ABEL: Sample Efficient Online Reinforcement
Learning for Neural Theorem Proving

Fabian Gloeckle Jannis Limperg Gabriel Synnaeve Amaury Hayat
FAIR at Meta LMU Munich FAIR at Meta Ecole des Ponts Paris
Ecole des Ponts Paris

Abstract

We propose a scalable and efficient reinforcement learning framework as a strong
baseline for theorem proving with limited data. This baseline reaches performances
comparable to the current state-of-the-art in theorem proving with 59.8 % of
problems solved on MiniF2F-valid cumulatively and the current state of the art
of 7/640 solved problems on PutnamBench, while only training on a few hundred
examples in the reinforcement learning set. This a first step toward an efficient and
easily reproducible combination of autoformalization, synthetic data generation
and reinforcement learning, which could unlock significant advancements in neural
theorem proving.

1 Introduction

Mathematical reasoning constitutes a major challenge for deep-learning models, and now a very active
research area [Williamsonl 2024]]. Formal languages such as Isabelle [[Paulson, 1994, Coq [Barras
et al., [1997], and Lean [de Moura et al., 2015, Moura and Ullrich| [2021]] have been developed to
enable automatic computer verification of proofs and can now serve as grounding to prevent language
model hallucinations. Several approaches relying on LLMs and formal proof search environments
have recently been proposed (App. [A), but were limited by the scarcity of formal training data
(around 100k lemmas in Lean’s central theorem library Mathlib [Mathlib Community} 2020]) and
the data inefficiency of machine learning methods. For this reason, most of the works on neural
theorem proving have focused on obtaining more data, either from autoformalization or synthetic
data generation [Xin et al.,[2024a].

In this paper, we present ABEL, a scalable and compute efficient online reinforcement learning frame-
work for theorem proving. This serves as a strong baseline of what is achievable with very limited
data and as a first step toward a combination of online reinforcement learning and autoformalization.

We show that training on only several hundred maths exercises, one can reach performances com-
parable to the current state-of-the-art in theorem proving. We use MiniF2F [Zheng et al.| [2021]],
a well-established benchmark in the field, as our primary evaluation set. Our model outperforms
the cumulative performances of [Lample et al.,|2022]] with 13 times less compute and no synthetic
data. It also reaches a new state-of-the-art on PutnamBench [Tsoukalas et al., [2024bJ], a dataset of
formidably challenging olympiad-like problems from the Putnam competition in North America, by
solving 7 problems overall and discovering one formalization error, 4 more than the previous best
[Tsoukalas et al.,[2024a].

This suggests that combining our framework with autoformalization and synthetic data generation
could achieve much higher levels of performance and unlock significant advancements in neural
theorem proving.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

2 Method

When approaching theorem proving as a problem of reinforcement learning, we must take care to
cast the problem in a way that allows for efficient exploration and recombination of learned features.
In this work, we follow the formulation of hypertree proof search (HTPS) [Lample et al., [2022] and
opt for a two-fold tree structure for proof searches. An individual complete Lean proof is naturally
represented as a tree, where nodes correspond to proof goals and tactics like induction transform a
proof goal into a set of children, or subgoals, that jointly suffice to be shown instead (e.g. induction
base and step). Proof search, on the other hand, involves applying several tactics at each node, proof
success of any of which results in proof success for the parent node. Such a tree can be represented
as an alternating tree of AND-joined sets of subgoals and OR-joined sets of tactic attempts, making
the overall tree an AND/OR-tree or, equivalently, a “proof hypertree’ﬂ

Our reinforcement learning system for formal theorem proving in Lean 4 [Moura and Ullrich| [2021]]
consists of three components: a programming interface based on Aesop [Limperg and From, 2023 to
organize proof searches in Lean 4, the HTPS proof search procedure inspired by the AlphaZero expert
iteration algorithm [Anthony et al.,|2017} |Silver et al.,|2018]] and an online retraining mechanism. We
will explain each component in the following paragraphs.

AesopRepl: a proof search interface for Lean 4 Our Read-Eval-Print Loop (REPL), AesopRepl,
makes the infrastructure of Lean’s proof search automation tactic Aesop [Limperg and From, 2023
available as a command line interface. Aesop manages an AND/OR-proof tree and can receive
tactic suggestions generated by a language model via the interface. It executes the tactics in their
respective contexts and updates the tree, checking which goals have been resolved. Once the root
node of the proof tree (i.e., the initial goal) is proved, the REPL passes the resulting proof to Lean’s
kernel. This guards against bugs in the applied tactics. The main benefit of using Aesop’s proof tree
implementation is that it allows goals with shared metavariables to be processed semi-independently,
improving on GPT-f [Polu and Sutskever, [2020]] and LeanDojo [Yang et al., 2023]] and matching
HTPS [Lample et al.l 2022]]. See App. [J|for details.

Proof search with HTPS Our proof search procedure uses the AlphaZero algorithm [Silver et al.,
2018 with the adaptations for hypertrees proposed by [Lample et al.,[2022]]. A proof search consists
of several rounds, each of which has three steps: node selection, expansion and value propagation.
The proof search is terminated when either a proof has been found during a round or a given node
expansion budget is exceeded. In the selection phase, the tree is traversed down until a solving set
of leaf nodes is found, i.e. a set of nodes which, if proven, would finish the overall proof. This
means that at AND-nodes, all children are selected while at OR-nodes, we select a tactic based on the
established predictor upper confidence bound for trees (PUCT) policy [[Kocsis and Szepesvari, 2006,
Rosin| [2011} |Silver et al.l 2017] given below. In the expansion phase, all selected nodes are expanded
simultaneously, i.e. a tactic model suggests tactics and a critic model evaluates the value (likelihood
of proof success) of the given proof goal. We execute the tactics eagerly in Lean in order to return
from successful proof searches as early as possible. The transition dynamics T'(s,a) = s’ of Lean,
where s is a state/goal and a an action/tactic, i.e. the effect of a tactic execution, are sometimes hard
to model (tactics like simp involve a search procedure themselves), so we follow HTPS in using a
state value critic ¢(s") as opposed to a state-action critic Q(s, a) in AlphaZero [Silver et al.,[2018]].
These critic values of expanded nodes are then propagated up the tree: each edge (s, a) maintains a
visit count N (s, a) and a cumulative action value W (s, a). Each node s in the selected proof tree is
assigned an update value v(s) which is defined as follows:

1 if s is proved,
v(s) = < c(s) if s was just expanded,
Y11 chilaor s v(¢) otherwise,
where v € [0, 1] is a depth penalty factor and ¢(s) denotes the evaluation provided by the critic model.

The cumulative action value W (s, a) of each edge (s, a, s') in the selected tree is then increased by
the update value v(s’) of its target node, and its visit count by 1. With these quantities, we can define

!when considering the set of children of a tactic’s child AND-node the collective target of a hyperedge

the PUCT selection policy:

Za' N(Sa a/)

PUCT(s) = argmax Q(s, a) + Cpuet - 7(a | 5) 1+ N(s.a)

where

W(s,a) .
Q(s,a) = { N 1 N(s,a)>0,
c(s) otherwise

is the empirical action value of the edge (s, a) and cpycy is an exploration coefficient and 7 (a | s) is the
prior of action a under our tactic model 7, for which we take the product of token probabilities of each

tactic sequence, renormalized to sum to one at any node. Note that in our choice of Q(s, a) = c(s)

for unvisited nodes we depart from |Lample et al.| [2022] (who choose Q(s, a) = %), leveraging the
intuition that ¢(s) is trained to match the expected proof success rate when performing tree search
using 7, and that a is a sample from 7.

Following |[Lample et al.|[2022]], instead of fixing proof search hyperparameters upfront, we sample
them on a per proof attempt basis (App[H).

Online reinforcement learning When a proof search is terminated (because a proof has been
found or the search budget is exhausted), we extract training samples for the policy and critic models
for retraining. We train the policy model with supervised training using standard causal language
modelling loss on all tactic samples that are part of a proof of their parent node — regardless of
whether they were part of a proof of the root node (All Solved setting of |[Lample et al.|[2022]]). This
makes the tactic reinforcement learning loop a form of iterated rejection sampling.

The critic model is trained with supervised training using a binary cross-entropy loss of Bernoulli

variables for the classification task of provability. As the supervision target, we use Bernoulli(V'(s))

with V() given by

W(s,a*)

V(s) = —/———=
(5) N(s,a*)’

for a node s and a* = PUCT(s). Unlike Lample et al[[2022]], we do not threshold the visit counts

> a N(s,a) of a node to be selected.

Our distributed reinforcement learning setup comprises worker and trainer GPUs, prover threads
controlling Lean AesopRepl processes as well as a centralized replay buffer and a task dispenser
(App. D). We select proof tasks with prioritized sampling to favor exploration: if n; is the number
of successful proof searches for problem i so far, we use a weight proportional to (n; + 1)~ for
sampling problem ¢ as the next task, where o > 0 is an upsampling coefficient for hard taskﬂ We
postprocess tactics to induce a distribution shift from style aimed at efficient proof presentation as
pursued in Lean’s Mathlib [Mathlib Communityl 2020] to effective proof search (App.[E).

3 Results

We conduct experiments on challenging theorem proving datasets, showcasing the efficiency of our
theorem proving system. We use Llama 3.1 base 8B [Dubey et al.,[2024] as a starting point and
finetune on proof step data from Mathlib [Mathlib Community, [2020] extracted with LeanDojo [Yang
et al., 2023]] (App. [for details). We then apply the RL training procedure described in Section 2]
Our results are summarized in Table[I]

Our models’ cumulative performance, while below other approaches relying on large sets of data,
outperforms HTPS [Lample et al., [2022] despite using a much smaller compute budget and no
synthetic data. Our models also show high pass@1 performances on the test set, which are only
surpassed by DeepSeek-Prover, and achieve a new state-of-the-art on PutnamBench. This is detailed
below.

2o = 0 reduces to uniform sampling, & = +oo0 to uniform sampling among least often solved problems

Table 1: Performance of different models on MiniF2F-valid and MiniF2F-test. We compare
representative methods without reinforcement learning with recent expert iteration and online rein-
forcement learning approaches. Numbers on MiniF2F-fest are with the indicated evaluation budget
given as Nagempts X Nexpansions X Mactics- For MiniF2F-valid, we report cumulative solve rates over
the course of the run where it is included in the reinforcement learning set. We convert train times
to A100-days with a factor 3 for H100 to A100 performance [Databricks| [2023]]. For additional
discussion and details, see App.[Kl

Model Type test Budget valid Train time RL set size
eval. cumul. (A100-days)

Llemma-7b pretr. 26.2 1x 600s x 32 - (1000) -

ReProver SFT 26.5 1 X 600s x 64 - 5 -

Lean automation alg. 27.5 1 26.6 cval - -
DeepSeek-Prover exp.it. 48.8 8192 60.2 ? 8SM
DeepSeek-Prover-1.5 exp.it+RL 55.0 1 x 3200 - ? M

GPT-f exp.it. 36.6 64 x 512 x 8 47.3 eval. 2000 327 + synth.
HTPS RL 41.0 64 x 5000 x 26 avg. 58.6 1360 244 + synth.
ABEL (ours) RL 41.3 1% 128 x 64 59.8 96 244

Outperforming HTPS with 13x less compute Training with 256 GPUs on MiniF2F-valid, we
reach a cumulative solve rate of 59.8% after 3 hours of training time, outperforming HTPS’s 58.6%
trained with an additional synthetic supervised dataset of Lean problems and 54.9% without. These
results required HTPS 30240 A100-hours of compute, while we need 768 H100-hours ~ 2304 A-
100-hours [Databricks| [2023]], approximately 13 times less. Halving the number of GPUs to 128, we
reach a cumulative solve rate of 57.4% after 5 hours, still competitive with HTPS.

A new state of the art on PutnhamBench When run on a 1:1:1 mix of problems from MiniF2F-
valid, MiniF2F-test and PutnamBench [Tsoukalas et al., [2024b], we solve 7/640 problems in the
setting with provided solutions after only attempting each problem between 6 and 16 times (and with
no improvements thereafter with up to 590 attempts). This improves over the previous state of the art
of 4/640 solved problems [Tsoukalas et al.,|2024al] held by InternLM2-StepProver [Wu et al.| [2024]]
and obtained with 4096 attempts per problem. In a different run, our system solved another problem,
bringing the total to 8/640. See App. [B]for the proofs, a qualitative evaluation and the cumulative
solve rates on the respective datasets.

Importance of online training We evaluate the performance of pure sampling, expert iteration
[Anthony et al.} 2017, [Polu et al., [2022], and online reinforcement learning by comparing runs with
model updates at different frequencies. Our findings indicate that online reinforcement learning is

crucial (App.[C).

Stability and exploration Reinforcement learning on MiniF2F-valid — which comprises 244
problems only — presents challenges regarding stability and distributional collapse. In our online
training loop, this becomes exacerbated by the fact that at least 26.6% of problems in MiniF2F can
be solved by a single or a short sequence of automation tactics (among aesop, ring, linarith,
nlinarith). Such proofs will be found first and could quickly flood the trainers low-quality data
that lacks diversity. We remediate this issue in several ways: by setting a burn-in of 8000 training
samples to discard before training, by using supervised data for 10% of training samples, by using
hard negative sampling (Sect. [2)) by using a large number of tactics per node and decoding parameters
that favor diversity as well as carefully tuning key hyperparameters (App. [[). As shown in Fig.[T] the
policy continues to explore and optimizes solved problems to shorter proofs, but we still see a slow
decline in tactic diversity when problem solve rates eventually plateau.

IS v
D
(=)
1

I
o
1

N
N
o

1

|P'"1l | |

T T T 1 0 T T T
50 100 150 200 0 1 2 3 4

time (k proofs) time (h)

avg. proof length (steps)
w
unique tactics (%)

[E

o 4

Figure 1: Evolution of average proof length (left) and tactic diversity (right) over the course of
training. Running average of the number of steps of the most recent proof per problem, indexed by
the total number of proofs found so far. Over the course of each of the five depicted runs, models
“golf” proofs to more compressed versions. At the same time, the policy loses diversity: the proportion
of unique tactics among the total number of tactics sampled at each expansion declines (two runs).

4 Conclusion

We presented an online reinforcement learning method for Lean that reaches near state-of-the-art
performance on theorem proving while relying only on few hundred problems in its reinforcement
learning problem set. It is orders of magnitude more sample efficient than methods of comparable
performance that require extensive synthetic datasets with up to millions of additional data points
[Xin et al.} 2024a], and around 13 times more compute efficient than the current state-of-the-art RL
method [Lample et al., [2022].

Online reinforcement learning can be tricky to stabilize but carefully tuned, complements and
empowers other recent techniques such as synthetic data from large-scale autoformalization [Xin
et al., 2024a], bootstrapping chains-of-thought [Lin et al.,|2024] or hybrid local-global tree search
[Xin et al., 2024b]|. In future work, we believe the setup should be adapted to condition the policy on
the node’s ancestors, i.e. on the partial proof to be completed. When deploying automated provers for
theory autoformalization, additional conditioning on a human-written or language model generated
informal proof is additionally required, for instance in a setting similar to Draft-Sketch-Prove [Jiang
et al.,[2023].

Harnessing reinforcement learning as a test-time inference technique could allow tackling challenging
problems such as the International Mathematics Olympiad [DeepMind, [2024] or autoformalizing
mathematical theories, where sample efficiency is the primary concern.

Acknowledgments

We thank, in no particular order, Aram Markosyan, Jonas Gehring, Vegard Mella, Quentin Carbon-
neaux, Badr Youbi Idrissi, Mathurin Videau, Robin San Roman, Gwenaélle Léon, Kaiyu Yang, Johan
Commelin, Julia Kempe, Yunzhen Feng, Olivier Teytaud, Guillaume Lample, Timothée Lacroix
and all FAIR PhD students, CodeGen team members and reasoning team members for helpful and
enriching discussions and technical support.

References

Alberto Alfarano, Francois Charton, and Amaury Hayat. Global lyapunov functions: a long-standing open
problem in mathematics, with symbolic transformers. Preprint, 2024.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree search,
2017. URL https://arxiv.org/abs/1705.08439.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and Jeremy
Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for mathematics. In
The Twelfth International Conference on Learning Representations, 2024.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe Filliatre, Eduardo Gimenez,
Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The coq proof assistant reference manual:
Version 6.1, 1997.

Charles Blundell, Lars Buesing, Alex Davies, Petar Velickovi¢, and Geordie Williamson. Towards combinatorial
invariance for Kazhdan-Lusztig polynomials. Representation Theory of the American Mathematical Society,
26(37):1145-1191, 2022.

Databricks. Benchmarking large language models on nvidia h100 gpus with coreweave. https://www,
databricks.com/blog/coreweave-nvidia-h100-part-1, 2023. Accessed: 2024-09-20.

Alex Davies, Petar Velickovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad TomaSev, Richard Tanburn,
Peter Battaglia, Charles Blundell, Andrds Juhdsz, et al. Advancing mathematics by guiding human intuition
with ai. Nature, 600(7887):70-74, 2021.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem
prover. In Automated Deduction - CADE-25, 25th International Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, 2015.

DeepMind. Ai achieves silver-medal standard solving international mathematical olympiad problems. https:
//deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/, July
2024. Accessed: 2024-09-20.

Michael R Douglas. Machine learning as a tool in theoretical science. Nature Reviews Physics, 4(3):145-146,
2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783,2024. URL https://doi.org/10.48550/arXiv.2407.21783.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and repair with
large language models, 2023.

Fabian Gloeckle, Baptiste Roziere, Amaury Hayat, and Gabriel Synnaeve. Temperature-scaled large language
models for lean proofstep prediction. In The 3rd Workshop on Mathematical Reasoning and Al at NeurIPS,
volume 23, 2023.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration,
2020.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with informal
proofs, 2023.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. /CLR, 2015.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Proceedings of the 17th European
Conference on Machine Learning, ECML 06, page 282-293, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 354045375X. doi: 10.1007/11871842_29. URL https://doi.org/10.1007/11871842_29,

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel Ebner,
Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem proving. arXiv
preprint arXiv:2205.11491,2022. URL https://doi.org/10.48550/arXiv.2205.11491,

https://arxiv.org/abs/1705.08439
https://www.databricks.com/blog/coreweave-nvidia-h100-part-1
https://www.databricks.com/blog/coreweave-nvidia-h100-part-1
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1007/11871842_29
https://doi.org/10.48550/arXiv.2205.11491

Jannis Limperg and Asta Halkjer From. Aesop: White-box best-first proof search for Lean. In Proceedings of
the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 253-266, 2023.
URL https://doi.org/10.1145/3573105.3575671,

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking and
proving, 2024. URL https://arxiv.org/abs/2407.10040.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

The Mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, page 367-381. ACM, 2020. URL https://doi.org/10,
1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In
28th International Conference on Automated Deduction, pages 625-635. Springer, 2021. URL https!
//doi.org/10.1007/978-3-030-79876-5_37.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset of
high-quality mathematical web text, 2023. URL https://arxiv.org/abs/2310.06786.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv preprint
arXiv:2009.03393,2020. URL https://doi.org/10.48550/arXiv.2009.03393,

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. Formal
mathematics statement curriculum learning, 2022.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203-230, 2011.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code, 2023.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018. URL https:
//10.1126/science.aar6404.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. Putnambench leaderboard, 2024a. URL https://trishullab.github)
io/PutnamBench/leaderboard.htmll

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur,
and Swarat Chaudhuri. Putnambench: A multilingual competition-mathematics benchmark for formal
theorem-proving. In Al for Math Workshop@ ICML 2024, 2024b.

Geordie Williamson. Is deep learning a useful tool for the pure mathematician? Bull. Amer. Math. Soc. (N.S.),
61(2):271-286, 2024. ISSN 0273-0979,1088-9485. doi: 10.1090/bull/1829. URL https://doi.org/10,
1090/bull/1829.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. Lean-github: Compiling github lean repositories for a
versatile lean prover. arXiv preprint arXiv:2407.17227, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. arXiv
preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, Xuan
Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement learning
and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

https://doi.org/10.1145/3573105.3575671
https://arxiv.org/abs/2407.10040
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2310.06786
https://doi.org/10.48550/arXiv.2009.03393
https://10.1126/science.aar6404
https://10.1126/science.aar6404
https://trishullab.github.io/PutnamBench/leaderboard.html
https://trishullab.github.io/PutnamBench/leaderboard.html
https://doi.org/10.1090/bull/1829
https://doi.org/10.1090/bull/1829

Kaiyu Yang. minif2f-lean4, 2024. URL https://github.com/yangkyll/miniF2F-lean4|

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger,
and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models. arXiv
preprint arXiv:2306.15626, 2023. URL https://doi.org/10.48550/arXiv.2306.15626|

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale

lean problem set formalized from natural language math problems, 2024. URL https://arxiv.org/abs/
2406.03847.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal olympiad-
level mathematics. arXiv preprint arXiv:2109.00110, 2021.

https://github.com/yangky11/miniF2F-lean4
https://doi.org/10.48550/arXiv.2306.15626
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847

O 00NN W —

Supplementary Material

A Related works

Mathematics is often seen as the culmination of reasoning tasks because of its intricacy and level of
abstraction. While deep-learning approaches enabled mathematical discoveries in the last few years
[Davies et al.| [2021] [Douglas, 2022 |Blundell et al., 2022, |Alfarano et al.,2024], it was used merely as
a tool where the reasoning is left to the human. In the recent years many neural approaches have been
proposed for neural theorem proving. These include, among others, fine-tuning a language model
used to guide a step-by-step proof search [Polu and Sutskever, 2020} [Polu et al., 2022, |Azerbayev
et al.} 2024, [Wu et al.| 2024]] or to generate whole proofs [First et al.| [2023]]; autoformalization of
natural language data to either bridge the link between language models and classical automated
theorem proving tools [Jiang et al., 2023|] or increase the quantity of available data for training a
model [Xin et al.| 2024a]]; combination of fine-tuned model and retriever to suggest relevant context
from a library [Yang et al.| 2023]]; reinforcement learning (RL) [Lample et al., 2022]] inspired from
AlphaZero [Silver et al.| [2018].

B Sample proofs found on PutnamBench

theorem putnam_1988_b1l
:Va>2,Vb2>2,dxyz: Z, Ay>0Az>0A
=x*xy+x*xz+yx*xz+1:=Dby
aesop

exact (a - 1, by linarith, b - 1, by linarith, 1, by norm_num, by ring)

theorem putnam_1986_al

(S : Set R)
(hS : S={x: R | x~ 4+ 36 <13 *xx =~ 2})
(f : R > R)

(hf : £f = fun x —~ x =~ 3 - 3 * x)
WMzxes, £x<((18) : R AEFxesS, £fx=1(18) : R)) :=by
norm_num <;> aesop
- cases le_total 3 x <;> nlinarith
- exact (3, by norm_num)

theorem putnam_2001_a1l

(S : Typex*)

[Mul S]

(hS : Vab:8, (a*b) *xa=>b)
:Vab:8,ax*x(bx*xa =Db:=by

intro a b

convert hS _ _ using 2 <;> simp <;> ring
rw [hS]

theorem putnam_1988_b2
Vxy: R, g20Ay*x(y+1) < (x+1) ~2) > (@*x -1 <x"2)
<+ ((True) : Prop) := by
aesop
cases le_total x y <;> cases le_total y x <;>
simp_all <;> nlinarith

Qualitatively evaluating the last proofs found by the model, we observe: One statement had a
formalization mistake, rendering the problem trivial. Other problems were easy compared to other
Putnam problems because the solution was provided. In all cases, our model relies heavily on Lean’s
automation tools simp, ring, omega, nlinarith, linarith, but provides arguments and data
without which the automation would not succeed (a classic pattern in idiomatic Lean proofs).

Cumulative solve rates on the three datasets used in the runs are reported in Table

Table 2: Results of runs with mixed reinforcement learning set. Cumulative solve rates on the
respective datasets after 7 hours runtime.

Dataset PutnamBench 1 PutnamBench 2
MiniF2F-valid 553 58.6
MiniF2F-curriculum 27.7 32.3
PutnamBench 7/640 6/640

C Importance of online training

We compare runs with online model updates every 50 training steps, to a setting resembling batch
reinforcement learning or expert iteration (as used in [[Polu et al.l 2022} |Xin et al., 2024al]) with
updates every 500 steps and a pure supervised model solving benchmark problems without any
retraining. Figure [2]shows the cumulative proof rates on MiniF2F-valid for the respective runs each
using 56 workers and 8 trainers (if applicable). The online reinforcement run clearly outperforms
the others. Note that in our final runs, we update the weights even more frequently, namely every 10
steps.

0.5 -
2
8
o 041
2
? 0.3 1 —
o //
2
- .
% 0.2 50 steps
g 0.1 - 500 steps
© — never
0.0 . .
0 1 2

time (h)

Figure 2: Importance of online training.

D Distributed reinforcement learning

Our distributed setup comprises worker GPUs for language model inference, trainer GPUs for
language model training and prover CPU threads orchestrating proof searches and controlling Lean
AesopRepl processes. In our experiments, we assign 10 prover threads to each worker GPU, enabling
stable generation inference workloads in our GPU-bound setup. A central service distributes proof
tasks according to the hard negative sampling policy described in Sect.[2} Workers send their tactic
and critic training samples to a centralized replay buffer which distributes them to the trainers,
prioritizing samples seen fewer times and from more recent model generations. Unlike [[Lample et al.|
2022, we do not parallelize within individual tree searches but only at the level of proof attempts (i.e.
we apply node selection and expansion sequentially rather than asynchronously).

E Induced distribution shift via tactic post-processing

The optimal policy for proof search naturally differs from the compressed proofs found in supervised
finetuning data. For instance, proofs in Lean’s Mathlib [Mathlib Community, 2020] often need
to specify the full set of simplification lemmas used in the simp tactic without relying on standard
configurations which are prone to change over time, possibly breaking existing proofs. Since in this
style, proofs are tedious to find, Mathlib authors use automatic tooling to convert proofs using simp’s
standard configuration into maintainable, fully specified simp only proofs. Likewise, Mathlib
authors “golf” sequences of rewriting rules into a single rewrite tactic with multiple arguments.

10

O 00 IO\ WU AW —

To remediate this distribution discrepancy between proof search and proof presentation, we add
post-processing to the tactics generated by the policy model. This facilitates distribution shift toward
a better proof search policy: we turn simp only into simp, add a single-rule rewrite with the first
rule for each multi-rule rewrite and deduplicate simp lemmas to break model repetitions.

F Finetuning hyperparameters

For supervised finetuning on the proof step dataset extracted from Mathlib (see App.[L)), we train with
a peak learning rate of 10~ and a total batch size of 16k tokens using a block-causal attention mask
that does not split sequences. We use the Adam optimizer [Kingma and Bal 2015]] with decoupled
weight decay [Loshchilov and Hutter, [2019]] with a peak learning rate of 10~4, 5; = 0.9, 82 = 0.95
and Lo weight decay coefficient 0.1. We schedule the learning rate with cosine decay [Loshchilov
and Hutter, 2017] over 5000 steps to a final learning rate of 10~°.

G Training format and inference techniques

Our supervised training on Mathlib data uses a format containing theorem name, Mathlib file path,
the theorem statement, the current proof goal, a placeholder for the critic, the tactic applied in the
proof and the outcome of the tactic application. In other words, we condition the tactic policy on the
mentioned fileds and train with a tactic outcome prediction co-training task [|Gloeckle et al., [2023].
Example for the format:

NAME: MvPolynomial.prod_X_add_C_coeff
FILE: Mathlib/RingTheory/Polynomial/Vieta.lean
STATEMENT: theorem MvPolynomial.prod_X_add_C_coeff (k : N) (h : k < card o)

(T i : o, (Polynomial.X + Polynomial.C (MvPolynomial.X i)) : Polynomial _).coeff k =

MvPolynomial.esymm o R (card o - k)

STATE: R : Type u_1

o : Type u_2

instt! : CommSemiring R

inst} : Fintype o

k: N

s : Multiset (MvPolynomial o R) := Multiset.map (fun i => X i) univ.val

h : k < Multiset.card s

this : Fintype.card o = Multiset.card s

F (Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val).prod.coeff k =
(Multiset.map X univ.val).esymm (Multiset.card s - k)

PROVABLE: 1

TACTIC: convert Multiset.prod_X_add_C_coeff s h

RESULT: case h.e’_2.h.e’_3.h.e’_3

R : Type u_1

o : Type u_2

instf! : CommSemiring R

inst{ : Fintype o

k: N

s : Multiset (MvPolynomial ¢ R) := Multiset.map (fun i => X i) univ.val

h : k < Multiset.card s

this : Fintype.card o = Multiset.card s

F Multiset.map (fun i => Polynomial.X + Polynomial.C (X i)) univ.val =
Multiset.map (fun r => Polynomial.X + Polynomial.C r) s

For inference, we use the same template up to “provable:” and apply joint critic and policy inference
from a shared model as follows: at the position after “provable:”, we restrict the output vocabulary to
two designated tokens and compute the critic value ¢(s) as the logit softmax

c(s) = sigmoid(z(s)1 — x(s)o),

where x(s) denotes the transformer’s output logits at the respective position, and “0” and “1” denote
the respective token indices. We then append a “1” at the critic’s position and continue with
autoregressive sampling to retrieve the policy’s tactic prediction. By sharing the model, we aim
to reap knowledge transfer between the critic and the policy task, following standard practice in

11

reinforcement learning [Silver et al.,|2018]]. With our joint inference mechanism, we can, moreover,
leverage existing autoregressive language model generation pipelines at the expense of a single
additional token.

As an additional inference speed optimization, we compute the key-value cache of the (typically
long) prompt only once during the “pre-fill phase” before copying it as many times as we would like
to decode independent tactic suggestions. Using this method, we observed a 2-3x inference speedup.
We stop decoding at a special stop token between the “tactic:” and the “result:” field not shown
above.

H Proof search hyperparameters

Following|Lample et al.|[2022], we sample the decoding and proof search hyperparameters before
each proof search as follows:

* temperature for nucleus sampling [Holtzman et al., [2020] with probability mass 0.9:
uniform on [0.8, 2.4] (HTPS uses [0.8, 2.0] and standard sampling),

* number of expansions (the maximum number of goals for which to decode tactics

during a proof search): log-uniform on [404,4047] ~ [128+/10,1280+/10] (HTPS uses
[1000, 10000]),

* depth penalty +: uniform from {0.8,0.9,0.95,1.0},
* PUCT exploration coefficient cp: log-uniform on [0.01, 100].

Unlike HTPS, we always sample 64 tactics per node expansion with the understanding that tactic
decoding is fast compared to the encoding (kv-cache pre-fill) of the proof state prompt.

I Reinforcement learning configuration

Table 3: Hyperparameters for the runs reported in Sect.

Parameter 128 GPU run 256 GPU run PutnamBench 1 PutnamBench 2
workers 120 248 248 248
buffer max. sends 3 1 1 2
nucleus sampling mass 0.9 1.0 1.0 1.0
negative sampling coefficient o 0.3 0.5 0.5 0.5

All runs use 8 trainer GPUs, a learning rate of 4 - 1072, batches of 4 sequences of 4096 tokens
per GPU, a maximum buffer size of 10°, a rehearsal rate of 0.1, weight updates every 10 training
steps and 8000 burn-in samples discarded at the beginning of the run. All other hyperparameters are
detailed in Table 3

The replay buffer uses the following selection and eviction policy: it sorts samples by the smallest
number of times they have already been sent to the trainers, then by the most recent model version
they come from, and randomly for ties, and sends them by increasing priority. Samples are evicted
from the buffer if they have been sent a certain maximum number of times or if the buffer has reached
its maximum capacity, the sample has been sent at least once and it is lowest in the buffer’s priority
ordering.

J Aesop and shared metavariables

Aesop’s proof tree implementation is very similar to that HTPS [Lample et al., 2022]], with one
exception concerning the handling of shared metavariables. These are Lean constructs representing
objects that will be filled in during the proof. For example, a transitivity tactic might reduce the goal
F1<3totwogoalst 1 < 7z and - 7z < 3, where the metavariable ?x stands for a number to be
determined later. Another tactic application could then solve the first goal for 7z = 2, at which point
7z is replaced with 2 in the second goal as well.

12

The example demonstrates the central issue with metavariables: If the proof of the first goal had
assigned 7z = 4, the second goal would have become unprovable. In other words, the possible proofs
of the second goal depend on which proof was chosen for the first goal (or vice versa); the goals are
no longer independent. But independence of goals is a central assumption underlying the hypertree
proof search model.

GPT-f [Polu and Sutskever, 2020] and LeanDojo [Yang et al., 2023]] address this issue by operating on
tactic states, i.e. lists of goals. However, this reduces parallelism and leads to duplicate work since the
same goal may have to be proved in multiple tactic states. HTPS refines the GPT- f approach by using
tactic states (with more than one goal) only when goals are, in fact, coupled by a shared metavariable.
Aesop goes even further and treats coupled goals as independent, but when a metavariable is assigned,
Aesop makes a copy of any goals affected by this assignment [[Limperg and From, 2023, Sec. 4].
Hence, the doomed proof attempt that sets 7z = 4 does not prevent a later successful proof attempt
with 7z = 2.

Compared with HTPS, Aesop’s approach may enable future optimisations that transfer a tactic
application from a goal to its copies if the tactic application is independent of any specific metavariable
assignment. This would reduce the amount of effort spent during proof search on applying the same
tactics to goals that differ only in their metavariable assignments. Unlike [Lample et al.,[2022], we
do not currently attempt to merge duplicate goals.

K Notes on model comparison

In Table [T} we include representative methods without reinforcement learning (classical solvers,
pretrained models with few-shot prompting, supervised finetuning) and recent reinforcement learning
approaches.

Lean automation refers to a small search using the following Lean tactics: aesop, ring, linarith
and nlinarith.

ReProver [Yang et al.l2023] is a language model coupled with a premise retrieval model which was
trained on supervised data extracted from Mathlib.

Llemma-7b [Azerbayev et al.,[2024] is a model based on CodeLlama [Roziere et al., 2023] that was
trained on formal and informal mathematical data extacted from the web [Paster et al., 2023]].

We do not include InternLLM2-StepProver [Wu et al., 2024]] which reaches 48.8% on MiniF2F-zest
with a budget of 1 x 100 x 32 and 63.9% on MiniF2F-valid, but whose data collection raises concerns
about data contamination. For instance, the Lean 3 MiniF2F dataset at https://github.com/
facebookresearch/miniF2F|contains solutions.

DeepSeek-Prover [Xin et al.,|2024a]] and DeepSeek-Prover-1.5 [Xin et al.,|2024b] do not report
the total amount of compute used for developing their models. Based on the large numbers of
problems in their reinforcement learning set, expensive evaluation settings of up to pass@65536 and
the large number of models and methods reported in the publications , we expect it to be significantly
larger than for the other models in the comparison. We also note that while all other models in the
comparison are sized between 600M parameters (HTPS) and 8B parameters (ours), DeepSeek-Prover
also uses sequence distillation from a 236B parameter model.

DeepSeek-Prover uses 8M autoformalized problems in its reinforcement learning set. DeepSeek-
Prover-1.5 adds MiniF2F-valid (244 problems), ProofNet-valid [|Azerbayev et al., 2023[] (185 prob-
lems) and Lean Workbook [Ying et al.,[2024] (57k problems, or 140k including “Workbook Plus”).

GPT-f [Polu et al.l 2022]] uses MiniF2F-curriculum instead of MiniF2F-valid in the reinforcement
learning set. The reported number on MiniF2F-valid is hence an evaluation number with the same
budget as the number on MiniF2F-zest, not a cumulative one.

HTPS [Lample et al.,|2022]] samples the number of tactics sampled at each node uniformly from
{8, 16, 32, 48}, with an average of 26, which we report in the table. (Note however, that for pass @64,
the maxmum may be more relevant than the average.)

Both GPT-f and HTPS additionally use synthetically generated data. GPT- f generates 5600 problems
without proof as reinforcement learning tasks. HTPS generates problems including proofs, and uses
the data as an additional supervised dataset instead.

13

https://github.com/facebookresearch/miniF2F
https://github.com/facebookresearch/miniF2F

L Dataset versions

We used the following commits of the respective datasets:

e Mathlib [Mathlib Community, [2020] for Lean4 (https://github.com/
leanprover-community/mathlib4/): 29dcec074de168ac2bf835a77ef68bbe069194ch
(corresponds to LeanDojo [Yang et al., 2023] v10),

* MiniF2F [Zheng et al., 2021]] for Lean4 [Yang| 2024] (https://github.com/yangky11/
miniF2F-1lean4): 6bcf0b4940fbf17a1ba83db4ed639fbcb26b1a27 (latest commit at
the time of this paper),

e PutnamBench [Tsoukalas et all [2024b] (https://github.com/trishullab/
PutnamBench): 8aaccf8c40e0db1e69a3c808166d9d09b0109703 (latest commit
at the time of this paper).

14

https://github.com/leanprover-community/mathlib4/
https://github.com/leanprover-community/mathlib4/
https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4
https://github.com/trishullab/PutnamBench
https://github.com/trishullab/PutnamBench

	Introduction
	Method
	Results
	Conclusion
	Related works
	Sample proofs found on PutnamBench
	Importance of online training
	Distributed reinforcement learning
	Induced distribution shift via tactic post-processing
	Finetuning hyperparameters
	Training format and inference techniques
	Proof search hyperparameters
	Reinforcement learning configuration
	Aesop and shared metavariables
	Notes on model comparison
	Dataset versions

