parameterized by natural
parameters ηθt pxq, which depend on neural network param-
eters θ. The gradient of the VFM objective ∇θLpθq is:

´Et,x1,x

“`

µtpxq ´ µθt pxq
˘

¨ ∇θη
θ
t pxq

‰

, (15)

where µtpxq “ Eptpx1|xqrτpx1qs are the moments relative to
ptpx1 | xq, and µθt pxq “ Eqθt px1|xqrτpx1qs are the moments
relative to the variational approximation.

Proof. See Appendix A.1. It follows from this identity that
the gradient is zero when the moment-matching condition
µθt pxq “ µtpxq is satisfied.

Simplification under Linear Conditional Velocity Fields.
If the conditional velocity field utpx | x1q is linear in x1,
it suffices to match only the mean of the posterior distribu-
tion ptpx1 | xtq. In this case, the marginal velocity field
simplifies to

utpxq “ E rutpx | x1qs “ utpx | Erx1sq. (16)

This reduces the complexity of the optimization problem:
rather than working with the full posterior distribution, one
only needs to learn the parameters associated with the suffi-
cient statistics τpx1q “ x1.

We assume that qpx1 | xq belongs to an exponential family,
where τpx1q “ x1 serves as a sufficient statistic. This as-
sumption holds in many practical cases, as Erx1s can often
be computed in closed form, allowing for efficient parame-
ter updates. For example, in a Gaussian setting, x1 directly
corresponds to the mean, aligning naturally with the mo-
ments of the distribution. Care is needed when the sufficient
statistics differ. In a categorical distribution, for instance,
the sufficient statistics are given by τkpxq “ Irx “ ks,
where Ir¨s is the indicator function. Here, the assumption
τpx1q “ x1 holds only if x1 is represented as a one-hot vec-
tor, ensuring that τkpxq “ xk. Without this representation,
the correspondence between the learned parameters and the
sufficient statistics would need to be reformulated to remain
consistent with the exponential family framework.

The linearity assumption implies that the generative process
is fully governed by the expected value of x1. In the context
of tabular data, this leads to intuitive loss functions for
different column types:

• Categorical columns: For columns like ‘occupation’
or ‘education level’, the objective simplifies to minimiz-
ing cross-entropy loss between predicted and empirical
category probabilities.

• Continuous columns: For numerical columns like
‘age’ or ‘income’, the optimization reduces to mini-
mizing the mean squared error between predicted and
empirical means.

• Binary indicators: For yes/no columns like ‘has pur-
chased’ or ‘is subscriber’, the objective naturally han-
dles these as special cases of categorical variables with
two states.

This unified treatment of different column types is crucial for
tabular data generation. By structuring the problem through
sufficient statistics matching, we can handle heterogeneous
data types while maintaining computational efficiency - a
key requirement given the typically modest size of tabular
datasets. The approach naturally accommodates the mixed
continuous and discrete variables found in real-world tables,

4



Exponential Family Variational Flow Matching for Tabular Data Generation

while the connection to familiar loss functions makes the
training process interpretable and robust.

3.3. Connection to Flow Matching

VFM as Bregman Divergence Minimization. At first
glance, the variational and standard flow matching objec-
tives seem rather different. Rather than optimizing a log-
likelihood, the flow matching objective involves minimizing
a dissimilarity metric (typically MSE) between the condi-
tional velocity field and the model. For tabular data, differ-
ent column types naturally suggest different loss functions –
MSE for continuous variables, cross-entropy for categorical
ones – raising the question of how these diverse objectives
relate. The VFM paper demonstrates that optimizing a
specific Gaussian posterior distribution is equivalent to min-
imizing the MSE between the conditional velocity field and
the model. Interestingly, this connection generalizes: each
exponential family induces its own natural Bregman diver-
gence, providing a unified framework for handling mixed
data types. As we will show, this reveals a deep connection
between the probabilistic view on flow matching and the
conditional flow matching objective.

Many loss functions are derived from log-likelihood es-
timations of various distributions, e.g., the MSE from a
Gaussian log-likelihood and cross-entropy from a categori-
cal log-likelihood. For the exponential family, it is possible
to derive a general loss function in terms of a Bregman di-
vergence, i.e., a divergence induced by a convex function ψ,
defined as:

Dψpu, vq :“ ψpuq ´ ψpvq ´ xu´ v, ∇vψpvqy . (17)

Note that indeed Dψpu, vq ě 0 for all u, v, and moreover
that Dψpu, vq “ 0 if and only if u “ v. Formally, we have
the following result:

Proposition 3.2. Let qθt px1 | xq be an exponential family
distribution that is regular and minimal. Then, the varia-
tional flow matching objective is equivalent to minimizing
the Bregman divergence induced by the conjugate dual of
the log normalizer evaluated between the sufficient statistics
and predicted mean parameters.

Proof. See Appendix A.2.

Connection to Flow Matching. One key property of Breg-
man divergences is that when taking the gradient in the sec-
ond argument, the total divergence is invariant under affine
(and thus, convex) combinations in the first argument, i.e.,
when

řn
i“1 αi “ 1, then

∇yDψ

˜

n
ÿ

i“1

αixi, y

¸

“

n
ÿ

i“1

αi∇yDψpxi, yq. (18)

In particular, this implies that expectation can be taken either
inside or outside the divergence, and hence for any random
variable x, we have

∇yDψ pE rxs , yq “ E r∇yDψpx, yqs . (19)

As it turns out, it is exactly this condition that allows one to
switch from the marginal to conditional objectives in flow
matching. That is, one can show that indeed the objectives

∇θLFMpθq “ ∇θEt,x
“

Dψputpxq, vθt pxqq
‰

(20)

and

∇θLCFMpθq “ ∇θEt,x1,x

“

Dψputpx | x1q, vθt pxqq
‰

(21)

coincide exactly when Dψ is a Bregman divergence, as
recently shown by Holderrieth et al. (2025).

Recognizing that the Variational Flow Matching objective
corresponds to minimizing a Bregman divergence provides a
useful insight: it reveals that the fundamental ‘trick’ in Flow
Matching – the ability to optimize using conditional trajec-
tories instead of marginal ones – emerges naturally from
probabilistic inference. For tabular data generation, this is
particularly valuable as it provides a principled way to han-
dle different column types through their naturally induced
divergences: squared error for continuous variables and (cat-
egorical) cross-entropy for categorical ones, and so on. This
theoretical understanding has two important practical impli-
cations. First, it suggests that Flow Matching’s workings
are fundamentally connected to probabilistic inference and
optimization. Second, it suggests natural extensions of Flow
Matching to new settings by choosing appropriate Bregman
divergences. This connection between Flow Matching and
probabilistic inference opens new avenues for both theo-
retical analysis and practical improvements in generative
modeling, particularly for heterogeneous data types.

3.4. A Comment on Information Geometry and Natural
Gradient Descent in Exponential Family VFM

Information geometry studies probability distributions
through the framework of differential geometry, interpreting
the parameter spaces of these distributions as Riemannian
manifolds. As learning takes place in this parameter space,
which is not Euclidean (Amari, 2016), we need to take its
structure into account when designing the learning method.
The metric defining the geometry of such a manifold is the
Fisher information matrix, given by:

gijpθq “ E
„

B log ppx; θq

Bθi

B log ppx; θq

Bθj

ȷ

. (22)

This perspective allows for the utilization of the manifold’s
curvature in optimization processes.
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Table 1. Performance comparison on the error rates (%) of Shape.

Method Adult Default Shoppers Magic Beijing News Average

CTGAN 16.84 ˘ 0.03 16.83 ˘ 0.04 21.15 ˘ 0.10 9.81 ˘ 0.08 21.39 ˘ 0.05 16.09 ˘ 0.02 15.99
TVAE 14.22 ˘ 0.08 10.17 ˘ 0.05 24.51 ˘ 0.06 8.25 ˘ 0.06 19.16 ˘ 0.06 16.62 ˘ 0.03 15.97
GOGGLE 16.97 17.02 22.33 1.90 16.93 25.32 17.91
TabDDPM 1.75 ˘ 0.03 1.57 ˘ 0.08 2.72 ˘ 0.13 1.01 ˘ 0.09 1.30 ˘ 0.03 78.75 ˘ 0.01 16.93
TabSyn 0.81 ˘ 0.05 1.01 ˘ 0.08 1.44 ˘ 0.07 1.03 ˘ 0.14 1.26 ˘ 0.05 2.06 ˘ 0.04 1.35
TabDiff 0.63 ˘ 0.05 1.24 ˘ 0.07 1.28 ˘ 0.09 0.78 ˘ 0.08 1.03 ˘ 0.05 2.35 ˘ 0.03 1.17

TabbyFlow 0.62 ˘ 0.07 0.89 ˘ 0.03 1.03 ˘ 0.08 1.58 ˘ 0.07 1.05 ˘ 0.05 1.31 ˘ 0.04 1.08

In exponential family distributions, the Fisher information
matrix IF pθq is the Hessian of the log-partition function
Apηq, i.e.

IF pθq “ ∇2Apηq. (23)

Though not studied in this work explicitly, this relationship
opens to possibility to apply e.g., natural gradient descent in
flow models, an optimization method that adjusts parameter
updates according to the manifold’s curvature, potentially
improving convergence. This seems especially promising
regarding VFM on manifolds (Zaghen et al., 2025).

4. Experiments (TabbyFlow)
To demonstrate our theoretical framework in practice, we
introduce TabbyFlow, an implementation of EF-VFM specif-
ically designed for tabular data generation. The key insight
of TabbyFlow is its direct use of the exponential family
perspective: each column in the table is modeled using the
appropriate distribution from the exponential family. This
approach naturally handles mixed data types while main-
taining the efficiency benefits of sufficient statistics match-
ing. Our implementation uses a transformer architecture
(Vaswani, 2017) to learn the parameters for each column’s
distribution through their sufficient statistics. Rather than
requiring separate architectures or processing stages for dif-
ferent column types, TabbyFlow’s unified treatment through
exponential families allows for a simple, single-pass archi-
tecture (see Appendix B for more information).

4.1. Experimental setup

Formalism. We consider tabular datasets with Cn nu-
merical and Cc categorical features. Each observation, de-
noted as xpiq “ rx

piq
n ,x

piq
c s, consists of numerical features

x
piq
n P RCn and categorical features xpiq

c , where each cate-
gorical feature xpiq

cj is represented as a one-hot vector on the
probability simplex ∆Cnj in the case feature j has Cnj cate-
gories. By using an optimal transport interpolation which is
linear in x1, the VFM objective factorizes over dimensions:

Lpθq “ ´Et,x1,x

«

D
ÿ

d“1

log qθt pxd1 | xq

ff

,

allowing us to compute the vector field using the first mo-
ment of each one-dimensional distribution qθt pxd1 | xq inde-
pendently.

Datasets. We make use of seven well-known tabular
datasets: Adult, Default, Shoppers, Magic, Fault, Beijing,
News, and Diabetes. These datasets have various sizes, num-
bers of features, and distributions, and have been used before
to evaluate generative models for tabular data. Each dataset
contains a mixture of continuous and discrete variables (cat-
egorical or Bernoulli) and has a designated classification
or regression downstream task. See Appendix C for more
details.

Table 2. Performance comparison on the error rates (%) of Trend.

Method Adult Default Shoppers Magic Beijing News Average

CTGAN 20.23 ˘ 1.20 26.95 ˘ 0.93 13.08 ˘ 0.16 7.00 ˘ 0.19 22.95 ˘ 0.08 5.37 ˘ 0.05 16.36
TVAE 14.15 ˘ 0.88 19.50 ˘ 0.95 18.67 ˘ 0.38 5.82 ˘ 0.49 18.01 ˘ 0.08 6.17 ˘ 0.09 16.44
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 28.18
TabDDPM 3.01 ˘ 0.25 4.89 ˘ 0.10 6.61 ˘ 0.16 1.70 ˘ 0.22 2.71 ˘ 0.09 13.16 ˘ 0.11 11.95
TabSyn 1.93 ˘ 0.07 2.81 ˘ 0.48 2.13 ˘ 0.10 0.88 ˘ 0.18 3.13 ˘ 0.34 1.52 ˘ 0.03 2.33
TabDiff 1.49 ˘ 0.16 2.55 ˘ 0.75 1.74 ˘ 0.08 0.76 ˘ 0.12 2.59 ˘ 0.15 1.28 ˘ 0.04 1.80

TabbyFlow 1.09 ˘ 0.21 2.56 ˘ 0.33 1.58 ˘ 0.15 1.07 ˘ 0.26 2.93 ˘ 0.29 1.38 ˘ 0.09 1.77
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Table 3. Comparison of α-Precision scores.
Methods Adult Default Shoppers Magic Beijing News Average Ranking

CTGAN 77.74 ˘ 0.15 62.08 ˘ 0.08 76.97 ˘ 0.39 86.90 ˘ 0.22 96.27 ˘ 0.14 96.96 ˘ 0.17 82.82 5
TVAE 98.17 ˘ 0.17 85.57 ˘ 0.34 58.19 ˘ 0.26 86.19 ˘ 0.48 97.20 ˘ 0.10 86.41 ˘ 0.17 85.29 4
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 78.77 7
TabDDPM 96.36 ˘ 0.20 97.59 ˘ 0.36 88.55 ˘ 0.68 88.59 ˘ 0.17 97.93 ˘ 0.30 ´ 79.83 6
TabSyn 99.52 ˘ 0.10 99.26 ˘ 0.27 99.16 ˘ 0.22 99.38 ˘ 0.27 98.47 ˘ 0.10 96.80 ˘ 0.25 98.67 2
TabDiff 99.02 ˘ 0.20 98.49 ˘ 0.28 99.11 ˘ 0.34 99.47 ˘ 0.21 98.06 ˘ 0.24 97.36 ˘ 0.17 98.59 3

TabbyFlow 99.43 ˘ 0.18 99.31 ˘ 0.24 98.96 ˘ 0.10 98.27 ˘ 0.39 98.93 ˘ 0.15 97.22 ˘ 0.12 98.69 1

Baselines. We compare TabbyFlow against various types
of models: GAN-based CTAGAN (Xu et al., 2019), VAE-
based TVAE (Xu et al., 2019) and GOGGLE (Liu et al.,
2023), and Diffusion-based TabDDPM (Kotelnikov et al.,
2023), TabSyn (Zhang et al., 2024) and TabDiff (Shi et al.,
2024). The number of models for tabular data generation
is vast, thus, we have restricted the evaluation to the most
common paradigms in generative modeling.

Table 5. Wasserstein distance for target and learned distributions.
Model WD (Train) WD (Test)

TVAE 4.6 ˘ 0.3 4.9 ˘ 0.1
CTGAN 7.8 ˘ 0.2 7.7 ˘ 0.1

TabDDPM 3.1 ˘ 0.6 3.9 ˘ 0.5
TabSyn 2.2 ˘ 0.4 3.0 ˘ 0.3
TabDiff 2.4 ˘ 0.3 2.9 ˘ 0.2

TabbyFlow 1.7 ˘ 0.7 2.1 ˘ 0.4

Metrics. We assess the quality of the synthetic data from
four perspectives using a set of metrics widely adopted
in previous studies (Zhang et al., 2024; Shi et al., 2024).
First, we evaluate the Wasserstein distance (WD) between
the target and the learned distributions, doing so separately
for the train and test datasets (see Table 5). Second, low-
order statistics are evaluated through column-wise density
estimation errors (referred to as Shape, see Table 1) and
pairwise column correlations errors (referred to as Trend, see
Table 2), measuring the density of individual columns and
the relationships between column pairs. Third, high-order
metrics such as α-precision and β-recall scores are used to
evaluate the general fidelity and diversity of synthetic data

(see Table 3 and Table 4). We further compute C2ST, which
describes how difficult it is to tell apart the real data from the
synthetic data. Finally, performance on downstream tasks
is measured using machine learning efficiency (MLE, see
Table 8), which compares test accuracy on real data when
models are trained on synthetic datasets, and distance to
closest relative (DCR, see Table 7), the minimum distance
between a synthetic data point and every original point.

4.2. Data Fidelity and Downstream Performance

Shape and Trend. Our evaluation framework uses Shape
and Trend metrics to assess synthetic data quality. Shape
quantifies how well the synthetic data preserves each col-
umn’s marginal density, using the Kolmogorov-Smirnov
Test (KST) for numerical columns and Total Variation Dis-
tance (TVD) for categorical columns. Trend measures the
preservation of inter-column relationships, employing Pear-
son correlation for numerical pairs and contingency similar-
ity for categorical pairs. The results, detailed in Tables 1 and
2, demonstrate TabbyFlow’s strong performance across both
metrics. TabbyFlow achieves the highest Shape scores on
five out of six datasets, outperforming the diffusion-based
TABSYN by an average margin of 0.32%, thereby indicat-
ing better preservation of individual column distributions.
Similarly, TabbyFlow maintains its strong performance on
the Trend metric, exceeding TabSyn’s average score by
0.84%, suggesting better preservation of relationships be-
tween columns.

Precision and Recall. To further evaluate the fidelity of
the generated data, we compute α-precision and β-recall.

Table 4. Comparison of β-Recall scores.
Methods Adult Default Shoppers Magic Beijing News Average Ranking

CTGAN 30.80 ˘ 0.20 18.22 ˘ 0.17 31.80 ˘ 0.35 11.75 ˘ 0.20 34.80 ˘ 0.10 24.97 ˘ 0.29 25.39 6
TVAE 38.87 ˘ 0.31 23.13 ˘ 0.11 19.78 ˘ 0.10 32.44 ˘ 0.35 28.45 ˘ 0.08 29.66 ˘ 0.21 28.72 5
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 10.79 7
TabDDPM 47.05 ˘ 0.25 47.83 ˘ 0.35 47.79 ˘ 0.25 48.46 ˘ 0.42 56.92 ˘ 0.13 ´ 41.34 4
TabSyn 47.56 ˘ 0.22 48.00 ˘ 0.35 48.95 ˘ 0.28 48.03 ˘ 0.23 55.84 ˘ 0.19 45.04 ˘ 0.34 48.90 3
TabDiff 51.64 ˘ 0.20 51.09 ˘ 0.25 49.75 ˘ 0.64 48.01 ˘ 0.31 59.63 ˘ 0.23 42.10 ˘ 0.32 50.37 1

TabbyFlow 48.13 ˘ 0.27 48.34 ˘ 0.21 49.15 ˘ 0.17 46.71 ˘ 0.29 56.12 ˘ 0.09 47.62 ˘ 0.21 49.35 2
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Table 6. Detection score (C2ST) using logistic regression classifier.

Method Adult Default Shoppers Magic Beijing News

CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076
GOGGLE 0.1114 0.5163 0.1418 0.9526 0.4779 0.0745
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002
TabSyn 0.9986 0.9870 0.9740 0.9732 0.9603 0.9749
TabDiff 0.9950 0.9774 0.9843 0.9989 0.9781 0.9308

TabbyFlow 0.9953 0.9910 0.9810 0.9775 0.9466 0.9808

The former measures how closely the synthetic data resem-
bles the true data distribution, while the latter evaluates its
diversity. Together, they ensure the generated data is realis-
tic and representative of the real dataset, capturing the full
range of the true distributions. Results for these metrics can
be found in Tables 3 and 4

Our evaluation shows that TabbyFlow achieves strong per-
formance across datasets, leading in average α-precision
scores, which measure similarity to real data. While Tab-
Syn performs marginally better (within 1%) on two datasets,
TabbyFlow maintains competitive performance across all
cases. A similar pattern emerges for β-Recall, where Tab-
byFlow leads on average but is occasionally outperformed
by baselines on specific datasets. In evaluating these met-
rics, α-Precision first establishes data authenticity, while
β-Recall measures coverage of the original dataset’s modes.
While several baselines demonstrate strong performance on
both metrics, TabbyFlow stands out for achieving compet-
itive results with a significantly simpler architecture. This
combination of architectural simplicity and strong empirical
performance positions TabbyFlow as a compelling approach
for tabular data generation.

Detection: classifier two-sample test (C2ST). We evalu-
ate the distinguishability of synthetic from real data using a
two-sample test based on logistic regression (C2ST). This
detection score provides stronger discriminative power com-
pared to our previous metrics. Results in Table 6 reveal that
while baseline performances vary considerably, TabbyFlow
outperforms all methods. These findings align with our
earlier metrics, where TabbyFlow matches or exceeds the
performance of the strongest baselines across datasets.

Downstream Tasks: MLE and Privacy. We evaluate
the practical utility of synthetic data through MLE, follow-
ing established protocols Kotelnikov et al. (2023); Zhang
et al. (2024); Shi et al. (2024). This metric assesses how
well models trained on synthetic data perform on real data,
using XGBoost (Chen & Guestrin, 2016) for both classifica-
tion (measured by AUC) and regression tasks (measured by
RMSE). The results in Table 8 show that while TabbyFlow
performs slightly below TabSyn on MLE scores, it main-
tains competitive performance in all data sets. This presents
an interesting contrast to earlier metrics, where TabbyFlow
often outperformed TabSyn. The small performance gap
suggests that MLE alone may not fully capture synthetic
data quality, particularly given that TabbyFlow achieves
comparable results with a substantially simpler architecture
than TabSyn’s VAE-diffusion framework. On the other hand,
we evaluate the performance of the models in preserving pri-
vacy as measured by DCR. The results, see in Table 7, show
that Tabbyflow outperforms all other models on average,
albeit marginally.

Summary. TabbyFlow demonstrates consistently strong
performance across our evaluation framework, spanning
both low-order statistics (Shape and Trend) and high-order
metrics (α-precision and β-recall), achieving leading or
competitive performance compared to state-of-the-art base-
lines on most datasets. The key implication of these results
is that TabbyFlow’s theoretically motivated exponential fam-
ily approach can match or exceed the performance of more
complex architectures like TabSyn’s VAE-diffusion frame-
work, suggesting that careful statistical modeling can be as
effective as more elaborate deep learning approaches while

Table 7. Comparison of DCR across datasets.

Methods Adult Default Shoppers Beijing News

TabDDPM 51.14 ˘ 0.18 52.15 ˘ 0.20 63.23 ˘ 0.25 80.11 ˘ 2.68 79.31 ˘ 0.29
TabSyn 50.94 ˘ 0.17 51.20 ˘ 0.28 52.90 ˘ 0.22 50.37 ˘ 0.13 50.85 ˘ 0.33
TabDiff 50.10 ˘ 0.32 51.11 ˘ 0.36 50.24 ˘ 0.62 50.50 ˘ 0.36 51.04 ˘ 0.32

TabbyFlow 50.32 ˘ 0.16 50.82 ˘ 0.27 50.17 ˘ 0.32 50.94 ˘ 0.13 50.83 ˘ 0.29
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Table 8. Machine learning efficiency across datasets.
Methods Adult (AUC Ò) Beijing (RMSE Ó) Default (AUC Ò) Shoppers (AUC Ò) Magic (AUC Ò) News (RMSE Ó) Average

Real .927 ˘ .000 .770 ˘ .005 .926 ˘ .001 .946 ˘ .001 .423 ˘ .003 .842 ˘ .002 .806

CTGAN .886 ˘ .002 .696 ˘ .005 .875 ˘ .009 .855 ˘ .006 .902 ˘ .019 .880 ˘ .016 .849
TVAE .878 ˘ .004 .724 ˘ .005 .871 ˘ .006 .887 ˘ .004 .770 ˘ .011 .861 ˘ .016 .831
GOGGLE .778 ˘ .012 .584 ˘ .005 .658 ˘ .052 .654 ˘ .024 .709 ˘ .025 .877 ˘ .002 .710
TabDDPM .907 ˘ .001 .758 ˘ .004 .918 ˘ .005 .935 ˘ .004 .592 ˘ .011 .486 ˘ 3.04 .766
TabSyn .909 ˘ .001 .763 ˘ .002 .914 ˘ .004 .937 ˘ .002 .763 ˘ .002 .862 ˘ .004 .858
TabDiff .912 ˘ .002 .763 ˘ .005 .921 ˘ .004 .936 ˘ .003 .555 ˘ .013 .866 ˘ .021 .826

TabbyFlow .902 ˘ .002 .761 ˘ .003 .910 ˘ .006 .932 ˘ .003 .746 ˘ .008 .870 ˘ .005 .854

offering benefits in terms of simplicity and interoperability.
This is especially attractive when we consider that the cur-
rent state-of-the-art methods, TabSyn and TabDiff, employ
a correction inspired by Karras et al. (2022), hence doing
twice as many function evaluations as TabbyFlow for the
same time discretization. For more details on the inference
and hyperparameter training, see Appendix B.

5. Related Work
Flow matching has been carried out from the continuous to
the discrete case through continuous-time Markov chains
(Gat et al., 2024), and through mixtures of Dirichlet dis-
tributions (Stark et al., 2024). These methods differ from
the current approach due to the learned sequential sampling
used to generate new data and the constraints it imposes
on x, specifically requiring x to lie on the simplex. These
works have been applied to language generation and DNA
sequence design, with no application to data of multiple
modalities. More recent work uses gradient-boosted trees to
learn the conditional vector field on tabular data (Jolicoeur-
Martineau et al., 2024a), showing promising results but a
lack of integration of the discrete case.

In recent years, many generative models for tabular data
have been proposed. Some use variational autoencoders
(VAE) (Xu et al., 2019; Liu et al., 2023), while others use
generative adversarial networks (GAN) (Xu et al., 2019),
diffusion (Kotelnikov et al., 2023; Lee et al., 2023; Austin
et al., 2021; Shi et al., 2024), and mixtures of two of the
previous frameworks (Zhang et al., 2024). Notably, some
of these models construct separate diffusion processes for
each type of feature, while others project the discrete data
by first encoding it in a latent space with a VAE. These
new frameworks significantly improve previous alternatives,
like Chawla et al. (2002), in the quality of fidelity of the
generated data. These new approaches further emphasize
the importance of modeling the joint probability density
function instead of naive approaches. They further show
promise in the anonymized use of the generated data in
sensitive subjects, such as healthcare.

However, these models exhibit a common weakness when

compared to flow-based models. They have higher com-
plexity in training (e.g., sensitivity to hyperparameters) and
require more resources (Lipman et al., 2023). Some initial
work has been done on tabular settings using a flow-based
model, with a recent example being TabUnite (Si et al.,
2024), which proposes unifying the data space and jointly
applying a single generative process across all encodings.
Another example applies gradient-boosted trees in a dif-
fusion and flow-based setting to generate synthetic data
(Jolicoeur-Martineau et al., 2024b).

6. Conclusion
In this work, we proposed Exponential Family Variational
Flow Matching (EF-VFM), a framework that integrates
exponential family distributions into the Variational Flow
Matching paradigm. By leveraging sufficient statistics
matching, EF-VFM provides a scalable and probabilistic ap-
proach to generative modeling, enabling the efficient gener-
ation of mixed continuous and discrete data. We established
a connection between the EF-VFM objective and Bregman
divergences, offering a deeper theoretical understanding of
flow matching. Our method demonstrated state-of-the-art
performance on benchmark tabular datasets, showcasing its
ability to handle diverse data distributions while maintaining
computational efficiency.

Looking ahead, there are several promising directions for
future work. One avenue involves exploring the role of
information geometry in EF-VFM, particularly leveraging
natural gradient descent to better navigate the parameter
space of exponential family distributions, which has an im-
plied Fisher-Rao metric. Another exciting direction is the
extension of EF-VFM to 1) explore more distributions of
the exponential family, and 2) to fully match all sufficient
statistics, which would enhance the expressiveness of the
model. Understanding how to incorporate and utilize these
sufficient statistics during the generation process is another
open challenge with significant potential. By addressing
these challenges, EF-VFM can further bridge the gap be-
tween statistical theory and modern generative modeling,
paving the way for more robust and flexible applications.
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A. Proofs
A.1. Gradient Exponential Family VFM

Proposition 3.1. Let qθt px1 | xq be a variational distribution from an exponential family, parameterized by natural
parameters ηθt pxq, which depend on neural network parameters θ. The gradient of the VFM objective ∇θLpθq is:

´Et,x1,x

“`

µtpxq ´ µθt pxq
˘

¨ ∇θη
θ
t pxq

‰

, (15)

where µtpxq “ Eptpx1|xqrτpx1qs are the moments relative to ptpx1 | xq, and µθt pxq “ Eqθt px1|xqrτpx1qs are the moments
relative to the variational approximation.

Proof. We know that the Variational Flow Matching objective is defined as follows:

Lpθq “ ´Et,x1,x

“

log qθt px1 | xq
‰

“ ´Et,x1,x

“

τpx1q ¨ ηθt pxq ´Apηθt pxqq
‰

´ Ex1
rlog hpx1qs . (24)

The first term in the expectation is linear, and hence (by the chain rule) we obtain

∇θ

`

Et,x1,x

“

τpx1q ¨ ηθt pxq
‰˘

“ Et,x1,x

“

τpx1q ¨ ∇θ

`

ηθt pxq
˘‰

. (25)

For the second term, we leverage the fact that in exponential family distributions, the gradient of the log-partition function
with respect to the natural parameters equals the expected value of the sufficient statistic,

∇ηApηq
ˇ

ˇ

η“ηθpxq
“ Eqθpx1|xqrτpx1qs “: µθt pxq. (26)

As such, taking the gradient of the second term results in

Et,x1,x

“

∇θ

`

Apηθt pxqq
˘‰

“ Et,x
“

µθt pxq ¨ ∇θ

`

ηθt pxq
˘‰

. (27)

Combining these terms and factoring the gradient of the neural network, we obtain

∇θLpθq “ ´Et,x1,x

“`

τpx1q ´ µθt pxq
˘

¨ ∇θη
θ
t pxq

‰

, (28)

If we additionally define the moments relative to the posterior probability path as µtpxq :“ Eptpx1|xqrτpx1qs, then we can
express the gradient as:

∇θLpθq “ ´Et,x
“`

µtpxq ´ µθt pxq
˘

¨ ∇θη
θ
t pxq

‰

, (29)

completing the proof.

A.2. Exponential Family VFM as Bregman Divergence

Proposition 3.2. Let qθt px1 | xq be an exponential family distribution that is regular and minimal. Then, the variational flow
matching objective is equivalent to minimizing the Bregman divergence induced by the conjugate dual of the log normalizer
evaluated between the sufficient statistics and predicted mean parameters.

Proof. Let qθt px1 | xq “ hpx1q exp
`

τpx1q ¨ ηθt pxq ´Apηθt pxqq
˘

be a member from the exponential family that is regular
and minimal. The VFM objective is given by

LVFMpθq “ ´Et,x1,x

“

τpx1q ¨ ηθt pxq ´Apηθpxqq
‰

´ Ex1rlog hpx1qs, (30)

By regularity and minimality, we know that the log normalizer Apηq is of Legendre type, and as such we can consider its
conjugate dual A˚pµq, where A˚ is obtained through the Legendre transform, i.e.

A˚pµq :“ sup
η

tµ ¨ η ´Apηqu. (31)

Conversely, we can define Apηq as the Legendre transform of Apµq,

Apηq :“ sup
µ

tµ ¨ η ´A˚pµqu. (32)
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From this it follows that Apηq and A˚pµq define a bijective relationship between η and µ,

ηpµq “ ∇A˚pµq and µpηq “ ∇Apηq, (33)

If we substitute ηpµq into the expression for A˚pµq, then we obtain,

A˚pµq “ µ ¨ ηpµq ´Apηpµqq. (34)

We now observe that the Bregman divergence DA˚ pτpx1q, µq can be expressed as

DA˚ pτpx1q, µq “ A˚pτpx1qq ´A˚pµq ´ pτpx1q ´ µq ¨ ∇µA
˚pµq (35)

“ A˚pτpx1qq ´A˚pµq ´ pτpx1q ´ µq ¨ ηpµq. (36)

This means that we can express the VFM objective as

LVFMpθq “ ´Et,x1,x

“

ηθt pxq ¨ τpx1q ´Apηθt pxqq
‰

` const. (37)

“ ´Et,x1,x

“

µθt pxq ¨ ηθt pxq ´Apηθt pxqq ` pτpx1q ´ µθt pxqq ¨ ηθt pxq
‰

` const. (38)

“ ´Et,x1,x

“

A˚pµθt pxqq ` pτpx1q ´ µθt pxqq ¨ ηθt pxq
‰

` const. (39)

“ ´Et,x1,x

“

´DA˚

`

τpx1q, µθt pxq
˘

`A˚pτpx1qq
‰

` const. (40)

“ Et,x1,x

“

DA˚

`

τpx1q, µθt pxq
˘‰

` const. (41)

“ Et,x
“

DA˚

`

Eptpx1|xqrτpx1qs, µθt pxq
˘‰

` const. (42)

“ Et,x
“

DA˚

`

µtpxq, µθt pxq
˘‰

` const. (43)

As such, indeed the VFM objective is equal up to a constant independent of θ to optimizing a Bregman divergence induced
by the conjugate dual of the log normalizer, which we wanted to show.
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B. Implementation Details
We perform our experiment on an Nvidia RTX A6000 GPU with 16GB of memory and implement TABBYFLOW with
PyTorch.

Architecture Following the implementation of Shi et al. (2024); Zhang et al. (2024), our setup individually converts each
data column into an embedding of dimension 4 using a linear transformation, treating every column equally. Next, these
embeddings pass through a two-layer transformer along with positional markers. After processing, the resulting vectors are
merged and then fed into a five-layer feedforward neural network (MLP), which depends on a special timing-based input.
The final output comes from applying another transformer and a final projection to restore the initial feature dimensions.
Despite differences in structure, the size and complexity of our model roughly match those of models from prior studies
(Kotelnikov et al., 2023; Zhang et al., 2024; Shi et al., 2024), largely due to the MLP component.

Hyperparameters We keep the same training configuration across all datasets. All models train for 8,000 iterations using
the Adam optimizer, with batch sizes of 4,096 during training and 10,000 during sampling. Similar to Shi et al. (2024),
using a weighting scheme that keeps the categorical loss constant, while gradually reducing the numerical loss weight from
one down to zero throughout training, works best. However, we note that this scheme only reduces the number of epochs
necessary to achieve the best results.

Inference At the inference stage, we pick the model checkpoint with the lowest training loss. Remarkably, the model
can achieve SOTA results as reported, requiring as few as 25 steps during inference (T = 25), which is lower than previous
SOTA alternatives while using a single function evaluation at each time step.

Data preprocessing We handle missing values following standard practices (Kotelnikov et al., 2023; Shi et al., 2024;
Zhang et al., 2024): replacing numerical missing entries with column means and treating categorical missing values as new
categories. To stabilize training across diverse numerical scales, we apply QuantileTransformer1 during training and
its inverse during sampling.

Data splits Following Kotelnikov et al. (2023); Zhang et al. (2024); Shi et al. (2024), we split each dataset into ”real” and
”test” sets. For unconditional generation tasks, models are trained and evaluated on the ”real” set. For machine learning
efficiency evaluation, we further split the ”real” set into training and validation sets, while using the ”test” set for final
evaluation. 1

C. Data Details
We use six tabular datasets from UCI Machine Learning Repository2: Adult, Default, Shoppers, Magic, Beijing, and News,
where each tabular dataset is associated with a machine-learning task. Classification: Adult, Default, Magic, and Shoppers.
Regression: Beijing and News. The statistics of the datasets are presented in Table 9. 2

Table 9. Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands for the number of categorical columns.
# Max Cat stands for the number of categories of the categorical column with the most categories.

Dataset # Rows # Num # Cat # Max Cat # Train # Validation # Test Task

Adult 48,842 6 9 42 28,943 3,618 16,281 Classification
Default 30,000 14 11 11 24,000 3,000 3,000 Classification
Shoppers 12,330 10 8 20 9,864 1,233 1,233 Classification
Magic 19,019 10 1 2 15,215 1,902 1,902 Classification
Beijing 43,824 7 5 31 35,058 4,383 4,383 Regression
News 39,644 46 2 7 31,714 3,965 3,965 Regression

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
QuantileTransformer.html

2https://archive.ics.uci.edu/datasets
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