

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EMBODIED NAVIGATION FOUNDATION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical environments. To achieve such intelligence, recent advanced works leverage Vision-Language Models (VLMs), which demonstrate strong generalizability and possess a well-suited formulation for navigation. However, these approaches remain largely confined to narrow task settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. NavFoM employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons. To accommodate diverse camera setups and temporal horizons, NavFoM incorporates identifier tokens that embed camera view information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM controls all observation tokens using a dynamically adjusted sampling strategy under a limited token length budget. Extensive evaluations on seven public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across different navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm the strong generalizability and practical applicability of our approach.

1 INTRODUCTION

For both embodied agents and humans, navigation serves as a foundational capability that enables them to move intelligently within physical environments to accomplish specified tasks (Shah et al., 2023a; Bar et al., 2025; Zhang et al., 2024b). Achieving robust navigation requires a deep understanding of environmental context and task instructions, typically presented through visual and linguistic observations, which are reminiscent of Visual Language Models (VLMs). However, VLMs (Liu et al., 2023a; Yang et al., 2024a; Guo et al., 2025) have recently demonstrated remarkable zero-shot generalization in tasks such as retrieval, classification, and captioning from large-scale open-world data, without reliance on domain-specific fine-tuning. In contrast, embodied navigation (Savva et al., 2019a; Deitke et al., 2022) remains tied to narrow task domains, embodiment-specific architectures, and restricted instruction formats.

In pursuit of generalist navigation, the community has witnessed growing interest (Zhang et al., 2024a; Cheng et al., 2025; Shah et al., 2023a; Long et al., 2024), yet progress has been hindered by the constrained design and limited domain applicability of prior research. In cross-task navigation, previous methods (Zhang et al., 2025a; Yin et al., 2025; Zhu et al., 2025) typically assume a consistent camera configuration for the robot and unify various tasks such as vision-and-language navigation, object searching, and target tracking. For cross-embodiment navigation, current approaches (Eftekhar et al., 2024; Hirose et al., 2023) implicitly learn priors about the physical shape of the embodiment but are often restricted to specific navigation tasks. The existing divergence between navigation tasks and embodiments highlights the absence of a foundational navigation model capable of handling different tasks across diverse embodiments.

In this work, we toward building a cross-task and cross-embodiment embodied navigation foundation model, NavFoM, trained on eight million navigation samples spanning diverse embodiments and tasks. Inspired by humans’ ability to accomplish a wide range of navigation tasks primarily

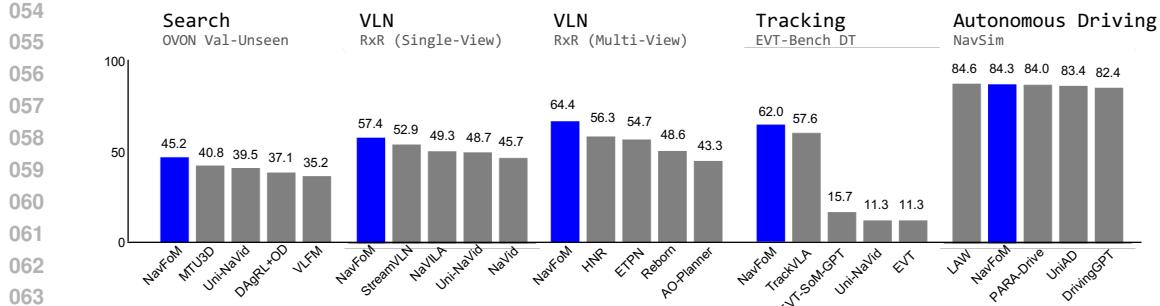


Figure 1: Benchmark performance of NavFoM, we compare our method with SOTA baselines on each benchmarks. See Section 3 for more details.

through visual sensory input and the recent success of vision-only navigation methods (Shah et al., 2023a; Zeng et al.), we formulate the generalist navigation task as processing egocentric videos (captured by one or more cameras mounted on the robot) alongside language instructions, and predicting subsequent trajectories to fulfill those instructions. This formulation is compatible with most existing navigation task settings (Contributors, 2023; Wang et al., 2024a).

To align generalizable embodiments across diverse camera configurations, we introduce temporal-viewpoint indicator tokens (TVI tokens) to identify both the viewpoint of camera setups and the temporal information of the navigation horizon. By dynamically adjusting these TVI tokens, our method enables co-tuning across different camera setups and supports joint training with both image-QA and video-QA samples (Shen et al., 2024; Li et al., 2023). Furthermore, to address the constraints of practical deployment such as hardware memory cost and inference speed, we propose a token Budget-Aware Temporal Sampling (BATS) strategy, which dynamically samples navigation history tokens based on a forgetting curve constrained by a token budget. This token sampling approach balances performance and inference speed, enhancing the practicality for real-world deployment.

We collected a comprehensive and diverse navigation dataset comprising 8.02 million samples, sourced from public navigation datasets (Savva et al., 2019a; Wang et al., 2025c; Contributors, 2023; Wang et al., 2024a) and pseudo web-video navigation data (Li et al., 2025a). The dataset includes cross-embodiment trajectories from quadruped robots, drones, wheeled robots, and cars, covering a wide range of tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. These navigation samples feature diverse instructions and scenarios that require multiple skills, enabling NavFoM to acquire generalized navigation capabilities. Additionally, we gathered 4.76 million open-world knowledge samples (Shen et al., 2024; Li et al., 2023) derived from both image-based and video-based question-answering tasks. Following the approach of (Zhang et al., 2024a), we co-tune the navigation data together with image and video QA data in an end-to-end manner, facilitating large-scale and comprehensive training of NavFoM.

Our experiments demonstrate that NavFoM achieves substantial advancements in generalist navigation. Without task-specific fine-tuning, NavFoM attains state-of-the-art or competitive performance across diverse public benchmarks for a variety of embodiments. On VLN-CE RxR (Ku et al., 2020a), NavFoM improves performance in multi-camera settings (from 56.3% to 64.4% SR) and in single-camera settings (from 51.8% to 57.4% SR) compared to prior baselines. On HM3D-OVON (Yokoyama et al., 2024b), our method achieves 45.2% SR in a zero-shot setting, outperforming the previous fine-tuned SOTA method (43.6% SR). Similarly strong results are observed across various benchmarks in object searching, tracking, and autonomous driving. We further validate NavFoM through real-world experiments on multiple robotic platforms, including humanoid robots, quadrupeds, drones, and wheeled robots. These results underscore its strong generalizability and highlight promising progress toward generalist navigation.

2 METHOD

Generalist Navigation Task. We consider a general navigation setting in which a mobile embodiment is given a textual instruction L and a sequence of images $I_{1:T}^{1:N} \in \mathbb{R}^{W \times H \times 3}$, captured on-the-fly from N different cameras at time steps $\{1, \dots, T\}$. Given these observations and the instruction, our model π is required to predict a navigation trajectory $\tau = \{\mathbf{a}_1, \mathbf{a}_2, \dots\}$, where each

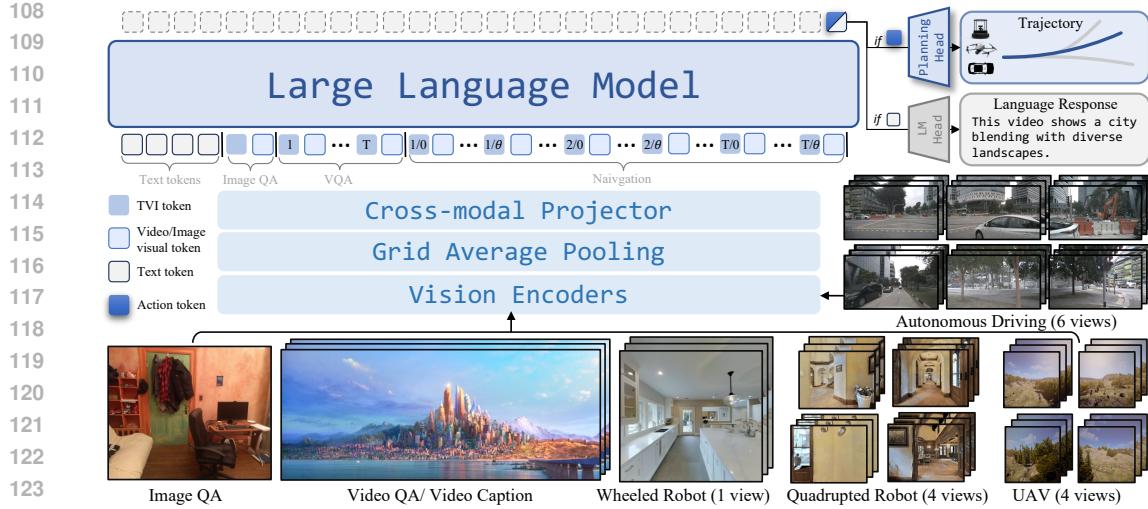


Figure 2: **Pipeline of NavFoM.** Our method provides a unified framework for handling multiple tasks, including Image QA, Video QA, and Navigation. We organize text tokens and visual tokens using temporal-viewpoint indicator tokens (Sec. 2.1.1).

$\mathbf{a} \in \mathbb{R}^4 = (x, y, z, \theta)$ represents a position and orientation waypoint. Note that z is only used when the embodiment is a UAV, and θ denotes the yaw angle (since our task does not require agile flight motions, the yaw angle suffices). The model drives the mobile embodiment to fulfill the instruction according to the mapping $\pi(L, I_{1:T}^{1:N}) \mapsto \tau_T$.

Basic Architecture. We extend vanilla video-based vision-language models (VLMs) (Li et al., 2023; Shen et al., 2024) to a dual-branch architecture for both navigation and question-answering (Wang et al., 2025c). For navigation, we first encode the observed images $I_{1:T}^{1:N}$ using vision encoders and a cross-modality projector (Liu et al., 2023a) to obtain visual tokens $E_{1:T}^{1:N}$. The instruction is embedded following common practices in existing language models (Liu et al., 2023a) to produce language tokens E_L . The visual tokens are then organized via temporal-viewpoint indicator tokens (sec. 2.1.1) and budget-aware temporal sampling (sec. 2.1.2), concatenated with the language tokens, and fed into a large language model to predict the action token. This token is subsequently decoded by a planning model to generate a waypoint-based trajectory.

$$E_T^A = \text{LLM}(E_{1:T}^{1:N}, E_L), \quad (1)$$

$$\tau_T = \text{ActionModel}(E_T^A).$$

For the question-answering task, we follow existing methods Liu et al. (2023a) and predict the next token in an auto-regressive manner. As in existing works (Zhang et al., 2024a; 2025a; Wang et al., 2025c; Cheng et al., 2025), our model enables the co-tuning of both navigation and QA samples.

2.1 NAVIGATION FOUNDATION MODEL

Observation Encoding. Given captured egocentric RGB sequences $I_{1:T}^{1:N} \in \mathbb{R}^{W \times H \times 3}$ from N multi-camera views at time step T , we employ pre-trained visual encoders (DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023), a widely used recipe (Kim et al.; Tong et al., 2024)) to extract visual features $\mathbf{V}_{1:T}^{\text{dino/SigLIP}} \in \mathbb{R}^{P \times C}$, where P is the number of patches (set to 576) and C represents the embedding dimension. For token savings and computational efficiency, we directly concatenate $\mathbf{V}_{1:T}^{\text{dino}}$ and $\mathbf{V}_{1:T}^{\text{siglip}}$ along the channel dimension and denote the resulting representation as $\mathbf{V}_{1:T}$. During navigation, on-the-fly captured videos leads an extensive number of frames, which subsequently produce an extensive set of visual features. To address this, we employ a grid pooling strategy (Zhang et al., 2024a; 2025a) (Figure 2, Grid Average Pooling) on the visual features to generate more compact representations. Specifically, we utilize two resolution scales:

$$\mathbf{V}^{\text{fine/coarse}} = \text{GridPool}(\mathbf{V}, \frac{64}{P} \text{ or } \frac{4}{P}), \quad (2)$$

where $\mathbf{V}^{\text{fine}} \in \mathbb{R}^{64 \times C}$ provides fine-grained observations, while $\mathbf{V}^{\text{coarse}} \in \mathbb{R}^{4 \times C}$ offers coarse-grained observations. In this case, we use fine-grained features \mathbf{V}_{fine} for the latest navigation obser-

162 vation and image QA (at time step T), while using coarse-grained features for navigation history
 163 and video data (across time steps $1 : T$). Finally, following established VLMs (Liu et al., 2023a; Li
 164 et al., 2023), we use a cross-modality projector $\mathcal{P}(\cdot)$ (a 2-layer MLP) to project visual features into
 165 the latent space of the Large Language Model: $\mathbf{E}_T^V = \mathcal{P}(V_{1:T}^{1:N})$.
 166

167 2.1.1 TEMPORAL-VIEWPOINT INDICATOR (TVI) TOKENS.

169 Given that visual tokens do not inherently incorporate
 170 viewpoint and temporal information, a key challenge in
 171 multi-view navigation models lies in enabling the LLM
 172 to discern which tokens correspond to different timesteps
 173 or distinct camera viewpoints. Previous approaches were
 174 limited to either specific camera configurations or embodi-
 175 ments (Long et al., 2024; Gao et al., 2025) or simply
 176 concatenated tokens from all viewpoint images (Zheng
 177 et al., 2024; Fu et al., 2025b), thereby overlooking the
 178 flexibility of LLM token organization. To enable flexible
 179 processing of arbitrary camera arrangements, we intro-
 180 duce temporal-viewpoint indicator tokens, inspired by the
 181 demonstrated effectiveness of specially designed tokens
 182 for time/modality/task identification (Guo et al., 2025;
 183 Chen et al., 2023), an approach that has been widely rec-
 184 ognized to facilitate LLM learning. In our setting, the
 185 indicator tokens are used in diverse tasks, including image
 186 QA, video QA, and navigation, which should meet three
 187 important attributes:

- 188 • **Viewpoint-Awareness:** The token’s angle embedding must preserve the circular continuity
 189 of azimuthal angles (e.g., $0 \equiv 2\pi$), ensuring that the distance metric between embeddings
 190 reflects geometric proximity (e.g., $d(0, \epsilon) < d(0, \pi)$ when $\epsilon \neq \pi$).
- 191 • **Time-Awareness:** The token must uniquely identify the temporal order of frames across all
 192 camera views, while maintaining robustness to irregular sampling intervals.
- 193 • **Separability:** The indicator tokens may encode either viewpoint or temporal information
 194 (for video QA) or may exclude such information entirely (for image QA).

196 To meet these requirements, our Temporal-Viewpoint Indicator (TVI) tokens $\mathbf{E}_{\text{TVI}} \in \mathbb{R}^C$ (where
 197 timestep and view angle are denoted as t and ϕ , respectively) consist of three types of embeddings:
 198 angle embedding $\text{AnglePE}(\phi) \in \mathbb{R}^C$, time embedding $\text{TimePE}(t) \in \mathbb{R}^C$, and a learnable base
 199 embedding $\mathbf{E}_{\text{Base}} \in \mathbb{R}^C$:

$$201 \mathbf{E}_{\text{TVI}} = \begin{cases} \mathbf{E}_{\text{Base}} + \mathcal{P}_{\text{time}}(\text{TimePE}(t)) + \mathcal{P}_{\text{angle}}(\text{AnglePE}(\phi)), & \text{if Navigation} \\ \mathbf{E}_{\text{Base}} + \mathcal{P}_{\text{time}}(\text{TimePE}(t)), & \text{if Video QA} \\ \mathbf{E}_{\text{Base}}, & \text{if Image QA} \end{cases} \quad (3)$$

206 where $\text{AnglePE}(\phi)$ is implemented using a concatenation of sinusoidal position encodings (Vaswani
 207 et al., 2017) applied to the cosine and sine values of the azimuthal angles separately, and $\text{TimePE}(t)$
 208 is implemented as a sinusoidal position encoding of t . Here, $\mathcal{P}_{\text{time}}$ and $\mathcal{P}_{\text{angle}}$ are both implemented
 209 as two-layer MLPs (similar in design to those used in Liu et al. (2023a)). For different tasks and
 210 TVI tokens, we employ different combinations of indicator token components to represent the
 211 attributes of various visual tokens. For the navigation task, we include both temporal and viewpoint
 212 information. For the video QA task, we incorporate temporal information. For the image QA task,
 213 we use only \mathbf{E}_{Base} as an indicator that the subsequent tokens are visual tokens. This strategy offers
 214 a flexible approach to organizing significantly different sample types and facilitates LLM learning
 215 (Sec. 2.1.3). We provide a plot of the clustering results (McInnes et al., 2018) of TVI Tokens in
 Figure 3, where we observe that the tokens are distinguished from one another according to the
 viewpoint θ (represented by a rainbow colorbar) and the timestep t (represented by color value).

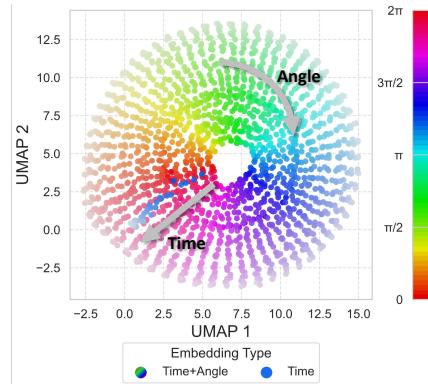


Figure 3: **Visualization of Temporal-Viewpoint Indicator (TVI) tokens.** We employ a clustering algorithm (McInnes et al., 2018) to map high-dimensional embeddings into a 2D space.

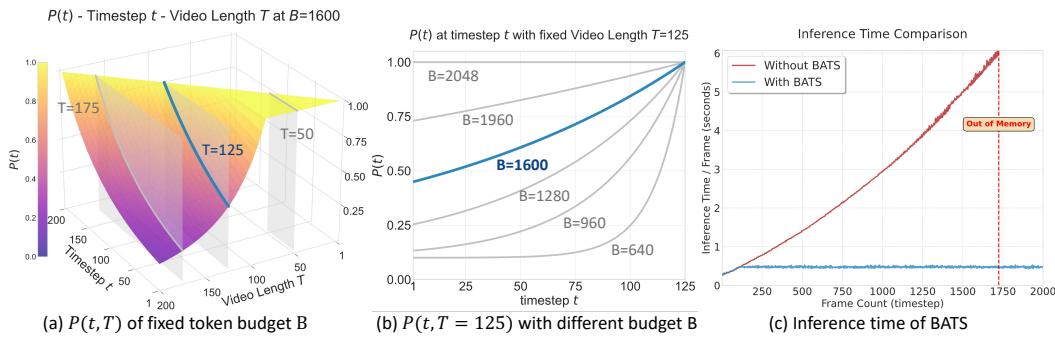


Figure 4: **Visualization of BATS and corresponding time cost.** (a) Given a fixed token budget $B = 1600$, we illustrate the sampling probability at different timesteps t for the latest timestep T . (b) Given a maximum timestep $T = 125$, we plot the sampling probability across different timesteps t under varying token budgets B . (c) We compare the inference time when using BATS versus not using BATS (keeping all frames).

2.1.2 BUDGET-AWARE TEMPORAL SAMPLING (BATS).

During navigation, on-the-fly captured video can generate an excessive number of visual tokens, increasing both inference and training time and hindering real-world deployment. Previous methods address this challenge in two ways: (1) Token Merging (Zhang et al., 2025a), which introduces additional computational overhead during training and leads to inconsistent inference speeds during evaluation; (2) Uniform Sampling (Cheng et al., 2025), which often fails to adequately capture recent observations due to a lack of short-term context. Moreover, in scenarios involving variable camera-view settings (where the number of frames increases significantly) both strategies require additional modifications.

To this end, we propose *Budget-Aware Temporal Sampling (BATS)*, which is designed for (a) practical purposes (i.e., constraining the maximum token length to accommodate inference speed and GPU memory limitations), (b) retaining more recent information to enhance understanding and planning while preserving sufficient historical context for navigation, and (c) direct adaptability to varying numbers of cameras. Specifically, given a token budget B_{token} and a multi-view video sequence $I_{1:T}^{1:N} \in \mathbb{R}^{W \times H \times 3}$, we employ an exponential growth based sampling probability $P(t)$, which is inspired by the “forgetting curve”. In this case, when the number of captured frame tokens exceeds the token budget, we compute a sampling probability for each frame:

$$P(t) = (1 - \epsilon)e^{k(t-T)/T} + \epsilon, \quad k > 0, \quad (4)$$

where the ϵ (we use $\epsilon = 0.1$) ensures that the lower bound of sampling probability is in the approximate range and the k denotes the exponential decay rate. Therefore the expected number of sampled frames can be computed as:

$$\mathbb{E}_{\text{frames}} \approx \int_0^T P(t)dt = (1 - \epsilon) \frac{1 - e^{-k}}{k} T + \epsilon T \quad (5)$$

We constrain the expected number of tokens $((4+1)\mathbb{E}_{\text{frame}} + (64+1))N$ to be no larger than B_{token} . This implies $\mathbb{E}_{\text{frame}} \leq \frac{B_{\text{token}} - (64+1)N}{(4+1)N}$, and with sufficiently large number of frames T , the number of sampled frames will converge to the expectation (Figure 4 (c)). We can offline calculate k for different T using Brent’s method (Brent, 2013), leading corresponding $P(t)$ (Equation 4). Note that since we set the lower-bound probability ϵ , Equation 5 may become unsolvable for very large T (e.g., $T = 1120$ under a four-camera setup with a token budget $B_{\text{token}} = 2048$). However, this situation rarely occurs (for the list task in Figure 1), as most timesteps are approximately 122 steps in VLN-CE RxR (Ku et al., 2020a). We provide the details of using BATS in Appendix A.2 and a break-in analysis of BATS in Figure 4.

2.1.3 LLM FORWARDING AND TRAINING DETAILS

Token Organization. After obtaining the visual tokens $E_{1:T}^{1:N}$ (sampled via BATS, Sec. 2.1.2) and the language tokens E_L , we organize these tokens using TVI Tokens (Sec. 2.1.1) for forwarding through the LLM. For navigation, we use $\mathbf{E}_{\text{Base}} + \mathcal{P}_{\text{time}}(\text{TimePE}(t)) + \mathcal{P}_{\text{angle}}(\text{AnglePE}(\phi))$ to represent

both temporal and viewpoint information. Here, fine-grained visual tokens are used for the most recent observations, while coarse-grained tokens are utilized for historical observations. Our token organization strategy enhances the LLM’s understanding of the input tokens and supports a unified framework for Image QA, Video QA, and navigation tasks. Further details of token organization on Image QA and Video QA can be found in Appendix A.6.

Trajectory prediction. For the navigation task, given the predicted action hidden state E_T^A from the forward pass of the LLM, we apply a planning model \mathcal{A}_θ (implemented as a three-layer MLP) to extract the trajectory information τ_T . Note that the original trajectory may range from a few meters (indoor navigation) to tens of meters (autonomous driving and drones). In this case, directly predicting the raw trajectory could lead to divergence in the waypoint distribution. Therefore, following previous methods Shah et al. (2023a), we normalize the waypoints of trajectories to a distribution of $[-1, 1]$ using a task-specific scaling factor α_{task} . Here, we use three different scaling factors for indoor navigation, UAVs, and cars, as shown in Appendix A.1. We can formulate the trajectory prediction as follows:

$$\tau_T = \{\mathbf{a}_1, \dots, \mathbf{a}_M\}_T = \alpha_{\text{task}} \cdot \mathcal{A}_\theta(E_T^A), \quad (6)$$

where M is set to 8, and the normalized trajectory is rescaled to absolute values by multiplying by α_{task} . The trajectory loss is computed using the mean squared error (MSE) $L_{\text{nav}} = \text{MSE}(\tau^{\text{idx}}, \tau_{\text{gt}}^{\text{idx}})$, where idx denotes the valid action indices. For wheeled robots/car embodiments, $\mathbf{a}^{\text{idx}} = (x, y, \theta)$; for UAVs, $\mathbf{a}^{\text{idx}} = (x, y, z, \theta)$. For the question-answering task, we employ the cross-entropy loss L_{QA} under a next-token-prediction supervision framework. Given a batch containing both navigation and QA samples, the total loss is defined as $L = \beta L_{\text{nav}} + L_{\text{QA}}$. Here, β is a constant scaling factor (set to 10) used to amplify the navigation loss, which tends to be numerically small since it is derived from mean squared error. Note that, β is important when the training scale is small, where a large β can accelerate convergence. We also believe a more adaptive way to adjust β may be a promising direction for future work.

Training Configurations. Our model is trained on a cluster server equipped with 56 NVIDIA H100 GPUs for approximately 72 hours, resulting in a total of 4,032 GPU hours. For question-answering data, all frames are sampled at 1 FPS to reduce redundancy between consecutive frames. For discrete navigation data (e.g., Habitat environments Savva et al. (2019a)), we sample each step after the robot performs a discrete action (See Appendix A.1 for details on how discrete actions are modified into trajectories.). For continuous navigation environments (e.g., EVT-Bench Wang et al. (2025c), autonomous driving (Caesar et al., 2020b; Contributors, 2023)), data are sampled at 2 FPS to avoid redundancy. During training, the vision encoders (DINOv2 Oquab et al. (2023) and SigLIP Zhai et al. (2023)) and the large language model (Qwen2-7B Yang et al. (2024a)) are initialized with their default pre-trained weights. Following the training paradigm of VLM (Liu et al., 2023a), we fine-tune only the designated trainable parameters for a single epoch.

2.2 DATA

To fine-tune NavFoM, we collect and process a large set of comprehensive and diverse training samples, totaling 12.7 million instances. These include 8.02 million navigation samples, 3.15 million image-based question-answering samples, and 1.61 million video-based question-answering samples. The navigation samples are collected and processed from diverse datasets. Specifically, we collect Vision-and-Language Navigation samples (3.37 M) from R2R (Krantz et al., 2020), RxR (Ku et al., 2020a) and OpenUAV (Wang et al., 2024a); Object Goal Navigation (1.02 M) from HM3D ObjectNav (Savva et al., 2019a); Active Visual Tracking (897 K) from EVT-Bench (Wang et al., 2025c); Autonomous Driving (681 K) from nuScense (Caesar et al., 2020a) OpenScene (Contributors, 2023); and web-video navigation from Sekai dataset (Li et al., 2025a). All navigation data are collected in a unified manner, including previously captured videos (single or multiple cameras), instructions, and predicted trajectory waypoints. Further details regarding the navigation samples please refer to Appendix A.4.

Besides navigation data, we gather image-based QA (3.15 M) and video-based QA (1.61 M) data from off-the-shelf datasets following ex-

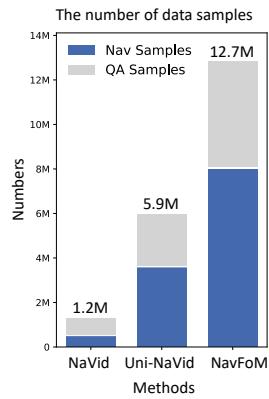


Figure 5: Comparison of number of training samples with previous methods.

330 Figure 6: Visualization of real-world experiments on cross-task and cross-embodiment settings.

331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 18

378 Table 1: **Comparison on VLN-CE in Single-View and Multi-View Settings.** Here, S.RGB and M.RGB
379 denote single-view and multi-view configurations, respectively. The symbol * indicates methods that utilize the
380 waypoint predictor from (Hong et al., 2022).

Method	Observation				R2R Val-Unseen			RxR Val-Unseen				
	S.RGB	M.RGB	Depth	Odo.	NE ↓	OS ↑	SR ↑	SPL ↑	NE ↓	SR ↑	SPL ↑	nDTW ↑
AG-CMTP (Chen et al., 2021a)	✓	✓	✓	✓	7.90	39.0	23.0	19.0	-	-	-	-
R2R-CMTP (Chen et al., 2021a)	✓	✓	✓	✓	7.90	38.0	26.0	22.0	-	-	-	-
HPN+DN* (Krantz et al., 2021)	✓	✓	✓	✓	6.31	40.0	36.0	34.0	-	-	-	-
CMA* (Hong et al., 2022)	✓	✓	✓	✓	6.20	52.0	41.0	36.0	8.76	26.5	22.1	47.0
VLNC-BERT* (Hong et al., 2022)	✓	✓	✓	✓	5.74	53.0	44.0	39.0	8.98	27.0	22.6	46.7
Sim2Sim* (Krantz & Lee, 2022)	✓	✓	✓	✓	6.07	52.0	43.0	36.0	-	-	-	-
AO-Planner (Chen et al., 2024a)	✓	✓	✓	✓	5.55	59.0	47.0	33.0	7.06	43.3	30.5	50.1
GridMM* (Wang et al., 2023b)	✓	✓	✓	✓	5.11	61.0	49.0	41.0	-	-	-	-
Ego ² -Map* (Hong et al., 2023)	✓	✓	✓	✓	5.54	56.0	47.0	41.0	-	-	-	-
DreamWalker* (Wang et al., 2023a)	✓	✓	✓	✓	5.53	59.0	49.0	44.0	-	-	-	-
Reborn* (An et al., 2022)	✓	✓	✓	✓	5.40	57.0	50.0	46.0	5.98	48.6	42.0	63.3
ETPNav* (An et al., 2024)	✓	✓	✓	✓	4.71	65.0	57.0	49.0	5.64	54.7	44.8	61.9
HNR* (Wang et al., 2024b)	✓	✓	✓	✓	4.42	67.0	61.0	51.0	5.50	56.3	46.7	63.5
BEVBert* (An et al., 2023)	✓	✓	✓	✓	4.57	67.0	59.0	50.0	-	-	-	-
HAMT+ScaleVLN* (Wang et al., 2023c)	✓	✓	✓	✓	4.80	-	55.0	51.0	-	-	-	-
NavFoM (Four views)	✓				4.61	72.1	61.7	55.3	4.74	64.4	56.2	65.8
LAW (Raychaudhuri et al., 2021)	✓		✓	✓	6.83	44.0	35.0	31.0	10.90	8.0	8.0	38.0
CM2 (Georgakis et al., 2022)	✓		✓	✓	7.02	41.0	34.0	27.0	-	-	-	-
WS-MGMap (Chen et al., 2022)	✓		✓	✓	6.28	47.0	38.0	34.0	-	-	-	-
Seq2Seq (Krantz et al., 2020)	✓		✓	✓	7.77	37.0	25.0	22.0	12.10	13.9	11.9	30.8
CMA (Krantz et al., 2020)	✓		✓	✓	7.37	40.0	32.0	30.0	-	-	-	-
RGB-Seq2Seq (Krantz et al., 2020)	✓		✓	✓	10.10	8.0	0.0	0.0	-	-	-	-
RGB-CMA (Krantz et al., 2020)	✓		✓	✓	9.55	10.0	5.0	4.0	-	-	-	-
NaVid (Zhang et al., 2024a)	✓		✓	✓	5.72	49.2	41.9	36.5	5.72	45.7	38.2	-
Uni-NaVid (Zhang et al., 2025a)	✓		✓	✓	5.58	53.3	47.0	42.7	6.24	48.7	40.9	-
NaVILA (Cheng et al., 2025)	✓		✓	✓	5.22	62.5	54.0	49.0	6.77	49.3	44.0	58.8
StreamVLN-RGB-only (Wei et al., 2025)	✓		✓	✓	5.10	64.0	55.7	50.9	6.16	51.8	45.0	62.1
NavFoM (Single view)	✓		✓	✓	5.01	64.9	56.2	51.2	5.51	57.4	49.4	60.2

402 Table 2: **Object goal navigation.** Comparison on HM3D-
403 OVON (Yokoyama et al., 2024b). * : denotes zero-shot eval-
404 uation. We report the performance of our method on egocentric
405 and four-view settings.

406 Table 3: **Performance on EVT-Bench.** †:
407 Uses GroundingDINO (Liu et al., 2023b)
408 as the open-vocabulary detector. ‡: Uses
409 SoM (Yang et al., 2023)+GPT-4o (OpenAI,
410 2024) as the visual foundation model.

Method	VAL SEEN		VAL SEEN		VAL UNSEEN		Single Target SR↑	Distracted Target TR↑
	SR↑	SPL↑	SR↑	SPL↑	SR↑	SPL↑		
BC	11.1	4.5	9.9	3.8	5.4	1.9		
DaGger	11.1	4.5	9.9	3.8	5.4	1.9		
RL	18.1	9.4	15.0	7.4	10.2	4.7		
BCRL	39.2	18.7	27.8	11.7	18.6	7.5		
DaGRL	41.3	21.2	29.4	14.4	18.3	7.9		
VLFM* (Yokoyama et al., 2024a)	35.2	18.6	32.4	17.3	35.2	19.6		
DAGRL+OD (Yokoyama et al., 2024b)	38.5	21.1	39.0	21.4	37.1	19.8		
Uni-NaVid* (Zhang et al., 2025a)	41.3	21.1	43.9	21.8	39.5	19.8		
MTU3D (Zhu et al., 2025)	55.0	23.6	45.0	14.7	40.8	12.1		
NavFoM * (Single view)	37.7	25.5	43.3	29.9	43.6	31.3		
NavFoM * (Four views)	40.1	27.1	45.4	32.6	45.2	31.9		

414 **SPL**), and produces navigation trajectories that are better aligned with the instructions (65.8 nDTW).
415

416 **Perfomrence on Searching, Tracking and Autonomous Driving.** We conduct experiments to evaluate our method across different navigation capabilities, including object goal navigation (Yokoyama et al., 2024b) in Table 2, active visual tracking (Wang et al., 2025c) in Table 3, and autonomous driving (Dauner et al., 2024a) in Table 4. We find that our approach demonstrates strong performance compared to strong baselines that are specifically designed for individual navigation tasks. Moreover, our method improves consistently when switching from a single-camera to a four-camera setup, even though it was not trained on the four-camera configuration in object navigation and tracking tasks. Additional quantitative results, analyses, and visual examples are provided in Appendix C, Figure 6 and Figure 13. The analysis of both benchmark and real-world experiment failure cases can be found in Appendix F.

417 Table 4: NAVSIM navtest split with closed-loop metrics.

Method	Camera VLM-Based		PDMS ↑
	SR↑	TR↑	
Human	-	-	94.8
Constant Velocity	-	-	21.6
Ego Status MLP	-	-	65.6
UniAD (Hu et al., 2023)	✓	-	83.4
PARA-Drive (Weng et al., 2024)	✓	-	84.0
LAW (Li et al., 2024b)	✓	-	84.6
DrivingGPT (Chen et al., 2024c)	✓	✓	82.4
NavFoM (Eight views)	✓	✓	84.3

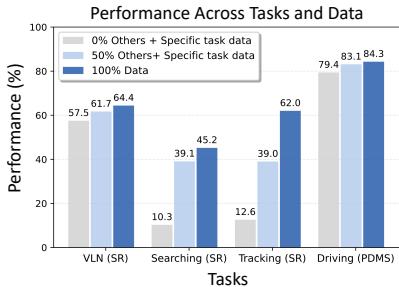


Figure 7: **Ablation study on the training of multiple navigation tasks.** We report the performance of different training data combinations (specific task data only, specific task data with 50% other data, and specific task data with 100% other data).

3.3 ABLATION STUDY

Synergy of training on multiple navigation tasks. We investigate the synergistic effects of multi-navigation task training by comparing the performance of single-task training with co-tuning that incorporates additional data from other navigation tasks (Ku et al., 2020b; Yokoyama et al., 2024b; Wang et al., 2025c; Dauner et al., 2024a). We observe that co-tuning with data from diverse navigation tasks leads to consistent performance improvements across all tasks (from 50% to 100% data ratios). Notably, Searching (improving from 10.3% to 45.2%) and Tracking (improving from 12.6% to 62.0%) exhibit the most significant gains. We attribute these improvements to the discrepancy between their training conditions (primarily single-view and closed-set target categories) and the evaluation settings, which are multi-view and open-vocabulary. These results suggest that training across multiple navigation tasks helps mitigate overfitting to task-specific navigation patterns.

Effectiveness of BATS and TVI tokens. We conduct ablation studies to evaluate the effectiveness of our key designs, including the history token organization strategy and visual-temporal history modeling. The experiments are conducted on the VLN-CE RxR four-camera setting, and the results are presented in Table 8. We test different token strategies under different token budgets (1024 or 2048) and find that BATS outperforms other strategies in both settings, on both token budgets. Specifically, when the token budget is reduced from 2048 to 1024, BATS demonstrates a smaller performance drop (only 1.4% \downarrow) on the nDTW metric compared to the baselines (6.0% \downarrow and 5.2% \downarrow). Furthermore, we compare TVI tokens with other common alternatives and find that TVI tokens achieve significantly better performance. As illustrated in Figure 3, we attribute this improvement to the well-learned temporal and viewpoint information. Moreover, compared to the common history-viewpoint positional embedding method (Chen et al., 2021b), we observe a noticeable performance drop. We believe this is due to the additional embedding components introduced for visual tokens, which may increase model complexity, while TVI provides separate information to facilitate LLM understanding. These results demonstrate the effectiveness of TVI tokens.

4 RELATED WORKS

There is a large body of literature (Savva et al., 2019a; Zhang et al., 2024b) on navigation across different tasks and embodiments; here we review those most relevant to our work. In cross-task navigation, recent efforts (Wang et al., 2022; Long et al., 2024; Song et al., 2025; Zhang et al., 2025a; Gao et al., 2025; Yin et al., 2025; Ruan et al., 2025) have shown that integrating data from different categories of navigation tasks can lead to stronger performance across various scenarios. For cross-embodiment navigation, prior studies (Shah et al., 2023a,b; Yang et al., 2024b; Wang et al., 2020; Eftekhar et al., 2024; Hirose et al., 2023; Putta et al., 2024; Curtis et al., 2024; Wang et al., 2025a; Zhang et al., 2025b; Geng et al., 2025) have demonstrated the potential of transformer-based policies trained on large-scale, cross-embodiment datasets to achieve robust performance across various robotic platforms. In this work, our method presents an early attempt to unify cross-task and cross-embodiment navigation within a VLA model under a unified training and evaluation framework, demonstrating strong performance in both synthetic and real-world environments.

Type	RxR Val-Unseen			
	NE \downarrow	SR \uparrow	SPL \uparrow	nDTW \uparrow
$B = 1024$, Uniform Sampling*	5.33	59.7	49.6	57.9
$B = 1024$, Linear Probability Sampling	5.28	61.2	50.9	58.9
$B = 1024$, Budget-Aware Temporal Sampling	4.98	62.5	53.9	64.1
$B = 2048$, Token Merging (Zhang et al., 2025a)	5.01	63.2	54.9	64.4
$B = 2048$, Uniform Sampling*	4.90	62.4	54.0	63.9
$B = 2048$, Linear Probability Sampling	4.89	63.0	54.6	64.8
$B = 2048$, Budget-Aware Temporal Sampling	4.74	64.4	56.2	65.8
Viewpoint-history postional embedding [†]	6.27	52.3	46.3	58.7
Individual Learned Special Toekns	5.52	59.1	52.0	59.6
Handcraft Toekns (Equ. 3 w.o $\mathcal{P}_{\text{angle/time}}$)	6.06	53.6	46.1	58.0
Temporal-Viewpoint Indicator Tokens (Equ. 3)	4.74	64.4	56.2	65.8

Figure 8: **Ablation Study on History Token Organization Strategies and Identity Tokens.** Uniform sampling is adopted from (Cheng et al., 2025). [†]Positional embeddings is adopted from HAMT (Chen et al., 2021b).

486 5 DISSCUSION AND CONCLUSION

488 In this work, we propose NavFoM, which aims to push the boundaries of navigation and explore the
 489 intelligence learned from cross-embodiment and cross-task navigation data. We introduce temporal-
 490 viewpoint indicator tokens to enhance the LLM’s understanding of varying camera configurations
 491 and different horizons in navigation tasks, while also enabling co-training with navigation and
 492 question-answering data. Furthermore, we employ a token budget-aware temporal sampling strategy
 493 to balance navigation performance and efficiency, facilitating a unified approach to token sampling
 494 across diverse camera setups and task horizons. Extensive experiments on both public benchmarks
 495 and real-world environments demonstrate the strong perfomrence and generability of NavFoM. We
 496 believe that NavFoM serves as a starting point toward a navigation foundation model and will attract
 497 greater attention to intelligence-centric navigation

498 ETHICS STATEMENT

500 This work presents a generalist navigation foundation model designed to enhance the capabilities
 501 of embodied agents across diverse environments and embodiments. We acknowledge the potential
 502 societal benefits of such technology, including improved assistive robotics, search-and-rescue oper-
 503 ations, and autonomous systems. However, we also recognize the risks associated with deploying
 504 AI-powered navigation systems in real-world settings, such as safety hazards, privacy concerns aris-
 505 ing from visual data collection, and potential misuse. All training data were sourced from publicly
 506 available datasets, with due consideration given to ethical guidelines. The development and evalua-
 507 tion of our method involved rigorous real-world testing, transparency regarding its capabilities and
 508 limitations, and adherence to applicable regulations and safety standards.

510 REPRODUCIBILITY STATEMENT

512 We provide full implementation details (Section 2), including the model architecture, training con-
 513 figurations, data processing procedures, and the real-world deployment framework. All datasets
 514 (Section A.4) used are publicly accessible, and hyperparameters are clearly specified in both the
 515 main paper and the appendix. The base models (Section 2.1.3), including large language models
 516 and vision encoders, are explicitly mentioned in the paper, along with a detailed training strategy.
 517 We also include specifics regarding evaluations as well as instructions for deployment in synthetic
 518 (Section 3.1) or real-world environments (Section B.4). The code, together with pre-trained model
 519 weights, will be made publicly available upon acceptance.

521 REFERENCES

523 Dong An, Zun Wang, Yangguang Li, Yi Wang, Yicong Hong, Yan Huang, Liang Wang, and Jing
 524 Shao. 1st place solutions for rxr-habitat vision-and-language navigation competition (cvpr 2022).
 525 *arXiv preprint arXiv:2206.11610*, 2022. 8

526 Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang Wang, Tieniu Tan, and Jing Shao. Bevbert:
 527 Multimodal map pre-training for language-guided navigation. In *ICCV*, 2023. 8

529 Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang Wang. Etp-
 530 nav: Evolving topological planning for vision-language navigation in continuous environments.
 531 *IEEE TPAMI*, 2024. 8

533 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
 534 Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
 535 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE con-
 536 ference on computer vision and pattern recognition*, pp. 3674–3683, 2018. 22

538 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 539 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 2025. 20

540 Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models.
 541 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15791–15801,
 542 2025. 1

543 Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
 544 Manolis Savva, Alexander Toshev, and Erik Wijmans. ObjectNav Revisited: On Evaluation of
 545 Embodied Agents Navigating to Objects. In *arXiv:2006.13171*, 2020. 22

546 Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time series.
 547 In *KDD Workshop*, 1994. 22

548 Richard P Brent. *Algorithms for minimization without derivatives*. Courier Corporation, 2013. 5

549 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
 550 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 551 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 552 recognition*, pp. 11621–11631, 2020a. 6, 7, 20, 21, 22, 26

553 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
 554 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 555 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 556 recognition*, pp. 11621–11631, 2020b. 6, 26

557 Jiaqi Chen, Bingqian Lin, Xinmin Liu, Xiaodan Liang, and Kwan-Yee K Wong. Affordances-
 558 oriented planning using foundation models for continuous vision-language navigation. *arXiv
 559 preprint*, 2024a. 8

560 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
 561 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
 562 language model as a unified interface for vision-language multi-task learning. *arXiv preprint
 563 arXiv:2310.09478*, 2023. 4

564 Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez, and Silvio Savarese. Topological
 565 planning with transformers for vision-and-language navigation. In *Proceedings of the IEEE/CVF
 566 Conference on Computer Vision and Pattern Recognition*, pp. 11276–11286, 2021a. 8

567 Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng, Thomas H Li, Mingkui Tan, and Chuang Gan.
 568 Weakly-supervised multi-granularity map learning for vision-and-language navigation. *arXiv
 569 preprint arXiv:2210.07506*, 2022. 8

570 Shaoyu Chen, Bo Jiang, Hao Gao, Bencheng Liao, Qing Xu, Qian Zhang, Chang Huang, Wenyu
 571 Liu, and Xinggang Wang. Vadv2: End-to-end vectorized autonomous driving via probabilistic
 572 planning. *arXiv preprint arXiv:2402.13243*, 2024b. 25

573 Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
 574 transformer for vision-and-language navigation. *Advances in Neural Information Processing Sys-
 575 tems*, 34:5834–5847, 2021b. 9

576 Yuntao Chen, Yuqi Wang, and Zhaoxiang Zhang. Drivinggpt: Unifying driving world modeling and
 577 planning with multi-modal autoregressive transformers. *arXiv preprint arXiv:2412.18607*, 2024c.
 578 8, 20, 25

579 An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Xueyan Zou, Jan Kautz, Erdem Biyik, Hongxu Yin,
 580 Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action model for naviga-
 581 tion. In *RSS*, 2025. 1, 3, 5, 7, 8, 9, 20

582 Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
 583 Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *IEEE trans-
 584 actions on pattern analysis and machine intelligence*, 45(11):12878–12895, 2022. 25

585 OpenScene Contributors. Openscene: The largest up-to-date 3d occupancy prediction benchmark
 586 in autonomous driving. <https://github.com/OpenDriveLab/OpenScene>, 2023. 2,
 587 6, 20

594 Nimrod Curtis, Osher Azulay, and Avishai Sintov. Embodiment-agnostic navigation policy trained
 595 with visual demonstrations. *arXiv preprint arXiv:2412.20226*, 2024. 9
 596

597 Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embod-
 598 ied question answering. In *Proceedings of the IEEE conference on computer vision and pattern*
 599 *recognition*, pp. 1–10, 2018. 7

600 Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
 601 Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap
 602 Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. In
 603 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024a. 7, 8, 9, 26
 604

605 Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
 606 Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, et al. Navsim: Data-driven
 607 non-reactive autonomous vehicle simulation and benchmarking. *Advances in Neural Information*
 608 *Processing Systems*, 37:28706–28719, 2024b. 7, 21, 22

609 Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson
 610 Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, et al. Procthor: Large-scale embodied ai
 611 using procedural generation. *arXiv preprint arXiv:2206.06994*, 2022. 1

612 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 613 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.
 614 28

615 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
 616 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017. 25

617

618 Ainaz Eftekhar, Rose Hendrix, Luca Weihs, Jiafei Duan, Ege Caglar, Jordi Salvador, Alvaro Her-
 619 rasti, Winson Han, Eli VanderBil, Aniruddha Kembhavi, et al. The one ring: a robotic indoor
 620 navigation generalist. *arXiv preprint arXiv:2412.14401*, 2024. 1, 9

621

622 Anthony Francis, Claudia Pérez-d’Arpino, Chengshu Li, Fei Xia, Alexandre Alahi, Rachid Alami,
 623 Aniket Bera, Abhijat Biswas, Joydeep Biswas, Rohan Chandra, et al. Principles and guidelines
 624 for evaluating social robot navigation algorithms. *arXiv preprint arXiv:2306.16740*, 2023. 20

625

626 Haoyu Fu, Diankun Zhang, Zongchuang Zhao, Jianfeng Cui, Dingkang Liang, Chong Zhang,
 627 Dingyuan Zhang, Hongwei Xie, Bing Wang, and Xiang Bai. Orion: A holistic end-to-end au-
 628 tonomous driving framework by vision-language instructed action generation. *arXiv preprint*
 629 *arXiv:2503.19755*, 2025a. 26

630

631 Haoyu Fu, Diankun Zhang, Zongchuang Zhao, Jianfeng Cui, Dingkang Liang, Chong Zhang,
 632 Dingyuan Zhang, Hongwei Xie, Bing Wang, and Xiang Bai. Orion: A holistic end-to-end au-
 633 tonomous driving framework by vision-language instructed action generation. *arXiv preprint*
 634 *arXiv:2503.19755*, 2025b. 4

635

636 Chen Gao, Liankai Jin, Xingyu Peng, Jiazhao Zhang, Yue Deng, Annan Li, He Wang, and Si Liu.
 Octonav: Towards generalist embodied navigation. *arXiv preprint arXiv:2506.09839*, 2025. 4, 9

637

638 Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue
 639 Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, et al. Roboverse: Towards a unified plat-
 640 form, dataset and benchmark for scalable and generalizable robot learning. *arXiv preprint*
 641 *arXiv:2504.18904*, 2025. 9

642

643 Georgios Georgakis, Karl Schmeckpeper, Karan Wanchoo, Soham Dan, Eleni Miltakaki, Dan Roth,
 644 and Kostas Daniilidis. Cross-modal map learning for vision and language navigation. In *Pro-
 645 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15460–
 646 15470, 2022. 8

647

648 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 649 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 650 2025. 1, 4

648 Meenakshi Gupta, Swagat Kumar, Laxmidhar Behera, and Venkatesh K Subramanian. A novel
 649 vision-based tracking algorithm for a human-following mobile robot. *IEEE Transactions on Sys-
 650 tems, Man, and Cybernetics: Systems*, 47(7):1415–1427, 2016. 8, 25

651 Wencheng Han, Dongqian Guo, Cheng-Zhong Xu, and Jianbing Shen. Dme-driver: Integrating
 652 human decision logic and 3d scene perception in autonomous driving. In *Proceedings of the
 653 AAAI Conference on Artificial Intelligence*, volume 39, pp. 3347–3355, 2025. 26

654 Noriaki Hirose, Dhruv Shah, Ajay Sridhar, and Sergey Levine. Exaug: Robot-conditioned naviga-
 655 tion policies via geometric experience augmentation. In *2023 IEEE International Conference on
 656 Robotics and Automation (ICRA)*, pp. 4077–4084. IEEE, 2023. 1, 9

657 Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. Bridging the gap between learning in dis-
 658 crete and continuous environments for vision-and-language navigation. In *Proceedings of the
 659 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15439–15449, 2022. 8

660 Yicong Hong, Yang Zhou, Ruiyi Zhang, Franck Dernoncourt, Trung Bui, Stephen Gould, and Hao
 661 Tan. Learning navigational visual representations with semantic map supervision. In *ICCV*, 2023.
 662 8

663 Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-to-
 664 end vision-based autonomous driving via spatial-temporal feature learning. In *European Confer-
 665 ence on Computer Vision*, pp. 533–549. Springer, 2022. 26

666 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
 667 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the
 668 IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023. 8,
 669 20, 25, 26

670 Jyh-Jing Hwang, Runsheng Xu, Hubert Lin, Wei-Chih Hung, Jingwei Ji, Kristy Choi, Di Huang,
 671 Tong He, Paul Covington, Benjamin Sapp, et al. Emma: End-to-end multimodal model for au-
 672 tonomous driving. *arXiv preprint arXiv:2410.23262*, 2024. 26

673 Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie, and Jason Baldridge. General eval-
 674 uation for instruction conditioned navigation using dynamic time warping. *arXiv preprint
 675 arXiv:1907.05446*, 2019. 22

676 Md Jahidul Islam, Jungseok Hong, and Junaed Sattar. Person-following by autonomous robots: A
 677 categorical overview. *The International Journal of Robotics Research*, 38(14):1581–1618, 2019.
 678 7, 20

679 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
 680 Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
 681 tonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vi-
 682 sion*, pp. 8340–8350, 2023. 26

683 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 684 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 685 vision-language-action model. In *8th Annual Conference on Robot Learning*. 3

686 Jacob Krantz and Stefan Lee. Sim-2-sim transfer for vision-and-language navigation in continuous
 687 environments. In *European Conference on Computer Vision*, pp. 588–603. Springer, 2022. 8

688 Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
 689 Vision-and-language navigation in continuous environments. In *ECCV*, 2020. 6, 7, 8, 19, 21

690 Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and Oleksandr Maksymets. Waypoint
 691 models for instruction-guided navigation in continuous environments. In *Proceedings of the
 692 IEEE/CVF International Conference on Computer Vision*, pp. 15162–15171, 2021. 8

693 Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
 694 Multilingual vision-and-language navigation with dense spatiotemporal grounding. In *Proceed-
 695 ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 696 pp. 4392–4412, 2020a. 2, 5, 6, 7, 19, 21, 26

702 Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
 703 Multilingual vision-and-language navigation with dense spatiotemporal grounding. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 704 pp. 4392–4412, 2020b. 9

705

706 Yi Wang Yizhuo Li Wenhui Wang Ping Luo Yali Wang Limin Wang KunChang Li, Yinan He and
 707 Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*, 2023.
 708 7

709

710 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 711 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
 712 28

713

714 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 715 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 716 *arXiv:2408.03326*, 2024a. 7

717

718 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 719 models. *arXiv preprint arXiv:2311.17043*, 2023. 2, 3, 4, 7, 20

720

721 Yingyan Li, Lue Fan, Jiawei He, Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang, and Tieniu
 722 Tan. Enhancing end-to-end autonomous driving with latent world model. *arXiv preprint*
 723 *arXiv:2406.08481*, 2024b. 8, 20, 25

724

725 Zhen Li, Chuanhao Li, Xiaofeng Mao, Shaoheng Lin, Ming Li, Shitian Zhao, Zhaopan Xu, Xinyue
 726 Li, Yukang Feng, Jianwen Sun, et al. Sekai: A video dataset towards world exploration. *arXiv*
 727 *preprint arXiv:2506.15675*, 2025a. 2, 6, 20

728

729 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo
 730 Kanazawa, Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast and robust struc-
 731 ture and motion from casual dynamic videos. In *Proceedings of the Computer Vision and Pattern*
 732 *Recognition Conference*, pp. 10486–10496, 2025b. 20

733

734 Zhenxin Li, Kailin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Yishen Ji, Zhiqi Li, Ziyue Zhu, Jan
 735 Kautz, Zuxuan Wu, et al. Hydra-mdp: End-to-end multimodal planning with multi-target hydra-
 736 distillation. *arXiv preprint arXiv:2406.06978*, 2024c. 25

737

738 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
 739 Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-
 740 to-end autonomous driving. *arXiv preprint arXiv:2411.15139*, 2024a. 21, 25

741

742 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
 743 Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-
 744 to-end autonomous driving. *arXiv preprint arXiv:2411.15139*, 2024b. 20, 26

745

746 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 747 2023a. 1, 3, 4, 6

748

749 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 750 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 751 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023b. 8, 25

752

753 Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, and Hao Dong. Instructnav: Zero-
 754 shot system for generic instruction navigation in unexplored environment. *arXiv preprint*
 755 *arXiv:2406.04882*, 2024. 1, 4, 9

756

757 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 758 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018. 4, 19

759

760 OpenAI. Introducing 4o image generation. <https://openai.com/index/introducing-4o-image>, 2024. Accessed: 2025-04-29. 8, 25

756 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 757 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 758 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023. 3, 6
 759

760 Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
 761 sey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A
 762 co-habitat for humans, avatars and robots. *arXiv preprint arXiv:2310.13724*, 2023. 22
 763

764 Pranav Putta, Gunjan Aggarwal, Roozbeh Mottaghi, Dhruv Batra, Naoki Yokoyama, Joanne Truong,
 765 and Arjun Majumdar. Embodiment randomization for cross embodiment navigation. In *2024
 766 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 5527–5534.
 767 IEEE, 2024. 9

768 Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Unnat Jain, and Angel Chang. Language-
 769 aligned waypoint (law) supervision for vision-and-language navigation in continuous environ-
 770 ments. 2021. 8

771 Shouwei Ruan, Liyuan Wang, Caixin Kang, Qihui Zhu, Songming Liu, Xingxing Wei, and Hang
 772 Su. From reactive to cognitive: brain-inspired spatial intelligence for embodied agents. *arXiv
 773 preprint arXiv:2508.17198*, 2025. 9

774 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 775 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
 776 Platform for Embodied AI Research. *ICCV*, 2019a. 1, 2, 6, 9, 20
 777

778 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 779 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 780 ai research. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 781 9339–9347, 2019b. 7

782 Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose, and Sergey Levine. Gnm: A general
 783 navigation model to drive any robot. In *2023 IEEE International Conference on Robotics and
 784 Automation (ICRA)*, pp. 7226–7233. IEEE, 2023a. 1, 2, 6, 9
 785

786 Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
 787 Sergey Levine. ViNT: A foundation model for visual navigation. In *7th Annual Conference on
 788 Robot Learning*, 2023b. URL <https://arxiv.org/abs/2306.14846>. 9

789 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 790 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adap-
 791 tive compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.
 792 2, 3, 7, 20
 793

794 Xinshuai Song, Weixing Chen, Yang Liu, Weikai Chen, Guanbin Li, and Liang Lin. Towards long-
 795 horizon vision-language navigation: Platform, benchmark and method. In *Proceedings of the
 796 Computer Vision and Pattern Recognition Conference*, pp. 12078–12088, 2025. 9

797 Wenchao Sun, Xuewu Lin, Yining Shi, Chuang Zhang, Haoran Wu, and Sifa Zheng.
 798 Sparsedrive: End-to-end autonomous driving via sparse scene representation. *arXiv preprint
 799 arXiv:2405.19620*, 2024. 26
 800

801 Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Yang Wang, Zhiyong Zhao, Kun Zhan, Peng Jia,
 802 Xianpeng Lang, and Hang Zhao. Drivevlm: The convergence of autonomous driving and large
 803 vision-language models. *arXiv preprint arXiv:2402.12289*, 2024. 26

804 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 805 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF
 806 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024. 3
 807

808 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 809 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 810 tion processing systems*, 30, 2017. 4

810 Haitong Wang, Aaron Hao Tan, Angus Fung, and Goldie Nejat. X-nav: Learning end-to-end cross-
 811 embodiment navigation for mobile robots. *arXiv preprint arXiv:2507.14731*, 2025a. 9
 812

813 Hanqing Wang, Wei Liang, Luc V Gool, and Wenguan Wang. Towards versatile embodied naviga-
 814 tion. *Advances in neural information processing systems*, 35:36858–36874, 2022. 9
 815

816 Hanqing Wang, Wei Liang, Luc Van Gool, and Wenguan Wang. Dreamwalker: Mental planning for
 817 continuous vision-language navigation. In *ICCV*, 2023a. 8
 818

819 Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun
 820 Chen, and Jiangmiao Pang. Rethinking the embodied gap in vision-and-language navigation: A
 821 holistic study of physical and visual disparities. *arXiv preprint arXiv:2507.13019*, 2025b. 19
 822

823 Shaoan Wang, Jiazhao Zhang, Minghan Li, Jiahang Liu, Anqi Li, Kui Wu, Fangwei Zhong, Junzhi
 824 Yu, Zhizheng Zhang, and He Wang. Trackvla: Embodied visual tracking in the wild. *arXiv
 825 preprint arXiv:2505.23189*, 2025c. 2, 3, 6, 7, 8, 9, 20, 21, 24, 25, 26
 826

827 Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying Li,
 828 and Jose M Alvarez. Omnidrive: A holistic vision-language dataset for autonomous driving with
 829 counterfactual reasoning. *arXiv preprint arXiv:2504.04348*, 2025d. 26
 830

831 Xiangyu Wang, Donglin Yang, Ziqin Wang, Hohin Kwan, Jinyu Chen, Wenjun Wu, Hongsheng Li,
 832 Yue Liao, and Si Liu. Towards realistic uav vision-language navigation: Platform, benchmark,
 833 and methodology. *arXiv preprint arXiv:2410.07087*, 2024a. 2, 6, 7, 19, 21, 23, 24, 26
 834

835 Xin Eric Wang, Vihan Jain, Eugene Ie, William Yang Wang, Zornitsa Kozareva, and Sujith Ravi.
 836 Environment-agnostic multitask learning for natural language grounded navigation. In *Computer
 837 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
 838 Part XXIV 16*, pp. 413–430. Springer, 2020. 9
 839

840 Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Gridmm: Grid memory map
 841 for vision-and-language navigation. In *Proceedings of the IEEE/CVF International Conference
 842 on Computer Vision*, pp. 15625–15636, 2023b. 8
 843

844 Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, Junjie Hu, Ming Jiang, and Shuqiang Jiang.
 845 Lookahead exploration with neural radiance representation for continuous vision-language navi-
 846 gation. In *CVPR*, 2024b. 8
 847

848 Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan,
 849 and Yu Qiao. Scaling data generation in vision-and-language navigation. In *Proceedings of
 850 the IEEE/CVF International Conference on Computer Vision*, pp. 12009–12020, 2023c. 8
 851

852 Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu,
 853 Wenzhe Cai, Hanqing Wang, Yilun Chen, et al. Streamvln: Streaming vision-and-language navi-
 854 gation via slowfast context modeling. *arXiv preprint arXiv:2507.05240*, 2025. 8, 20
 855

856 Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
 857 architecture for real-time autonomous driving. In *Proceedings of the IEEE/CVF Conference on
 858 Computer Vision and Pattern Recognition*, pp. 15449–15458, 2024. 8, 25
 859

860 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 861 Accurate and efficient post-training quantization for large language models. In *International
 862 conference on machine learning*, pp. 38087–38099. PMLR, 2023a. 28
 863

864 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 865 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023b. 28
 866

867 Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui
 868 Yu. Videococa: Video-text modeling with zero-shot transfer from contrastive captioners. *arXiv
 869 preprint arXiv:2212.04979*, 2022. 22

864 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 865 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 866 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 867 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 868 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 869 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 870 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 871 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 872 technical report. *arXiv preprint arXiv:2407.10671*, 2024a. 1, 6

873 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
 874 prompting unleashes extraordinary visual grounding in gpt-4v. *arXiv preprint arXiv:2310.11441*,
 875 2023. 8, 25

876 Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn, Dorsa
 877 Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipulation
 878 and navigation. *arXiv preprint arXiv:2402.19432*, 2024b. 9

879 Hang Yin, Xiuwei Xu, Linqing Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Unigoal: Towards
 880 universal zero-shot goal-oriented navigation. In *Proceedings of the Computer Vision and Pattern
 881 Recognition Conference*, pp. 19057–19066, 2025. 1, 9

882 Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
 883 language frontier maps for zero-shot semantic navigation. In *2024 IEEE International Conference
 884 on Robotics and Automation (ICRA)*, pp. 42–48. IEEE, 2024a. 8, 24

885 Naoki Yokoyama, Ram Ramrakhya, Abhishek Das, Dhruv Batra, and Sehoon Ha. Hm3d-
 886 ovon: A dataset and benchmark for open-vocabulary object goal navigation. *arXiv preprint
 887 arXiv:2409.14296*, 2024b. 2, 7, 8, 9, 21, 24, 26

888 Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn: Leveraging large language models for
 889 visual target navigation. In *2023 IEEE/RSJ International Conference on Intelligent Robots and
 890 Systems (IROS)*, pp. 3554–3560. IEEE, 2023. 19

891 Chengran Yuan, Zhanqi Zhang, Jiawei Sun, Shuo Sun, Zefan Huang, Christina Dao Wen Lee, Don-
 892 gen Li, Yuhang Han, Anthony Wong, Keng Peng Tee, et al. Drama: An efficient end-to-end
 893 motion planner for autonomous driving with mamba. *arXiv preprint arXiv:2408.03601*, 2024. 25

894 Kuo-Hao Zeng, Zichen Zhang, Kiana Ehsani, Rose Hendrix, Jordi Salvador, Alvaro Herrasti, Ross
 895 Girshick, Aniruddha Kembhavi, and Luca Weihs. Poliformer: Scaling on-policy rl with trans-
 896 formers results in masterful navigators. In *8th Annual Conference on Robot Learning*. 2, 8,
 897 25

898 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 899 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 900 pp. 11975–11986, 2023. 3, 6

901 Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
 902 Zhizheng Zhang, and He Wang. Navid: Video-based vlm plans the next step for vision-and-
 903 language navigation. *Robotics: Science and Systems*, 2024a. 1, 2, 3, 8

904 Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
 905 Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
 906 for unifying embodied navigation tasks. *Robotics: Science and Systems*, 2025a. 1, 3, 5, 8, 9, 19,
 907 21, 24, 25, 28

908 Lingfeng Zhang, Xiaoshuai Hao, Yingbo Tang, Haoxiang Fu, Xinyu Zheng, Pengwei Wang,
 909 Zhongyuan Wang, Wenbo Ding, and Shanghang Zhang. nava3: Understanding any instruction,
 910 navigating anywhere, finding anything. *arXiv preprint arXiv:2508.04598*, 2025b. 9

911 Yue Zhang, Ziqiao Ma, Jialu Li, Yanyuan Qiao, Zun Wang, Joyce Chai, Qi Wu, Mohit Bansal, and
 912 Parisa Kordjamshidi. Vision-and-language navigation today and tomorrow: A survey in the era
 913 of foundation models. *ArXiv*, abs/2407.07035, 2024b. 1, 9

918 Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
919 model for embodied navigation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
920 and *Pattern Recognition*, pp. 13624–13634, 2024. 4, 19

921
922 Fangwei Zhong, Kui Wu, Hai Ci, Churan Wang, and Hao Chen. Empowering embodied visual
923 tracking with visual foundation models and offline rl. In *European Conference on Computer*
924 *Vision*, pp. 139–155. Springer, 2024. 8, 25

925 Gengze Zhou, Yicong Hong, Zun Wang, Chongyang Zhao, Mohit Bansal, and Qi Wu. Same:
926 Learning generic language-guided visual navigation with state-adaptive mixture of experts. *arXiv*
927 *preprint arXiv:2412.05552*, 2024. 19

928 Ziyu Zhu, Xilin Wang, Yixuan Li, Zhuofan Zhang, Xiaojian Ma, Yixin Chen, Baoxiong Jia, Wei
929 Liang, Qian Yu, Zhidong Deng, Siyuan Huang, and Qing Li. Move to understand a 3d scene:
930 Bridging visual grounding and exploration for efficient and versatile embodied navigation. *Inter-*
931 *national Conference on Computer Vision (ICCV)*, 2025. 1, 8, 21, 24

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **USAGE OF LLM STATEMENT**
973974 Large Language Models (LLMs) are utilized solely to enhance the quality of written content by
975 assisting with polishing text and correcting grammatical errors.
976977 **A IMPLEMENTATION DETAILS**
978979 **A.1 ACTION PLANNING MODEL**
980981 Due to the fact that different embodiments could have dis-
982 tinct trajectory scales. For instance, indoor robots often
983 move on the scale of meters while cars move on the scale
984 of dozens of meters. We normalize the predicted trajec-
985 tory scaling across different embodiments to the range [-
986 1,1] of all dimesions by multiply a scaling factor α_{task} , as
987 reported in Table 5. Note that the scaling factor is not de-
988 rived from the absolute maximum value of each dimen-
989 sion; instead, we use the 99th percentile of each dimen-
990 sion to avoid the influence of outlier data.
991992 **A.2 DETAILS OF USING BATS**
993994 During navigation, initially when the number of visual tokens is within the token budget B , we
995 retain all visual tokens. Once the visual tokens exceed the budget B , we employ BATS to sample
996 tokens based on a forgetting curve (Sec. 2.1.2). In practice, we precompute $P(t, T)$ for a given token
997 budget B to accelerate this process. If the navigation task involves an exceptionally long horizon,
998 such as thousands of steps (which rarely occurs), even using the minimum sampling probability ϵ
999 may result in the visual tokens exceeding the token budget. In such cases, we simply remove the
1000 oldest frames.
1001
10021003 **A.3 DETAILS OF FIGURE 3**
10041005 We performed clustering (McInnes et al., 2018) directly on the end-to-end learned TVI tokens (Eq. 3)
1006 and visualized the embeddings using a color map based on viewpoint angle and time step. Specif-
1007 ically, for the navigation task (Eq. 3 row 1), we sampled 1,800 TVI token embeddings from
1008 combinations of 60 angles (distributed over $[0, 2\pi]$) and 30 time steps (ranging from 0 to 150). For the
1009 VQA task (Eq. 3 row 2), we sampled embeddings from 30 time steps ranging from 0 to 150.
10101011 **A.4 DATA PREPARATION**
10121013 **Vision-and-Language Navigation** (3.37 M) requires an agent to interpret natural language instruc-
1014 tions and egocentric visual observations, align the instructions with visual inputs, and plan subse-
1015 quent actions to reach described landmarks. Following a broad definition of VLN (Zheng et al.,
1016 2024; Wang et al., 2025b; Zhou et al., 2024), we consider both indoor environments (e.g., VLN-CE
1017 on R2R (Krantz et al., 2020) and RxR (Ku et al., 2020a)) and outdoor environments (e.g., Open-
1018 UAV (Wang et al., 2024a)), deployed on robots and unmanned aerial vehicles (UAVs), respectively.
1019 For VLN-CE on R2R and RxR (2.94 M), we capture multi-view RGB videos, annotated instruc-
1020 tions, and trajectory data while the robot follows the ground-truth path. The multi-view RGB setup
1021 consists of a fixed front-view camera and randomly sampled surrounding cameras (ranging from
1022 one to eight). Camera heights are randomized between 0.6 m and 1.5 m, and the horizontal fields
1023 of view (HFoV) vary between 75° and 120° . For the OpenUAV dataset (429 K), we record camera
streams from the front, left, right, and rear views for all sequences. Other randomization strategies
remain consistent with those used in the VLN-CE tasks.1024 **Object Goal Navigation** (1.02 M) requires a robot to explore an unseen environment and identify
1025 a described target. For the object goal navigation dataset, we follow the method of (Zhang et al.,
2025a) by collecting successful episodes from L3MVN (Yu et al., 2023), a heuristic-designed ap-

Embodiements	x(m)	y(m)	z(m)	θ (rad)
Indoor robots*	1.0	0.433	-	2.09
UAV*	7.93	3.19	7.85	1.04
Cars*	50.8	14.9	-	1.52

Table 5: Scaling factors of different dimesion of predicted tracjtort of different em-
bodiements.

proach that explicitly models the exploration and identification stages. Our data are collected from HM3D ObjectNav (Savva et al., 2019a) episodes, which require the agent to locate objects from a predefined category set (e.g., *sofa*, *chair*, and *bed*). Nevertheless, experiments show that our method generalizes to state-of-the-art open-vocabulary object goal searching, as presented in Table 7. Note that we do not employ multiple cameras or camera randomization, as we aim to maintain the same visual observation configuration as L3MVN.

Active Visual Tracking (897K) (Islam et al., 2019; Francis et al., 2023; Wang et al., 2025c) requires the robot to distinguish the target within dynamic and crowded environments. The target is specified via textual instructions, e.g., “Follow the man in the blue t-shirt.” The agent must recognize the appearance of the human, follow the correct person according to the instructions, and maintain an appropriate distance while avoiding obstacles. For this task, we use data from EVT-Bench, consistent with (Wang et al., 2025c), which involves diverse indoor environments and hundreds of avatars with corresponding descriptions. We also incorporate camera randomization, as described in our VLN data collection process.

Autonoums Driving (681K) (Hu et al., 2023; Liao et al., 2024b) requires an agent to generate a safe, comfortable, and kinematically feasible trajectory for navigating complex and dynamic real-world environments. This task evaluates the agent’s ability to continuously perceive its surroundings, anticipate the future movements of other traffic participants, and make robust sequential decisions to avoid collisions while progressing toward a destination. Here, we process 27K and 654K samples sourced from nuScenes (Caesar et al., 2020a) and OpenScene (Contributors, 2023), respectively. We directly record the original multi-view images, instructions, and vehicle state information from the dataset. Note that we do not collect explicit surrounding information (such as lane details), in contrast to common autonomous driving baselines (Chen et al., 2024c; Li et al., 2024b).

Web-Video Navigation. (2.03M) We also leverage the Sekai dataset (Li et al., 2025a), which provides a collection of approximately 182K YouTube videos with corresponding instructions (generated by VLMs (Bai et al., 2025)) and trajectories (generated by SLAM systems (Li et al., 2025b)). Although these navigation samples contain imperfect instructions and trajectories, they remain valuable for incorporating real-world navigation scenarios. Similar findings have been reported in (Cheng et al., 2025; Wei et al., 2025).

Open-World Question-Answering. (4.76M) Following existing video-based VLMs (Li et al., 2023; Shen et al., 2024; Wang et al., 2025c), we collect 3.15M image QA samples and 1.61M video QA samples, which encompass rich and comprehensive knowledge for open-world understanding.

A.5 DISCRETE ACTION PROCESSING

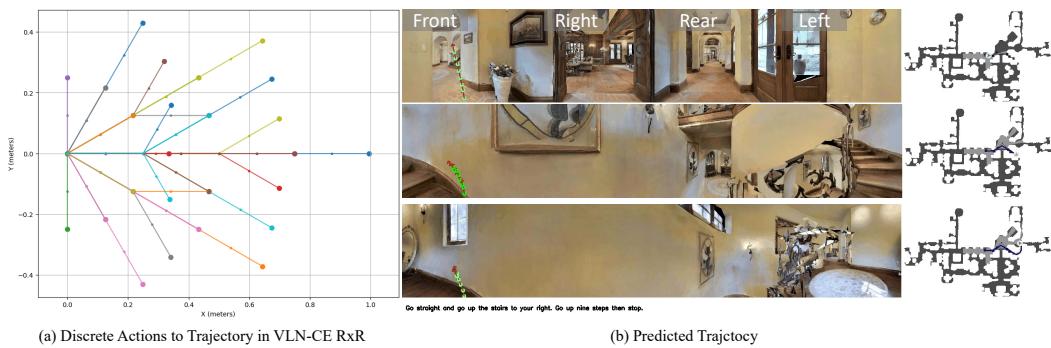


Figure 9: Visualization of the trajectory (VLN-CE RxR) for (a) training and (b) evaluation.

For navigation tasks built on the Habitat environment (Savva et al., 2019a), which utilizes low-level discrete actions such as `Move_Forward`, `Turn_Left`, `Turn_Right`, and `Stop`. However, the definitions of these discrete actions vary slightly across different navigation tasks. For example, in VLN-CE R2R, `Turn_Left` indicates a 15-degree turn, whereas in VLN-CE RxR and HM3D-ObjNav, it indicates a 30-degree turn. To unify all navigation tasks with discrete actions, we employ a simple strategy: we consider moving forward by 12.5 cm or turning by 15 degrees as an atomic

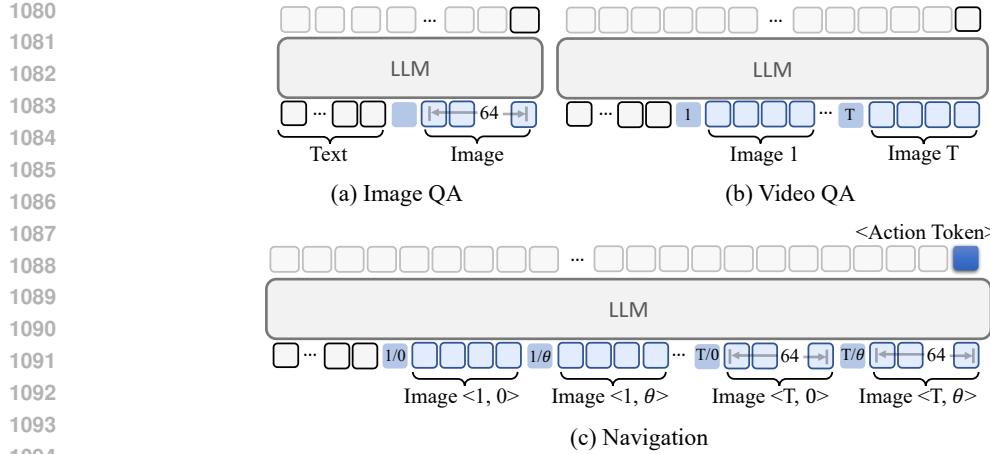


Figure 10: **Token Organization Strategy of NavFoM Across Different Tasks.** (a) For image question answering, fine-grained visual tokens are utilized, incorporating only the base embedding of TVI tokens. (b) For video question answering, coarse-grained visual tokens are employed, which include both the base embedding and the time embedding of TVI tokens. (c) For navigation, both coarse-grained and fine-grained visual tokens are used, integrating the base, time, and angle embeddings of TVI tokens.

operation. We then construct the trajectory based on the accumulation of these atomic operations. Although the resulting trajectory could be zigzag (Figure 9), after fine-tuning on all navigation datasets, we find that the predicted trajectory of our method is smooth and meaningfully directed toward the target.

A.6 TOKEN ORGANIZATION

We provide a detailed illustration of the token organization strategy for different tasks in Figure 10. For Image QA, we use E_{Base} along with fine-grained visual tokens (64 tokens per image) to represent the image. For Video QA, we incorporate $E_{\text{Base}} + \mathcal{P}_{\text{time}}(\text{TimePE}(t))$ to encode temporal information for each frame, and employ coarse-grained visual tokens (4 tokens per frame) to avoid an excessive number of tokens.

B EXPERIMENT DETAILS

B.1 BENCHMARKS

We give a detailed introduction to evaluation benchmarks:

- **Vision-and-Language Navigation:** We evaluate our method on the VAL-Unseen splits of the VLN-CE R2R (Krantz et al., 2020) and RxR (Ku et al., 2020a) benchmarks, which require the robot to follow instructions in unseen indoor environments. We also evaluate our method on the Open-UAV benchmark (Wang et al., 2024a), which requires the UAV to follow instructions in unseen outdoor environments.
- **Object goal navigation:** We follow previous methods (Zhang et al., 2025a; Zhu et al., 2025) to evaluate the generalizability of object-goal navigation on the HM3D-OVON dataset (Yokoyama et al., 2024b), an open-vocabulary object navigation benchmark, in a zero-shot manner.
- **Active Visual Tracking:** We evaluate our method on EVT-Bench (Wang et al., 2025c), a challenging benchmark that requires the robot to distinguish and follow target within crowded environments.
- **Autonomous Driving:** We evaluate our method on mainstream benchmarks, namely nuScenes (Caesar et al., 2020a) and NAVSIM (Dauner et al., 2024b), for open-loop and pseudo-simulation evaluation. Our evaluation strategy is consistent with existing baseline (Liao et al., 2024a) to ensure a fair comparison.

1134 B.2 METRICS
1135

1136 **Success Related Metrics.** We report three success-related metrics (Anderson et al., 2018): Navigation Error (NE) measures the average distance between the agent’s final position and the goal;
1137 Success Rate (SR) calculates the percentage of episodes where the agent stops within a threshold
1138 distance of the goal, while additionally requiring the goal to be within the agent’s receptive field for OVON and EVT-Bench; and Oracle Success (OS) reports the percentage of episodes where the
1139 agent passes within the threshold distance at any timestep. Success thresholds vary across benchmarks,
1140 and we follow their default settings: 0–3m for VLN-CE R2R, RxR, HM3D-OVON; 1–3m
1141 for EVT-Bench; and 0–20m for Open-UAV.
1142

1143 **Trajectory Quality Metrics.** To account for path efficiency, we measure Success weighted by Path
1144 Length (SPL) (Batra et al., 2020), which rewards successful agents that adhere closer to the optimal
1145 path length: $SPL = \frac{1}{N} \sum_{i=1}^N S_i \cdot \frac{L_i^*}{\max(L_i, L_i^*)}$, where S_i indicates success for episode i , L_i^* is the
1146 shortest-path distance, and L_i is the executed path length; We also report normalized Dynamic Time
1147 Warping (nDTW) (Ilharco et al., 2019), which quantifies the fidelity of the agent’s path relative
1148 to the ground truth trajectory: $nDTW = \exp\left(-\frac{DTW(\tau, \hat{\tau})}{\eta}\right)$, where $DTW(\tau, \hat{\tau})$ is the dynamic
1149 time warping distance (Berndt & Clifford, 1994) between reference path τ and predicted path $\hat{\tau}$,
1150 and η is the shortest-path distance from start to goal. Specifically for the tracking task, we use the
1151 Tracking Rate (TR) (Puig et al., 2023), which measures the agent’s temporal consistency, defined as
1152 the proportion of steps where the target is maintained within the sensor’s field of view and a 1–3m
1153 range relative to the total episode length.
1154

1155 **Autonomous Driving Evaluations.** For the autonomous driving evaluation, we report L2 distance
1156 and Collision Rate (CR) for open-loop planning (Caesar et al., 2020a). L2 measures the average
1157 Euclidean distance between the predicted and ground truth waypoints, while CR measures the
1158 frequency of intersection with obstacles. For closed-loop evaluation in NAVSIM, we use the PDM
1159 score (PDMS) (Dauner et al., 2024b). PDMS is a holistic metric composed of weighted sub-scores:
1160 No at-fault Collisions (NC) and Drivable Area Compliance (DAC) penalize critical safety infra-
1161 tions; Time-to-Collision (TTC) and Comfort (Comf.) assess interaction safety and ride smoothness;
1162 and Ego Progress (EP) measures the distance traveled along the route as a ratio to a safe upper
1163 bound.
1164

1165 B.3 TRAINING STRATEGY
1166

1167 **Accelerating Training by Caching Visual
1168 Features.** Due to the long horizon of videos
1169 (hundreds of frames), encoding all images on-
1170 line in a large batch can be computationally
1171 expensive. To mitigate this issue, we lever-
1172 age a visual feature caching mechanism (Yan
1173 et al., 2022) and construct a visual feature
1174 database (See Figure 11). Note that we only
1175 cache coarse-grained visual tokens (4 tokens
1176 per frame), which require significantly less disk
1177 space compared to storing full videos, as a sin-
1178 gle episode of navigation typically produces
1179 dozens of videos. For image QA and the lat-
1180 est observation in navigation, we still use vi-
1181 sual encoders online to extract fine-grained vi-
1182 sual tokens (64 tokens per frame). This ap-
1183 proach reduces training time (2.9x faster) and
1184 GPU memory usage (1.8x less).
1185

B.4 REAL-WORLD DEPLOYMENT SYSTEM
1186

1187 We regard our model as a general Visual-
1188 Language-Action (VLA) model capable of

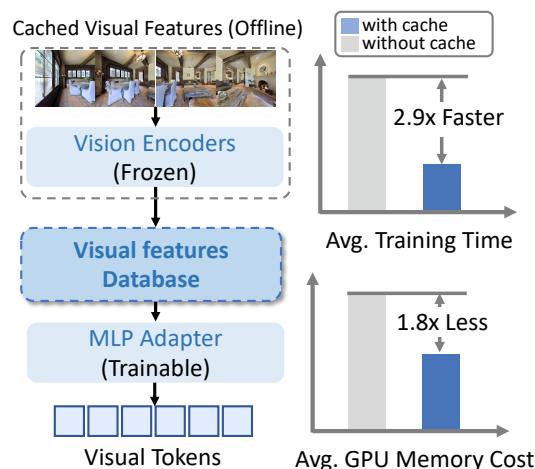
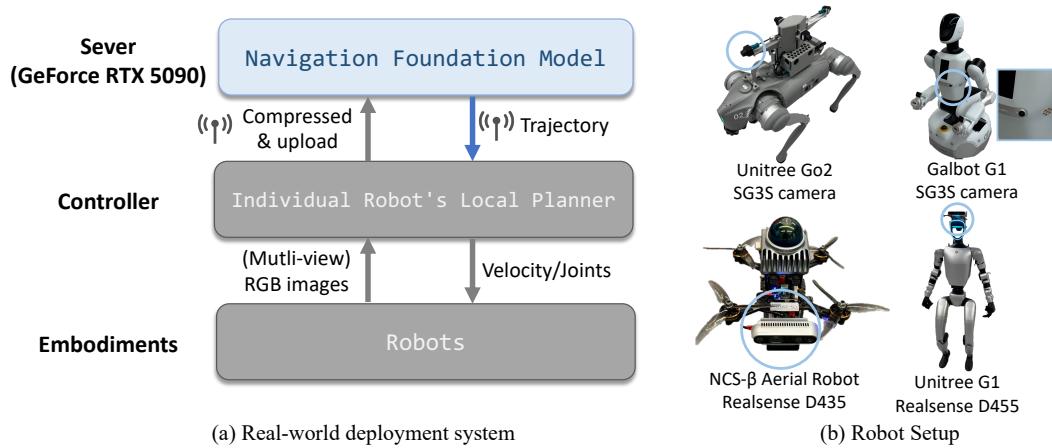


Figure 11: **Offline Visual Feature Cached.** We pre-computed video frames and navigation history and saved as coarse visual tokens.

1188 Table 6: **Comprehensive results on OpenUAV benchmark with L1 level assistant.** **Seen** denotes the seen
1189 split, while **UO** and **UM** represent the Test Unseen Object Set and Test Unseen Map Set respectively. DA refers
1190 to a model trained using backtracking sampling-based data aggregation. The **best** and the second best results
1191 are denoted by **bold** and underline.

Method	Test Set	Full				Easy				Hard			
		NE↓	SR↑	OSR↑	SPL↑	NE↓	SR↑	OSR↑	SPL↑	NE↓	SR↑	OSR↑	SPL↑
<i>OpenUAV Seen Set</i>													
Human	Seen	14.15	94.51	94.51	77.84	11.68	95.44	95.44	76.19	17.16	93.37	93.37	79.85
Random Action	Seen	222.20	0.14	0.21	0.07	142.07	0.26	0.39	0.13	320.12	0.00	0.00	0.00
Fixed Action	Seen	188.61	2.27	8.16	1.40	121.36	3.48	11.48	2.14	270.69	0.79	4.09	0.49
CMA (Wang et al., 2024a)	Seen	135.73	8.37	18.72	7.90	84.89	11.48	24.52	10.68	197.77	4.57	11.65	4.51
TravelUAV (Wang et al., 2024a)	Seen	106.28	16.10	44.26	14.30	68.78	18.84	47.61	16.39	152.04	12.76	40.16	11.76
TravelUAV-DA	Seen	<u>98.66</u>	<u>17.45</u>	<u>48.87</u>	<u>15.76</u>	<u>66.40</u>	<u>20.26</u>	<u>51.23</u>	<u>18.10</u>	<u>138.04</u>	<u>14.02</u>	<u>45.98</u>	<u>12.90</u>
NavFoM (Four views)	Seen	93.05	29.17	49.24	25.03	58.98	32.91	53.16	27.87	<u>143.83</u>	<u>23.58</u>	<u>43.40</u>	20.80
<i>OpenUAV Unseen Set</i>													
Random Action	UO	260.14	0.16	0.16	0.16	174.10	0.48	0.48	0.48	302.96	0.00	0.00	0.00
Fixed Action	UO	212.84	3.66	9.54	2.16	151.66	6.70	13.88	3.72	243.29	2.14	7.38	1.38
CMA (Wang et al., 2024a)	UO	155.79	9.06	16.06	8.68	102.92	14.83	22.49	13.90	182.09	6.19	12.86	6.08
TravelUAV (Wang et al., 2024a)	UO	118.04	<u>22.42</u>	<u>46.90</u>	<u>20.51</u>	<u>86.12</u>	<u>24.40</u>	<u>49.28</u>	<u>22.03</u>	<u>134.03</u>	<u>21.43</u>	<u>45.71</u>	<u>19.75</u>
NavFoM (Four views)	UO	108.04	29.83	47.99	27.20	70.51	32.54	50.72	29.54	133.01	28.03	46.18	25.64
Random Action	UM	202.98	0.00	0.00	0.00	158.46	0.00	0.00	0.00	265.88	0.00	0.00	0.00
Fixed Action	UM	180.47	0.52	2.61	0.39	132.89	0.89	4.28	0.67	247.72	0.00	0.25	0.00
CMA (Wang et al., 2024a)	UM	141.68	2.30	10.02	2.16	102.29	3.57	14.26	3.33	197.35	0.50	4.03	0.50
TravelUAV (Wang et al., 2024a)	UM	138.80	4.18	20.77	3.84	102.94	4.63	22.82	4.24	189.46	3.53	17.88	3.28
NavFoM (Four views)	UM	125.10	6.30	<u>18.95</u>	5.68	<u>102.41</u>	6.77	<u>20.07</u>	6.04	<u>170.58</u>	5.36	<u>15.71</u>	4.97

1209 driving different embodiments to complete var-
1210 ious navigation tasks. To achieve this, our model takes visual observations—obtained from one or
1211 more cameras—along with instructions, and directly predicts a trajectory. We then utilize off-the-
1212 shelf APIs (which may include Lidar or other sensors if necessary) specific to each embodiment to
1213 drive the robot along the predicted trajectory.



1231 Figure 12: **Real-world deployment setup.** We provide the system architecture of our methods and the corre-
1232 sponding robots that were tested in the paper.

1236 An illustration of our real-world system is provided in Figure 12. Specifically, we deploy our model
1237 on a remote server equipped with a GeForce RTX 5090 GPU and use the Internet for communication
1238 between the server and the client (which includes the controller and embodiments). Given a user
1239 instruction, the robots compress their current observations and transmit them to the server. The
1240 server then processes both the observations and the instruction to output a trajectory. This trajectory
1241 is subsequently processed by the local planner of each individual robot, which sends appropriate
1242 commands (e.g., velocity or joint controls) to drive the robot.

1242 Table 7: **Object goal navigation.** Comparison on HM3D-OVON [Yokoyama et al. \(2024b\)](#). * : denotes zero-
 1243 shot evaluation. We report the performance of our method on egocentric and four-view settings. The **best** and
 1244 the second best results are denoted by **bold** and underline.

Method	VAL SEEN		VAL SEEN SYNONYMS		VAL UNSEEN	
	SR↑	SPL↑	SR↑	SPL↑	SR↑	SPL↑
BC	11.1	4.5	9.9	3.8	5.4	1.9
DAgger	11.1	4.5	9.9	3.8	5.4	1.9
RL	18.1	9.4	15.0	7.4	10.2	4.7
BCRL	39.2	18.7	27.8	11.7	18.6	7.5
DAgRL	41.3	21.2	29.4	14.4	18.3	7.9
VLFM* (Yokoyama et al., 2024a)	35.2	18.6	32.4	17.3	35.2	19.6
DAgRL+OD (Yokoyama et al., 2024b)	38.5	21.1	39.0	21.4	37.1	19.8
Uni-NaVid* (Zhang et al., 2025a)	<u>41.3</u>	21.1	43.9	21.8	39.5	19.8
MTU3D (Zhu et al., 2025)	55.0	23.6	<u>45.0</u>	14.7	40.8	12.1
NavFoM * (Single view)	37.7	<u>25.5</u>	43.3	<u>29.9</u>	<u>43.6</u>	<u>31.3</u>
NavFoM * (Four views)	40.1	27.1	45.4	32.6	45.2	31.9

C ADDITIONAL EXPERIMENTS

C.1 PERFORMANCE ON OPENUAV

We report the performance of our method in a challenging UAV scenario ([Wang et al., 2024a](#)) in Table 6, which requires the UAV to follow natural language instructions and execute long-horizon trajectories (averaging 200 meters) to reach described targets in outdoor environments. Note that our method uses trajectories directly collected from the TravelUAV ([Wang et al., 2024a](#)) training split (mimicking ground truth trajectories), as no strong baseline was available to collect expert trajectories as was done for the ObjectNav data collection. Despite this, our approach achieves state-of-the-art performance compared to prior UAV-specific baselines such as TravelUAV, without relying on downward-facing cameras as used in those methods (we plan to incorporate additional degrees of freedom in camera configurations in future work). This clearly demonstrates the effectiveness of our approach and the benefits of learning from diverse navigation tasks (Figure 7).

However, we observe that all methods perform poorly on the Unseen-Map split, which requires an average traversal of 300 meters through complex neighborhoods to reach unseen targets. This is because the unseen split demands more advanced navigation capabilities, such as efficient exploration of large-scale environments, which in turn relies on higher-quality UAV data.

C.2 PERFORMANCE ON OVON

Following prior work ([Zhang et al., 2025a](#); [Zhu et al., 2025](#)), we evaluate search capability on an open-vocabulary benchmark ([Yokoyama et al., 2024b](#)) under a zero-shot setting. The results are presented in Table 7, which includes performance for both single-camera and four-camera configurations. Under the single-camera setting, our method achieves performance comparable to that of the state-of-the-art (SOTA) approach ([Zhu et al., 2025](#)) on both the VAL SEEN and VAL SEEN SYNONYMS splits in a zero-shot evaluation setting. On the more challenging VAL UNSEEN split, our method outperforms the SOTA method, improving the success rate (SR) from 40.8% to 43.6%. Furthermore, when transitioning from the single-camera to the four-camera setting, we observe consistent improvements across all splits and metrics. Notably, our model was trained only on single-camera search samples, demonstrating that co-tuning across different camera configurations enhances generalization to varied camera setups.

C.3 PERFORMANCE ON THE EVT-BENCH

We evaluate our method on EVT-Bench ([Wang et al., 2025c](#)) (including both the Single Target and Distracted Target splits) under both single-view and four-view camera settings (Table 8). Note that our model is trained only on the single-view setting and evaluated on the four-view setting in a zero-shot manner. Our results demonstrate that the proposed method achieves state-of-the-art (SOTA) performance under the single-view setting, outperforming the previous baseline, TrackVLA ([Wang et al., 2025c](#)), which was specifically fine-tuned on tracking data. Furthermore, when the camera

1296 Table 8: **Performance on EVT-Bench.** \dagger : Uses GroundingDINO (Liu et al., 2023b) as the open-vocabulary
 1297 detector. \ddagger : Uses SoM (Yang et al., 2023)+GPT-4o (OpenAI, 2024) as the visual foundation model. The **best**
 1298 and the second best results are denoted by **bold** and underline.

Method	Single Target		Distracted Target	
	SR \uparrow	TR \uparrow	SR \uparrow	TR \uparrow
IBVS \dagger (Gupta et al., 2016)	42.9	56.2	10.6	28.4
PoliFormer \dagger (Zeng et al.)	4.67	15.5	2.62	13.2
EVT (Zhong et al., 2024)	24.4	39.1	3.23	11.2
EVT \ddagger (Zhong et al., 2024)	32.5	49.9	15.7	35.7
Uni-NAvid (Zhang et al., 2025a)	25.7	39.5	11.3	27.4
TrackVLA (Wang et al., 2025c)	<u>85.1</u>	78.6	57.6	63.2
NavFoM (Single view)	85.0	<u>80.5</u>	<u>61.4</u>	68.2
NavFoM (Four views)	88.4	80.7	62.0	<u>67.9</u>

1308
 1309
 1310
 1311 Table 9: **Comparison on planning-oriented NAVSIM `navtest` split with closed-loop metrics.** \mathcal{V}_{8192}
 1312 denotes 8192 anchors. The **best** and the second best results are denoted by **bold** and underline.

Method	Observation & Structure			Metrics					
	Camera	Lidar	VLM-Based	NC \uparrow	DAC \uparrow	TTC \uparrow	Comf. \uparrow	EP \uparrow	PDMS \uparrow
Human	-	-	-	100	100	100	99.9	87.5	94.8
Constant Velocity	-	-	-	69.9	58.8	49.3	100	49.3	21.6
Ego Status MLP	-	-	-	93.0	77.3	83.6	100	62.8	65.6
LTf (Chitta et al., 2022)	✓	✓	-	97.4	92.8	92.4	100	79.0	83.8
Transfuser (Chitta et al., 2022)	✓	✓	-	97.7	92.8	92.8	100	79.2	84.0
VADv2- \mathcal{V}_{8192} (Chen et al., 2024b)	✓	✓	-	97.2	89.1	91.6	100	76.0	80.9
Hydra-MDP- \mathcal{V}_{8192} (Li et al., 2024c)	✓	✓	-	97.9	91.7	92.9	100	77.6	83.0
DiffusionDrive (Liao et al., 2024a)	✓	✓	-	98.2	96.2	94.7	100	82.2	88.1
DRAMA (Yuan et al., 2024)	✓	✓	✓	98.0	<u>93.1</u>	94.8	100	<u>80.1</u>	<u>85.5</u>
UniAD (Hu et al., 2023)	✓	-	-	97.8	91.9	92.9	100	78.8	83.4
PARA-Drive (Weng et al., 2024)	✓	-	-	<u>97.9</u>	92.4	93.0	99.8	79.3	84.0
LAW (Li et al., 2024b)	✓	-	-	96.4	95.4	88.7	99.9	81.7	84.6
DrivingGPT (Chen et al., 2024c)	✓	-	✓	98.9	90.7	94.9	95.6	<u>79.7</u>	82.4
NavFoM (Eight views)	✓	-	✓	97.7	<u>93.5</u>	92.3	100	79.6	<u>84.3</u>

1327
 1328
 1329
 1330
 1331 setup is increased from single-view to four-view (in a zero-shot manner), our method continues to
 1332 improve its performance. However, compared to the improvement observed in VLN (a 6.8% \uparrow in
 1333 SR on VLN-CE RxR), the gains here are relatively modest (0.6% \uparrow in SR). We attribute this to
 1334 the fact that most targets in EVT-Bench are spawned in front of the robot, a key assumption of this
 1335 benchmark. We plan to further investigate this issue through both simulation and methodological
 1336 enhancements, such as incorporating randomly positioned surrounding targets in future work.

C.4 PERFORMRENCE ON NAVSIM

1344 We conduct experiments to evaluate our method on eight-view settings autonoums driving (without
 1345 fine-tuning for specific configurations). Results on NAVSIM in Table 9. We observe that our method
 1346 achieves performance comparable to SOTA methods on both benchmarks, without explicitly model-
 1347 ing driving-related information such as lane markings, nearby vehicles, or other contextual elements.
 1348 We believe our approach can be further improved by incorporating scene descriptions as prompts,
 1349 similar to other baseline methods. We are also interested in evaluating this model in closed-loop
 autonomous driving simulators such as (Dosovitskiy et al., 2017).

1350 Table 11: **Computational cost.** We report the converged mem cost and converged inference speed.
1351

1352 Model Version	1353 Converged Mem Cost	1354 Converged Inference
1355 RTX 4090 original (16bit)	1356 19.8 GB	218 ms
1357 RTX 4090 Quantized (4bit)	1358 10.7 GB	248 ms
1359 Jetson Thor Quantized (16bit)	1360 19.1 GB	566 ms

1359 **C.5 PERFOMRENCE ON nUSCENE**1360
1361 Table 10: **Comparison on planning-oriented nUSCENE dataset with open-loop metrics.** Metric calculation
1362 follows DiffusionDrive (Liao et al., 2024b). The **best** and the second best results are denoted by **bold** and
1363 underline.
1364

1365 Method	1366 Observation & Structure		1367 L2 (m) ↓				1368 Collision (%) ↓			
	1369 Camera	1370 VLM-Based	1371 1s	1372 2s	1373 3s	1374 Avg.	1375 1s	1376 2s	1377 3s	1378 Avg.
ST-P3 (Hu et al., 2022)	✓	-	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71
UniAD (Hu et al., 2023)	✓	-	0.45	0.70	1.04	0.73	0.62	0.58	0.63	0.61
VAD (Jiang et al., 2023)	✓	-	0.41	0.70	1.05	0.72	0.07	0.17	0.41	0.22
SparseDrive (Sun et al., 2024)	✓	-	0.29	0.58	0.96	0.61	<u>0.01</u>	0.05	<u>0.18</u>	0.08
DiffusionDrive (Liao et al., 2024b)	✓	-	0.27	0.54	0.90	0.57	0.03	0.05	0.16	0.08
DriveVLM (Tian et al., 2024)	✓	✓	0.18	0.34	0.68	0.40	0.10	0.22	0.45	0.27
EMMA (Hwang et al., 2024)	✓	✓	0.14	0.29	0.54	0.32	-	-	-	-
DME-Driver (Han et al., 2025)	✓	✓	0.45	0.91	1.58	0.98	0.05	0.28	0.55	0.29
Omni-Q (Wang et al., 2025d)	✓	✓	0.14	0.29	<u>0.55</u>	<u>0.33</u>	0.00	0.13	0.78	0.30
Omni-L (Wang et al., 2025d)	✓	✓	<u>0.15</u>	0.36	0.70	0.40	0.06	0.27	0.72	0.35
ORION (Fu et al., 2025a)	✓	✓	<u>0.17</u>	<u>0.31</u>	<u>0.55</u>	0.34	0.05	0.25	0.80	0.37
NavFoM (Six views)	✓	✓	0.26	0.39	0.60	0.42	0.07	<u>0.11</u>	<u>0.18</u>	<u>0.12</u>

1379 We report the performance of our method on six-camera setting autonomous driving benchmark
1380 nuScene (Caesar et al., 2020b) in Table 10. We compare our method with strong baselines that
1381 are specifically designed for autonomous driving. Nevertheless, our method achieves comparable
1382 performance to these methods without explicitly modeling driving-related information.1383 **C.6 VISUAL RESULTS OF SYNTHETIC ENVIRONMENTS**1384 We provide visual results on benchmarks in Figure 13 from VLN-CE RxR (Ku et al., 2020a), EVT-
1385 Bench (Wang et al., 2025c), OVON (Yokoyama et al., 2024b), openUAV (Wang et al., 2024a),
1386 nuScenes (Caesar et al., 2020a) and NAVSIM (Dauner et al., 2024a).
13871388 **D ABLATION STUDY**1389
1390 **Performance on differnt number of cameras.** We evaluate the effectiveness of incorporating
1391 additional cameras in navigation tasks on VLN-CE RxR, a benchmark that offers a relatively com-
1392 prehensive suite of vision-language navigation challenges. The results are presented in Table 14,
1393 which compares configurations of one, two, three, four, and six cameras mounted around the robot
1394 to achieve a wider field of view. We observe consistent performance improvements when increas-
1395 ing the number of cameras from one to four, validating that enhanced environmental observations
1396 contribute positively to navigation performance. Notably, however, expanding to six cameras leads
1397 to a slight degradation in performance. We attribute this to the fact that six cameras do not provide
1398 substantially more observational coverage compared to four cameras, while the increased number of
1399 view tokens reduces the capacity available for encoding historical frames (Equation 5). This weaks
1400 the alignment between the navigation history and the instruction. We suggest that this issue could
1401 be mitigated by adopting an adaptive multi-view token encoding strategy. To maintain coherence in
1402 the current work, we leave this exploration for future research.
1403

Figure 13: **Visualization of performance on benchmarks.** We report visual results of NavFoM on VLN-CE RxR (single-view), EVT-Bench Distracted Targets (four-view), OpenUAV (four-view), NeuScenes (six-view), OpenScenes (Eight-view).

E REAL-WORLD EXPERIMENTS

Real-world deployment cost. We have conducted additional experiments on deployment costs. Specifically, we provide the original costs (16-bit) and quantized version (4-bit) of our model ('7B LLM + 2B ViT, 2048 Token Budget, four-camera view') on VLN-CE RxR in the table. The results can be found in Table 11. We find that our quantized models (4-bit via Bitsandbytes¹) significantly

¹<https://huggingface.co/docs/transformers/quantization/bitsandbytes>

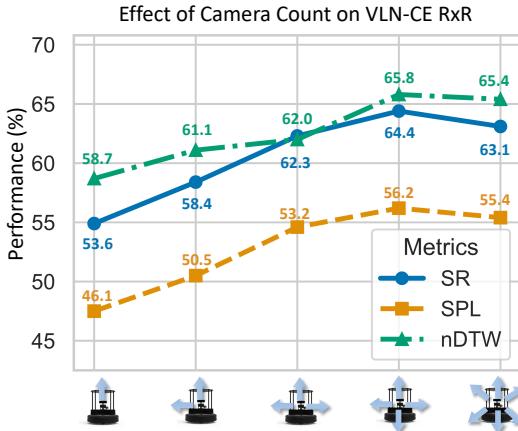


Figure 14: **Ablation study on the number of cameras in VLN-CE RxR.** We report the performance under five different camera configurations (from left to right: one-, two-, three-, four-, and six-camera settings), with same token budget ($B = 2048$).

reduce deployment costs (using only 53.9% of the original memory) while maintaining comparable performance. This also enables our method to be deployed on the latest onboard GPUs. As an example, we deployed the 16-bit quantized model on a Jetson Thor and observed stable performance, with an average inference speed of 566 ms per trajectory prediction.

Regarding deployment memory cost, techniques such as SmoothQuant (Xiao et al., 2023a) and quantization-aware training (Dettmers et al., 2023) could significantly reduce memory usage while maintaining strong performance. For inference speed, there are also existing advanced techniques such as LLM streaming (Xiao et al., 2023b) (which is suitable for processing online captured video in robot tasks) and the Speculative Decoding strategy Leviathan et al. (2023). These methods have demonstrated significant inference speed improvements in complicated tasks (Leviathan et al., 2023). In summary, we believe that with the rapid development of graphics hardware and acceleration methods, fast and convenient deployment of large model-based approaches will become a promising direction.

Real-world performance on 110 reproducible test cases. To evaluate the real-world performance of our method, we designed a series of navigation test cases with different capabilities (including 50 VLN samples, 30 search samples, and 30 tracking samples). Specifically, we constructed a $5\text{m} \times 5\text{m}$ space and recorded the locations of the robot, obstacles, and targets for each test case. We report both qualitative and quantitative results of NavFoM in complex scenarios across these navigation capabilities. The results are presented in Figure 15. Our findings indicate that NavFoM demonstrates strong real-world performance: it correctly understands the surrounding environment and plans appropriate trajectories to accomplish the task. Moreover, compared to the strong baseline Uni-NaVid (Zhang et al., 2025a), our method exhibits significant improvements across both tasks, demonstrating its superior performance in real-world environments.

Visual results of challenging cross-task and cross-embodyment real-world experiments. We also conduct extensive experiments on more challenging scenarios with different embodiments (quadruped robots, humanoids, drones, and wheeled robots). The results are shown in Figure 16, where we find that our method can handle complicated real-world environments and fulfill long-horizon instructions. We encourage readers to view our accompanying videos for a more intuitive demonstration.

F FAILURE CASE ANALYSIS

We provide a more detailed analysis of the failure cases, covering both benchmark and real-world environments.

Benchmark Environments: We analyze benchmark failure cases in in VLN-CE RxR, the limited field of view (FoV) in the single-camera setup significantly affects the ability to ground visual in-

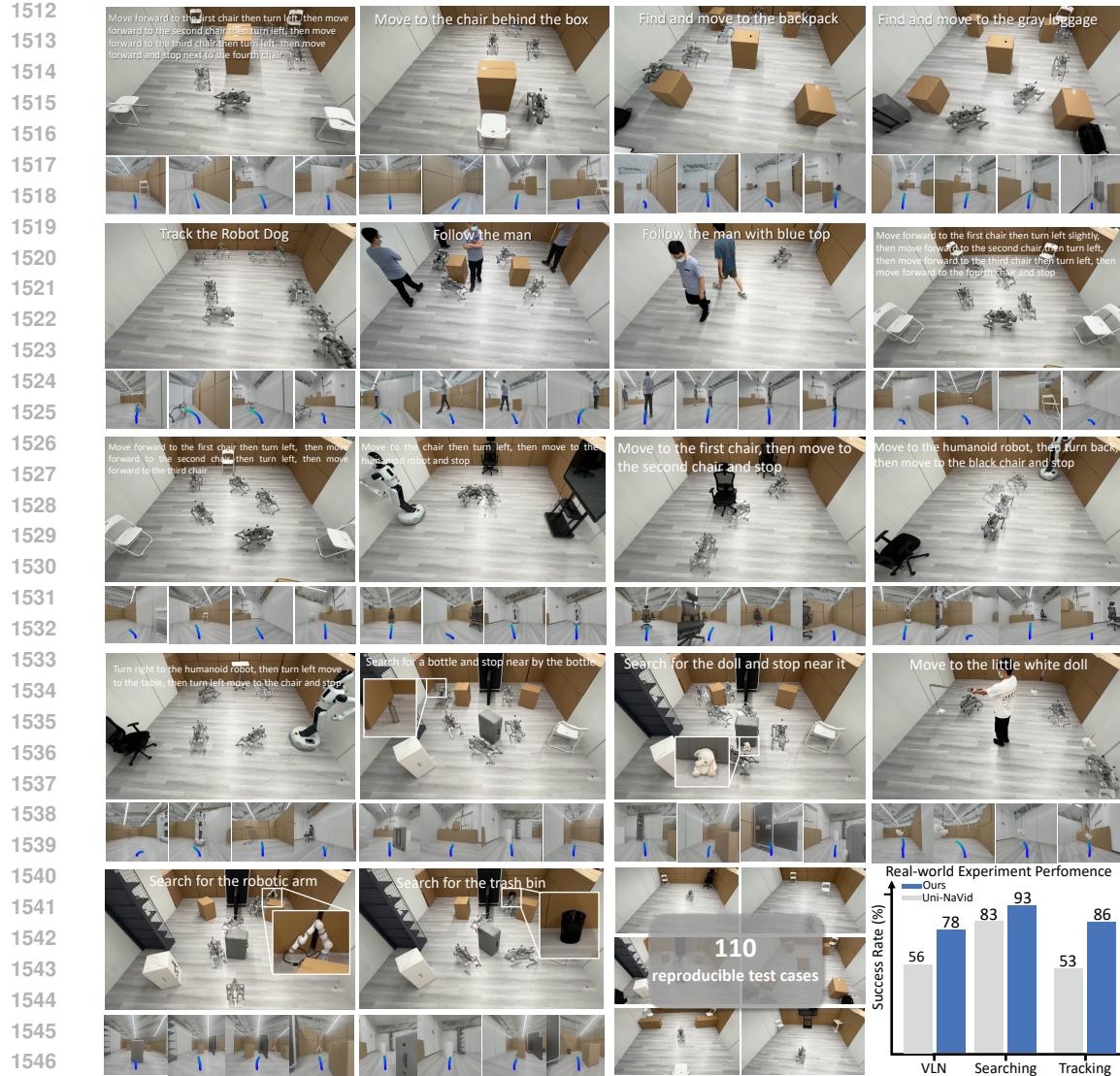


Figure 15: **Real-world experiments.** We report both the qualitative and quantitative results of NavFoM on complex seniors among different navigation capability.

formation with instructions. When switching to a four-camera setting (360° FoV), the success rate increases from 57.4% to 64.4%. We observe that about 51% of failures are due to dataset/simulator problems, including rendering quality and misleading instructions (e.g., ambiguous landmarks). The remaining failures stem from model capability issues (49%), such as failing to align history with instructions (e.g., performing early stops) or failing to execute sufficient turns (especially at challenging narrow corners). This indicates that future efforts should focus on improving both dataset/simulators and model capabilities.

Real-world Environments: During the real-world experiments, we find that most failure cases stem from recognizing small objects (such as bottles or books) from a long distance or understanding blurred images while the robot is moving. Additionally, extremely challenging scenarios, such as following long-horizon instructions (thousands of words) or searching for an object within a very large building (hundreds of square meters), pose critical challenges to the method. We believe that a more robust real-world approach requires collaborative efforts in both model capabilities (perception, reasoning, memory) and hardware components (camera, computational resources).

Figure 16: Visualization of real-world experiments on cross-task and cross-embodiment settings.

1618

1619