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Abstract
Integral to many recent successes in deep rein-
forcement learning has been a class of temporal
difference methods that use infrequently updated
target values for policy evaluation in a Markov
Decision Process. At the same time, a complete
theoretical explanation for the effectiveness of tar-
get networks remains elusive. In this work, we
provide an analysis of this popular class of al-
gorithms, to finally answer the question: “why
do target networks stabilise TD learning”? To
do so, we formalise the notion of a partially fit-
ted policy evaluation method, which describes
the use of target networks and bridges the gap
between fitted methods and semigradient tempo-
ral difference algorithms. Using this framework
we are able to uniquely characterise the so-called
deadly triad–the use of TD updates with (nonlin-
ear) function approximation and off-policy data–
which often leads to nonconvergent algorithms.
This insight leads us to conclude that the use of
target networks can mitigate the effects of poor
conditioning in the Jacobian of the TD update.
Furthermore, we show that under mild regularity
conditions and a well tuned target network update
frequency, convergence can be guaranteed even
in the extremely challenging off-policy sampling
and nonlinear function approximation setting.

1. Introduction
Since their introduction in deep Q-networks (DQN) a
decade ago (Mnih et al., 2013; 2015), target networks have
become a common feature of state-of-the-art deep reinforce-
ment learning algorithms (Lillicrap et al., 2016; Haarnoja
et al., 2017; 2018; Fujimoto et al., 2018). Theoretical analy-
sis of target networks has been limited and there has been
no satisfactory explanation for their empirical success in sta-
bilising policy evaluation algorithms. Whilst recent analysis
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has characterised the convergence properties of policy eval-
uation using target networks (Lee & He, 2019; Fan et al.,
2020; Zhang et al., 2021), existing approaches focus on
asymptotic results, and usually make simplifying assump-
tions that neither hold in practice nor account for the true
behaviour of target network-based updates. Our work finds
that the use of target networks can guarantee that deep RL
algorithms will not diverge, even in regimes where tradi-
tional RL algorithms fail. Additionally, we establish the first
finite-time performance bounds for target networks and gen-
eral function approximation—without strong simplifying
assumptions. Moreover, we prove our key stability assump-
tion can always be satisfied by augmenting our updates with
simple `2 regularisation that does not change the TD fixed
points. In doing so, we finally provide theoretical justifi-
cation for the empirical success that has been observed in
challenging, off-policy tasks.

To achieve this, we analyse the use of infrequently updated
target value functions by characterising them as a family of
methods that we refer to as partially fitted policy evaluation
(PFPE). This variant bridges the gap between fitted policy
evaluation (FPE) (Le et al., 2019)—which iteratively fit the
Bellman backups onto the class of representable function
approximators —and classic temporal difference (TD) algo-
rithms (Sutton, 1988) by limiting the fitting phase to a fixed
number of steps, precisely reflecting the periodically up-
dated target network algorithms as used in practice.

To characterise the performance of PFPE, we express our
algorithm–which has traditionally been viewed through the
lens of two-timescale analysis–using a single update applied
only to the target network parameters. We show that the
stability of the algorithm is determined by analysing the
eigenvalues of the Jacobian of this update. This formula-
tion allows us to characterise both the limiting (asymptotic)
and finite-time (non-asymptotic) convergence properties of
PFPE. Furthermore, it suggests, counterintuitively, that tar-
get networks are actually the object being optimised rather
than merely a means to stabilise conventional TD updates.
This insight leads us to empirically investigate a novel tar-
get parameter update scheme that uses a momentum-style
update (Polyak, 1964), setting the stage for future research
of practical target-based algorithms.

Our bounds on the finite-time performance of PFPE apply
to off-policy, nonlinear and partially fitted methods, which
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have never been investigated previously. We develop key
insights into the usefulness of target networks, which we
find do not improve asymptotic performance when decaying
step sizes are used. Instead, target networks improve the
conditioning of TD and fitted methods when the step size
does not tend to zero, as is often implemented in practice.
Under non-decaying stepsizes, our Jacobian analysis shows
how PFPE reconditions the TD Jacobian allowing us to
prove convergence in regimes where classic TD methods
are unstable, thereby breaking the so-called deadly triad that
has plagued TD methods (Sutton & Barto, 2018). Further-
more, our results do not depend on unwieldy assumptions or
modifications of algorithms used in practice, such as projec-
tion, bounded state spaces, linear function approximation,
or iterate averaging, as is done in previous analysis. In addi-
tion to our theoretical results, we experimentally evaluate
our bounds on a toy domain, indicating that they are tight
under relevant hyperparameter regimes. Taken together,
our results lead to novel insight as to how exactly target
networks affect optimisation, and when and why they are
effective, leading to actionable results that can be used to
further future research.

2. Preliminaries
Proofs for all theorems, propositions and corollaries can be
found in Appendix B

We denote the set of all probability distributions on a set
X as P(X ). We use ‖·‖ to denote the `2-norm. For a ma-
trix M , we denote the set of eigenvalues as λ(M) with
the set of maximum normed eigenvalues as λmax(M) :=
arg supλ′∈λ(M)|λ′| and λmin(M) := arg infλ′∈λ(M)|λ′|.
The `2-norm (spectral norm) for matrix M is ‖M‖ =√
λmax(M>M). Given a function f : X → R and

a distribution µ ∈ P(X ), we denote the L2-norm as:
‖f‖µ :=

√
Ex∼µ [f(x)2].

2.1. Reinforcement Learning
We consider the infinite horizon discounted RL setting. The
agent interacts with an environment, formalised as a Markov
Decision Process (MDP):M := 〈S,A, P, P0, R, γ〉 with
state space S , action spaceA, transition kernel P : S×A →
P(S), initial state distribution P0 ∈ P(S), bounded stochas-
tic reward kernel R : S × A → P([−rmax, rmax]) where
rmax ∈ R < ∞ and scalar discount factor γ ∈ [0, 1). An
agent in state s ∈ S taking action a ∈ A observes a re-
ward r ∼ R(s, a). The agent’s behaviour is determined
by a policy that maps a state to a distribution over actions:
π : S → P(A) and the agent transitions to a new state
s′ ∼ P (s, a). We denote the joint distribution of s′, a′, r
conditioned on s, a for policy π as Pπsar(s, a). We seek to
optimise (in the control case), or estimate (in the policy eval-
uation case) the expected discounted sum of future rewards
starting from a given state s ∈ S. This quantity is given

by the state value function, V π(s) = Ea∼π(s) [Qπ(s, a)],
with Qπ : S × A → [−rmax/(1− γ), rmax/(1− γ)], the
action value function, given recursively through the Bellman
equation: Qπ(s, a) = T π[Qπ](s, a), where the Bellman op-
erator T π projects functions forwards by one step through
the dynamics of the MDP:

T π[Qπ](s, a) := Es′,a′,r∼Pπsar(s,a) [r + γQπ(s′, a′)] .

T π is a γ-contractive mapping and thus has a fixed point,
which corresponds to the true value of π (Puterman, 2014).
When estimating MDP values, we employ a value function
approximation Qω : S ×A → R parametrised by ω ∈ Ω ⊆
Rn.

Many RL algorithms employ TD learning for policy eval-
uation, which combines bootstrapping, state samples and
sampled rewards to estimate the expectation in the Bellman
operator (Sutton, 1988). In their simplest form, TD methods
update the function approximation parameters according
to:

ωi+1 =

ωi + αi (r + γQωi(s
′, a′)−Qωi(s, a))∇ωQωi(s, a),

where s ∼ d, a ∼ µ(s), s′, a′, r ∼ Pπsar(s, a), d ∈ P(S)
is a sampling distribution, and µ is a sampling policy that
may be different from the target policy π. For simplicity of
notation and to accommodate the introduction of target net-
works in Section 3, we define the tuple ς := (s, a, r, s′, a′)
with distribution Pς and the TD-error vector as:

δ(ω, ω′, ς) := (r + γQω′(s
′, a′)−Qω(s, a))∇ωQω(s, a),

allowing us to write the TD parameter update as:

ωi+1 = ωi + αiδ(ωi, ωi, ς).

We make the following i.i.d. assumption for clarity of
exposition, but discuss other sampling regimes in Ap-
pendix D:

Assumption 1. Each s ∼ d is drawn i.i.d..

Typically, d is the steady-state distribution of an ergodic
Markov chain. We denote the expected TD-error vector
as: δ(ω, ω′) := Eς∼Pς [δ(ω, ω′, ς)] and define the set of TD
fixed points as:

ω? ∈ Ω? := {ω|δ(ω, ω) = 0} .

If a TD algorithm converges, it converges to a TD fixed
point. Convergence of TD methods can only be guaranteed
for linear function approximators when sampling on-policy
in an ergodic MDP, that is the agent sampling and target
distributions are the same. We investigate the phenomenon
further as part of our asymptotic analysis in Section 4.1.
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3. Partially Fitted Policy Evaluation
Unfortunately, real-world applications of RL often demand
the expressiveness of nonlinear function approximators like
neural networks and/or the ability to use data that has been
collected off-policy, i.e., by following a policy µ that differs
from the target policy π for policy evaluation.

3.1. Fitted v Partially Fitted Policy Evaluation
Fitted methods improve on the sample efficiency and sta-
bility of TD methods by explicitly incorporating the lim-
itations of the function approximation class through the
use of a projection operator (Tsitsiklis & Van Roy, 1997).
These methods generally perform some variant of the iterate
Qω̄l+1

= ΠdπT πQω̄l where Πd is the projection operator
ΠdQ = arg minQ′‖Q′ −Q‖d,µ. These updates are known
as fitted policy evaluation (PFE).

The projection step is needed to accommodate the fact that
values generally cannot be exactly represented with function
approximation. To obtain a practical way of carrying out
the PFE updates, a separate set of target parameters can be
introduced ω̄l ∈ Ω that parameterise the TD target and are
updated every k timesteps:

ωkl+i+1 = ωkl+i + αkl+iδ(ωkl+i, ω̄l, ς), (1)
ω̄l+1 = ωk(l+1), (2)

The function approximator update in Equation (1) carries
out k iterations of stochastic gradient descent (SGD) on the
loss:

L(ω; ω̄l) := ‖Qω − T π[Qω̄l ]‖d,µ,

before updating the target parameters. In the limit as
k → ∞, assuming convergence of SGD to a global min-
imum, fully fitted policy evaluation occurs by finding
ω∞ ∈ arg infω∈Ω L(ω, ω̄l).

In practice k is finite and only partial policy evaluation
occurs before updating the target parameters, a setting
we call partially fitted policy evaluation (PFPE). Without
loss of generality, we assume that ω̄0 is deterministic with
‖ω̄0‖ < ∞ and αi = αl for all kl ≤ i < k(l + 1), that
is stepsizes only change after updating target parameters.
As the target parameters are updated to the approximator
parameters every k timesteps in Equation (2), it suffices
to consider the target parameter update in isolation when
analysing PFPE. Our goal is thus to analyse a single update
for the target parameters in the canonical form:

ω̄l+1 = gk(ω̄l,D, αl), D ∼ PD, (3)

where D := {ςi}ki=1 is a set of k samples from the environ-
ment with distribution PD and gk(ω̄l,Dl, αl) reduces the k
nested updates from Equation (1) into a single update for
the target parameters.

3.2. Jacobian Analysis
In our analysis, we show that the stability of the ex-
pected PFPE update gk(ω̄l, αl) := ED∼PD

[
gk(ω̄l,D, αl)

]
is determined by the conditioning of three Jacobians.
We denote the Hessian of the loss as: H(ω; ω̄l) :=
∇2
ωL(ω; ω̄l), the Jacobian of the TD-error vector as:

Jδ(ω; ω̄l) := ∇ω′δ(ω, ω′)|ω′=ω̄l and define the TD Ja-
cobian as: JTD(ω̄l) := ∇ωδ(ω, ω)|ω=ω̄l . Observe that
JTD(ω̄l) = Jδ(ω̄l, ω̄l) − H(ω̄l; ω̄l). Without loss of gen-
erality, we assume that the Hessian matrix is diagonalisable
because, if it is not, an arbitrarily small perturbation can
make its eigenvalues distinct and therefore diagonalisable.
So that these matrices exist, we require that the expected
PFPE update is differentiable almost everywhere, a con-
dition that is guaranteed by a Lipschitz assumption. We
also require that the variance of the updates is bounded,
motivating the following regularity assumption:

Assumption 2 (Function Approximator Regularity). We
assume that δ(ω, ω′, ς) is Lipschitz in ω, ω′ with constant L:
‖δ(ω1, ω

′
1, ς)−δ(ω2, ω

′
2, ς)‖ ≤ L(‖ω1−ω2‖+‖ω′1−ω′2‖)

and Ω is convex, Vς∼Pς [δ(ω, ω, ς)] := Eς∼Pς [|δ(ω, ω, ς)−
δ(ω, ω)‖2] ≤ σ2

δ for some σ2
δ <∞.

The bounded variance assumption can easily be achieved
for unbounded function approximators by truncating the
TD error vector, much like the commonly used gradient
clipping in gradient descent. We now introduce the path-
mean Jacobians, which are the principal element of our
analysis:

H̄(ω, ω?; ω̄l) := −
∫ 1

0

∇ω′δ(ω′ = ω − t(ω − ω?), ω̄l)dt,

J̄δ(ω, ω
?; ω̄l) :=

∫ 1

0

∇ω′δ(ω̄l, ω′ = ω − t(ω − ω?))dt,

J̄TD(ω, ω?) :=

∫ 1

0

∇ω′δ(ω′, ω′)|ω′=ω−t(ω−ω?)dt

Intuitively, a path-mean Jacobian is the average of all of
the Jacobians along the line joining ω to ω?. The convexity
assumption in Assumption 2 ensures that the line integral
joining any two points in Ω always exists. The Lipschitz
assumption in Assumption 2 is only required for Section 4
and can be weakened to any condition that ensures the path-
mean Jacobians exist for the remainder of the paper.

Our analysis in Section 4 proves that stability of TD and
PFPE under decaying stepsizes is determined solely by
the negative definiteness of the TD path-mean Jacobian
J̄TD(ω, ω?). In Section 5, we show for a non-diminishing
stepsize regime that through suitable regularisation (which
does not affect the TD fixed point), PFPE’s stability can
be determined only by αl and k, for which stable values
exists. As H̄(ω, ω?; ω̄l) is the path-mean Hessian of the
loss, convergence can be guaranteed under the same mild
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assumptions required to prove convergence of a stochastic
gradient descent algorithm to minimise L(ω; ω̄l). This im-
plies that PFPE can converge under regimes where TD will
not as J̄TD(ω, ω?) is positive definite.

3.3. Analysis of PFE
We now showcase the power of our Jacobian analysis
by writing the PFE updates exactly in terms of (ω̄0 −
ω?):

Theorem 1. Under Assumption 2, the sequence of PFE
updates ω̄?l+1 ∈ arg infω L(ω, ω̄?l ) satisfy:

ω̄?l − ω?

=

l−1∏
i=0

(
H̄(ω̄?i+1, ω

?; ω̄?i )−1J̄δ(ω̄
?
i , ω

?;ω?)
)

(ω̄0 − ω?).

We can use Theorem 1 to determine the stabllity of FPE up-
dates. If supω,ω′∈Ω

∥∥H̄(ω′, ω?;ω)−1J̄δ(ω, ω
?;ω?)

∥∥ < 1
then the FPE updates are a contraction mapping and will
converge to a fixed point under the Banach fixed-point the-
orem. We discuss the convergence of FPE under varying
regularisation schemes in Section 5.1.

4. Asymptotic Analysis
We now study the behaviour of Equation (3) in the limit of
l→∞. We introduce the standard Robbins-Munro condi-
tion for the decaying stepsizes that is a necessary condition
to ensure convergence to a fixed point:

Assumption 3 (Robbins-Munro). Each αl is a positive
scalar with

∑∞
l=0 αl =∞ and

∑∞
l=0 α

2
l <∞.

Now we introduce a core necessary assumption to prove
stability of PFPE with diminishing stepsizes:

Assumption 4 (TD Stability). There exists a region
XTD(ω?) containing a fixed point ω? such that J̄TD(ω, ω?)
has strictly negative eigenvalues for all ω ∈ XTD(ω?).

The key insight from Assumption 4 is that the stability
of PFPE under diminishing stepsizes is determined only
by the eigenvalues of the single step path-mean Jacobian
J̄TD(ω, ω?), regardless of the value of k or αl. Indeed,
stochastic approximation can be shown to be provably diver-
gent if this condition cannot be satisfied (Pemantle, 1990).
From this perspective, if TD diverges then so will PFPE
under diminishing stepsizes, hence the asymptotic stability
of PFPE is independent of k and αl, and, unlike updating
under a two-timescale regime, introducing target parame-
ters that are updated periodically every k timesteps does
not improve asymptotic convergence properties under this
analysis. Once Assumption 4 has been established, there
are several approaches to prove convergence of the PFPE
update under varying sampling conditions and projection

assumptions. We follow the proof of (Vidyasagar, 2022),
but discuss approaches that generalise our assumptions in
Appendix D

Theorem 2. Let Assumptions 1 to 4 hold. If there exists
some fixed point ω? with region of contraction XTD(ω?)
and timestep t such that ω̄l ∈ XTD(ω?) for all l ≥ t the
the sequence of target parameter updates in Equation (2)
converge almost surely to ω?.

4.1. The Deadly Triad
We have established that it is not possible to prove con-
vergence of PFPE under diminishing stepsizes if Assump-
tion 4 does not hold. We now discuss how adherence
to Assumption 4 formalises a phenomenon known as the
deadly triad (Sutton & Barto, 2018) where it has been es-
tablished that TD cannot be proved to converge when us-
ing function approximators in the off-policy setting. To
control for the effect of nonlinear function approximation,
we first investigate linear function approximators of the
form Qω(s, a) = φ(s, a)>ω where φ : S × A → Rn is a
feature vector. Define the one-step lookahead distribution
as: Pµ := Es∼d,a∼µ(s) [P (s, a)]. Introducing the short-
hand:

Φ := Es∼d,a∼µ(s)[φ(s, a)φ(s, a)>],

Φ′ := Es∼d,a∼µ(s)[Es′∼Pµ,a′∼π(s′)[φ(s′, a′)]φ(s, a)>],

we can derive the TD Jacobian as:

J̄TD(ω, ω?) = γΦ′ − Φ.

We now examine why the conditioning of J̄TD(ω, ω?) ex-
plains this phenomenon.

Linear Function Approximation For linear function ap-
proximators, we show in Appendix A.1 that γ‖Qω‖Pµ,π <
‖Qω‖d,µ for all ω is a sufficient condition for γΦ′ − Φ to
have negative eigenvalues, thereby satisfying Assumption 4.
This implies that the function approximator class remains
non-expansive under the one-step lookahead distribution
Pµ, thereby preventing the function approximator diverg-
ing as the Markov chain is traversed. This condition has
been introduced previously in the fitted Q-iteration litera-
ture (Wang et al., 2020; 2021) as a “low distribution shift”
assumption.

In the on-policy setting in an ergodic MDP, we can prove
that there exists a stationary distribution dπ induced by fol-
lowing the target policy π, that is µ = π. Moreover it
is assumed that samples come from dπ; hence by the def-
inition of ergodicity, the one-step lookahead distribution
is the stationary distribution: Pπ = dπ. It thus follows
that γ‖Qω‖Pµ,π = γ‖Qω‖dπ,π < ‖Qω‖dπ,π and hence
Assumption 4 holds automatically for on-policy TD in an er-
godic MDP, thereby establishing the convergence properties
as a special case via Theorem 2.
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For off-policy data, it is not possible to prove that
γ‖Qω‖Pµ,π < ‖Qω‖d,µ holds without further assumptions
on the sampling policy and MDP. In general, it is not pos-
sible to show that J̄TD(ω, ω?) is negative definite in the
off-policy case as the distribution shift may be too high:
there exist counterexample MDPs where off-policy algo-
rithms such as Q-learning provably diverge under linear
function approximation (Williams & Baird, 1993; Baird,
1995a).

Nonlinear Function Approximation Even in an on-
policy regime, we cannot prove convergence of TD when
nonlinear function approximators such as neural networks
are used. In these cases, the path-mean Jacobian may not
have a closed form solution. However, it can be bounded by
the following norm (see Appendix A.2):

supλ
(
J̄TD(ω, ω?)

)
≤ sup

ω
supλ

(
E
[
(T π[Qω]−Qω)∇2

ωQω
]

+E
[
(γE′[∇ωQ′ω]−∇ωQω)∇ωQ>ω

])
.

Even making the same assumption as in Section 4.1 of
sampling on-policy in an ergodic MDP to show that

ω>E
[
(γE′[∇ωQ′ω]−∇ωQω)∇ωQ>ω

]
ω

≤ (γ − 1)ω>E
[
∇ωQω∇ωQ>ω

]
ω < 0,

we cannot prove the negative definiteness of J̄TD(ω, ω?)
required to satisfy Assumption 4. This is because the ma-
trix E

[
(T π[Qω]−Qω)∇2

ωQω
]

can be arbitrarily positive
definite depending on the MDP and choice of function ap-
proximator. Indeed, there exist counterexample MDPs with
provably divergent nonlinear function approximators when
sampling on-policy (Tsitsiklis & Van Roy, 1997).

5. Non-asymptotic Analysis
Our asymptotic analysis in Section 4 shows that increasing
k or adjusting αl for PFPE does not affect the asymptotic
strong convergence properties of the TD algorithm, imply-
ing that target networks do not stabilise TD if stepsizes
tend to zero. We showed that the underlying reason for this
was the deadly triad, which we formalised as adherence
to Assumption 4. We now replace Assumption 4, that is
J̄TD(ω, ω?) is negative definite, with the assumption that
FPE is stable:

Assumption 5 (FPE Stability). There exists a re-
gion XFPE(ω?) containing a fixed point ω? such that
supω,ω′∈XFPE(ω?)

∥∥H̄(ω′, ω?;ω)−1J̄δ(ω, ω
?;ω?)

∥∥ < 1.

5.1. Stabilising FPE
We now prove that Assumption 5 can always be satisfied
using regularisation schemes that do not affect the TD fixed

points. We introduce the following regularised TD vec-
tor:

δReg(ω, ω′) = δ(ω, ω′) + ρ(ω, ω′), (4)

where ρ(ω, ω′) is a regularisation term such that ρ(ω, ω) =
0, thereby not changing the TD fixed point or TD update.
As an example, ρ(ω′, ω′) can contain powers of regular-
isation terms MReg(ω − ω′) in addition to combinations
of δ(ω′, ω) and δ(ω, ω′) terms, where δ(ω′, ω) is a TD
vector with target and Q network parameters swapped.
A simpler choice to ensure Assumption 5 holds is the
ρ(ω, ω′) = −ηωI(ω 6= ω′)−µ(ω−ω′), where I(ω 6= ω′) is
the identity I for any ω 6= ω′ and η and µ control the degree
of regularisation. This scheme is equivalent to adding `2-
regularisation to the loss L(ω;ω′) whilst still ensuring that
δ(ω, ω′) is differentiable almost everywhere. We empha-
sise that δReg(ω̄l, ω̄l) = δ(ω̄l, ω̄l), leaving the TD update
unchanged. In contrast, unless ω? is known a priori, in-
troducing regularisation that modifies the TD update—as
is done in (Zhang et al., 2021)—will affect the TD fixed
points. We now prove that FPE can be stabilised using the
regularised update by tuning η, µ:

Proposition 1. Using the regularised TD vector:

δReg(ω, ω′) = δ(ω, ω′)− ηωI(ω 6= ω′)− µ(ω − ω′)

the path-mean Jacobians are:

H̄Reg(ω, ω?; ω̄l) = H̄(ω, ω?; ω̄l) + (µ+ η)I,

J̄δ,Reg(ω, ω?; ω̄l) = J̄δ(ω, ω
?; ω̄l) + µI,

Assumption 5 is satisfied if:

sup
ω,ω′∈XFPE(ω?)

∥∥H̄Reg(ω′, ω?;ω)−1J̄δ,Reg(ω, ω?;ω?)
∥∥ < 1.

(5)

There exists a finite η, µ such that Equation (5) holds.

5.2. Convergence Analysis
By carrying out a non-asymptotic analysis, we now inves-
tigate how the deadly triad can be broken by PFPE using
Equation (4) when stepsizes do not tend to zero. This leads
to a formal understanding of how target parameters stabilise
TD under stepsize regimes that are actually used in practice
when classic TD methods fail. The foundation of our analy-
sis is a condition function that can be used to determine the
stability of the updates:

Definition 1 (Condition Function). For a subset X (ω?) ⊆
Ω with corresponding fixed point ω? ∈ X (ω?) such that
ωi ∈ X (ω?) for all i ≥ 0 , let
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λ?H := sup
ω,ω′,ω′′

arg sup
λ′∈λ(H̄(ω,ω′;ω′′))

|1− αlλ′| ,∥∥J̄?FPE

∥∥ := sup
ω,ω′∈X (ω?)

∥∥H̄(ω′, ω?;ω)−1J̄δ(ω, ω
?;ω′)

∥∥ ,∥∥J̄?TD

∥∥ := sup
ω∈X (ω?)

‖I + αJ̄TD(ω, ω?)‖,

and define the condition function as:

C(αl, k) := |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥
+
(

1 + |1− αlλ?H |
k−1
)∥∥J̄?FPE

∥∥ . (6)

The condition function depends on the maximal eigenvec-
tors of the Jacobians introduced in Section 3.2, and so can
still be used to analyse general nonlinear function approxi-
mators for which the path-mean Jacobians have no analytic
solution. Using the condition function, we decompose the er-
ror at a given timestep into the effect of the expected update
plus the error induced by variance of the update:

Theorem 3. Define

σk :=
(

1− |1− αlλ?H |
k
) σδ
λ?H

,

Let Assumptions 1 and 2 hold, then:

E [‖ω̄l+1 − ω?‖] ≤ C(αl, k)E [‖ω̄l − ω?‖] + αlσk. (7)

The effect of the expected update (the first term in Equa-
tion (7)) is bounded by the condition function, which de-
pends both on data conditioning but critically, on both k and
αl as well and must diminish with increasing l to ensure
convergence. Using this decomposition, we see convergence
is guaranteed if the following assumption holds:

Assumption 6 (Contraction Region). We assume that
C(α, k) ≤ c < 1 over XFPE(ω?).

allowing us to prove convergence of PFPE for stepsizes that
don’t tend to zero provided that updates remain in a region
of contraction:

Corollary 3.1. Let Assumptions 1, 2, 5 and 6 hold. For a
fixed stepsize αl = α > 0,

E [‖ω̄l − ω?‖] ≤
ασk
1− c

+ exp(−l(1− c))
(
‖ω̄0 − ω?‖ −

σk
1− c

)
.

Corollary 3.1 is a key result of this work. Our result demon-
strates geometric decay of errors in l, to a ball of fixed radius
ασk
1−c . This is analogous to related work in stochastic gradient
descent (Bottou et al., 2018), and matches the intuition that,
without decaying stepsize, variance in the updates means
that convergence to a fixed point does not occur. Note that

the radius of the ball which we converge to can be made
arbitrarily small by decreasing α.

This supports the use of a hybrid approach, wherein a fixed
step size is used until iterates are no longer improving and
then reducing step size and repeating to decrease the radius
of the ball of convergence whilst maintaining k as small as
possible. In the remainder of this section, we explore the
properties of the condition function to ensure the existence
of a region of contraction satisfying Assumption 6.

5.3. Properties of PFPE Condition Function
We now investigate key properties of Equation (6) to un-
derstand how target parameters can lead to convergence
when classic TD methods fail. If J̄TD(ω, ω?) is positive
definite, TD is provably divergent, however our analysis
reveals that there are values of k and αl for which PFPE
does converge.

Property 1: Lower bound
∥∥J̄?FPE

∥∥ ≤ C(αl, k).

We first investigate the conditions for which our choice of
function approximators can never be used to prove con-
vergence. Our condition function implies that we cannot
prove convergence for any λ?H ≤ 0 or λ?H ≥ 2

αl
as repeated

applications of |1 − αlλ
?
H |2 do not reduce the effect the

ill-conditioning of J̄TD(ω, ω?). We formalise this in the
following regularity assumption:

Assumption 7 (Eigenvalue Regularity Assumption). Given
a region X ⊆ Ω, for all ω, ω′ ∈ X there exists 0 < λmin

1

and λmax
1 <∞ such that λmin ≤ λ(∇2

ωL(ω;ω′)) ≤ λmax.

We now propose two simple fixes to avoid this issue. Recall
from Section 3.2 that λ?H is an eigenvalue of the Hessian
of a loss. If λ?H was negative, this would imply that the
Hessian is not positive semidefinite for all ω in the region
of interest; hence we cannot prove convergence of stochas-
tic gradient descent on the loss L(ω; ω̄l), let alone the full
PFPE algorithm. To remedy this problem, the eigenvalues
of the matrix can be increased using the regularisation in-
troduced in Equation (4) without affecting the TD fixed
point. However, if λ?H ≥ 2

αl
, then the conditioning of the

Hessian matrix is ill-suited to the chosen step-size, and an
easy remedy is to decrease αl. Our bound shows that the
condition function is lower bounded by ‖J?FPE‖, and so if
Assumption 5 does not hold, then convergence of PFPE is
not provable.

Property 2: Monotonicity For |1 − αlλ
?
H | < 1,

C(αl, k) ≤ C(αl, k′) for k ≤ k′.

The monotonicity property ensures that |1 − αlλ
?
H | < 1

defines the interval of Hessian eigenvalues for which there
is a regime in which we can increase k in order to ensure
PFPE updates are a contraction mapping. This suggests that
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a key role of the target network is to help mitigate the effects
of the ill-conditioning of the TD Jacobian when using fixed
step sizes. We now investigate how decreasing stepsizes and
increasing the number of PFPE steps affect the conditioning
of PFPE, which validates this hypothesis.

Property 3: Limits For any k <∞, limαl→0 C(αl, k) =∥∥J̄?TD

∥∥ + 2
∥∥J̄?FPE

∥∥. For any 0 < αl < 2
λ?H

,

limk→∞ C(αl, k) =
∥∥J̄?FPE

∥∥.

The first limit illustrates the effects of a diminishing step-
size sequence, confirming our bound is consistent with the
results of the previous section that increasing k does not
improve the convergence properties of PFPE if stepsizes
tend to zero and PFPE only stabilises TD for 0 < αl. By
taking the limit k →∞, we compliment our monotonicity
result, obtaining a bound for how much we can improve
on the stability of TD by increasing k. As expected, in the
limit of k → ∞, the condition function tends to ‖J?FPE‖.
Through this insight, we interpret PFPE as mixing FPE and
TD updates according the coefficient |1 − αlλ?H |k−1: for
k = 1, PFPE uses only TD updates and in the limit k →∞,
PFPE recovers the FPE update.

5.4. Breaking the Deadly Triad
We now combine all properties presented in this section into
our main result, proving that through suitable regularisation
and choice of αl and k, PFPE breaks TD’s deadly triad
described in Section 4.1:

Theorem 4. Let Assumption 7 hold over XFPE(ω?) from

Definition 1. For any 1
αl

>
λmin
1 +λmax

1

2 such that αl > 0,
any

k > 1 +
log(1− ‖J̄?FPE‖)− log(‖J̄?TD‖+ ‖J̄?FPE‖)

log(1− αλmin)
,

ensures that XFPE(ω?) is a region of contraction satisfying
Assumption 6.

Theorem 4 demonstrates that appropriate values of αl and k
can be found by treating them as hyperparameters, decreas-
ing αl and increasing k until the algorithm is stable, reduc-
ing the conditions needed to prove convergence of PFPE to
those of proving convergence of stochastic gradient descent
on the loss L(ω; ω̄l). The key insight of Theorem 4 is that
even when TD is unstable due to 1 < ‖I + αlJ̄TD(ω̄l, ω

?)‖,
there exists a finite k such that C(αl, k) < 1 and hence
PFPE is stable. We illustrate this phenomenon with a sketch
in Figure 1, demonstrating that increasing k ensures PFPE is
provably convergent in regimes where TD cannot be proved
to converge.

The key insight of our analysis is that, unlike in TD where
stability can only be proved if the matrix J̄δ(ω, ω?;ω?)−

0 2 4 6 8 10
Lambda min

1.0
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2.0

2.5

3.0

C(
a=

0.
1,
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k = 2
k = 3
k = 5
k = 10
k = 100
TD

Figure 1: We plot C(α = 0.1, k) for ‖J̄?
FPE‖ = 0.85 and ‖J̄?

TD‖ ≤
1.5 with increasing k as a function of λmin.

H̄(ω, ω?;ω) is negative definite, with suitable regularisa-
tion, the stability of PFPE can be determined solely by
tuning αl and k, regardless of the MDP, sampling regime,
or function approximator, thereby breaking the deadly triad.
The choice of αl and k thus becomes a trade-off between
maintaining a fast rate of convergence and reducing the
residual variance (αlσk)2 in Equation (7).

6. Related Work
Our work furthers the analysis of TD, FPE, and target-
network based methods. In this section we provide a
brief overview of previous investigations of these algo-
rithms.

Fitted Policy Evaluation FPE is a relatively well under-
stood class of RL algorithms from a theoretical perspective.
Nedić & Bertsekas (2003) analyse the convergence of the
Least-Squares Policy Evaluation (LSPE) of Bertsekas &
Ioffe (1996) in an on-policy, linear function approximation
setting. Analysis of LSPE shows that learning with constant
step size leads to theoretical and empirical gains compared
to TD and LSPE with decaying step sizes (Bertsekas et al.,
2004), which mirrors our conclusions in Section 5.4.

In the context of fitted methods applied to off-policy and
control problems, Munos & Szepesvári (2008) prove gener-
alisation properties of Fitted Q Iteration (Ernst et al., 2005)
for general function classes under assumptions of low pro-
jection error and limited data distribution shift. Le et al.
(2019) coin the term FPE, and formalise the algorithm for
general function approximators, with theoretical results un-
der similar assumptions to Munos & Szepesvári (2008).

Theory of TD Previous results concerning convergence
rates of classic TD methods largely argue that the Bellman

7



Why Target Networks Stabilise Temporal Difference Methods

operator is a contraction, and thus most focus on linear
function approximation. Tsitsiklis & Van Roy (1997) first
proved convergence of linear, on-policy TD, arguing that the
projected Bellman operator in this setting is a contraction.
This corresponds to a special case of Assumption 4. Dalal
et al. (2017) give the first finite time bounds for linear TD(0),
under an i.i.d. data model similar to the one that we use
here. Bhandari et al. (2018) provide bounds for linear TD
in both the i.i.d. data setting and a correlated data setting,
through analogy with SGD. Srikant & Ying (2019) approach
the problem from the perspective of Ordinary Differential
Equations (ODE) analysis, bounding the divergence of a
Lyapunov function from the limiting point of the ODE that
arises from the TD update scheme.

Analysis of Target Networks Existing analysis of the
theoretical properties of target networks are limited, usually
involving algorithmic changes or restrictive assumptions.
Yang et al. (2019) show convergence of a Q-learning ap-
proach using a target network that is updated using Polyak
averaging with nonlinear function approximation. However
their analysis–which makes use of two-timescale analysis–
requires a projection step to limit the magnitude of parame-
ters. Carvalho et al. (2020) show convergence of a related
method using two-timescale analysis, though their target
network update differs significantly from those used in prac-
tice. Zhang et al. (2021) analyse the use of target networks
with linear function approximation, but require projection
steps on both the target network and value parameters. Lee
& He (2019) provide finite-iteration bounds, but are lim-
ited to on-policy data, linear function approximation, and
near-perfect fitting to the target network between updates.
Fan et al. (2020) analyse the use of target networks for
deep Q-learning (Mnih et al., 2015) with the simplifying
assumption that they are performing some form of Fitted Q
Iteration.

None of these efforts yield finite time bounds with target
networks, nor do any match the policy evaluation meth-
ods used in practice as well as the PFPE analysis studied
here. Furthermore, our use of a single target network update,
rather than independent target and value updates leads to
simpler bounds without the need for a two-timescale analy-
sis.

GTD and TDC Methods While not directly related to
PFPE or the use of target networks, GTD-style approaches
(Sutton et al., 2008; 2009; Maei et al., 2009) also lead to con-
vergent, TD-style algorithms, even with off-policy sampling
or nonlinear function approximation. These methods main-
tain a second set of parameters which must be optimised
at a faster timescale than the value parameters. However,
these approaches are commonly found to be ineffective and
not used in practice due to the difficulty in tuning the rate
of second timescale (see, e.g. Fellows et al. (2021)), and

potentially additional variance introduced by the second set
of parameters (Ghiassian et al., 2020).

Improving Conditioning of TD Methods Previous work
concerning conditioning of TD methods has been largely
concerned with approximation of preconditioning ap-
proaches to iterative-methods (Saad, 2003). The first such
approach was focused on preconditioning of on-policy, lin-
ear, least-squares forms of TD (Yao & Liu, 2008). Chen
et al. (2020); Romoff et al. (2020) adapt this approach for
nonlinear function approximation, though their results are
still on-policy. Our work, on the other hand, demonstrates
that use of the target network, alongside fixed step sizes,
changes the form of parameter iterates to ameliorate the
poor conditioning that occurs when directly applying TD or
fitted methods, even in off-policy settings.

7. Experiments
We proceed to empirical investigation of our bounds. First,
we demonstrate that the use of an infrequently updated target
network leads to convergence of off-policy evaluation on the
Baird’s notorious counterexample. Then, we evaluate the
effect of a speculative modified update rule in the Cartpole-
v0 “gym” environment (Brockman et al., 2016). Additional
implementation details for both experiments can be found
in Appendix C.

7.1. Baird’s Counterexample
In this experiment, we demonstrate the practicality of our
core claim–that for sufficiently high k and low enough α,
PFPE will not diverge, even under conditions that TD does.
To do so, we evaluate the use of target networks with varying
update frequencies on the well known off-policy counterex-
ample due to Baird (1995b).

In this environment, depicted in Appendix C, rewards are
zero everywhere, transitions are deterministic, and the true
solution lies within the linear function approximation class
that we make use of. The behaviour policy is set such that
all states are sampled with uniform probability. The target
policy, however, always transitions to a specific state, and
remains there. Due to undersampling of this absorbing state,
conventional TD policy evaluation diverges, demonstrating
that even in simple environments, TD can be unstable when
applied off policy with function approximation.

We report the stepwise (fitted) error in Figure 2 across dif-
ferent values of k, for fixed step size α = 0.01, and fixed
discount factor γ = 0.99. We see that with k = 1–which is
equivalent to using TD with fixed step sizes–our parameters
diverge. Likewise, if k is set to 5 or 10, we are unable to
overcome the conditioning of the TD Jacobian and diverge,
albeit at a slower rate. Once we take k ≥ 50, however,
conditioning has improved enough to lead to convergence.

8



Why Target Networks Stabilise Temporal Difference Methods

This supports our theoretical conclusion: that PFPE can be
used to improve the convergence conditions of TD.

Figure 2: Experiment on Baird’s counterexample. Decreasing the
frequency of target network updates improves conditioning and
leads to convergence of PFPE for suitable choices of hyperparame-
ters.

7.2. Cartpole Experiment
One important insight of our analysis is that we can view
the entire optimisation process as a sequence of updates to
the target network only. This suggests investigation into
alternative forms or acceleration of target network updates.
Inspired by the use of optimisation methods with momentum
in RL settings (Sarigül & Avci, 2018; Haarnoja et al., 2018),
we investigate the effects of a target network that is updated
using momentum.

Unlike the standard periodic target network update in Equa-
tion (2), we postulate that there may be settings in which a
periodic update with momentum may accelerate or stabilise
convergence. This update works as follows:

ω̄ =

{
(1− µ)ωi + µ(ωi−k − ωi−2k), i mod k = 0,

ω̄, otherwise.

We investigate the effects of this momentum update on the
Cartpole domain. For this experiment, we use control results
in which the policy is continuously learned. This is because
control problems are inherently off-policy, and induce ad-
ditional instability, and thus benefit from faster and more
stable convergence of values. We implement the standard
DQN (Mnih et al., 2015) algorithm, with our modified target
network update in order to examine its effect. The results
are shown in Figure 3. Our proposed update indeed leads to
improved learning and stability, at least for the hyperparam-
eter ranges tested, suggesting that the momentum update
has merit. As a result, we propose investigation of more
sophisticated target network update schemes as an avenue
for future research.
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Figure 3: Cartpole Experiment. The agent with the momentum
update is significantly more stable and able to consistently learn,
while without the modified update, learning collapses.

8. Conclusions
This work analysed the use of target networks through the
formulation of a novel class of TD updates, which we refer
to as PFPE. These updates generalise traditional TD(0) and
fitted policy evaluation methods. Our analysis contributes
asymptotic and finite time bounds without additional restric-
tive assumptions or significant changes to the algorithms
used in practice. In our main result, we uncovered novel
insight as to when and how target networks are useful: pro-
vided step-sizes don’t tend to zero and FPE is stable, there
always exists a finite number of update steps k and non-zero
upper bound over stepsizes such that PFPE can improve
conditioning to ensure learning is stable when classic TD
methods fail. Our focus on the target network update as
the object of concern in terms of optimisation suggests that
novel, accelerated methods for updating target networks may
help speed up and stabilise learning. Our initial experiments
support this notion. Moreover, our analysis reveals that reg-
ularisation may be key to determining the stability of PFPE,
opening a promising avenue for future research.
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A. Derivations
A.1. Derivation of Assumption 4 from low distributional shift
Starting from Assumption 4 and the definition of negative definiteness, we need to show:

ω>(γΦ′ − Φ)ω < 0,

whenever γ‖Qω‖Pµ,π < ‖Qω‖d,µ, for all ω. Investigating the first term by expanding the expectations we see:

γω>Φ′ω = γEs∼d,a∼π(s)

[
ω>φ(s, a)Es′∼P (s,a),a′∼π(s′)

[
φ(s′, a′)>ω

]]
,

= γEd,π,Pµ
[
ω>φ(s, a)φ(s′, a′)>ω

]
,

≤ γ
√
Ed,π,Pµ [(φ(s, a)>ω)2]Ed,π,Pµ [(φ(s′, a′)>ω)2],

≤ γ
√
Ed,π [(φ(s, a)>ω)2]Ed,π,Pµ [(φ(s′, a′)>ω)2],

≤ γ‖Qω‖d‖Qω‖Pµ,π.

This allows us to apply our assumption:

ω>(γΦ′ − Φ)ω ≤ γ‖Qω‖Pµ,π‖Qω‖d − ‖Qω‖2d ≤ γ‖Qω‖2d − ‖Qω‖2d,µ < 0.

A.2. Nonlinear Jacobian Analysis
We start by bounding the maximum eigenvalue:

supλ
(
J̄TD(ω, ω?)

)
= sup

ω

ω>J̄TD(ω, ω?)ω

ω>ω
,

= sup
ω

∫ 1

0

ω>JTD(ω′ − t(ω′ − ω?))ω
ωω>

dt,

≤
∫ 1

0

sup
ω

ω>JTD(ω′ − t(ω′ − ω?))ω
ωω>

dt,

≤
∫ 1

0

sup
t∈[0,1]

sup
ω

ω>JTD(ω′ − t(ω′ − ω?))ω
ωω>

dt,

= sup
t∈[0,1]

sup
ω

ω>JTD(ω′ − t(ω′ − ω?))ω
ωω>

∫ 1

0

dt︸ ︷︷ ︸
=1

,

≤ sup
ω′

sup
ω

ω>JTD(ω′ − t(ω′ − ω?))ω
ωω>

,

= sup
ω

supλ (JTD(ω, ω?)) .

We now substitute for the definition of the TD Jacobian, yielding:

JTD(ω, ω?) = ∇ωδ(ω, ω),

=∇ωEς∼Pς [(r + γQω(s′, a′)−Qω(s, a))∇ωQω(s, a)] ,

=Eς∼Pς
[
(γ∇ωQω(s′, a′)−∇ωQω(s, a))∇ωQω(s, a) + (r + γQω(s′, a′)−Qω(s, a))∇2

ωQω(s, a)
]
,

=Eς∼Pς
[
(γ∇ωQω(s′, a′)−∇ωQω(s, a))∇ωQω(s, a) + ((T π[Qω](s, a)−Qω(s, a))∇2

ωQω(s, a)
]
,

as required.

B. Proofs
B.1. FPE Analysis
Lemma 1. Under Assumption 2, the FPE update ω̄l+1 ∈ arg infω L(ω, ω̄l) satisfies:

ω̄?l − ω? = H̄(ω̄?l , ω
?; ω̄l)

−1J̄δ(ω̄l, ω
?;ω?), (8)
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Proof. Given ω̄l, the FPE fixed point ω̄?l must be an element of the set:

ω̄?l ∈ {ω|δ(ω, ω̄l) = 0},

which we use to derive a stability condition for the projection operator:

δ(ω̄?l , ω̄l) = δ(ω?, ω?) = 0

=⇒ δ(ω̄?l , ω̄l)− δ(ω?, ω̄l) = δ(ω?, ω?)− δ(ω?, ω̄l).

Let `1(t) := ω̄?l − t(ω̄?l − ω?) and `2(t) := ω̄l − t(ω̄l − ω?). We introduce the notation:

δ1(t, ω̄l) := δ(`1(t), ω̄l), δ2(t, ω?) := δ(ω?, `2(t)).

We observe that δ1(0, ω̄l) = δ(ω̄?l , ω̄l) and δ1(1, ω̄l) = δ(ω?, ω̄l), and δ2(0, ω?) = δ(ω?, ω̄l) and δ2(1, ω?) = δ(ω?, ω?).
From the fundamental theorem of calculus and Assumption 2, it follows:

δ1(0, ω̄l)− δ1(1, ω̄l) = δ2(1, ω?)− δ2(0, ω?),

=⇒ −
∫ 1

0

∂tδ(ω = `1(t), ω̄l)dt =

∫ 1

0

∂tδ(ω
?, ω = `2(t))dt,

=⇒
∫ 1

0

∇ωδ(ω = `1(t), ω̄l)(ω̄
?
l − ω?)dt = −

∫ 1

0

∇ωδ(ω?, ω = `2(t))(ω̄l − ω?)dt,

=⇒ −
∫ 1

0

∇2
ωL(ω = `1(t); ω̄l)(ω̄

?
l − ω?))dt = −

∫ 1

0

∇ωδ(ω?, ω = `2(t))(ω̄l − ω?)dt,

=⇒
∫ 1

0

∇2
ωL(ω = `1(t); ω̄l)dt(ω̄

?
l − ω?) =

∫ 1

0

∇ωδ(ω?, ω = `2(t))dt(ω̄l − ω?),

=⇒ H̄(ω̄?l , ω
?; ω̄l)(ω̄

?
l − ω?) = J̄δ(ω̄l, ω

?;ω?)(ω̄l − ω?),
=⇒ (ω̄?l − ω?) = H̄(ω̄?l , ω

?; ω̄l)
−1J̄δ(ω̄l, ω

?;ω?),

as required.

Theorem 1. Under Assumption 2, the sequence of FPE updates ω̄?l+1 ∈ arg infω L(ω, ω̄?l ) satisfy:

ω̄?l − ω? =

l−1∏
i=0

(
H̄(ω̄?i+1, ω

?; ω̄?i )−1J̄δ(ω̄
?
i , ω

?;ω?)
)

(ω̄0 − ω?).

Proof. From Equation (8) of Lemma 1, it follows:

ω̄?i+1 − ω? = H̄(ω̄?i+1, ω
?; ω̄?i )−1J̄δ(ω̄

?
i , ω

?;ω?)(ω̄?i − ω?).

Recursively applying the result l times, our result follows immediately.

B.2. Asymptotic Analysis
For this section, we define a Martingale difference sequence that captures the behaviour of our updates. Let {ωi}ki=0 denote
the intermediate function approximation parameters between target parameter updates ω̄l+1 and ω̄l, with ω0 = ω̄l and
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ωk = ω̄l+1. We start by writing our target parameter updates as:

ω1 = ω̄l + αlδ(ω̄l, ω̄l, ς0),

ω2 = ω1 + αlδ(ω1, ω̄l, ς1),

= ω̄l + αl (δ(ω̄l, ω̄l, ς0) + δ(ω̄l + αlδ(ω̄l, ω̄l, ς0), ω̄l, ς1)) ,

ω3 = ω2 + αlδ(ω2, ω̄l, ς2),

= ω̄l + αl (δ(ω̄l, ω̄l, ς0) + δ(ω̄l + αlδ(ω̄l, ω̄l, ς0), ω̄l, ς1))

+ αl(δ(ω̄l + αl (δ(ω̄l, ω̄l, ς0) + δ(ω̄l + αlδ(ω̄l, ω̄l, ς0), ω̄l, ς1)) , ω̄l, ς2),

...

ωk = ω̄l + αl

k−1∑
i=0

δ(ω̄l + αlhi(ω̄l,D, αl), ω̄l, ςi),

= ω̄l + αlhk(ω̄l,D, αl),

where we define hi(ω̄l,D, αl) recursively as:

hi(ω̄l,D, αl) :=

i−1∑
j=0

δ(ω̄l + αlhj(ω̄l,D, αl), ω̄l, ςj).

and remark that h0(ω̄l,D, αl) = 0 trivially. We write our target parameters updates as:

ω̄l+1 = ωk = ω̄l + αl (kδ(ω̄l, ω̄l) +Ml+1 + εl+1) ,

where

εl+1 := hk(ω̄l,Dl, αl)−
k−1∑
i=0

δ(ω̄l, ω̄l, ςi),

andMl+1 defines the Martingale sequence:

Ml+1 :=

k−1∑
i=0

δ(ω̄l, ω̄l, ςi)− kδ(ω̄l, ω̄l)

In this section, we demonstrate that the proof of Borkar & Meyn (2000, Theorem 2.2) can be adapted to account for the
additional term εl+1 that arises due to the use of target networks in the updates. Lemma 2 demonstrates that as stepsizes
tend to zero, the effect of εl+1 becomes negligible, hence the inclusion of εl+1 negligible to our analysis of the underlying
ODE defined by the TD updates.

Lemma 2. Let νn,n+m :=
∑m+n−1
l=n αlεl+1 for m ≥ 1. Under Assumptions 1 to 3, limn→∞ supm‖νn,n+m‖ = 0 almost

surely.

Proof. We start by bounding each ‖εi+1‖ using the the Lipschitzness of δ from Assumption 2:

‖εl+1‖ =

∥∥∥∥∥
k−1∑
i=0

(δ(ω̄l + αlhi(ω̄l,D, αl), ω̄l, ςi)− δ(ω̄l, ω̄l, ςi))

∥∥∥∥∥ ,
≤
k−1∑
i=0

‖δ(ω̄l + αlhi(ω̄l,D, αl), ω̄l, ςi)− δ(ω̄l, ω̄l, ςi)‖ ,

≤
k−1∑
i=0

L ‖ω̄l + αlhi(ω̄l,D, αl)− ω̄l‖ ,

= αlL

k−1∑
i=0

‖hi(ω̄l,D, αl)‖ ,
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To proceed, we recognise that each ‖hi(ω̄l,Dl, αl)‖ ≤ ch < ∞ almost surely where ch is a finite positive constant -
otherwise:

P (‖hi(ω̄l,Dl, αl)‖ =∞) > 0 =⇒ E[‖hi(ω̄l,Dl, αl)‖] =∞ =⇒ E[‖hi(ω̄l,Dl, αl)‖2] =∞
=⇒ E[‖δ(ω̄l + αlhj(ω̄,D, αl), ω̄l, ςj)‖2] =∞,

for at least one i > j, hence Vς∼Pς [δ(ω, ω′, ς)] =∞ for some ω, ω′ thereby violating Assumption 2. Using ch, we bound
‖εl+1‖:

‖εl+1‖ ≤ αlL
k−1∑
i=0

ch = αlchkL,

almost surely. We use this result to bound ‖νn,n+m‖:

‖νn,n+m‖ ≤
m+n−1∑
l=n

αl‖εl+1‖ ≤ chkL
m+n−1∑
l=n

αl
2. (9)

Now, under Assumption 3,

lim
n→∞

sup
m

m+n−1∑
l=n

αl
2 = 0,

hence by the bound established in Equation (9):

lim
n→∞

sup
m
‖νn,n+m‖ = 0,

almost surely, as required.

Theorem 2. Under Assumptions 1- 4, the sequence of target parameter updates in Equation (2) converge almost surely to
ω?.

Proof. Our update

ω̄l+1 = ω̄l + αl (kδ(ω̄l, ω̄l) +Ml+1 + εl+1) ,

is identical to the update presented in Borkar & Meyn (2000, Eq. 2.1.1) with an additional term εl+1. Proof of convergence
to the ODE is given by Borkar & Meyn (2000, Lemma 1), which is predicated on the convergence of:

∆n,n+m := ζn+m − ζn,

from Borkar & Meyn (2000, Eq. 2.1.6) where

ζn =

n−1∑
l=0

αlMl+1,

for n ≥ 1, that is limn→∞ supm‖∆n,n+m‖ = 0, almost surely. To adapt our updates so that Borkar & Meyn (2000, Lemma
1) still applies, we recognise that the term ζn is now replaced in our updates with:

ζ̄n =

n−1∑
l=0

αl(Ml+1 + εl+1),

16



Why Target Networks Stabilise Temporal Difference Methods

and hence ∆n,n+m is replaced in our updates with:

∆̄n,n+m :=ζ̄n+m − ζ̄n,

=ζn+m − ζn +

(
n+m−1∑
l=0

αlεl+1

)
−

(
n−1∑
l=0

αlεl+1

)
,

=ζn+m − ζn +

n+m−1∑
l=n

αlεl+1,

=ζn+m − ζn + νn,n+m,

=∆n,n+m + νn,n+m,

where νn,n+m is defined as Lemma 2. All arguments of Borkar & Meyn (2000, Lemma 1) remain unchanged, except Eq.
2.1.9, where we must now show that limn→∞ supm‖∆̄n,n+m‖ = 0:

lim
n→∞

sup
m
‖∆̄n,n+m‖ ≤ lim

n→∞
sup
m

(‖∆n,n+m‖+ ‖νn,n+m‖) ,

≤ lim
n→∞

(
sup
m
‖∆n,n+m‖+ sup

m
‖νn,n+m‖

)
,

= lim
n→∞

sup
m
‖∆n,n+m‖+ lim

n→∞
sup
m
‖νn,n+m‖.

Applying Lemma 2 yields limn→∞ supm‖νn,n+m‖ = 0 almost surely, hence

lim
n→∞

sup
m
‖∆̄n,n+m‖ ≤ lim

n→∞
sup
m
‖∆n,n+m‖,

which is proved in Borkar & Meyn (2000, Lemma 1). Convergence of our algorithm is thus only predicated on the
convergence of the update:

ω̄l+1 = ω̄l + αl (kδ(ω̄l, ω̄l) +Ml+1) . (10)

Borkar & Meyn (2000, Theorem 2.2) proves convergence of Equation (10) almost surely to ω? given the following four
conditions hold:

I kδ(ω, ω) is Lipschitz in ω,

II Stepsizes αl satisfy Assumption 3,

III The sequence {Ml,Fl}l≥0 is a Martingale difference sequence with respect to the increasing family of σ-algebras:
Fl := σ({ω̄i,Mi}i∈{0:l}) where E [Ml+1|Fl] = 0 and E

[
‖Ml+1‖2|Fl

]
≤ C(1 + ‖ω̄l‖2) for some positive C <∞.

IV The sequence of iterates remain bounded, that is supl‖ω̄l‖ <∞ almost surely.

Conditions I and II hold trivially.

For Condition III, we can take expectations of the Martingale difference:

E [Ml+1|Fl] = E [Ml+1|Fl] ,

= E

[
k−1∑
i=0

δ(ω̄l, ω̄l, ςi)− kδ(ω̄l)
∣∣∣∣Fl
]
,

= E
[
kδ(ω̄l, ω̄l)− kδ(ω̄l, ω̄l)

∣∣∣∣Fl] ,
= 0,

17



Why Target Networks Stabilise Temporal Difference Methods

as required. We now show that the variance is bounded using Assumption 2:

‖Ml+1‖2 =

∥∥∥∥∥
k−1∑
i=0

(δ(ω̄l, ω̄l, ςi)− δ(ω̄l, ω̄l))

∥∥∥∥∥
2

,

≤ k ‖δ(ω̄l, ω̄l, ςi)− δ(ω̄l, ω̄l)‖2 ,

=⇒ E
[
‖Ml+1‖2|Fl

]
≤ k2E

[
‖δ(ω̄l, ω̄l, ςi)− δ(ω̄l, ω̄l)‖2

∣∣∣Fl] ,
= kVς∼Pς [δ(ω̄l, ω̄l, ς)],
≤ kσ2

δ ,

thereby satisfying Condition III.

Finally, we prove Condition IV using Vidyasagar (2022, Theorem 5), which states iterates remain bounded almost surely if:

(a) Conditions I and III hold;

(b) there exists some Lyapunov function V : Ω 7→ R+ such that a‖ω − ω?‖2 ≤ V (ω) ≤ b‖ω − ω?‖2 for constants
a, b > 0 and ‖∇2

ωV (ω)‖ is bounded, and;

(c) ∇ωV (ω)>δ(ω, ω) < 0 for all ω ∈ XTD(ω?).

We propose V (ω) = 1
2‖ω − ω

?‖2 as a candidate Lyapunov function, which trivially satisfies (b). We now show (c) holds by
applying the fundamental theorem of calculus to δ(ω, ω). Let `(t) := ω − t(ω − ω?). Like in Theorem 1, it follows:

δ(ω, ω) = δ(ω, ω)− δ(ω?, ω?)︸ ︷︷ ︸
=0

,

= δ ◦ l(t = 0)− δ ◦ l(t = 1),

= −
∫ 1

0

∂tδ ◦ l(t)dt,

=

∫ 1

0

∇ωδ ◦ l(t)dt(ω − ω?),

hence:

∇ωV (ω)>δ(ω, ω) = (ω − ω?)>
∫ 1

0

∇ωδ ◦ l(t)dt(ω − ω?),

= (ω − ω?)>J̄TD(ω?, ω)(ω − ω?),
< 0,

for all ω ∈ XTD(ω?) under Assumption 4, as required.

B.3. Stabilising FPE

Proposition 1. Using the regularised TD vector:

δReg(ω, ω′) = δ(ω, ω′)− ηωI(ω 6= ω′)− µ(ω − ω′)

the path-mean Jacobians are:

H̄Reg(ω, ω?; ω̄l) = H̄(ω, ω?; ω̄l) + (µ+ η)I,

J̄δ,Reg(ω, ω?; ω̄l) = J̄δ(ω, ω
?; ω̄l) + µI,

Assumption 5 is satisfied if:

sup
ω,ω′∈XFPE(ω?)

∥∥H̄Reg(ω′, ω?;ω)−1J̄δ,Reg(ω, ω?;ω?)
∥∥ < 1. (11)

There exists a finite η, µ such that Equation (11) holds.
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Proof. Taking derivatives of δReg(ω, ω′):

−∇ωδReg(ω, ω′) = −∇ωδ(ω, ω′) + I(ω 6= ω′)η + Iµ,

=⇒ H̄Reg(ω, ω?; ω̄l) = −
∫ 1

0

∇ω′δReg(ω′ = ω − t(ω − ω?), ω̄l)dt = H̄(ω, ω?; ω̄l) + (µ+ η)I,

∇ω′δReg(ω, ω′) = ∇ω′δ(ω, ω′) + µI,

=⇒ J̄δ,Reg(ω, ω?; ω̄l) =

∫ 1

0

∇ω′δReg(ω̄l, ω
′ = ω − t(ω − ω?))dt = J̄δ(ω, ω

?; ω̄l) + µI.

Without loss of generality, assume µ = na and η = nb for some 0 < a, b. Hence:∥∥H̄Reg(ω′, ω?;ω)−1J̄δ,Reg(ω, ω?;ω?)
∥∥ =

∥∥(H̄(ω′, ω?;ω) + n(a+ b)I)−1(J̄δ(ω, ω
?;ω?) + naI)

∥∥ .
From the continuity of the norm, it thus follows:

lim
n→∞

∥∥(H̄(ω′, ω?;ω) + n(a+ b)I)−1(J̄δ(ω, ω
?;ω?) + naI)

∥∥ =

∣∣∣∣ a

a+ b

∣∣∣∣ < 1.

From the definition of the limit, there exists some finite n′ such that∥∥H̄Reg(ω′, ω?;ω)−1J̄δ,Reg(ω, ω?;ω?)
∥∥ < ∣∣∣∣ a

a+ b

∣∣∣∣+ ε,

for all n > n′. As ε is arbitrary, it can be chosen such that∥∥H̄Reg(ω′, ω?;ω)−1J̄δ,Reg(ω, ω?;ω?)
∥∥ < 1,

for all n > n′, as required.

B.4. Nonasymptotic Analysis

Lemma 3. Under Assumption 2, for i > 0 the expected updates can be factored as:

EPς [ωi+1 − ω̄?l ] =
(
I − αlH̄(ωi, ω̄

?
l ; ω̄l)

)
(ωi − ω̄?l ),

EPς [ωi+1 − ω?] =
(
I − αlH̄(ωi, ω̄

?
l ; ω̄l)

)
(ωi − ω̄?l ) + ω̄?l − ω?.

and for i = 0:

EPς [ω1 − ω̄?l ] = (I + αJ̄TD(ω̄l, ω
?))(ω̄l − ω?) + ω? − ω̄?l

Proof. By the definition of the expected update ωi+1:

EPς [ωi+1 − ω̄?l ] = ωi − ω̄?l + αlδ(ωi, ω̄l)− αl δ(ω̄?l , ω̄l)︸ ︷︷ ︸
=0

.

Like in Theorem 1, let `(t) := ωi − t(ωi − ω̄?l ) define the line connecting ωi to ω̄?l . Using this notation we re-write the
expected update as:

EPς [ωi+1 − ω̄?l ] =ωi − ω̄?l + αl (δ(ω = `(0), ω̄l)− δ(ω = `(1), ω̄l)) .

Applying the fundamental theorem of calculus under Assumption 2 and the chain rule yields our desired result:

EPς [ωi+1 − ω̄?l ] = ωi − ω̄?l − αl
∫ 1

0

∂tδ(ω = `(t), ω̄l)dt,

= ωi − ω̄?l − αl
∫ 1

0

∇ωδ(ω, ω̄l)ω=`(t)∂t`(t)dt,

= ωi − ω̄?l + αl

(∫ 1

0

∇ωδ(ω, ω̄l)ω=`(t)dt

)
(ωi − ω̄?l ),

=
(
I − αlH̄(ωi, ω̄

?
l ; ω̄l)

)
(ωi − ω̄?l ).
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Our second result follows immediately:

EPς [ωi+1 − ω?] = EPς [ωi+1 − ω̄?l ] + ω̄?l − ω?,
=
(
I − αlH̄(ωi, ω̄

?
l ; ω̄l)

)
(ωi − ω̄?l ) + ω̄?l − ω?.

For our final result:

EPς [ω1 − ω̄?l ] = EPς [ω1 − ω? + ω? − ω̄?l ],

= EPς [ω1 − ω?] + ω? − ω̄?l .

By the definition of the expected update:

EPς [ω1 − ω?] = ω̄l − ω? + αlδ(ω̄l, ω̄l)− αl δ(ω?, ω?)︸ ︷︷ ︸
=0

.

Let `(t) := ω̄l − t(ω̄l − ω?) define the line connecting ω̄l to ω?. Using this notation we re-write the expected update as:

EPς [ω1 − ω?] =ω̄l − ω? + αl (δ(ω = `(0), ω = `(t))− δ(ω = `(1), ω = `(1))) .

Applying the fundamental theorem of calculus under Assumption 2 and the chain rule yields our desired result:

EPς [ωi+1 − ω̄?l ] = ω̄l − ω? − αl
∫ 1

0

∂tδ(ω = `(t), ω = `(t))dt,

= ω̄l − ω? − αl
∫ 1

0

∇ωδ(ω, ω)|ω=`(t)∂t`(t)dt,

= ω̄l − ω? + αl

(∫ 1

0

∇ωδ(ω, ω)|ω=`(t)dt

)
(ω̄l − ω?),

=
(
I + αlJ̄TD(ω̄?l , ω

?)
)

(ωi − ω̄?l ).

Lemma 4. Under Assumption 2,

EPςi [‖ωi+1 − ω?‖] ≤ |1− αlλ?H | ‖ωi − ω̄?l ‖+ ‖ω̄?l − ω?‖+ αlσδ.

Proof. We start by bounding the expected norm term using Jensen’s inequality: EX [
√
X2] ≤

√
EX [X2]:

EPςi [‖ωi+1 − ω?‖] ≤
√
EPςi

[
‖ωi+1 − ω?‖2

]
,

=

√∥∥EPςi [ωi+1 − ω?]
∥∥2

+ VPςi [ωi+1 − ω?],

=

√∥∥EPςi [ωi+1 − ω?]
∥∥2

+ VPςi [ωi+1],

≤
∥∥EPςi [ωi+1 − ω?]

∥∥+
√

VPςi [ωi+1]

where we applied the triangle inequality to derive the final line. We bound the variance term by substituting ωi+1 =
ωi + αlδ(ωi, ω̄l, ςi):

VPςi [ωi+1] = (αl)
2EPςi

[∥∥δ(ωi, ω̄l, ςi)− EPςi [δ(ωi, ω̄l, ςi)]
∥∥2
]
,

= (αl)
2VPςi [δ(ωi, ω̄l, ςi)] ,

≤ (αlσδ)
2,

=⇒ EPςi [‖ωi+1 − ω?‖] ≤
∥∥EPςi [ωi+1 − ω?]

∥∥+ αlσδ (12)
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Applying Lemma 3 to the expectation and using the triangle inequality yields our desired result:

EPςi [‖ωi+1 − ω?‖] ≤
∥∥(I − αlH̄(ωi, ω̄

?
l ; ω̄l)

)
(ωi − ω̄?l ) + (ω̄?l − ω?)

∥∥+ αlσδ,

≤
∥∥I − αlH̄(ωi, ω̄

?
l ; ω̄l)

∥∥ ‖ωi − ω̄?l ‖+ ‖ω̄?l − ω?‖+ αlσδ,

≤ sup
ωi,ω̄?l ,ω̄l

∥∥I − αlH̄(ωi, ω̄
?
l ; ω̄l)

∥∥ ‖ωi − ω̄?l ‖+ ‖ω̄?l − ω?‖+ αlσδ,

= |1− αlλ?H | ‖ωi − ω̄?l ‖+ ‖ω̄?l − ω?‖+ αlσδ.

Theorem 3. Define

σk :=
(

1− |1− αlλ?H |
k
) σδ
λ?H

,

Let Assumptions 1 and 2 hold, then:

E [‖ω̄l+1 − ω?‖] ≤ C(αl, k)E [‖ω̄l − ω?‖] + αlσk.

Proof. Let {ωi}ki=0 denote the intermediate function approximation parameters between target parameter updates ω̄l+1 and
ω̄l, with ω0 = ω̄l and ωk = ω̄l+1. We define the set of samples up to i as: Di := {ςj}ij=0 with distribution PDi , with sample
ςj having distribution Pςj . Under this notation, we must show:

EPDk−1
[‖ωk − ω?‖] ≤ C(αl, k)‖ω0 − ω?‖+ αlσk.

Applying Lemma 4 to the inner expectation:

EPDk−1
[‖ωk − ω?‖] = EPDk−2

[
EPςk−1

[‖ωk − ω?‖]
]
,

≤ EPDk−2
[|1− αlλ?H | ‖ωk−1 − ω̄?l ‖+ ‖ω̄?l − ω?‖+ αlσδ] ,

= |1− αlλ?H |EPDk−2
[‖ωk−1 − ω̄?l ‖] + ‖ω̄?l − ω?‖+ αlσδ,

= |1− αlλ?H |EPDk−3

[
EPςk−2

[‖ωk−1 − ω̄?l ‖]
]

+ ‖ω̄?l − ω?‖+ αlσδ. (13)

Applying Equation (12) from Lemma 4 to the inner expectation and applying Lemma 3 yields:

EPςk−2
[‖ωk−1 − ω̄?l ‖] ≤

∥∥∥EPςk−2
[ωk−1 − ω?]

∥∥∥+ αlσδ,

≤
∥∥(I − αlH̄(ωk−2, ω̄

?
l ; ω̄l)

)
(ωk−2 − ω̄?l )

∥∥+ αlσδ,

≤ sup
ωk−2,ω̄?l ,ω̄l

∥∥I − αlH̄(ωk−2, ω̄
?
l ; ω̄l)

∥∥ ‖ωk−2 − ω̄?l ‖+ αlσδ,

= |I − αlλ?H | ‖ωk−2 − ω̄?l ‖+ αlσδ. (14)

Recursively applying Equation (15) to Equation (13) k − 1 times yields:

EPDk−1
[‖ωk − ω?‖] ≤ EPς0

[
|1− αlλ?H |

k−1 ‖ω1 − ω̄?l ‖
]

+ ‖ω̄?l − ω?‖+

k−2∑
i=0

|1− αlλ?H |
i
αlσδ,

= |1− αlλ?H |
k−1 EPς0 [‖ω1 − ω?l ‖] + ‖ω̄?l − ω?‖+

k−2∑
i=0

|1− αlλ?H |
i
αlσδ. (15)

Now, applying Equation (12) and Lemma 3 to the expectation:

EPς0 [‖ω1 − ω?l ‖] ≤
∥∥EPς0 [ω1 − ω?l ]

∥∥+ αlσδ,

=
∥∥(I + αJ̄TD(ω̄l, ω

?))(ω̄l − ω?) + ω? − ω̄?l
∥∥+ αlσδ,

≤
∥∥I + αJ̄TD(ω̄l, ω

?)
∥∥ ‖ω̄l − ω?‖+ ‖ω̄?l − ω?‖+ αlσδ,

=
∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+ ‖ω?l − ω̄l‖+ αlσδ.
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Substituting into Equation (15):

EPDk−1
[‖ωk − ω?‖] ≤ |1− αlλ?H |

k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+ (1 + |1− αlλ?H |
k−1

) ‖ω̄?l − ω?‖+

k−1∑
i=0

|1− αlλ?H |
i
αlσδ.

= |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+ (1 + |1− αlλ?H |
k−1

) ‖ω̄?l − ω?‖+
1− |1− αlλ?H |

k

1− |1− αlλ?H |
αlσδ,

= |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+ (1 + |1− αlλ?H |
k−1

) ‖ω̄?l − ω?‖+
(

1− |1− αlλ?H |
k
) σδ
λ?H

,

≤ |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+ (1 + |1− αlλ?H |
k−1

) ‖ω̄?l − ω?‖+ σk.

Finally, we apply Theorem 1 to yield our desired result:

EPDk−1
[‖ωk − ω?‖]

≤ |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+
(

1 + |1− αlλ?H |
k−1
)∥∥H̄(ω̄?l , ω

?; ω̄l)
−1J̄δ(ω̄l, ω

?;ω?)(ω̄l − ω?)
∥∥+ σk,

≤ |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+
(

1 + |1− αlλ?H |
k−1
)∥∥H̄(ω̄?l , ω

?; ω̄l)
−1J̄δ(ω̄l, ω

?;ω?)
∥∥ ‖ω̄l − ω?‖+ σk,

≤ |1− αlλ?H |
k−1 ∥∥J̄?TD

∥∥ ‖ω̄l − ω?‖+
(

1 + |1− αlλ?H |
k−1
)∥∥J̄?FPE

∥∥ ‖ω̄l − ω?‖+ σk,

= C(αl, k) ‖ω̄l − ω?‖+ σk.

Corollary 3.1. Let Assumptions 1, 2, 5 and 6 hold. For a fixed stepsize αl = α > 0. For a fixed stepsize αl = α > 0,

E [‖ω̄l − ω?‖] ≤
ασk
1− c

+ exp(−l(1− c))
(
‖ω̄0 − ω?‖ −

σk
1− c

)
.

Proof. We start by applying Theorem 3:

E [‖ω̄l − ω?‖] ≤ C(αl, k)E [‖ω̄l−1 − ω?‖] + αlσk.

As XFPE(ω?) is a region of contraction and ω̄l ∈ XFPE(ω?) for all l ≥ 0, there exists a positive c < 1 under Assumption 6
such that C(αl, k) ≤ c, hence:

E [‖ω̄l − ω?‖] ≤ cE [‖ω̄l−1 − ω?‖] + αlσk. (16)

Now, for a fixed constant stepsize αl = α, we can apply Equation (16) l times, yielding:

E [‖ω̄l − ω?‖] ≤ cl ‖ω̄0 − ω?‖+ ασk

l−1∑
i=0

ci,

= cl ‖ω̄0 − ω?‖+ ασk
1− cl

1− c

= cl
(
‖ω̄0 − ω?‖ −

ασk
1− c

)
+

ασk
1− c

,

= (1− (1− c))l
(
‖ω̄0 − ω?‖ −

ασk
1− c

)
+

ασk
1− c

.

Now we apply the bound 1− x ≤ exp(−x), yielding our desired result:

E [‖ω̄l − ω?‖] ≤ exp(−(1− c))l
(
‖ω̄0 − ω?‖ −

(ασk)

1− c

)
+

ασk
1− c

,

= exp(−l(1− c))
(
‖ω̄0 − ω?‖ −

ασk
1− c

)
+

ασk
1− c

.
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B.5. Breaking the Deadly Triad

Theorem 4. Let Assumption 7 hold over XFPE(ω?) from Definition 1. For any 1
αl
>

λmin
1 +λmax

1

2 such that αl > 0, any

k > 1 +
log(1− ‖J̄?FPE‖)− log(‖J̄?TD‖+ ‖J̄?FPE‖)

log(1− αλmin)
,

ensures that XFPE(ω?) is a region of contraction satisfying Assumption 6.

Proof. Now, as |1− αlλ′| is a symmetric function of λ with a minima at λ = 1
αl

and λmin
1 +λmax

1

2 is the mid point of λmin
1

and λmax
1 , it follows:

λ?H := sup
ω,ω′∈XFPE(ω?)

arg sup
λ′∈λ(∇2

ωL(ω,ω′))

|1− αlλ′| = λmin
1 .

Now,

αl <
2

λmin
1 + λmax

1

=⇒ λ?H ≤
2

αl
=⇒ |1− αlλ?H | < 1,

hence

lim
k→∞

C(αl, k) = lim
k→∞

∣∣1− αlλmin
∣∣k−1 ‖J?TD‖+ lim

k→∞

(
1 +

∣∣1− αlλmin
∣∣k−1

)∥∥J̄?FPE

∥∥ =
∥∥J̄?FPE

∥∥ < 1.

Let
∥∥J̄?FPE

∥∥ = 1− ε where 0 < ε < 1. From the definition of a limit, this implies that for ε there exists some finite k′ such
that whenever k > k′: ∣∣C(αl, k)−

∥∥J̄?FPE

∥∥∣∣ < ε =⇒ |C(αl, k)− (1− ε)| < ε =⇒ C(αl, k) < 1,

as required. To find the value of k for which C(αl, k) < 1, we set C(αl, k) = 1 and solve:

1 =
∣∣1− αlλmin

∣∣k−1 ∥∥J̄?TD

∥∥+
(

1 +
∣∣1− αlλmin

∣∣k−1
)∥∥J̄?FPE

∥∥ ,
=⇒

∣∣1− αlλmin
∣∣k−1

=
1−

∥∥J̄?FPE

∥∥
‖J̄?TD‖+

∥∥J̄?FPE

∥∥ ,
=⇒ (k − 1) log(

∣∣1− αlλmin
∣∣) = log(1−

∥∥J̄?FPE

∥∥)− log(‖J̄?TD‖+
∥∥J̄?FPE

∥∥),

=⇒ k = 1 +
log(1− ‖J̄?FPE‖)− log(‖J̄?TD‖+ ‖J̄?FPE‖)

log(1− αλmin)
.

C. Additional Experiment Information
For both plots, each configuration was run over 5 random seeds, with the central tendency given by the mean, and the shaded
errors representing the standard error of the mean. Hyperparameters that are not varied in the plots were optimised by grid
search across either linear or logarithmic hyperparameter ranges, as is suitable. Parameters were chosen that led to the
highest performance as averaged across random seeds, then relevant hyperparameters were varied, using the optimal fixed
hyperparameters. Hyperparameters that were varied are denoted as lists in the tables below.

C.1. Baird’s Counterexample
Figure Figure 4 shows the counterexample. The behaviour policy chooses between the action represented by the wavy line
with probability 6/7, and the solid line with probability 1/7. The behaviour policy always chooses the solid line. The linear
function approximation scheme is shown in terms of the value function weights. Sampling off policy in this way leads to
divergence of TD, but PFPE converges, as seen in Figure 2.

C.2. Cartpole Experiment
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2ω1 + ω8

2ω2 + ω8

2ω3 + ω8 2ω4 + ω8

2ω5 + ω8

2ω6 + ω8

ω7 + 2ω8

Figure 4: Baird’s Counterexample. The solid (grey) action moves the
agent to the lower state deterministically. The wavy (orange) action
puts the agent into one of the upper states with equal probability

For the Cartpole experiment, we use a simple DQN-style
setup with a small multilayer perceptron (MLP) repre-
senting the value function. A small adjustment is made
from PFPE as characterised by the paper. Instead of up-
dating value parameters on single data points, parameter
updates are averaged across a small batch. This was
found to increase stability of learning in both settings,
with no notable effects when comparing across indepen-
dent variables. This means that, in addition to our target
network, we also make use of a replay buffer which stores
observed transitions. As such, data used in updates was
sampled uniformly from previous transitions. The policy
was ε-greedy, with the estimated optimal action taken
with probability 1 − ε. The environment is maintained
by OpenAI as part of the gym suite, and falls under MIT
licensing.

Parameter Value
Environment Parameters
γ 0.99
Architecture Parameters
MLP Hidden Layers 2
Hidden Layer Size 32
Nonlinearity ReLU
ε 0.05
Training Parameters
Total Target Network Updates 500
Learning Rate [0.001, 0.0005]
Momentum (µ) [0, 0.01]
Batch Size 500
Steps per Target Network Update (k) 5
Data Gathering Steps per Update 5
Replay Buffer Size 2500

Table 1: Relevant Parameters for Cartpole Experiment

D. Extensions
As discussed in Section 4, once we can establish Assumption 4 then there are several theoretical tools that become applicable
from stochastic approximation to prove convergence under a range of assumptions. Brooms (2006) provide a comprehensive
overview of classic methods. In particular, stochastic approximation has been shown to converge when sampling from
an ergodic Markov chain under specific regularity assumptions (Allasonniere et al., 2010). Perhaps the easiest to verify
in our context is those of Andrieu et al. (2005), who provides a series of assumptions that can be checked in practice.
Moreover, this theory was recently extended to Markov chains that converge sub-geometrically to their station distributions
by Debavelaere et al. (2021). Adherence of the updates to remain in a contractive region can be ensured by projection into
an ever increasing subset of Ω until convergence occurs, which is detailed and analysed in Andradottir (1991).
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