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ABSTRACT

Navigation is a fundamental capability in embodied Al, representing the in-
telligence required to perceive and interact within physical environments. To
achieve such intelligence, recent advanced works leverage Vision-Language Mod-
els (VLMs), which demonstrate strong generalizability and possess a well-suited
formulation for navigation. However, these approaches remain largely confined to
narrow task settings and embodiment-specific architectures. In this work, we in-
troduce a cross-embodiment and cross-task Navigation Foundation Model (Nav-
FoM), trained on eight million navigation samples that encompass quadrupeds,
drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-
and-language navigation, object searching, target tracking, and autonomous driv-
ing. NavFoM employs a unified architecture that processes multimodal navigation
inputs from varying camera configurations and navigation horizons. To accommo-
date diverse camera setups and temporal horizons, NavFoM incorporates identi-
fier tokens that embed camera view information of embodiments and the temporal
context of tasks. Furthermore, to meet the demands of real-world deployment,
NavFoM controls all observation tokens using a dynamically adjusted sampling
strategy under a limited token length budget. Extensive evaluations on seven
public benchmarks demonstrate that our model achieves state-of-the-art or highly
competitive performance across different navigation tasks and embodiments with-
out requiring task-specific fine-tuning. Additional real-world experiments further
confirm the strong generalizability and practical applicability of our approach.

1 INTRODUCTION

For both embodied agents and humans, navigation serves as a foundational capability that en-
ables them to move intelligently within physical environments to accomplish specified tasks (Shah
et al., 2023a; Bar et al., 2025; Zhang et al., 2024b). Achieving robust navigation requires a deep
understanding of environmental context and task instructions, typically presented through visual
and linguistic observations, which are reminiscent of Visual Language Models (VLMs). However,
VLMs (Liu et al., 2023a; Yang et al., 2024a; Guo et al., 2025) have recently demonstrated remark-
able zero-shot generalization in tasks such as retrieval, classification, and captioning from large-scale
open-world data, without reliance on domain-specific fine-tuning. In contrast, embodied naviga-
tion (Savva et al., 2019a; Deitke et al., 2022) remains tied to narrow task domains, embodiment-
specific architectures, and restricted instruction formats.

In pursuit of generalist navigation, the community has witnessed growing interest (Zhang et al.,
2024a; Cheng et al., 2025; Shah et al., 2023a; Long et al., 2024), yet progress has been hindered
by the constrained design and limited domain applicability of prior research. In cross-task naviga-
tion, previous methods (Zhang et al., 2025a; Yin et al., 2025; Zhu et al., 2025) typically assume a
consistent camera configuration for the robot and unify various tasks such as vision-and-language
navigation, object searching, and target tracking. For cross-embodiment navigation, current ap-
proaches (Eftekhar et al., 2024; Hirose et al., 2023) implicitly learn priors about the physical shape
of the embodiment but are often restricted to specific navigation tasks. The existing divergence be-
tween navigation tasks and embodiments highlights the absence of a foundational navigation model
capable of handling different tasks across diverse embodiments.

In this work, we toward building a cross-task and cross-embodiment embodied navigation founda-
tion model, NavFoM, trained on eight million navigation samples spanning diverse embodiments
and tasks. Inspired by humans’ ability to accomplish a wide range of navigation tasks primarily
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Figure 1: Benchmark performance of NavFoM, we compare our method with SOTA baselines on each bench-
marks. See Section 3 for more detials.

through visual sensory input and the recent success of vision-only navigation methods (Shah et al.,
2023a; Zeng et al.), we formulate the generalist navigation task as processing egocentric videos
(captured by one or more cameras mounted on the robot) alongside language instructions, and pre-
dicting subsequent trajectories to fulfill those instructions. This formulation is compatible with most
existing navigation task settings (Contributors, 2023; Wang et al., 2024a).

To align generalizable embodiments across diverse camera configurations, we introduce temporal-
viewpoint indicator tokens (TVI tokens) to identify both the viewpoint of camera setups and the tem-
poral information of the navigation horizon. By dynamically adjusting these TVI tokens, our method
enables co-tuning across different camera setups and supports joint training with both image-QA
and video-QA samples (Shen et al., 2024; Li et al., 2023). Furthermore, to address the constraints
of practical deployment such as hardware memory cost and inference speed, we propose a token
Budget-Aware Temporal Sampling (BATS) strategy, which dynamically samples navigation history
tokens based on a forgetting curve constrained by a token budget. This token sampling approach
balances performance and inference speed, enhancing the practicality for real-world deployment.

We collected a comprehensive and diverse navigation dataset comprising 8.02 million samples,
sourced from public navigation datasets (Savva et al., 2019a; Wang et al., 2025¢; Contributors, 2023;
Wang et al., 2024a) and pseudo web-video navigation data (Li et al., 2025a). The dataset includes
cross-embodiment trajectories from quadruped robots, drones, wheeled robots, and cars, covering a
wide range of tasks such as vision-and-language navigation, object searching, target tracking, and
autonomous driving. These navigation samples feature diverse instructions and scenarios that re-
quire multiple skills, enabling NavFoM to acquire generalized navigation capabilities. Additionally,
we gathered 4.76 million open-world knowledge samples (Shen et al., 2024; Li et al., 2023) de-
rived from both image-based and video-based question-answering tasks. Following the approach of
(Zhang et al., 2024a), we co-tune the navigation data together with image and video QA data in an
end-to-end manner, facilitating large-scale and comprehensive training of NavFoM.

Our experiments demonstrate that NavFoM achieves substantial advancements in generalist nav-
igation. Without task-specific fine-tuning, NavFoM attains state-of-the-art or competitive perfor-
mance across diverse public benchmarks for a variety of embodiments. On VLN-CE RxR (Ku
et al., 2020a), NavFoM improves performance in multi-camera settings (from 56.3% to 64.4% SR)
and in single-camera settings (from 51.8% to 57.4% SR) compared to prior baselines. On HM3D-
OVON (Yokoyama et al., 2024b), our method achieves 45.2% SR in a zero-shot setting, outper-
forming the previous fine-tuned SOTA method (43.6% SR). Similarly strong results are observed
across various benchmarks in object searching, tracking, and autonomous driving. We further val-
idate NavFoM through real-world experiments on multiple robotic platforms, including humanoid
robots, quadrupeds, drones, and wheeled robots. These results underscore its strong generalizability
and highlight promising progress toward generalist navigation.

2 METHOD

Generalist Navigation Task. We consider a general navigation setting in which a mobile em-
bodiment is given a textual instruction L and a sequence of images I1:% € RW>H>3_ captured
on-the-fly from N different cameras at time steps {1, ...,7}. Given these observations and the in-
struction, our model 7 is required to predict a navigation trajectory 7 = {a;, as, ...}, where each
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Figure 2: Pipeline of NavFoM. Our method provides a unified framework for handling multiple tasks, includ-
ing Image QA, Video QA, and Navigation. We organize text tokens and visual tokens using temporal-viewpoint
indicator tokens (Sec. 2.1.1).

a € R* = (2,7, 2, 0) represents a position and orientation waypoint. Note that z is only used when
the embodiment is a UAV, and 6 denotes the yaw angle (since our task does not require agile flight
motions, the yaw angle suffices). The model drives the mobile embodiment to fulfill the instruction
according to the mapping 7 (L, I1:) +— 7.

Basic Architecture. We extend vanilla video-based vision-language models (VLMs) (Li et al.,
2023; Shen et al., 2024) to a dual-branch architecture for both navigation and question-answering
(Wang et al., 2025¢). For navigation, we first encode the observed images I~ using vision encoders
and a cross-modality projector (Liu et al., 2023a) to obtain visual tokens E}:¥. The instruction is
embedded following common practices in existing language models (Liu et al., 2023a) to produce
language tokens Er,. The visual tokens are then organized via temporal-viewpoint indicator tokens
(sec.2.1.1) and budget-aware temporal sampling (sec. 2.1.2), concatenated with the language tokens,
and fed into a large language model to predict the action token. This token is subsequently decoded
by a planning model to generate a waypoint-based trajectory.

Ef = LLM(E{}', Ev),
71 = ActionModel(EZ).

For the question-answering task, we follow existing methods Liu et al. (2023a) and predict the next
token in an auto-regressive manner. As in existing works (Zhang et al., 2024a; 2025a; Wang et al.,
2025c; Cheng et al., 2025), our model enables the co-tuning of both navigation and QA samples.

ey

2.1 NAVIGATION FOUNDATION MODEL

Observation Encoding. Given captured egocentric RGB sequences I1:N € RW*H>X3 from N
multi-camera views at time step 7', we employ pre-trained visual encoders (DINOv2 (Oquab et al.,

2023) and SigLIP (Zhai et al., 2023), a widely used recipe (Kim et al.; Tong et al., 2024)) to ex-

tract visual features Viif;’/SigUF € RP*C where P is the number of patches (set to 576) and C'

represents the embedding dimension. For token savings and computational efficiency, we directly
concatenate V3 and Vf}%hp along the channel dimension and denote the resulting representation
as V7.r. During navigation, on-the-fly captured videos leads an extensive number of frames, which
subsequently produce an extensive set of visual features. To address this, we employ a grid pooling
strategy (Zhang et al., 2024a; 2025a) (Figure 2, Grid Average Pooling) on the visual features to
generate more compact representations. Specifically, we utilize two resolution scales:

. 64 4
fi ars .
yfine/coarse — GridPool(V, 50 5), 2)
where Vfire ¢ R64*Y provides fine-grained observations, while V¥ ¢ R4XC offers coarse-
grained observations. In this case, we use fine-grained features Vj, for the latest navigation obser-
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vation and image QA (at time step 7'), while using coarse-grained features for navigation history
and video data (across time steps 1 : T'). Finally, following established VLMs (Liu et al., 2023a; Li

et al., 2023), we use a cross-modality projector P(-) (a 2-layer MLP) to project visual features into
N

the latent space of the Large Language Model: EY. = P (V!

2.1.1

Given that visual tokens do not inherently incorporate
viewpoint and temporal information, a key challenge in
multi-view navigation models lies in enabling the LLM
to discern which tokens correspond to different timesteps
or distinct camera viewpoints. Previous approaches were
limited to either specific camera configurations or embod-
iments (Long et al., 2024; Gao et al., 2025) or simply
concatenated tokens from all viewpoint images (Zheng
et al., 2024; Fu et al., 2025b), thereby overlooking the
flexibility of LLM token organization. To enable flexible
processing of arbitrary camera arrangements, we intro-
duce temporal-viewpoint indicator tokens, inspired by the
demonstrated effectiveness of specially designed tokens
for time/modality/task identification (Guo et al., 2025;
Chen et al., 2023), an approach that has been widely rec-
ognized to facilitate LLM learning. In our setting, the in-
dicator tokens are used in diverse tasks, including image
QA, video QA, and navigation, which should meet three
important attributes:

T )

TEMPORAL-VIEWPOINT INDICATOR (TVI) TOKENS.
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Figure 3: Visualization of Temporal-

Viewpoint Indicator (TVI) tokens. We
employ a clustering algorithm (Mclnnes
et al., 2018) to map high-dimensional em-
beddings into a 2D space.

* Viewpoint-Awareness: The token’s angle embedding must preserve the circular continuity
of azimuthal angles (e.g., 0 = 2m), ensuring that the distance metric between embeddings
reflects geometric proximity (e.g., d(0, ¢) < d(0,7) when € # 7).

» Time-Awareness: The token must uniquely identify the temporal order of frames across all
camera views, while maintaining robustness to irregular sampling intervals.

* Separability: The indicator tokens may encode either viewpoint or temporal information
(for video QA) or may exclude such information entirely (for image QA).

To meet these requirements, our Temporal-Viewpoint Indicator (TVI) tokens Ery; € R® (where
timestep and view angle are denoted as ¢ and ¢, respectively) consist of three types of embeddings:
angle embedding AnglePE(¢) € R, time embedding TimePE(¢) € R®, and a learnable base
embedding Eg, € RC:

Eguse + Piime(TimePE(t)) + Pangie (AnglePE(¢)), if Navigation
Ervi = { Eguse + Prime(TimePE(t)), if Video QA 3)
Egase, if Image QA

where AnglePE(¢) is implemented using a concatnation of sinusoidal position encodings (Vaswani
et al., 2017) applied to the cosine and sine values of the azimuthal angles separately, and TimePE(t)
is implemented as a sinusoidal position encoding of ¢. Here, Pime and Papgle are both implemented
as two-layer MLPs (similar in design to those used in Liu et al. (2023a)). For different tasks and
TVI tokens, we employ different combinations of indicator token components to represent the at-
tributes of various visual tokens. For the navigation task, we include both temporal and viewpoint
information. For the video QA task, we incorporate temporal information. For the image QA task,
we use only Ep, as an indicator that the subsequent tokens are visual tokens. This strategy offers
a flexible approach to organizing significantly different sample types and facilitates LLM learning
(Sec. 2.1.3). We provide a plot of the clustering results (Mclnnes et al., 2018) of TVI Tokens in
Figure 3, where we observe that the tokens are distinguished from one another according to the
viewpoint 6 (represented by a rainbow colorbar) and the timestep ¢ (represented by color value).
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Figure 4: Visualization of BATS and corresponding time cost. (a) Given a fixed token budget B = 1600,
we illustrate the sampling probability at different timesteps ¢ for the latest timestep 7". (b) Given a maximum
timestep 1" = 125, we plot the sampling probability across different timesteps ¢ under varying token budgets
B. (c) We compare the inference time when using BATS versus not using BATS (keeping all frames).

2.1.2 BUDGET-AWARE TEMPORAL SAMPLING (BATS).

During navigation, on-the-fly captured video can generate an excessive number of visual tokens,
increasing both inference and training time and hindering real-world deployment. Previous methods
address this challenge in two ways: (1) Token Merging (Zhang et al., 2025a), which introduces
additional computational overhead during training and leads to inconsistent inference speeds during
evaluation; (2) Uniform Sampling (Cheng et al., 2025), which often fails to adequately capture
recent observations due to a lack of short-term context. Moreover, in scenarios involving variable
camera-view settings (where the number of frames increases significantly) both strategies require
additional modifications.

To this end, we propose Budget-Aware Temporal Sampling (BATS), which is designed for (a) practi-
cal purposes (i.e., constraining the maximum token length to accommodate inference speed and GPU
memory limitations), (b) retaining more recent information to enhance understanding and planning
while preserving sufficient historical context for navigation, and (c) direct adaptability to varying
numbers of cameras. Specifically, given a token budget Biken and a multi-view video sequence
ILN € RW>HX3 we employ an exponential growth based sampling probability P(t), which is in-
spired by the “forgetting curve”. In this case, when the number of captured frame tokens exceeds
the token budget, we compute a sampling probability for each frame:

P(t)=(1—e)e!tD/T L k>0, (4)

where the € (we use € = 0.1) ensures that the lower bound of sampling probability is in the approxi-
mate range and the k denotes the exponential decay rate. Therefore the expected number of sampled
frames can be computed as:

1—e*

T
Eframes ~ / P(t)dt = (]_ — G)TT + €T (5)
0

We constrain the expected number of tokens ((4+ 1)Egame + (64 + 1)) N to be no larger than Byggen-

This implies Egame < W, and with sufficiently large number of frames 7", the number

of sampled frames will converge to the expectation (Figure 4 (c)). We can offline calculate k for
different T" using Brent’s method (Brent, 2013), leading correspongding P(t) (Equation 4). Note
that since we set the lower-bound probability €, Equation 5 may become unsolvable for very large
T (e.g., T = 1120 under a four-camera setup with a token budget Bixen = 2048). However, this
situation rarely occurs (for the list task in Figure 1), as most timesteps are approximately 122 steps
in VLN-CE RxR (Ku et al., 2020a). We provide the details of using BATS in Appendix A.2 and a
break-in analysis of BATS in Figure 4.

2.1.3 LLM FOWARDING AND TRAINING DETAILS

Token Organization. After obtaining the visual tokens E}:¥ (sampled via BATS, Sec. 2.1.2) and the
language tokens E'1, we organize these tokens using TVI Tokens (Sec. 2.1.1) for forwarding through
the LLM. For navigation, we use Egye + Piime(TimePE(t)) + Pange(AnglePE(¢)) to represent
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both temporal and viewpoint information. Here, fine-grained visual tokens are used for the most
recent observations, while coarse-grained tokens are utilized for historical observations. Our token
organization strategy enhances the LLM’s understanding of the input tokens and supports a unified
framework for Image QA, Video QA, and navigation tasks. Further details of token orgainzation on
Image QA and Video QA can be found in Appendix A.6.

Trajectory prediction. For the navigation task, given the predicted action hidden state E2 from the
forward pass of the LLM, we apply a plannning model .4y (implemented as a three-layer MLP) to
extract the trajectory information 7. Note that the original trajectory may range from a few meters
(indoor navigation) to tens of meters (autonomous driving and drones). In this case, directly predict-
ing the raw trajectory could lead to divergence in the waypoint distribution. Therefore, following
previous methods Shah et al. (2023a), we normalize the waypoints of trajectories to a distribution
of [—1, 1] using a task-specific scaling factor cy,. Here, we use three different scaling factors for
indoor navigation, UAVs, and cars, as shown in Appendix A.l. We can formulate the trajectory
prediction as follows:

mr ={a1,..,an}r = dus - Ag(ED), (6)
where M is set to 8, and the normalized trajectory is rescaled to absolute values by multiplying by
uask- The trajectory loss is computed using the mean squared error (MSE) Ly, = MSE(71%, Tgi?x),
there idx denotes the valid action indices. For wheeled robots/car embodiments, a'®* = (x,, 6); for
UAVs, al®* = (z,y, 2,0). For the question-answering task, we employ the cross-entropy loss Lqa
under a next-token-prediction supervision framework. Given a batch containing both navigation and
QA samples, the total loss is defined as L = 3Ly, + Loa. Here, 3 is a constant scaling factor (set
to 10) used to amplify the navigation loss, which tends to be numerically small since it is derived
from mean squared error. Note that, /3 is important when the training scale is small, where a large
[ can accelerate convergence. We also believe a more adaptive way to adjust S may be a promising
direction for future work.

Training Configurations. Our model is trained on a cluster server equipped with 56 NVIDIA
H100 GPUs for approximately 72 hours, resulting in a total of 4,032 GPU hours. For question-
answering data, all frames are sampled at 1 FPS to reduce redundancy between consecutive frames.
For discrete navigation data (e.g., Habitat environments Savva et al. (2019a)), we sample each step
after the robot performs a discrete action (See Appendix A.l for details on how discrete actions
are modified into trajectories.). For continuous navigation environments (e.g., EVT-Bench Wang
et al. (2025c), autonomous driving (Caesar et al., 2020b; Contributors, 2023)), data are sampled
at 2 FPS to avoid redundancy. During training, the vision encoders (DINOv2 Oquab et al. (2023)
and SigLIP Zhai et al. (2023)) and the large language model (Qwen2-7B Yang et al. (2024a)) are
initialized with their default pre-trained weights. Following the training paradigm of VLM (Liu
et al., 2023a), we fine-tune only the designated trainable parameters for a single epoch.

2.2 DATA

To fine-tune NavFoM, we collect and process a large set of comprehen-
sive and diverse training samples, totaling 12.7 million instances. These The number of data samples
include 8.02 million navigation samples, 3.15 million image-based [ o Ny sampies 12.7m
question-answering samples, and 1.61 million video-based question- ol QA Samples

answering samples. The navigation samples are collected and processed

from diverse datasets. Specifically, we collect Vision-and-Language 1o
Navigation samples (3.37 M) from R2R (Krantz et al., 2020), RxR (Ku
et al., 2020a) and OpenUAV (Wang et al., 2024a); Object Goal Nav-
igation (1.02 M) from HM3D ObjectNav (Savva et al., 2019a); Ac-
tive Visual Tracking (897 K) from EVT-Bench (Wang et al., 2025c);
Autonoums Driving (681 K) from nuScense (Caesar et al., 2020a)
OpenScene (Contributors, 2023); and web-video navigation from Sekai w1 1oM
dataset (Li et al., 2025a). All navigation data are collected in a unified
manner, including previously captured videos (single or multiple cam- NaVid Uni-NaVid NavFoM
eras), instructions, and predicted trajectory waypoints. Further details Methods

regarding the navigation samples please refer to Appendix A.4.

Numbers

Figure 5: Comprasion of
Besides navigation data, we, we gather image-based QA (3.15 M) and number of training samples
video-based QA (1.61 M) data from off-the-shelf datasets following ex-  With previouse methods.
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Figure 6: Visualization of real-world experiments on cross-task and cross-embodiment settings.

isting video-based Vision-Language Models (VLMs) (Shen et al., 2024;
Li et al., 2023; KunChang Li & Qiao, 2023; Li et al., 2024a).

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

To evaluate the performance of NavFoM, we conduct extensive experiments and ablation studies
addressing three key aspects: (1) How does NavFoM perform on diverse navigation tasks across
different benchmarks? (2) How well does NavFoM perform in real-world environments? (3) Are the
key design components of our method effective? Our method is compared against strong baselines
on each benchmark.

Benchmarks and metrics. We evaluate our method on various navigation tasks, including VLN
(VLN-CE R2R (Krantz et al., 2020), RxR (Ku et al., 2020a) and OpenUAV (Wang et al., 2024a),
searching (Yokoyama et al., 2024b), tracking (Wang et al., 2025¢), and autonomous driving (Caesar
et al., 2020a; Dauner et al., 2024b), which are across different embodiments (e.g., egocentric, four-
camera, six-camera, and eight-camera configurations). NavFoM uses only online-captured egocen-
tric video (some from multi-view sources) and an instruction as input to predict the trajectory for the
robot to execute. We adopt common evaluation metrics from these benchmarks, including success
rate (SR), oracle success rate (OS), success weighted by path length (SPL), normalized Dynamic
Time Warping (nDTW), navigation error from goal (NE), and the PDM score Dauner et al. (2024a).
For a detailed introduction to each benchmark and metric, please refer to Appendix B.1.

Deployment on synthetic and real-world environemnts. For each navigation task, we adhere to
the default settings established in prior works (Krantz et al., 2020; Savva et al., 2019b; Das et al.,
2018; Islam et al., 2019). For simulators, we use 2048 token gudeget, a similar length as base-
lines Cheng et al. (2025). Note that for certain benchmarks in Habitat-Lab continuous environments
that use discrete actions (such as FORWARD, LEFT, RIGHT, and STOP), we replace these dis-
crete actions with trajectory-based actions. For real-world deployment, we employ a remote server
equipped with an NVIDIA RTX 4090 GPU (use 1600 token budget) to run NavFoM. Under this
configuration, the system requires approximately 19.1 GB of GPU memory and achieves a infer-
ence rate of 5 Hz (about 218 ms per trajectory prediction). Further details on deployment costs are
provided in Appendix E.

3.2 BENCHMARK RESULTS

VLN: Performence on VLN-CE (Krantz et al., 2020; Ku et al., 2020a). We begin by evaluat-
ing our method on the most widely used vision-and-language instruction benchmarks—VLN-CE
R2R and VLN-CE RxR—with the results presented in Table 1. We report performance under both
single-camera and four-camera settings (360° observations). Note that our model is not fine-tuned
on any specific camera configuration; instead, visual tokens are directly organized using temporal-
viewpoint indicator tokens (Figure 10). Our method achieves SOTA performance on both bench-
marks across different camera settings. Under the most challenging condition (single-view VLN-CE
RxR), our method improves success rate (SR) from 51.8% to 57.4%. Notably, in multi-camera se-
tups, our approach uses only four RGB cameras and attains an SR of 64.4%, outperforming previous
SOTA methods (56.3% SR) that rely on RGB-D cameras and odometry information. We also ob-
serve a significant performance gain when transitioning from single-view to multi-view settings: an
increase of 5.5% on R2R-CE and 7.0% on RxR-CE, respectively. This suggests that multi-view
navigation foundation models represent a promising direction for future research. Besides success
rate, we also observe that our method achieves higher efficiency, demonstrates a higher SPL (56.2%
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Table 1: Comparison on VLN-CE in Single-View and Multi-View Settings. Here, S.RGB and M.RGB
denote single-view and multi-view configurations, respectively. The symbol * indicates methods that utilize the
waypoint predictor from (Hong et al., 2022).

Method Observation R2R Val-Unseen RxR Val-Unseen
S.RGB M.RGB Depth Odo. NE | OS 1t SR1 SPL1+ NE | SR1 SPL 1 nDTW 1

AG-CMTP (Chen et al., 2021a) v v v 790 39.0 23.0 19.0 - - - -
R2R-CMTP (Chen et al., 2021a) v v v 790 38.0 26.0 22.0 - - - -
HPN+DN* (Krantz et al., 2021) v v v 631 40.0 36.0 34.0 - - - -
CMA* (Hong et al., 2022) v v v 620 520 41.0 360 876 265 221 470
VLNOBERT* (Hong et al., 2022) v v v 574 530 44.0 39.0 898 27.0 22.6 46.7
Sim2Sim* (Krantz & Lee, 2022) v v v 607 520 43.0 36.0 - - - -
AO-Planner (Chen et al., 2024a) v v 5.55 59.0 47.0 33.0 7.06 433 30.5 50.1
GridMM* (Wang et al., 2023b) v v v 511 61.0 49.0 41.0 - - - -
Ego?-Map* (Hong et al., 2023) v v vV 554 560 47.0 41.0 - - - -
DreamWalker* (Wang et al., 2023a) v v v’ 553 59.0 49.0 44.0 - - - -
Reborn* (An et al., 2022) v vV 540 57.0 50.0 460 598 48.6 42.0 633
ETPNav* (An et al., 2024) v v v 471 650 57.0 49.0 5.64 547 448 619
HNR* (Wang et al., 2024b) v v v 442 670 61.0 51.0 550 563 46.7 635
BEVBert* (An et al., 2023) v v v 457 67.0 59.0 50.0 - - - -
HAMT+ScaleVLN* (Wang et al., 2023c) v v v 480 - 550 510 - - - -
NavFoM (Four views) v 4.61 721 61.7 553 4.74 644 562 658
LAW (Raychaudhuri et al., 2021) vV 6.83 440 350 31.0 1090 80 8.0 38.0
CM2 (Georgakis et al., 2022) v v 7.02 41.0 340 27.0 - - - -
WS-MGMap (Chen et al., 2022) v v 628 47.0 38.0 34.0 - - - -
Seq2Seq (Krantz et al., 2020) v 7.77 37.0 250 220 1210 139 119 308
CMA (Krantz et al., 2020) v 7.37 40.0 32.0 30.0 - - - -

RGB-Seq2Seq (Krantz et al., 2020)
RGB-CMA (Krantz et al., 2020)

NaVid (Zhang et al., 2024a)

Uni-NaVid (Zhang et al., 2025a)
NaVILA (Cheng et al., 2025)
StreamVLN-RGB-only (Wei et al., 2025)
NavFoM (Single view)

10.10 8.0 0.0 0.0 - - - -
9.55 100 5.0 4.0 - - - -
572 492 419 365 572 457 382 -
5.58 533 47.0 4277 624 48.7 409 -
522 625 540 490 6.77 493 440 588
5.10 64.0 557 509 6.16 51.8 450 62.1
5.01 649 56.2 51.2 5.51 574 494 602

N N N N N N NN

Table 2: Object goal navigation. Comparison on HM3D- Table 3: Performance on EVT-Bench. i:

OVON (Yokoyama et al., 2024b). ™ : denotes zero-shot eval- Uses GroundingDINO (Liu et al., 2023b)

uation. We report the performence of our method on egocentric as the open-vocabulary detector. ¥: Uses

and four-view settings. SoM (Yang et al., 2023)+GPT-40 (OpenAl,
2024) as the visual foundation model.

VAL SEEN

Method VAL SEEN SYNONYMS VAL UNSEEN
SRT  SPLT SRt SPLT SRt SPLT Method Single Target  Distracted Target

BC 11 45 99 38 54 19 SRt TRt SRt TRY
DAgger 11.1 4.5 9.9 3.8 54 1.9 IBVS{ (Gupta et al., 2016) 429 562 10.6 284
RL 18.1 9.4 15.0 74 10.2 4.7 PoliFormerf (Zeng et al.) 4.67 155 262 13.2
BCRL 39.2 18.7 27.8 11.7 18.6 75 EVT (Zhong et al., 2024) 244 39.1 3.23 112
DAgRL 413 212 29.4 14.4 183 7.9 EVT] (Zhong et al., 2024) 325 499 157 357
VLEM* (Yokoyama et al., 2024a) 352 18.6 324 17.3 352 19.6 Uni-NaVid (Zhang et al., 2025a) 25.7  39.5 11.3 274
DAgRLA+OD (Yokoyama et al., 2024b) ~ 38.5 21.1 39.0 21.4 37.1 19.8 TrackVLA (Wang et al., 2025¢)  85.1  78.6  57.6 63.2
Uni-NaVid* (Zhang et al., 2025a) 413 211 439 21.8 395 19.8 NavFoM (Single view) 850 805 614 68.2
MTU3D (Zhu et al., 2025) 550 236 450 14.7 40.8 12.1 NavFoM (Four views) 884 80.7 620 67.9
NavFoM * (Single view) 37.7 255 433 299 43.6 313

NavFoM * (Four views) 40.1 271 454 32.6 452 319

SPL), and produces navigation trajectories that are better aligned with the instructions (65.8 nDTW).
Perfomrence on Searching, Tracking and Au-

tonomous Driving. =~ We conduct experiments Taple 4: NAVSIM navtest split with closed-
to evaluate our method across different naviga- loop metrics.

tion capabilities, including object goal naviga-

tion (Yokoyama et al., 2024b) in Table 2, active vi-  Method Camera VLM-Based|PDMS 1
sual tracking (Wang et al., 2025c) in Table 3, and  Human - - 94.8
autonomous driving (Dauner et al., 2024a) in Ta- gggsst?::u\s/ehl/?fgy : : oo
ble 4. We find that our approach demonstrates strong - :
. UniAD (Hu et al., 2023) v - 83.4
performance compared to strong baselines that are  paRA-Drive (Weng et al., 2024) v B 84.0
specifically designed for individual navigation tasks. ~ LAW (Lietal, 2024b) 4 - 84.6
M thod i istentl h DrivingGPT (Chen et al., 2024c) v v 82.4
oreover, our method improves consistently when  NayFoM (Eight views) v v 843

switching from a single-camera to a four-camera
setup, even though it was not trained on the four-
camera configuration in object navigation and tracking tasks. Additional quantitative results, analy-
ses, and visual examples are provided in Appendix C, Figure 6 and Figure 13. The analysis of both
benchmark and real-world experiment failure cases can be found in Appendix F.
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Performance Across Tasks and Data

0% Others + Specific task data RxR Val-Unseen
50% Others+ Specific task data 831843 Type
$ s0{ mm 100% Data 794 NE | SR1 SPL 1 nDTW 1
E 617644 620 B = 1024, Uniform Sampling* 533 59.7 496 579
s e 72 B = 1024, Linear Probability Sampling 528 61.2 509 589
1S 452 B = 1024, Budget-Aware Temporal Sampling  4.98 62.5 53.9 64.1
L 221 229 B = 2048, Token Merging (Zhang et al., 2025a) 5.01 63.2 549 644
g B = 2048, Uniform Sampling* 490 624 540 639
20 e B = 2048, Linear Probability Sampling 489 63.0 546 648
103 : B = 2048, Budget-Aware Temporal Sampling  4.74 64.4 56.2 658
° VIN'(SR) _ Searching (SR) Tracking (SR) Driving (PDMS) Viewpoint-history postional embedding’ 6.27 523 463  58.7
Tasks Individual Learned Special Toekns 552 59.1 520 596
Handcraft Toekns (Equ. 3 w.0 Pangle /time) 6.06 53.6 46.1 58.0

Temporal-Viewpoint Indicator Tokens (Equ. 3) 4.74 64.4 56.2  65.8

Figure 7: Ablation study on the training
of multiple navigation tasks. We report
the performance of different training data
combinations (specific task data only, spe-
cific task data with 50% other data, and
specific task data with 100% other data).

Figure 8: Ablation Study on History Token Organization
Strategies and Identity Tokens. Uniform sampling is adopted
from (Cheng et al., 2025). fPositional embeddings is adopted
from HAMT (Chen et al., 2021b).

3.3 ABLATION STUDY

Synergy of training on multiple navigation tasks. We investigate the synergistic effects of multi-
navigation task training by comparing the performance of single-task training with co-tuning that
incorporates additional data from other navigation tasks (Ku et al., 2020b; Yokoyama et al., 2024b;
Wang et al., 2025c; Dauner et al., 2024a). We observe that co-tuning with data from diverse nav-
igation tasks leads to consistent performance improvements across all tasks (from 50% to 100%
data ratios). Notably, Searching (improving from 10.3% to 45.2%) and Tracking (improving from
12.6% to 62.0%) exhibit the most significant gains. We attribute these improvements to the discrep-
ancy between their training conditions (primarily single-view and closed-set target categories) and
the evaluation settings, which are multi-view and open-vocabulary. These results suggest that train-
ing across multiple navigation tasks helps mitigate overfitting to task-specific navigation patterns.

Effectiveness of BATS and TVI tokens. We conduct ablation studies to evaluate the effectiveness
of our key designs, including the history token organization strategy and visual-temporal history
modeling. The experiments are conducted on the VLN-CE RxR four-camera setting, and the re-
sults are presented in Table 8. We test different token strategies under different token budgets (1024
or 2048) and find that BATS outperforms other strategies in both settings, on both token budgets.
Specifically, when the token budget is reduced from 2048 to 1024, BATS demonstrates a smaller per-
formance drop (only 1.4% |) on the nDTW metric compared to the baselines (6.0% J. and 5.2% |.).
Furthermore, we compare TVI tokens with other common alternatives and find that TVI tokens
achieve significantly better performance. As illustrated in Figure 3, we attribute this improvement to
the well-learned temporal and viewpoint information. Moreover, compared to the common history-
viewpoint positional embedding method (Chen et al., 2021b), we observe a noticeable performance
drop. We believe this is due to the additional embedding components introduced for visual tokens,
which may increase model complexity, while TVI provides separate information to facilitate LLM
understanding. These results demonstrate the effectiveness of TVI tokens.

4 RELATED WORKS

There is a large body of literature (Savva et al., 2019a; Zhang et al., 2024b) on navigation across
different tasks and embodiments; here we review those most relevant to our work. In cross-task nav-
igation, recent efforts (Wang et al., 2022; Long et al., 2024; Song et al., 2025; Zhang et al., 2025a;
Gao et al., 2025; Yin et al., 2025; Ruan et al., 2025) have shown that integrating data from different
categories of navigation tasks can lead to stronger performance across various scenarios. For cross-
embodiment navigation, prior studies (Shah et al., 2023a;b; Yang et al., 2024b; Wang et al., 2020;
Eftekhar et al., 2024; Hirose et al., 2023; Putta et al., 2024; Curtis et al., 2024; Wang et al., 2025a;
Zhang et al., 2025b; Geng et al., 2025) have demonstrated the potential of transformer-based poli-
cies trained on large-scale, cross-embodiment datasets to achieve robust performance across various
robotic platforms. In this work, our method presents an early attempt to unify cross-task and cross-
embodiment navigation within a VLA model under a unified training and evaluation framework,
demonstrating strong performance in both synthetic and real-world environments.

9
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5 DISSCUSION AND CONCLUSION

In this work, we propose NavFoM, which aims to push the boundaries of navigation and explore the
intelligence learned from cross-embodiment and cross-task navigation data. We introduce temporal-
viewpoint indicator tokens to enhance the LLM’s understanding of varying camera configurations
and different horizons in navigation tasks, while also enabling co-training with navigation and
question-answering data. Furthermore, we employ a token budget-aware temporal sampling strategy
to balance navigation performance and efficiency, facilitating a unified approach to token sampling
across diverse camera setups and task horizons. Extensive experiments on both public benchmarks
and real-world environments demonstrate the strong perfomrence and generability of NavFoM. We
believe that NavFoM serves as a starting point toward a navigation foundation model and will attract
greater attention to intelligence-centric navigation

ETHICS STATEMENT

This work presents a generalist navigation foundation model designed to enhance the capabilities
of embodied agents across diverse environments and embodiments. We acknowledge the potential
societal benefits of such technology, including improved assistive robotics, search-and-rescue oper-
ations, and autonomous systems. However, we also recognize the risks associated with deploying
Al-powered navigation systems in real-world settings, such as safety hazards, privacy concerns aris-
ing from visual data collection, and potential misuse. All training data were sourced from publicly
available datasets, with due consideration given to ethical guidelines. The development and evalua-
tion of our method involved rigorous real-world testing, transparency regarding its capabilities and
limitations, and adherence to applicable regulations and safety standards.

REPRODUCIBILITY STATEMENT

We provide full implementation details (Section 2), including the model architecture, training con-
figurations, data processing procedures, and the real-world deployment framework. All datasets
(Section A.4) used are publicly accessible, and hyperparameters are clearly specified in both the
main paper and the appendix. The base models (Section 2.1.3), including large language models
and vision encoders, are explicitly mentioned in the paper, along with a detailed training strategy.
We also include specifics regarding evaluations as well as instructions for deployment in synthetic
(Section 3.1) or real-world environments (Section B.4). The code, together with pre-trained model
weights, will be made publicly available upon acceptance.
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USAGE OF LLM STATEMENT

Large Language Models (LLMs) are utilized solely to enhance the quality of written content by
assisting with polishing text and correcting grammatical errors.

A IMPLEMETATION DETIALS

A.1 ACTION PLANNING MODEL

Due to the fact that different 'embodim'ents could have dis- Embodiements  x(m)_y(m)zm) Grad)
tinct trajectory scales. For instance, indoor robots often Indoorrobors* 10 0433 - 209
move on the scale of meters while cars move on the scale UAV* 793 319 785 1.04
of dozens of meters. We normalize the predicted trajec- Cars” 08 149 - 1%
tory scaling across different embodiments to the range [-
1,1] of all dimesions by multipy a scaling factor cv,g, as
reported in Table 5. Note that the scaling factor is not de-
rived from the absolute maximum value of each dimen-
sion; instead, we use the 99th percentile of each dimen-
sion to avoid the influence of outlier data.

Table 5: Scaling factors of different dime-
siong of predicted tracjtort of different em-
bodiements.

A.2 DETIALS OF USING BATS

During navigation, initially when the number of visual tokens is within the token budget B, we
retain all visual tokens. Once the visual tokens exceed the budget B, we employ BATS to sample
tokens based on a forgetting curve (Sec. 2.1.2). In practice, we precompute P (¢, T) for a given token
budget B to accelerate this process. If the navigation task involves an exceptionally long horizon,
such as thousands of steps (which rarely occurs), even using the minimum sampling probability e
may result in the visual tokens exceeding the token budget. In such cases, we simply remove the
oldest frames.

A.3 DETIALS OF FIGURE 3

We performed clustering (Mclnnes et al., 2018) directly on the end-to-end learned TVI tokens (Eq. 3)
and visualized the embeddings using a color map based on viewpoint angle and time step. Specif-
ically, for the navigation task (Eq. 3 row 1), we sampled 1,800 TVI token embeddings from com-
binations of 60 angles (distributed over [0, 27]) and 30 time steps (ranging from O to 150). For the
VQA task (Eq. 3 row 2), we sampled embeddings from 30 time steps ranging from 0 to 150.

A.4 DATA PREPARATION

Vision-and-Language Navigation (3.37 M) requires an agent to interpret natural language instruc-
tions and egocentric visual observations, align the instructions with visual inputs, and plan subse-
quent actions to reach described landmarks. Following a broad definition of VLN (Zheng et al.,
2024; Wang et al., 2025b; Zhou et al., 2024), we consider both indoor environments (e.g., VLN-CE
on R2R (Krantz et al., 2020) and RxR (Ku et al., 2020a)) and outdoor environments (e.g., Open-
UAV (Wang et al., 2024a)), deployed on robots and unmanned aerial vehicles (UAVs), respectively.
For VLN-CE on R2R and RxR (2.94 M), we capture multi-view RGB videos, annotated instruc-
tions, and trajectory data while the robot follows the ground-truth path. The multi-view RGB setup
consists of a fixed front-view camera and randomly sampled surrounding cameras (ranging from
one to eight). Camera heights are randomized between 0.6 m and 1.5 m, and the horizontal fields
of view (HFoV) vary between 75° and 120°. For the OpenUAV dataset (429 K), we record camera
streams from the front, left, right, and rear views for all sequences. Other randomization strategies
remain consistent with those used in the VLN-CE tasks.

Object Goal Navigation (1.02 M) requires a robot to explore an unseen environment and identify
a described target. For the object goal navigation dataset, we follow the method of (Zhang et al.,
2025a) by collecting successful episodes from L3MVN (Yu et al., 2023), a heuristic-designed ap-
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proach that explicitly models the exploration and identification stages. Our data are collected from
HM3D ObjectNav (Savva et al., 2019a) episodes, which require the agent to locate objects from a
predefined category set (e.g., sofa, chair, and bed). Nevertheless, experiments show that our method
generalizes to state-of-the-art open-vocabulary object goal searching, as presented in Table 7. Note
that we do not employ multiple cameras or camera randomization, as we aim to maintain the same
visual observation configuration as L3AMVN.

Active Visual Tracking (897K) (Islam et al., 2019; Francis et al., 2023; Wang et al., 2025c¢) requires
the robot to distinguish the target within dynamic and crowded environments. The target is specified
via textual instructions, e.g., “Follow the man in the blue t-shirt.” The agent must recognize the
appearance of the human, follow the correct person according to the instructions, and maintain
an appropriate distance while avoiding obstacles. For this task, we use data from EVT-Bench,
consistent with (Wang et al., 2025c), which involves diverse indoor environments and hundreds of
avatars with corresponding descriptions. We also incorporate camera randomization, as described
in our VLN data collection process.

Autonoums Driving (681K) (Hu et al., 2023; Liao et al., 2024b) requires an agent to generate a safe,
comfortable, and kinematically feasible trajectory for navigating complex and dynamic real-world
environments. This task evaluates the agent’s ability to continuously perceive its surroundings,
anticipate the future movements of other traffic participants, and make robust sequential decisions
to avoid collisions while progressing toward a destination. Here, we process 27K and 654K samples
sourced from nuScenes (Caesar et al., 2020a) and OpenScene (Contributors, 2023), respectively.
We directly record the original multi-view images, instructions, and vehicle state information from
the dataset. Note that we do not collect explicit surrounding information (such as lane details), in
contrast to common autonomous driving baselines (Chen et al., 2024c; Li et al., 2024b).

Web-Video Navigation. (2.03M) We also leverage the Sekai dataset (Li et al., 2025a), which pro-
vides a collection of approximately 182K YouTube videos with corresponding instructions (gener-
ated by VLMs (Bai et al., 2025)) and trajectories (generated by SLAM systems (Li et al., 2025b)).
Although these navigation samples contain imperfect instructions and trajectories, they remain
valuable for incorporating real-world navigation scenarios. Similar findings have been reported
in (Cheng et al., 2025; Wei et al., 2025).

Open-World Question-Answering. (4.76M) Following existing video-based VLMs (Li et al.,
2023; Shen et al., 2024; Wang et al., 2025c), we collect 3.15M image QA samples and 1.61M video
QA samples, which encompass rich and comprehensive knowledge for open-world understanding.

A.5 DISCRETE ACTION PROCESSING

Go struight and go up the staies o your ight. Go up ine steps then stop.

(a) Discrete Actions to Trajectory in VLN-CE RxR (b) Predicted Trajctocy

Figure 9: Visualization of the trajectory (VLN-CE RxR) for (a) training and (b) evaluation.

For navigation tasks built on the Habitat environment (Savva et al., 2019a), which utilizes low-level
discrete actions such as Move_Forward, Turn_Left, Turn_Right, and Stop. However, the
definitions of these discrete actions vary slightly across different navigation tasks. For example,
in VLN-CE R2R, Turn_Left indicates a 15-degree turn, whereas in VLN-CE RxR and HM3D-
ObjNav, it indicates a 30-degree turn. To unify all navigation tasks with discrete actions, we employ
a simple strategy: we consider moving forward by 12.5 cm or turning by 15 degrees as an atomic

20



Under review as a conference paper at ICLR 2026

0 D

LLM LLM
U-007E8«H O-00r0000-=0000
—_— —_— — —

Text Image Image 1 Image T
(a) Image QA (b) Video QA
<Action Token>
-
LLM

O-00mwO00) w000 ms5¢4 ) 7 (55 &)
%_I

Image <1,0>  Image <I, 6> Image <T, 0>  Image <T, 6>

(c) Navigation

Figure 10: Token Organization Strategy of NavFoM Across Different Tasks. (a) For image question an-
swering, fine-grained visual tokens are utilized, incorporating only the base embedding of TVI tokens. (b) For
video question answering, coarse-grained visual tokens are employed, which include both the base embedding
and the time embedding of TVI tokens. (c) For navigation, both coarse-grained and fine-grained visual tokens
are used, integrating the base, time, and angle embeddings of TVI tokens.

operation. We then construct the trajectory based on the accumulation of these atomic operations.
Although the resulting trajectory could be zigzag (Figure 9), after fine-tuning on all navigation
datasets, we find that the predicted trajectory of our method is smooth and meaningfully directed
toward the target.

A.6 TOKEN ORGANIZATION

We provide a detailed illustration of the token organization strategy for different tasks in Figure 10.
For Image QA, we use E,s along with fine-grained visual tokens (64 tokens per image) to represent
the image. For Video QA, we incorporate Ep,se + Piime (TimePE(¢)) to encode temporal information
for each frame, and employ coarse-grained visual tokens (4 tokens per frame) to avoid an excessive
number of tokens.

B EXPERIMENT DETIALS

B.1 BENCHMARKS
We give a detailed introduction to evaluation benchmarks:

* Vision-and-Language Navigation: We evaluate our method on the VAL-Unseen splits of
the VLN-CE R2R (Krantz et al., 2020) and RxR (Ku et al., 2020a) benchmarks, which
require the robot to follow instructions in unseen indoor environments. We also evaluate
our method on the Open-UAV benchmark (Wang et al., 2024a), which requires the UAV to
follow instructions in unseen outdoor environments.

* Object goal navigation: We follow previous methods (Zhang et al., 2025a; Zhu et al.,
2025) to evaluate the generalizability of object-goal navigation on the HM3D-OVON
dataset (Yokoyama et al., 2024b), an open-vocabulary object navigation benchmark, in
a zero-shot manner.

* Active Visual Tracking: We evaluate our method on EVT-Bench (Wang et al., 2025¢), a
challenging benchamrak requrie the robot to distinguish and follow target within crowded
environments.

* Autonomous Driving: We evaluate our method on mainstream benchmarks, namely
nuScenes (Caesar et al., 2020a) and NAVSIM (Dauner et al., 2024b), for open-loop and
pseudo-simulation evaluation. Our evaluation strategy is consistent with existing baseline
(Liao et al., 2024a) to ensure a fair comparison.
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B.2 METRICS

Success Related Metrics. We report three success-related metrics (Anderson et al., 2018): Nav-
igation Error (NE) measures the average distance between the agent’s final position and the goal;
Success Rate (SR) calculates the percentage of episodes where the agent stops within a threshold
distance of the goal, while additionally requiring the goal to be within the agent’s receptive field
for OVON and EVT-Bench; and Oracle Success (OS) reports the percentage of episodes where the
agent passes within the threshold distance at any timestep. Success thresholds vary across bench-
marks, and we follow their default settings: 0-3m for VLN-CE R2R, RxR, HM3D-OVON; 1-3m
for EVT-Bench; and 0-20m for Open-UAV.

Trajectory Quality Metrics. To account for path efficiency, we measure Success weighted by Path
Length (SPL) (Batra et al., 2020), which rewards successful agents that adhere closer to the optimal

path length: SPL = L "V | 8+ ol
shortest-path distance, and L; is the executed path length; We also report normalized Dynamic Time
Warping (nDTW) (Ilharco et al., 2019), which quantifies the fidelity of the agent’s path relative

M), where DTW (7, 7) is the dynamic

n
time warping distance (Berndt & Clifford, 1994) between reference path 7 and predicted path 7,
and 7 is the shortest-path distance from start to goal. Specifically for the tracking task, we use the
Tracking Rate (TR) (Puig et al., 2023), which measures the agent’s temporal consistency, defined as
the proportion of steps where the target is maintained within the sensor’s field of view and a 1-3m
range relative to the total episode length.

, where \S; indicates success for episode i, L7 is the

to the ground truth trajectory: nDTW = exp(—

Autonomous Driving Evaluations. For the autonomous driving evaluation, we report L2 distance
and Collision Rate (CR) for open-loop planning (Caesar et al., 2020a). L2 measures the average
Euclidean distance between the predicted and ground truth waypoints, while CR measures the fre-
quency of intersection with obstacles. For closed-loop evaluation in NAVSIM, we use the PDM
score (PDMS) (Dauner et al., 2024b). PDMS is a holistic metric composed of weighted sub-scores:
No at-fault Collisions (NC) and Drivable Area Compliance (DAC) penalize critical safety infrac-
tions; Time-to-Collision (TTC) and Comfort (Comf.) assess interaction safety and ride smoothness;
and Ego Progress (EP) measures the distance traveled along the route as a ratio to a safe upper
bound.

B.3 TRAINING STRATEGY

Accelerating Training by Caching Visual

Features. Due to the long horizon of videos ) ) -
(hundreds of frames), encc;gding all images on- C{a_cb‘id_\f'iu_a,l_,F_ef t_lf_re_s_(g)]:ﬂlne)
line in a large batch can be computationally % I %% |

expensive. To mitigate this issue, we lever- m N t

age a visual feature caching mechanism (Yan ' 2.9x Faster
et al.,, 2022) and construct a visual feature (Frozen) | |
database (See Figure 11). Note that we only . .

cache coarse-grained visual tokens (4 tokens 4
per frame), which require significantly less disk

Visual features ‘: Avg. Training Time
1

P—

space compared to storing full videos, as a sin- Database 4

gle episode of navigation typically produces  ~======"7 . —— g 1 ng
dozens of videos. For image QA and the lat- MLP Adapter ' X; ess

est observation in navigation, we still use vi- (Trainable) I

sual encoders online to extract fine-grained vi-

sual tokens (64 tokens per frame). This ap- HEEEEE |
proach reduces training time (2.9x faster) and Visual Tokens Avg. GPU Memory Cost

GPU memory usage (1.8x less).

Figure 11: Offline Visual Feature Cached. We pre-
computed video frames and navigation hisitroy and

B.4 REAL-WORLD DEPLOYMENT SYSTEM .
saved as corase visual tokens.

We regard our model as a general Visual-
Language-Action (VLA) model capable of
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Table 6: Comprehensive results on OpenUAV benchmark with L1 level assistant. Seen denotes the seen
split, while UO and UM represent the Test Unseen Object Set and Test Unseen Map Set respectively. DA refers
to a model trained using backtracking sampling-based data aggregation. The best and the second best results
are denoted by bold and underline.

Method Test Set Full Basy Hard

NE| SRt OSRt SPLt NE, SRt OSRt SPLt NE| SR OSR{ SPLt

OpenUAV Seen Set
Human Seen 14.15 9451 9451 77.84 11.68 9544 9544 76.19 17.16 9337 9337 79.85
Random Action Seen 22220 0.14 021  0.07 142.07 0.26 039 0.13 320.12  0.00 0.00  0.00
Fixed Action Seen 188.61 227 8.16 140 12136 348 1148 214 270.69 0.79 4.09 049
CMA (Wang et al., 2024a) Seen 135773 837 1872 790 84.89 11.48 2452 10.68 197.77 457 11.65 451
TravelUAV (Wang et al., 2024a) Seen 10628 16.10 4426 1430 6878 1884 47.61 1639 15204 1276 40.16 11.76
Travel UAV-DA Seen 98.66 17.45 4887 1576 6640 2026 51.23 18.10 138.04 14.02 4598 12.90
NavFoM (Four views) Seen 93.05 29.17 49.24 2503 5898 3291 53.16 27.87 143.83 23.58 4340 20.80
OpenUAV Unseen Set

Random Action uo 260.14  0.16 016 0.16 17410 048 048 048 30296  0.00 0.00  0.00
Fixed Action uo 212.84  3.66 954 216 15166 670 13.88 3.72 24329 2.14 7.38 1.38
CMA (Wang et al., 2024a) uo 155779 9.06 16.06  8.68 10292 14.83 2249 1390 182.09 6.19 12.86 6.08
TravelUAV (Wang et al., 2024a) uo 118.04 2242 4690 20.51 86.12 2440 49.28 22.03 134.03 2143 4571 19.75
NavFoM (Four views) uo 108.04 29.83 4799 27.20 70.51 32.54 50.72 29.54 133.01 28.03 46.18 25.64
Random Action UM 20298  0.00 0.00 0.00 15846  0.00 0.00 0.00 26588  0.00 0.00  0.00
Fixed Action UM 18047  0.52 261 039 13289 0.89 428  0.67 247.72  0.00 025 0.00
CMA (Wang et al., 2024a) UM 141.68 230 10.02 2.6 10229 357 1426 333 19735 050 4.03  0.50
TravelUAV (Wang et al., 2024a) UM 138.80  4.18 20.77 3.84 10294 4.63 22.82 424 189.46 3.53 17.88 3.28
NavFoM (Four views) UM 12510 630 1895 5.68 10241 6.77 20.07 6.04 170.58 536 1571 4.97

driving different embodiments to complete var-

ious navigation tasks. To achieve this, our model takes visual observations—obtained from one or
more cameras—along with instructions, and directly predicts a trajectory. We then utilize off-the-
shelf APIs (which may include Lidar or other sensors if necessary) specific to each embodiment to
drive the robot along the predicted trajectory.

(GeF se‘;;( 5090) Navigation Foundation Model ;‘s
eForce
@/*’. 2
A
QD) Cc;(mprless(;ad 1((T)) Trajectory &'/ ‘
uploa g
Unitree Go2 Galbot G1
Controller ’ SG3S camera SG3S camera
-
L A -
(Mutli-view) . .
. Velocity/Joints .
RGB images v :;
Embodiments ’ ]
NCS-B Aerial Robot Unitree G1
Realsense D435 Realsense D455
(a) Real-world deployment system (b) Robot Setup

Figure 12: Real-world deployment setup. We provide the system architecture of our methods and the corre-
sponding robots that were tested in the paper.

An illustration of our real-world system is provided in Figure 12. Specifically, we deploy our model
on a remote server equipped with a GeForce RTX 5090 GPU and use the Internet for communication
between the server and the client (which includes the controller and embodiments). Given a user
instruction, the robots compress their current observations and transmit them to the server. The
server then processes both the observations and the instruction to output a trajectory. This trajectory
is subsequently processed by the local planner of each individual robot, which sends appropriate
commands (e.g., velocity or joint controls) to drive the robot.
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Table 7: Object goal navigation. Comparison on HM3D-OVON Yokoyama et al. (2024b). * : denotes zero-
shot evaluation. We report the performence of our method on egocentric and four-view settings. The best and
the second best results are denoted by bold and underline.

VAL SEEN

Method VAL SEEN SYNONYMS VAL UNSEEN

SRt SPLT SRt SPLT SRt SPLT
BC 11.1 4.5 9.9 3.8 5.4 1.9
DAgger 11.1 4.5 9.9 3.8 54 1.9
RL 18.1 9.4 15.0 74 10.2 4.7
BCRL 39.2 18.7 27.8 11.7 18.6 7.5
DAgRL 41.3 21.2 29.4 14.4 18.3 7.9
VLEM* (Yokoyama et al., 2024a) 35.2 18.6 32.4 17.3 35.2 19.6
DAgRL+OD (Yokoyama et al., 2024b) ~ 38.5 21.1 39.0 21.4 37.1 19.8
Uni-NaVid* (Zhang et al., 2025a) 41.3 21.1 439 21.8 39.5 19.8
MTU3D (Zhu et al., 2025) 55.0 23.6 45.0 14.7 40.8 12.1
NavFoM * (Single view) 37.7 255 43.3 299 43.6 313
NavFoM * (Four views) 40.1 27.1 454 32.6 45.2 31.9

C ADDITIONAL EXPERIMENTS

C.1 PERFORMANCE ON OPENUAV

We report the performance of our method in a challenging UAV scenario (Wang et al., 2024a) in
Table 6, which requires the UAV to follow natural language instructions and execute long-horizon
trajectories (averaging 200 meters) to reach described targets in outdoor environments. Note that
our method uses trajectories directly collected from the TravelUAV (Wang et al., 2024a) training
split (mimicking ground truth trajectories), as no strong baseline was available to collect expert
trajectories as was done for the ObjectNav data collection. Despite this, our approach achieves state-
of-the-art performance compared to prior UAV-specific baselines such as TravelUAV, without relying
on downward-facing cameras as used in those methods (we plan to incorporate additional degrees
of freedom in camera configurations in future work). This clearly demonstrates the effectiveness of
our approach and the benefits of learning from diverse navigation tasks (Figure 7).

However, we observe that all methods perform poorly on the Unseen-Map split, which requires an
average traversal of 300 meters through complex neighborhoods to reach unseen targets. This is be-
cause the unseen split demands more advanced navigation capabilities, such as efficient exploration
of large-scale environments, which in turn relies on higher-quality UAV data.

C.2 PERFORMENCE ON OVON

Following prior work (Zhang et al., 2025a; Zhu et al., 2025), we evaluate search capability on an
open-vocabulary benchmark (Yokoyama et al., 2024b) under a zero-shot setting. The results are
presented in Table 7, which includes performance for both single-camera and four-camera config-
urations. Under the single-camera setting, our method achieves performance comparable to that of
the state-of-the-art (SOTA) approach (Zhu et al., 2025) on both the VAL SEEN and VAL SEEN
SYNONYMS splits in a zero-shot evaluation setting. On the more challenging VAL UNSEEN
split, our method outperforms the SOTA method, improving the success rate (SR) from 40.8% to
43.6%. Furthermore, when transitioning from the single-camera to the four-camera setting, we ob-
serve consistent improvements across all splits and metrics. Notably, our model was trained only on
single-camera search samples, demonstrating that co-tuning across different camera configurations
enhances generalization to varied camera setups.

C.3 PERFORMANCE ON THE EVT-BENCH

We evaluate our method on EVT-Bench (Wang et al., 2025¢) (including both the Single Target and
Distracted Target splits) under both single-view and four-view camera settings (Table 8). Note that
our model is trained only on the single-view setting and evaluated on the four-view setting in a zero-
shot manner. Our results demonstrate that the proposed method achieves state-of-the-art (SOTA)
performance under the single-view setting, outperforming the previous baseline, Track VLA (Wang
et al., 2025c), which was specifically fine-tuned on tracking data. Furthermore, when the camera
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Table 8: Performance on EVT-Bench. : Uses GroundingDINO (Liu et al., 2023b) as the open-vocabulary
detector. ¥: Uses SoM (Yang et al., 2023)+GPT-40 (OpenAl, 2024) as the visual foundation model. The best
and the second best results are denoted by bold and underline.

Single Target Distracted Target

Method SRt TRt SRt TRt
IBVS+ (Gupta et al., 2016) 429 562 10.6 28.4
PoliFormert (Zeng et al.) 4.67 155 262 13.2
EVT (Zhong et al., 2024) 244 391 323 11.2
EVT} (Zhong et al., 2024) 325 499 157 35.7

Uni-NaVid (Zhang et al., 2025a) 25.7 395 11.3 27.4
TrackVLA (Wang et al., 2025¢)  85.1 78.6  57.6 63.2
NavFoM (Single view) 85.0 80.5 614 68.2
NavFoM (Four views) 884 80.7 62.0 67.9

Table 9: Comparison on planning-oriented NAVSIM navtest split with closed-loop metrics. Vsig2
denotes 8192 anchors. The best and the second best results are denoted by bold and underline.

Method Observation & Structure Metrics

Camera Lidar VLM-Based NCt+ DACtT TTC?tT Comf. 1T EP7T ‘ PDMS 1
Human - - - 100 100 100 99.9 87.5 94.8
Constant Velocity - - - 69.9 58.8 49.3 100 49.3 21.6

Ego Status MLP

LTF (Chitta et al., 2022)

Transfuser (Chitta et al., 2022)
VADV2-Vg195 (Chen et al., 2024b)
Hydra-MDP-Vg195 (Li et al., 2024c¢)
DiffusionDrive (Liao et al., 2024a)
DRAMA (Yuan et al., 2024)

UniAD (Hu et al., 2023)
PARA-Drive (Weng et al., 2024)
LAW (Li et al., 2024b)
DrivingGPT (Chen et al., 2024c)
NavFoM (Eight views)

93.0 77.3 83.6 100 62.8 65.6

- 974 928 924 100 790 | 838
- 97.7 928 928 100 792 | 840
- 972 891 916 100 760 | 809
- 979 917 929 100 776 | 830
- 982 962 947 100 822 | 881
v 980 931 948 100 80.1 | 855

B B 978 919 929 100 788 | 834
. . 97.9 924 930 998 793 | 84.0
. 964 954 887 999 817 | 846
. v 989 907 949 956  79.7 | 824

v 97.7 935 923 100 796 | 843

SN N NN RN NENENENEN

setup is increased from single-view to four-view (in a zero-shot manner), our method continues to
improve its performance. However, compared to the improvement observed in VLN (a 6.8% 7 in
SR on VLN-CE RxR), the gains here are relatively modest (0.6% 7 in SR). We attribute this to
the fact that most targets in EVT-Bench are spawned in front of the robot, a key assumption of this
benchmark. We plan to further investigate this issue through both simulation and methodological
enhancements, such as incorporating randomly positioned surrounding targets in future work.

C.4 PERFOMRENCE ON NAVSIM

We conduct experiments to evaluate our method on eight-view settings autonoums driving (without
fine-tuning for specific configurations). Results on NAVSIM in Table 9. We observe that our method
achieves performance comparable to SOTA methods on both benchmarks, without explicitly model-
ing driving-related information such as lane markings, nearby vehicles, or other contextual elements.
We believe our approach can be further improved by incorporating scene descriptions as prompts,
similar to other baseline methods. We are also interested in evaluating this model in closed-loop
autonomous driving simulators such as (Dosovitskiy et al., 2017).
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Table 11: Computational cost. We report the converged mem cost and converged inference speed.

Model Version Converged Mem Cost Converged Inference
RTX 4090 original (16bit) 19.8 GB 218 ms
RTX 4090 Quantized (4bit) 10.7 GB 248 ms
Jetson Thor Quantized (16bit) 19.1 GB 566 ms

C.5 PERFOMRENCE ON NUSCENE

Table 10: Comparison on planning-oriented nuScenes dataset with open-loop metrics. Metric calcula-
tion follows DiffusionDrive (Liao et al., 2024b). The best and the second best results are denoted by bold and
underline.

Observation & Structure L2 (m) | Collision (%) |
Camera  VLM-Based Is 2s 3s | Avg. s 2s 3s | Avg.

- 1.33 2,11 290 | 2.11 023 0.62 1.27 | 0.71
- 045 070 1.04 | 073 0.62 058 0.63 | 0.61
- 041 0.70 1.05| 072 0.07 0.17 041 | 0.22
029 058 096 | 061 0.0l 0.05 0.18 | 0.08
027 054 090 | 057 0.03 0.05 0.16 | 0.08
0.18 034 0.68 | 040 0.10 022 045|027
0.14 029 0.54 | 0.32 - - - -
045 091 158 | 098 0.05 028 0.55 | 029
0.14 029 055|033 0.00 0.13 0.78 | 0.30
0.15 036 0.70 | 040 0.06 027 0.72 | 0.35
0.17 031 0.55| 034 0.05 025 0.80 | 037
026 039 0.60| 042 0.07 0.11 0.18 | 0.12

Method

ST-P3 (Hu et al., 2022)
UniAD (Hu et al., 2023)

VAD (Jiang et al., 2023)
SparseDrive (Sun et al., 2024)
DiffusionDrive (Liao et al., 2024b)
DriveVLM (Tian et al., 2024)
EMMA (Hwang et al., 2024)
DME-Driver (Han et al., 2025)
Omni-Q (Wang et al., 2025d)
Omni-L (Wang et al., 2025d)
ORION (Fu et al., 2025a)
NavFoM (Six views)

N N N N N N NENENEN

NN NN

We report the performance of our method on six-camera setting autonomous driving benchmark
nuScene (Caesar et al., 2020b) in Table 10. We compare our method with strong baselines that
are specifically designed for autonomous driving. Nevertheless, our method achieves comparable
performance to these methods without explicitly modeling driving-related information.

C.6 VISUAL RESULTS OF SYNTHETIC ENVIRONMENTS

We provide visual results on benchmarks in Figure 13 from VLN-CE RxR (Ku et al., 2020a), EVT-
Bench (Wang et al., 2025c), OVON (Yokoyama et al., 2024b), openUAV (Wang et al., 2024a),
nuScenes (Caesar et al., 2020a) and NAVSIM (Dauner et al., 2024a).

D ABLATION STUDY

Performance on differnt number of cameras. We evaluate the effectiveness of incorporating
additional cameras in navigation tasks on VLN-CE RxR, a benchmark that offers a relatively com-
prehensive suite of vision-language navigation challenges. The results are presented in Table 14,
which compares configurations of one, two, three, four, and six cameras mounted around the robot
to achieve a wider field of view. We observe consistent performance improvements when increas-
ing the number of cameras from one to four, validating that enhanced environmental observations
contribute positively to navigation performance. Notably, however, expanding to six cameras leads
to a slight degradation in performance. We attribute this to the fact that six cameras do not provide
substantially more observational coverage compared to four cameras, while the increased number of
view tokens reduces the capacity available for encoding historical frames (Equation 5). This weaks
the alignment between the navigation history and the instruction. We suggest that this issue could
be mitigated by adopting an adaptive multi-view token encoding strategy. To maintain coherence in
the current work, we leave this exploration for future research.
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You're starting in a hallway, facing a living room with white couches. Turn to your left and head down the hall toward the large windows at the back. Walk between the counter on your left and the blue couch on your
right. When you gt to the end of the counter, you'll see a dining area in front of you and to the left of that, is a white buffet table. Walk up to that white buffet table, and then turn around to your left and take a right
into the walkway before you get into the kitchen. This will lead into another hallway. A very small hallway. You'll sce an abstract painting (it's, like, gray and black) on the right, and two shut wooden doors with
frosted glass pannels. Then in between those s what looks like a bathroom. Just take one steps into that room in front of the sink. This is where you stop.

VLN-CE RxR

EVT-Bench DT

)y
\
HM3D-OVON

A yellow car is positioned on a deserted street characterized by low-rise brick and concrete buildings, trees are present on
sidewalks, and there‘s a red phone booth nearby. Please control the drone and find the target
o R 3 - =

\_b
v/

\
OpenUav

I >
Ny 5
N
\ -~
nuScenes

NAVSIM

Figure 13: Visualization of perfomrence on benchmarks. We report visual results of NavFoM on VLN-CE
RxR (single-view), EVT-Bench Distracted Targets (four-view), OpenUAV (four-view), NeuScenes (six-view),
OpenScenses (Eight-view).

E REAL-WORLD EXPERIMENTS

Real-world deployment cost. We have conducted additional experiments on deployment costs.
Specifically, we provide the original costs (16-bit) and quantized version (4-bit) of our model (‘7B
LLM + 2B ViT, 2048 Token Budget, four-camera view‘) on VLN-CE RxR in the table. The results
can be found in Table 11. We find that our quantized models (4-bit via Bitsandbytes') significantly

"https://huggingface.co/docs/transformers/quantization/bitsandbytes
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Effect of Camera Count on VLN-CE RxR
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Figure 14: Ablation study on the number of cameras in VLN-CE RxR. We report the performance under
five different camera configurations (from left to right: one-, two-, three-, four-, and six-camera settings), with
same token budget (B = 2048).

reduce deployment costs (using only 53.9% of the original memory) while maintaining comparable
performance. This also enables our method to be deployed on the latest onboard GPUs. As an
example, we deployed the 16-bit quantized model on a Jetson Thor and observed stable performance,
with an average inference speed of 566 ms per trajectory prediction.

Regarding deployment memory cost, techniques such as SmoothQuant (Xiao et al., 2023a) and
quantization-aware training (Dettmers et al., 2023) could significantly reduce memory usage while
maintaining strong performance. For inference speed, there are also existing advanced techniques
such as LLM streaming (Xiao et al., 2023b) (which is suitable for processing online captured video
in robot tasks) and the Speculative Decoding strategy Leviathan et al. (2023). These methods
have demonstrated significant inference speed improvements in complicated tasks (Leviathan et al.,
2023). In summary, we believe that with the rapid development of graphics hardware and accel-
eration methods, fast and convenient deployment of large model-based approaches will become a
promising direction.

Real-world performence on 110 reproducible test cases. To evaluate the real-world performance
of our method, we designed a series of navigation test cases with different capabilities (including
50 VLN samples, 30 search samples, and 30 tracking samples). Specifically, we constructed a
5m X 5m space and recorded the locations of the robot, obstacles, and targets for each test case.
We report both qualitative and quantitative results of NavFoM in complex scenarios across these
navigation capabilities. The results are presented in Figure 15. Our findings indicate that NavFoM
demonstrates strong real-world performance: it correctly understands the surrounding environment
and plans appropriate trajectories to accomplish the task. Moreover, compared to the strong baseline
Uni-NaVid (Zhang et al., 2025a), our method exhibits significant improvements across both tasks,
demonstrating its superior performance in real-world environments.

Visual results of challenging cross-task and cross-emdbodiement real-world experiments. We
also conduct extensive experiments on more challenging scenarios with different embodiments
(quadruped robots, humanoids, drones, and wheeled robots). The results are shown in Figure 16,
where we find that our method can handle complicated real-world environments and fulfill long-
horizon instructions. We encourage readers to view our accompanying videos for a more intuitive
demonstration.

F FAILURE CASE ANALYSIS

We provide a more detailed analysis of the failure cases, covering both benchmark and real-world
environments.

Benchmark Environments: We analyze benchmark failure cases in in VLN-CE RxR, the limited
field of view (FoV) in the single-camera setup significantly affects the ability to ground visual in-
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Figure 15: Real-world experiments. We report both the qualitive and quantitive results of NavFoM on com-
plex seniors among different navigation cabability.

formation with instructions. When switching to a four-camera setting (360° FoV), the success rate
increases from 57.4% to 64.4%. We observe that about 51% of failures are due to dataset/simula-
tor problems, including rendering quality and misleading instructions (e.g., ambiguous landmarks).
The remaining failures stem from model capability issues (49%), such as failing to align history with
instructions (e.g., performing early stops) or failing to execute sufficient turns (especially at chal-
lenging narrow corners). This indicates that future efforts should focus on improving both dataset-
s/simulators and model capabilities.

Real-world Environments: During the real-world experiments, we find that most failure cases
stem from recognizing small objects (such as bottles or books) from a long distance or understand-
ing blurred images while the robot is moving. Additionally, extremely challenging scenarios, such
as following long-horizon instructions (thousands of words) or searching for an object within a very
large building (hundreds of square meters), pose critical challenges to the method. We believe that
a more robust real-world approach requires collaborative efforts in both model capabilities (percep-
tion, reasoning, memory) and hardware components (camera, computational resources).
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Egocentric View Third-Person View

Egocentric View  Third-Person View

Egocentric View  Third-Person View

Third-Person View

Egocentric View

Egocentric View Third-Person View

Proceed to the desk and turn left. Continue forward, then turn right into the hallway. Turn left and walk along the hallway, passing the sofa. Continue to the end of the
hallway, turn left, and proceed toward the glass double doors. Finally, approach the elevator and stop.
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Move to the black chair, then move to the black box, and then
move to the white cylinder
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‘ Switch from the four-camera Unitree Go2 to the single-camera Unitree G1.

Follow the man in the white T-shirt and jeans.
—

Figure 16: Visualization of real-world experiments on cross-task and cross-embodiment settings.
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