
HydraViT: Stacking Heads for a Scalable ViT

Janek Haberer∗, Ali Hojjat∗, Olaf Landsiedel
Kiel University, Germany

{janek.haberer,ali.hojjat,olaf.landsiedel}@cs.uni-kiel.de

Abstract

The architecture of Vision Transformers (ViTs), particularly the Multi-head Atten-
tion (MHA) mechanism, imposes substantial hardware demands. Deploying ViTs
on devices with varying constraints, such as mobile phones, requires multiple mod-
els of different sizes. However, this approach has limitations, such as training and
storing each required model separately. This paper introduces HydraViT, a novel
approach that addresses these limitations by stacking attention heads to achieve a
scalable ViT. By repeatedly changing the size of the embedded dimensions through-
out each layer and their corresponding number of attention heads in MHA during
training, HydraViT induces multiple subnetworks. Thereby, HydraViT achieves
adaptability across a wide spectrum of hardware environments while maintaining
performance. Our experimental results demonstrate the efficacy of HydraViT in
achieving a scalable ViT with up to 10 subnetworks, covering a wide range of
resource constraints. HydraViT achieves up to 5 p.p. more accuracy with the same
GMACs and up to 7 p.p. more accuracy with the same throughput on ImageNet-1K
compared to the baselines, making it an effective solution for scenarios where
hardware availability is diverse or varies over time. The source code is available at
https://github.com/ds-kiel/HydraViT.

0 5 10 15
GMACs

70

72

74

76

78

80

82

Ac
cu

ra
cy

 [%
]

T

S

B

GMACs vs. Accuracy

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

10 15
GMACs

79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0

Ac
cu

ra
cy

 [%
] B

Zoomed

(a) GMACs vs. Accuracy

2000 4000 6000 8000 10000
Throughput [#/s]

70

72

74

76

78

80

82

Ac
cu

ra
cy

 [%
]

T

S

B

Throughput vs. Accuracy
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 3000
Throughput [#/s]

79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0

Ac
cu

ra
cy

 [%
] B

Zoomed

(b) Throughput vs. Accuracy

Figure 1: Performance comparison of HydraViT and baselines on ImageNet-1K in terms of GMACs
(a) and throughput (b) evaluated on NVIDIA A100 80GB PCIe. HydraViT trained on 3-12 heads
demonstrates superior performance over DynaBERT (Hou et al., 2020) and SortedNet (Valipour
et al., 2023). While MatFormer (Kudugunta et al., 2023) shows higher performance than HydraViT
within its limited scalability range, but when we train on a narrower scalability range (9-12 heads),
HydraViT surpasses MatFormer. We also show that training HydraViT for more epochs can further
improve accuracy. Note that each line corresponds to one model, and changing the number of heads
in the vanilla DeiT models significantly drops their accuracy to less than 30%.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ds-kiel/HydraViT

1 Introduction

Motivation Following the breakthrough of Transformers (Vaswani et al., 2017), Dosovitskiy et al.
(2021) established the Vision Transformer (ViT) as the base transformer architecture for computer
vision tasks. As such, numerous studies build on top of ViTs as their base (Liu et al., 2021; Tolstikhin
et al., 2021; Yu et al., 2022). In this architecture, Multi-head Attention (MHA) plays an important
part, capturing global relations between different parts of the input image. However, ViTs have a
much higher hardware demand due to the size of the attention matrices in MHA, which makes it
challenging to find a configuration that fits heterogeneous devices.

Table 1: ViT Configurations

ViT-Ti ViT-S ViT-B
Layers 12 12 12
Dim 192 384 768
Heads 3 6 12
Dim per Head 64 64 64
Params 5.7 M 22 M 86 M

To accommodate devices with various constraints, ViTs offer
multiple independently trained models with different sizes and
hardware requirements, such as the number of parameters, FLOPS,
MACs, and hardware settings such as latency and RAM, with sizes
typically increasing nearly at a logarithmic scale (Kudugunta et al.,
2023), see Table 1. Overall, in the configurations of ViTs, the
number of heads and their corresponding embedded dimension in
MHA emerges as the key hyperparameter that distinguishes them.

While being a reasonable solution for hardware adaptability, this
approach has two primary disadvantages: (1) Despite larger models, e.g., ViT-S and ViT-B, not having
a significant accuracy difference, each of these models needs to be individually trained, tuned, and
stored, which is not suitable for downstream scenarios where the hardware availability changes over
time. (2) Although the configuration range covers different hardware requirements, the granularity is
usually limited to a small selection of models and cannot cover all device constraints.

Observation By investigating the architecture of these configurations, we notice that ViT-Ti, ViT-S,
and ViT-B share the same architecture, except they differ in the size of the embeddings and the
corresponding number of attention heads they employ, having 3, 6, and 12 heads, respectively. In
essence, this can be expressed as V iTT ⊆ V iTS ⊆ V iTB , see Table 1.

Research question In this paper, we address the following question: Can we train a universal ViT
model with H attention heads and embedding dimension E, such that by increasing the embedded
dimension from e1 to e2, where e1 < e2 ≤ E, and its corresponding number of heads from h1 to h2,
where h1 < h2 ≤ H , the model’s accuracy gracefully improves?

+

MHAMHAMHAMHAMHAMHAMHAMHAMHAMHAMulti-Head
Attention

Norm

Norm

MLP

3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12

Subnetw
ork Selection

3 4 5 6 7 8 9 10 11 12

Patch
Embedding

+

Figure 2: Architec-
ture of HydraViT

Approach In this paper, we propose HydraViT, a stochastic training ap-
proach that extracts subsets of embeddings and their corresponding heads
within MHA across a universal ViT architecture and jointly trains them.
Specifically, during training, we utilize a uniform distribution to pick a
value k, where k ≤ H . Subsequently, we extract the embedded dimension
([0 : k × HeadDim]), where HeadDim is the size of each head, and its
corresponding first k heads ([0 : k]) and only include these in both the
backpropagation and forward paths of the training process. To enable the
extraction of such subnetworks, we reimplement all components of the ViT
including MHA, Multilayer Perceptron (MLP), and Normalization Layer
(NORM), see Fig. 2. By using this stochastic approach, the heads will be
stacked based on their importance, such that the first heads capture the most
significant features and the last heads the least significant ones from the input
image.

After the training phase is completed, during inference, HydraViT can dy-
namically select the number of heads based on the hardware demands. For
example, if only p% of the hardware is available, HydraViT extracts a subnet-
work with the embedded size of ⌈p×H⌉×HeadDim and the first ⌈p×H⌉
heads and runs the inference. This flexibility is particularly advantageous in
scenarios such as processing a sequence of input images, like a video stream, where latency is critical,
especially on constrained devices such as mobile devices. In such environments, where various tasks
are running simultaneously, and hardware availability dynamically fluctuates, or we need to meet a

2

Q K

V

X
X

X
X

X
X

X
X

X
X

X
X

: a subnetwork with 4 heads

	𝐻!	𝐻"	𝐻#	𝐻$	𝐻%	𝐻&

Embedding values are
ordered based on the

importance

The least
important head

The most important
head

Figure 3: In this figure, we illustrate an example of how we extract a subnetwork with 4 heads in
MHA with a total number of 6 heads. In HydraViT, with the stochastic dropout training, we order
the attention heads in MHA and consequently their corresponding embedding vectors based on their
importance.

deadline, the ability to adapt the model’s configuration without loading a new model offers significant
benefits.

Contributions:

1. We introduce HydraViT, a stochastic training method that extracts and jointly trains subnet-
works inside the standard ViT architecture for scalable inference.

2. In a standard ViT architecture with H attention heads, HydraViT can induce H submodels
within a universal model.

3. HydraViT outperforms its scalable baselines with up to 7 p.p. more accuracy at the same
throughput and performance comparable to the respective standard models DeiT-tiny, DeiT-
small, and DeiT-base, see Figure 1 for details.

2 Related Work

The original Vision Transformer (ViT) (Dosovitskiy et al., 2021) has become the default architecture
of Transformer-based vision models. While many works improve upon the original implementation
by changing the architecture or training process (Liu et al., 2022; Touvron et al., 2022; Wang et al.,
2021b), none of these works yield a scalable architecture and need multiple separate sets of weights
to be able to deploy an efficient model on devices with various constraints.

For Convolutional Neural Networks (CNNs), Fang et al. (2018) create a scalable network by pruning
unimportant filters and then repeatedly freezing the entire model, adding new filters, and fine-tuning.
Thereby, they achieve a network that can be run with a flexible number of filters. Yu et al. (2018)
achieve the same, but instead of freezing, they train a network for different layer widths at once. For
Transformers, Chavan et al. (2022) use sparsity to efficiently search for a subnetwork but then require
fine-tuning for every extracted subnetwork to acquire good accuracy.

Beyer et al. (2023) introduce a small change in the training process by feeding differently sized
patches to the network. Thereby, they can reduce or increase the number of patches, affecting the
speed and accuracy during inference. Other works use the importance of each patch to prune the least
important patches during inference to achieve a dynamic ViT (Yin et al., 2022; Rao et al., 2021; Tang
et al., 2022; Wang et al., 2021a).

Matryoshka Representation Learning (Kusupati et al., 2022) and Ordered Representations with Nested
Dropout (Rippel et al., 2014; Hojjat et al., 2023) are techniques to make the embedding dimension of
Transformers flexible, i.e., create a Transformer, which can also run partially. Kudugunta et al. (2023)
use Matryoshka Learning to make the hidden layer of the MLP in each Transformer block flexible.
Hou et al. (2020) change the hidden layer of the MLP and the MHA but still use the original dimension
between Transformer blocks and also between MHA and MLP. Salehi et al. (2023) make the entire
embedding dimension in a Transformer block flexible. However, they rely on a few non-flexible
blocks followed by a router that determines the embedding dimension for the flexible blocks, which
adds complexity and hinders the ability to choose with which network width to run.

3

hidden_dim
#p

at
ch
es

embed_dim

x

embed_dim

x

#p
at
ch
es

embed_dim

=		𝑊! 		𝑊"
Ti S B Ti S B

Ti
S

B

Ti

S

B

		𝐴! 		𝐴"

(a) MLP

em
be

d_
di
m

batch_size

#p
atc
he
s

Ti

S

B

(b) NORM

Figure 4: An illustration of subnetwork extraction within MLP and NORM layers, introduced in
HydraViT. Fig. 4a demonstrates how HydraViT slices activations, denoted as A1 and A2, along
with their respective weight matrices, denoted as W1 and W2, based on the number of utilized heads.
Also, Fig. 4b shows how HydraViT applies normalization on the activation corresponding to the used
heads. For simplicity, only subnetworks with 3, 6, and 12 heads, corresponding to ViT-Ti, ViT-S, and
ViT-B respectively, are presented.

Valipour et al. (2023) propose SortedNet that trains networks to be flexible in depth and width.
However, they mainly focus on evaluating with CNNs on CIFAR10 (Krizhevsky et al., 2009) and
Transformers on Natural Language Processing (NLP) tasks in contrast to us. Additionally, they keep
the number of heads in MHA fixed at 12, whereas we show that reducing the number of heads coupled
to the embedding dimension, i.e., the first 64 values of the embedding always belong to the first head
in MHA, the second 64 values belong to the second head, and so on, removes inconsistencies in the
scaling of the MHA and improves performance.

Motivated by these previous works, in HydraViT, we propose a flexible ViT in which we, unlike
previous works, adjust every single layer, and except for one initial training run, there is no further
fine-tuning required. Additionally, we show that reducing the number of heads coupled to the
embedding dimension, a weighted subnetwork sampling distribution, and adding separate classifier
heads improves the performance of subnetworks.

3 HydraViT

In this section, we introduce HydraViT, which builds upon the ViT architecture. We start by detailing
how general ViTs function. Next, we explain how HydraViT can extract subnetworks within the
MHA, NORM, and MLP layers. Finally, we describe the stochastic training regime used in HydraViT
to simultaneously train a universal ViT architecture and all of its subnetworks.

Vision Transformer HydraViT is based on the ViT architecture (Dosovitskiy et al., 2021). We
start by taking the input image x and breaking it down into P patches. Each patch is then embedded
into a vector of size E using patch embedding, denoted as EE . Positional encoding is subsequently
applied to the embeddings. Following these preprocessing steps, it passes the embeddings through L
blocks consisting of MHA with H heads denoted as AH , NORM layer denoted as NP , MLP denoted
as ME×M×E to predict the class of the input image x, where M is the dimension of the hidden layer
of the MLP. With the model parameters θ, we can formulate this architecture as follows:

Vθ(x; EE ;AH ;ME×M×E ;NP) (1)

HydraViT HydraViT is able to induce any subnetwork with k ≤ H heads within the standard
architecture of ViT. To do so, HydraViT extracts the first k heads denoted as A[0:k], and the embed-
dings corresponding to these heads in MHA and NORM layers. Additionally, it extracts the initial
[EH × k] neurons from the first and last layers of the MLP, and the first [MH × k] neurons from the
hidden layer of MLP. Therefore, we can formulate the subnetwork extracted from Eq. 1 as follows:

Vθk(x; E [0:(E
H ×k)];A[0:k];M[0:(E

H ×k)]×[0:(M
H ×k)]×[0:(E

H ×k)];N [0:(E
H ×k)]); k ∈ {1, 2, . . . ,H} (2)

Figure 4 illustrates how HydraViT extracts subnetworks within NORM and MLP layers. For
simplicity, we demonstrate subnetworks with 3, 6, and 12 heads, representing configurations for

4

Algorithm 1: Stochastic dropout training
Data: HydraViT: Vθk ,
Number of batches: Nbatch,
Number of the heads of the universal model: H ,
Uniform distribution: U .
for 1 ≤ ei ≤ Nepoch do

for 1 ≤ bi ≤ Nbatch do
* sample a subnetwork *\

Vθ
k∼U(k)−−−−−→ Vθk , k ∈ {1, 2, . . . H};

* calculate single-objective loss *\
L(Vθk(xbi), y);
Back-propagation through subnetwork Vθk ;

end
end

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

MHA
3 4 5 6 7 8 9 10 11 12

…Su
bn

et
w

or
k

Sa
m

pl
in

g

Iter = 1

Iter = 2

Iter = 3

Iter = 4

Iter = 5

Iter = 6

Iter = N

MHA
3 4 5 6 7 8 9 10 11 12

After Training:

Sorted based on the importance

Figure 5: Stochastic tail-drop
training.

ViT-Ti, ViT-S, and ViT-B, respectively. Additionally, in Figure 3, we present an example of how
HydraViT extracts a subset of heads and their corresponding embeddings in MHA layers. By
designing HydraViT this way, we can deploy only a subnetwork, e.g., HydraViT with 6 heads, and
still have the option at runtime to run with even fewer heads. It is not necessary to deploy HydraViT
with all weights, which is necessary for deployment on more constrained devices.

Stochastic dropout training Ideally, to achieve a truly scalable model, we need to extract all the
possible subnetworks, calculate their loss, sum them up, and minimize it. This yields the following
multi-objective optimization problem:

min
[θ1...θH]

N∑
i=1

H∑
h=1

L(Vθh(xi), yi) (3)

where N is the number of samples, xi is the input and yi is the ground truth. However, optimizing
this multi-objective loss function has a complexity of O(N × H) and requires at least H times
more RAM compared to a single-objective loss function to store the gradient graphs, a demand
that exceeds the capacity of a current GPU. To address this issue, we suggest employing stochastic
training: On each iteration, instead of extracting all of the H possible subnetworks and optimizing
a multi-objective loss function, we sample a value k ∈ {1, 2, . . . ,H} based on a uniform discrete
probability distribution U(k). Then we extract its respective subnetwork Vθk , and minimize only this
loss function, see Alg. 1. This approach decreases the complexity of Eq. 3 to O(N). In this training
regime, the first parts of embeddings and their corresponding attention heads become more involved
in the training process, while the later parts are less engaged. After training, due to this asymmetric
training, which can also be seen as an order-aware biased version of dropout, the embedding values
and their respective attention heads are ordered based on importance, see Fig. 5. Note that despite the
similarity to dropout we do not need scaling during training as our training and inference phases are
identical. Thereby, we can simplify the Eq. 3 as follows:

k ∼ U(k); min
θk

N∑
i=1

L(Vθk(xi), yi) (4)

Separate classifiers We implement a mechanism to train separate classifier heads for each subnet-
work. This adds a few parameters to the model, but only during training or when running the model
in a dynamic mode, i.e., having the ability to freely choose for each input with how many heads to
run the model. The advantage is that we do not need to find a shared classifier that can deal with the
different amounts of features each subnetwork provides. However, if we fix the number of epochs,
each classifier gets fewer gradient updates than the shared one, which is why we only use this when
training HydraViT with 3 subnetworks.

5

Table 2: The accuracy of HydraViT with our different design choices. "3 Heads" corresponds to a
subnetwork that has the same architecture as DeiT-tiny, "6 Heads" corresponds to DeiT-small, and
"12 Heads" corresponds to DeiT-base.

Weighted Separate Epochs Acc [%] Acc [%] Acc [%]
Sampling? Classifiers? 3 Heads 6 Heads 12 Heads

✗ ✗ 300 72.56 79.35 80.63
✗ ✗ 400 73.16 79.63 80.90
✗ ✗ 500 73.54 80.09 81.30
✓ ✗ 300 72.02 79.35 80.98
✓ ✗ 400 72.45 79.85 81.49
✓ ✗ 500 72.50 79.89 81.63
✗ ✓ 300 72.78 79.44 80.52
✗ ✓ 400 73.24 79.88 81.13
✗ ✓ 500 73.42 80.12 81.13
✓ ✓ 300 72.13 79.45 81.18
✓ ✓ 400 72.46 79.93 81.58
✓ ✓ 500 72.65 80.08 81.77

DeiT-tiny/small/base 72.2 79.9 81.8

Subnetwork sampling function When trying to train a single set of weights containing multiple
subnetworks, we expect an accuracy drop compared to if each subnetwork had its own set of weights.
While we mention that we use a uniform discrete probability distribution to sample subnetworks, we
can also use a weighted distribution function. With weighted subnetwork sampling, we can guide the
model to focus on certain submodels more than others. This is useful in a deployment scenario in
which we have many devices with similar resources and want to maximize accuracy for them while
maintaining good accuracy for other devices with different resources.

4 Evaluation

In this section, we evaluate the performance of HydraViT and compare it to the baselines introduced
in Sec. 2. We assess all experiments and baselines on ImageNet-1K (Deng et al., 2009) at a resolution
of 224× 224. We implement on top of timm (Wightman, 2019) and train according to the procedure
of Touvron et al. (2021) but without knowledge distillation. We use an NVIDIA A100 80GB PCIe to
measure throughput. For RAM, we measure the model and forward pass usage with a batch size of 1.
We also calculate GMACs with a batch size of 1, i.e., the GMACs needed to classify a single image.

For the experiments, we used an internal GPU cluster, and each epoch took around 15 minutes.
During prototyping, we estimate that we performed an additional 50 runs with 300 epochs.

First, we show that we can attain one set of weights that achieves very similar results as the three
separate DeiT models DeiT-tiny, DeiT-small, and DeiT-base (Touvron et al., 2021). Then, we look at
how our design choices, i.e., changing the number of heads coupled to the embedding dimension,
weighted subnetwork sampling, and adding separate classifiers for each subnetwork, impact the
accuracy. Afterward, we compare HydraViT to the following three baselines:

• MatFormer Kudugunta et al. (2023) focus only on the hidden layer of the MLP to achieve a
flexible Transformer and do not change the heads in MHA or the dimension of intermediate
embeddings.

• DynaBERT Hou et al. (2020) adjust the heads in MHA in addition to the dimension of
MLP and, as a result, make both flexible. However, the intermediate embedding dimension
is the same as the original one in between each Transformer block and between MHA and
MLP, which results in more parameters and MACs.

• SortedNet Valipour et al. (2023) change every single embedding, including the ones between
MHA and MLP and between Transformer blocks. However, they keep the number of heads
in MHA fixed, resulting in less information per head and introducing inconsistencies in the
scaling of the heads in MHA.

6

100 200 300 400 500
RAM [MB]

70

72

74

76

78

80

82

Ac
cu

ra
cy

 [%
]

T

S

B

RAM vs. Accuracy

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

Figure 6: Performance comparison of
HydraViT and baselines in terms of RAM us-
age. Similar to Figure 1, HydraViT achieves
the best accuracy per RAM usage.

20 10 0 10 20
t-SNE Component 1

20

10

0

10

20

30

t-S
NE

 C
om

po
ne

nt
 2

3H
4H
5H
6H
7H
8H
9H
10H
11H
12H

Figure 7: t-SNE representation of the last
layer of HydraViT with different numbers of
heads. As we can see, having more heads
leads to more compact representations.

In contrast, instead of keeping the number of heads fixed, we change it coupled to the embedding
dimension, such that each head gets the same amount of information as in the original ViT. We also
evaluate adding separate classifiers and employing weighted subnetwork sampling during the training.
Finally, we perform an attention analysis on our model to showcase the effect of adding heads in
MHA.

4.1 One set of weights is as good as three: Tiny, Small, and Base at once

For this experiment, we train HydraViT for 300, 400, and 500 epochs with a pre-trained DeiT-
tiny checkpoint. We show how our design choices, i.e., changing the number of heads coupled
to the embedding dimension, weighted subnetwork sampling, and adding separate heads for each
subnetwork, impact accuracy. Table 2 shows each subnetwork’s accuracy for all the combinations of
our design choices. Note that subnetworks of HydraViT with 3 heads result in the same architecture
as DeiT-tiny, subnetworks with 6 heads result in the same as DeiT-small, and subnetworks with 12
heads result in the same as DeiT-base.

To evaluate weighted subnetwork sampling, we show in Table 2 that with 25% weight for training the
subnetwork with 3 heads, 30% weight for 6 heads, and 45% weight for 12 heads, we can achieve an
improvement of 0.3 to nearly 0.6 p.p. for the subnetwork with 12 heads depending on the number
of epochs compared to uniform subnetwork sampling. Meanwhile, we get a change of -0.2 to +0.2
p.p. for the subnetwork with 6 heads and a decrease of 0.5 to 1.0 p.p. for the subnetwork with 3
heads compared to uniform subnetwork sampling. Therefore, we can increase accuracy at 12 heads
at the cost of an overall accuracy decrease. Keep in mind that removing only one head in the vanilla
DeiT-base significantly drops its accuracy to less than 30%, whereas HydraViT achieves more than
72% at 3 heads and 79% at 6 heads and is therefore more versatile.

To evaluate separate classifiers for each subnetwork, we show in Table 2 that it helps, in some cases,
improve each subnetwork’s accuracy by up to 0.2 percentage points. But it can also reduce the overall
accuracy because each classifier gets fewer gradient updates than a shared classifier.

Finally, we can combine weighted subnetwork sampling and separate classifiers to achieve a high
12-head accuracy, reaching up to 81.77% accuracy at 500 epochs while maintaining a good accuracy
at 3 and 6 heads. We notice that compared to only weighted subnetwork sampling, all the accuracies
are up to 0.15 p.p. higher. Due to starting with a pre-trained DeiT-tiny, the classifier for 3 heads needs
fewer gradient updates, and the weighted subnetwork sampling shifts the gradient bias to the larger
subnetworks, which leads to overall better accuracy, see Table 2.

To summarize, we show that with HydraViT, we can create one set of weights that achieves, on
average, the same accuracy as the three separate models DeiT-tiny, Deit-small, and DeiT-base. To
attain this one set of weights, we need at least 300 fewer training epochs than are necessary to train
the three different DeiT models. The subnetworks have identical RAM usage, throughput, MACs, and

7

Table 3: Comparison of HydraViT with the baselines MatFormer, DynaBERT, and SortedNet. The
table shows for selected subnetworks the RAM usage, MACs, model parameters, throughput and their
corresponding accuracy when trained from scratch (when applicable) and from the initial DeiT-tiny
checkpoint. Note that DynaBERT relies on Knowledge Distillation in every block, which is why it
reaches less than 1% accuracy when trained from scratch.

Method Dim RAM MACs Params Throughput Acc [%] Acc [%]
[MB] [G] [M] [# / s] from scratch from DeiT-tiny

MatFormer 768 508.45 17.56 86.6 1728.3 81.89 82.04

(Kudugunta et al., 2023) 384 366.08 11.99 58.2 2231.6 81.52 81.80
192 294.9 9.2 44.1 2601.4 79.40 80.48

DynaBERT 768 508.45 17.56 86.6 1725.7 - 81.30

(Hou et al., 2020) 384 287.62 7.45 44.1 3014.6 - 80.16
192 177.2 3.43 22.8 4944.5 - 73.00

SortedNet 768 508.45 17.56 86.6 1753.0 79.71 80.80

(Valipour et al., 2023) 384 169.6 4.6 22.1 3874.8 77.79 78.94
192 63.87 1.25 5.7 5898.2 66.64 70.20

HydraViT
768 508.45 17.56 86.6 1754.1 80.45 81.10
384 169.6 4.6 22.1 4603.6 78.40 79.28
192 63.87 1.25 5.7 10047.6 67.34 70.56

HydraViT 768 508.45 17.56 86.6 1754.1 81.93 81.60

800 Epochs 384 169.6 4.6 22.1 4603.6 79.84 80.15
192 63.87 1.25 5.7 10047.6 68.78 71.67

HydraViT
768 508.45 17.56 86.6 1754.1 81.56 82.25

9-12 Heads
704 440.19 14.82 72.9 1916.1 81.55 82.22
640 376.63 12.31 60.3 2242.9 81.51 82.21
576 317.8 10.04 49.0 2385.2 81.21 81.92

model parameters compared to the DeiT models. While in this section, we investigated HydraViT
with only 3 subnetworks, we evaluate HydraViT with more subnetworks in the next section.

4.2 HydraViT vs. Baselines

For the next experiment, we train HydraViT and the baselines introduced at the beginning of this
section for 300 epochs, once from scratch and once with DeiT-tiny as an initial checkpoint. While all
of these baselines reduce the embedding dimension, the difference is they reduce it in different parts
of the model. We choose 10 subnetworks for each model, setting the embedding dimension from 192
to 768 with steps of 64 in between. These steps correspond to having from 3 to 12 attention heads,
with steps of 1 in between. While HydraViT supports up to 12 subnetworks, we choose to exclude
the two smallest ones, as their accuracy drops too much.

Table 3 shows how each baseline compares to HydraViT relative to their RAM usage, GMACs,
model parameters, and throughput when training from scratch and when starting with a pre-trained
DeiT-tiny checkpoint. Figure 1 and Figure 6 show the results of all subnetworks when starting with
a pre-trained DeiT-tiny checkpoint. Besides HydraViT, only SortedNet can run with less than 150
MB of RAM while achieving on average 0.3 to 0.7 p.p. worse accuracy than HydraViT. The other
baselines, which have a more limited range of subnetworks, achieve a better accuracy when running
at higher embedding dimensions. The limited range, however, has the downside of not having smaller
subnetworks for devices with fewer resources. And if we limit HydraViT to a similar range as
MatFormer, training on 9 to 12 heads, we show that HydraViT reaches the overall highest accuracy
at 82.25% compared to MatFormer’s 82.04%. We also notice that HydraViT cannot reach the exact
same performance as the three DeiT models. This is because training for 10 subnetworks with a
shared classifier for only 300 epochs has its toll on the overall performance. One option is to train
longer, which we demonstrated for HydraViT with 3 subnetworks in Section 4.1. We repeat the
same here and train HydraViT for 800 epochs, showing that even with 10 subnetworks, we can still
achieve near-similar performance as the three different DeiT models. This is while having another 7
subnetworks with similar accuracy per resource trade-off points in between. One caveat, however, is
that when training from scratch, HydraViT struggles to get a good accuracy at 3 heads. This is most
likely due to a sampling bias as the subnetworks with one and two heads are not included in training
and due to training hyperparameters as they differ when training DeiT-tiny compared to DeiT-base.
For detailed results, e.g., each subnetwork for every baseline, See Table 4 in Appendix A.

8

Walker Hound

3 Heads 4 Heads 5 Heads 6 Heads 7 Heads 8 Heads 9 Heads 10 Heads 11 Heads 12 Heads

borzoi

Italian greyhound
whippet

0

50

100

English
 foxhound

whippet

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound
beagle

English
 foxhound

Walker hound

(a)

Quail

3 Heads 4 Heads 5 Heads 6 Heads 7 Heads 8 Heads 9 Heads 10 Heads 11 Heads 12 Heads

goose
mongoosequail
0

50

100

mongoosegoosequail
partrid

ge

ruffed grousequail

ruffed grousegoosequail
partrid

ge

ruffed grousequail
partrid

ge

ruffed grousequail
partrid

ge

ruffed grousequail
partrid

ge

ruffed grousequail
partrid

ge

ruffed grousequail
partrid

ge

ruffed grousequail

(b)

Tench

3 Heads 4 Heads 5 Heads 6 Heads 7 Heads 8 Heads 9 Heads 10 Heads 11 Heads 12 Heads

goldfishaxolotl
tench

0

50

100

barracouta
goldfishtench

goldfish
barracoutatench

barracouta
goldfishtench

goldfish
barracoutatench

goldfish
barracoutatench

goldfish
barracoutatench

goldfish
barracoutatench

goldfish
barracoutatench

goldfish
barracoutatench

(c)

Figure 8: Attention relevance maps (Chefer et al., 2021) of 3 samples from ImageNet-1K for
HydraViT with different number of heads. Increasing the number of heads leads to more confident
classification and a more condensed attention distribution.

In summary, HydraViT achieves, on average, better accuracy than its baselines except for MatFormer
within its limited scalability range. However, we show that training HydraViT on a similar scalability
range outperforms MatFormer.

4.3 Analyzing HydraViT’s inner workings

Fig. 8 displays the attention relevance map (Chefer et al., 2021) of selected subnetworks of HydraViT,
allowing us to visually investigate how the model’s attention shifts when increasing the number of
heads. Fig. 8c shows that fewer heads lead to more scattered attention, whereas increasing the number
of heads makes the attention maps more compact and focused on the main object. Additionally,
adding more heads enhances classification confidence. For instance, in Fig. 8a, the model misclassifies
the input with 3 heads, but as we add more heads, the classification gradually shifts to the correct
label and increases in confidence. We also illustrate the t-SNE visualization of the final layer for
different subnetworks, see Fig. 7. The figure shows that subnetworks with more heads exhibit a denser
representation, while having fewer heads results in a more sparse representation. This indicates that
increasing the number of heads enhances focus on the main object, which results in less entropy and,
thereby, a more compact t-SNE representation. It is worth noting that the outliers in this figure occur
due to the high norm values of the embeddings (Darcet et al., 2024).

4.4 Robustness of HydraViT

To show the robustness of HydraViT we also evaluate on different ImageNet variants: ImageNet-
v2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-A (Hendrycks et al., 2019),

9

0 5 10 15
GMACs

58
60
62
64
66
68
70
72

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-V2

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

Figure 9: Performance comparison of
HydraViT and baselines in terms of GMACs
on ImageNet-v2.

0 5 10 15
GMACs

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-R

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

Figure 10: Performance comparison of
HydraViT and baselines in terms of GMACs
on ImageNet-R.

ImageNet-Sketch (Wang et al., 2019), and ImageNet-ReaL (Beyer et al., 2020; Russakovsky et al.,
2015). On four of these five ImageNet variants, HydraViT achieves the overall best results. Figure 9
shows this for ImageNet-v2. Figure 10 shows the only ImageNet variant, i.e., ImageNet-R, where
HydraViT trained with 9 to 12 heads is not able to achieve the best results. Nevertheless, HydraViT
reaches a competitive accuracy on these difficult variants and has on average the best results. See
Appendix F for full results.

4.5 Limitations

Training complexity HydraViT optimizes 10 loss functions simultaneously, which increases the
computational load on the optimization progress. As a result, we require more training iterations to
achieve accuracy comparable to that of individually trained models such as DeiT-tiny, DeiT-small, and
DeiT-base. However, by training multiple models within a unified framework, HydraViT ultimately
requires much less total training time compared to training each of these 10 models for 300 epochs
individually. See Appendix C for more details on training complexity.

Evaluation on different hardware Our main focus with HydraViT is on the efficiency and scalability
on a single device, rather than the deployment on smaller hardware. However, metrics such as GMACs
and params, are consistent across different platforms. Additionally, the skeleton of HydraViT
is identical to DeiT, and others have evaluated the latency and performance metrics of DeiT on
smaller devices. For instance, FastViT (Vasu et al., 2023) evaluates DeiT on the iPhone 12 Pro,
MobileViT (Mehta and Rastegari, 2023) on the iPhone 12, SPViT (Kong et al., 2022) on the ZCU102
FPGA and Galaxy S20, and GhostNetV3 (Liu et al., 2024) on the Huawei Mate 40 Pro. These
studies provide insight into the expected performance and latency of HydraViT on different hardware,
indirectly supporting our claims about HydraViT’s adaptability.

Evaluation on other models While HydraViT has been evaluated on DeiT-tiny, DeiT-small, and
DeiT-base configurations, which have the same number of layers, we have not yet applied it to larger
models like DeiT-large with more layers. We plan to explore this in future works.

5 Conclusion

We introduce HydraViT, a novel approach for achieving a scalable ViT architecture. By dynamically
stacking attention heads and adjusting embedded dimensions within the MHA layer during training,
HydraViT induces multiple subnetworks within a single model. This enables HydraViT to adapt to
diverse hardware environments with varying resource constraints while maintaining strong perfor-
mance. Our experiments on ImageNet-1K demonstrate that HydraViT achieves significant accuracy
improvements compared to baseline approaches, with up to 5 percentage points higher accuracy at
the same computational cost and up to 7 percentage points higher accuracy at the same throughput.
This makes HydraViT a practical solution for real-world deployments where hardware availability is
diverse or changes over time.

10

Acknowledgments and Disclosure of Funding

This research has received funding from the Federal Ministry for Digital and Transport under the
CAPTN-Förde 5G project grant no. 45FGU139_H and the Federal Ministry for Economic Affairs
and Climate Action under the Marispace-X project grant no. 68GX21002E. It was supported in part
through high-performance computing resources available at the Kiel University Computing Centre.

References
Lucas Beyer, Olivier J. Henaff, Alexander Kolesnikov, Xiaohua Zhai, and Aaron van den Oord. 2020.

Are we done with ImageNet? arXiv preprint arXiv:2002.05709 (2020).

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. 2023.
Flexivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 14496–14506.

Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing. 2022.
Vision transformer slimming: Multi-dimension searching in continuous optimization space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4931–
4941.

Hila Chefer, Shir Gur, and Lior Wolf. 2021. Transformer interpretability beyond attention visual-
ization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
782–791.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. 2024. Vision Transformers
Need Registers. In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=2dnO3LLiJ1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations. https://openreview.net/
forum?id=YicbFdNTTy

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. Nestdnn: Resource-aware multi-tenant on-device deep
learning for continuous mobile vision. In Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking. 115–127.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
2020. The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization.
arXiv preprint arXiv:2006.16241 (2020).

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. 2019. Natural
Adversarial Examples. arXiv preprint arXiv:1907.07174 (2019).

Ali Hojjat, Janek Haberer, and Olaf Landsiedel. 2023. ProgDTD: Progressive Learned Image
Compression With Double-Tail-Drop Training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops. 1130–1139.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems 33 (2020),
9782–9793.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen, Geng
Yuan, Bin Ren, Hao Tang, et al. 2022. SPViT: Enabling Faster Vision Transformers via Latency-
Aware Soft Token Pruning. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XI. Springer, 620–640.

11

https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
https://doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.
(2009).

Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov,
Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain, et al. 2023. MatFormer: Nested
Transformer for Elastic Inference. arXiv preprint arXiv:2310.07707 (2023).

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanu-
jan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. 2022. Matryoshka
representation learning. Advances in Neural Information Processing Systems 35 (2022), 30233–
30249.

Zhenhua Liu, Zhiwei Hao, Kai Han, Yehui Tang, and Yunhe Wang. 2024. GhostNetV3: Exploring
the Training Strategies for Compact Models. arXiv:2404.11202 [cs.CV] https://arxiv.org/
abs/2404.11202

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. 2022. Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 12009–
12019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF international conference on computer vision. 10012–10022.

Sachin Mehta and Mohammad Rastegari. 2023. Separable Self-attention for Mobile Vision Trans-
formers. Transactions on Machine Learning Research (2023). https://openreview.net/
forum?id=tBl4yBEjKi

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. 2021. Dy-
namicvit: Efficient vision transformers with dynamic token sparsification. Advances in neural
information processing systems 34 (2021), 13937–13949.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. Do ImageNet
Classifiers Generalize to ImageNet?. In International Conference on Machine Learning. 5389–
5400.

Oren Rippel, Michael Gelbart, and Ryan Adams. 2014. Learning ordered representations with nested
dropout. In International Conference on Machine Learning. PMLR, 1746–1754.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Mohammadreza Salehi, Sachin Mehta, Aditya Kusupati, Ali Farhadi, and Hannaneh Hajishirzi. 2023.
Sharcs: Efficient transformers through routing with dynamic width sub-networks. arXiv preprint
arXiv:2310.12126 (2023).

Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. 2022.
Patch slimming for efficient vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 12165–12174.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. 2021. Mlp-mixer:
An all-mlp architecture for vision. Advances in neural information processing systems 34 (2021),
24261–24272.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. 2021. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning. PMLR, 10347–10357.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. 2022. Deit iii: Revenge of the vit. In European
conference on computer vision. Springer, 516–533.

12

https://arxiv.org/abs/2404.11202
https://arxiv.org/abs/2404.11202
https://openreview.net/forum?id=tBl4yBEjKi
https://openreview.net/forum?id=tBl4yBEjKi
https://doi.org/10.1007/s11263-015-0816-y

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and
Ali Ghodsi. 2023. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255
(2023).

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. 2023.
FastViT: A fast hybrid vision transformer using structural reparameterization. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 5785–5795.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems 30 (2017).

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. 2019. Learning Robust Global Repre-
sentations by Penalizing Local Predictive Power. In Advances in Neural Information Processing
Systems. 10506–10518.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. 2021b. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. In Proceedings of the IEEE/CVF international conference on computer
vision. 568–578.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. 2021a. Not all images are
worth 16x16 words: Dynamic transformers for efficient image recognition. Advances in neural
information processing systems 34 (2021), 11960–11973.

Ross Wightman. 2019. PyTorch Image Models. https://github.com/rwightman/
pytorch-image-models. https://doi.org/10.5281/zenodo.4414861

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. 2022. A-
vit: Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10809–10818.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2018. Slimmable neural
networks. arXiv preprint arXiv:1812.08928 (2018).

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. 2022. Metaformer is actually what you need for vision. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10819–10829.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

A Detailed Results of Submodels

Table 4: Detailed results of all subnetworks for each Baseline and HydraViT. Note that DynaBERT
relies on knowledge distillation in every block, which is why it reaches less than 1% accuracy when
trained from scratch.

Method Dim RAM MACs Params Throughput Acc [%] Acc [%]
[MB] [G] [M] [# / s] from scratch from DeiT-tiny

Matformer

768 508.45 17.56 86.6 1728.3 81.89 82.04
704 484.73 16.63 81.8 1822.5 81.89 82.04
640 461.0 15.7 77.1 1860.3 81.89 82.04
576 437.27 14.78 72.4 1960.1 81.87 81.99
512 413.55 13.85 67.7 2020.7 81.79 81.95
448 389.81 12.92 63.0 2128.4 81.66 81.94
384 366.08 11.99 58.2 2231.6 81.52 81.80
320 342.36 11.06 53.5 2356.4 81.09 81.71
256 318.63 10.13 48.8 2444.8 80.47 81.25
192 294.9 9.2 44.1 2601.4 79.40 80.48

DynaBERT

768 508.45 17.56 86.6 1725.7 - 81.30
704 471.65 15.68 79.5 1876.8 - 81.29
640 434.85 13.88 72.4 1995.7 - 81.20
576 398.03 12.16 65.3 2213.7 - 81.22
512 361.23 10.51 58.2 2412.4 - 81.05
448 324.43 8.94 51.2 2709.3 - 80.71
384 287.62 7.45 44.0 3014.6 - 80.16
320 250.81 6.03 37.0 3522.5 - 78.78
256 214.01 4.69 30.0 4157.1 - 77.04
192 177.2 3.43 22.8 4944.5 - 73.00

SortedNet

768 508.45 17.56 86.6 1753.0 79.71 80.80
704 440.19 14.82 72.7 1629.5 79.79 80.70
640 376.63 12.31 60.3 1846.6 79.82 80.74
576 317.8 10.04 49.0 2318.3 79.69 80.60
512 263.68 7.99 38.8 2466.7 79.28 80.43
448 214.27 6.18 29.9 2612.1 78.88 79.93
384 169.6 4.6 22.1 3874.8 77.79 78.94
320 129.63 3.25 15.4 3886.0 75.85 77.55
256 94.4 2.14 10.0 4654.6 72.55 74.92
192 63.87 1.25 5.7 5898.2 66.64 70.20

HydraViT

768 508.45 17.56 86.6 1754.1 80.45 81.10
704 440.19 14.82 72.7 1916.1 80.47 81.08
640 376.63 12.31 60.3 2242.9 80.42 81.03
576 317.8 10.04 49.0 2503.2 80.36 80.99
512 263.68 7.99 38.8 3141.5 80.03 80.80
448 214.27 6.18 29.9 3616.4 79.45 80.35
384 169.6 4.6 22.1 4603.6 78.40 79.28
320 129.63 3.25 15.4 5652.0 76.66 77.80
256 94.4 2.14 10.0 7558.2 73.39 75.40
192 63.87 1.25 5.7 10047.6 67.34 70.56

768 508.45 17.56 86.6 1754.1 81.93 81.60
704 440.19 14.82 72.7 1916.1 81.90 81.57

HydraViT

640 376.63 12.31 60.3 2242.9 81.84 81.63

800 Epochs

576 317.8 10.04 49.0 2503.2 81.73 81.48
512 263.68 7.99 38.8 3141.5 81.54 81.36
448 214.27 6.18 29.9 3616.4 80.98 80.92
384 169.6 4.6 22.1 4603.6 79.84 80.15
320 129.63 3.25 15.4 5652.0 78.07 78.43
256 94.4 2.14 10.0 7558.2 74.83 75.95
192 63.87 1.25 5.7 10047.6 68.78 71.67

14

0 100 200 300 400 500 600 700 800
Epoch

2

4

6

8

10
Lo

ss

Validation loss of all submodels of HydraViT (800 epochs) on INet-1K
3 heads
4 heads
5 heads
6 heads
7 heads
8 heads
9 heads
10 heads
11 heads
12 heads

Figure 11: Training loss for all subnetworks when training HydraViT for 800 epochs.

Table 5: Average training throughput of HydraViT and DeiT models for one epoch.

Model Throughput [#/s]
DeiT-tiny 1610

DeiT-small 821
DeiT-base 340
HydraViT 1093

B Generalization of Submodels

Figure 11 shows that we do not overfit on any subnetwork even when training for 800 epochs.
Instead, in HydraViT, stochastic dropout training minimizes the loss more or less uniformly across
all subnetworks. This is especially true when we have more subnetworks, as only one subnetwork is
optimized per batch and our loss objective gets more complicated. Therefore HydraViT needs more
epochs to reach a specific accuracy with a subnetwork than the individually trained subnetwork.

C Training Complexity

Table 5 shows that we need to take model size into account when comparing training epochs. While
DeiT-tiny is by far the fastest to complete one epoch, HydraViT is actually on average faster to train
with its 10 subnetworks than DeiT-small and DeiT-base.

D Model Loading Time

Table 6 shows that the loading time, i.e., the time it takes to load a model into RAM, is for many
applications low enough to enable model switching during runtime.

Table 6: HydraViT loading times, each model was loaded six times.
Model Heads Dim Latency [ms]

HydraViT 3 192 74.1 ± 1.4
HydraViT 6 384 133.3 ± 6.1
HydraViT 12 768 138.6 ± 5.8

15

Table 7: The accuracy of HydraViT when initialized with DeiT-tiny vs DeiT-base. While the
accuracy at the 12 heads is higher with DeiT-base initialization the average accuracy is lower than
with DeiT-tiny initialization.

Initialization Epochs Acc [%] Acc [%] Acc [%]
3 Heads 6 Heads 12 Heads

DeiT-tiny 400 73.16 79.63 80.90
DeiT-base 400 70.83 79.62 81.84

E Initializing HydraViT with DeiT-base instead of DeiT-tiny

In HydraViT, the attention heads are treated as stacks, with each head built on top of the previous
ones. The smallest submodel, with 3 heads, is equivalent to DeiT-tiny. Initializing with DeiT-tiny
positions this 3-head submodel at its optimal starting point and ensures that larger submodels, which
also contain these 3 heads, also start from a good local optimum. By employing the stochastical
dropout training introduced in HydraViT, additional heads (4th, 5th, etc.) are trained iteratively on
top of the initial three heads, creating a layered stack of attention heads. DeiT-base initialization
helps HydraViT at 12 heads but does not yield strong smaller submodels, as Table 7 shows.

F Results on ImageNet variants

Figure 12 shows all results of HydraViT and baselines in terms of GMACs and throughput on all
ImageNet variants. Note that Figure 9 and Figure 10 contain the results for accuracy per GMACs on
ImageNet-v2 and ImageNet-R.

16

0 5 10 15
GMACs

78

80

82

84

86

88

Ac
cu

ra
cy

 [%
]

T

S
B

ImageNet-ReaL

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

0 5 10 15
GMACs

5

10

15

20

25

30

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-A

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

0 5 10 15
GMACs

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-Sketch

DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 4000 6000 8000 10000
Throughput [#/s]

5

10

15

20

25

30

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-A
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 4000 6000 8000 10000
Throughput [#/s]

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-R
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 4000 6000 8000 10000
Throughput [#/s]

78

80

82

84

86

88

Ac
cu

ra
cy

 [%
]

T

S
B

ImageNet-ReaL
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 4000 6000 8000 10000
Throughput [#/s]

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-Sketch
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

2000 4000 6000 8000 10000
Throughput [#/s]

58
60
62
64
66
68
70
72

Ac
cu

ra
cy

 [%
]

T

S

B

ImageNet-V2
DeiT
DynaBERT
HydraViT
HydraViT(800e)
HydraViT(9-12 heads)
MatFormer
SortedNet

Figure 12: Full results of HydraViT and baselines in terms of GMACs and throughput on ImageNet
variants.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that we are introducing a scalable ViT, inducing multiple subnetworks
into one model, which is what we design and then verify in the evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention limitations throughout the evaluation when discussing results and
also include a separate section, see Section 4.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [NA]
Justification: We include no proofs and only provided a formal definition for the problem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results. We submit the code to verify the basic results as supplementary material and also
open-source it at https://github.com/ds-kiel/HydraViT.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

https://github.com/ds-kiel/HydraViT

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We open-source the code at https://github.com/ds-kiel/HydraViT for
reproducing the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main experimental settings are in the paper, while we provide the code for
detailed experimental settings and details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

20

https://github.com/ds-kiel/HydraViT
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We list the compute resources in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects or participants, and we adhere
to licenses to prevent data-related concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: HydraViT improves scalability of transformers, which makes deploying them
on devices with various constraints easier. We do not believe there is a societal impact of
that.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

21

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We used the ImageNet-1K dataset in the computer vision domain and believe
there is no risk for misuse of the trained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We build on top of the pytorch-image-models repository, properly credit them,
and follow their license. We also include a citation for the repository and the datasets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new model and training scripts to facilitate the training, as
described in Section 3. We include everything necessary in the code release, with respective
documentation and licensing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

23

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related Work
	HydraViT
	Evaluation
	One set of weights is as good as three: Tiny, Small, and Base at once
	HydraViT vs. Baselines
	Analyzing HydraViT's inner workings
	Robustness of HydraViT
	Limitations

	Conclusion
	Detailed Results of Submodels
	Generalization of Submodels
	Training Complexity
	Model Loading Time
	Initializing HydraViT with DeiT-base instead of DeiT-tiny
	Results on ImageNet variants

