
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REAL-TIME DEEPFAKE DETECTION IN THE REAL
WORLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent improvements in generative AI made synthesizing fake images easy; as they
can be used to cause harm, it is crucial to develop accurate techniques to identify
them. This paper introduces ”Locally Aware Deepfake Detection Algorithm”
(LaDeDa), that accepts a single 9× 9 image patch and outputs its deepfake score.
The image deepfake score is the pooled score of its patches. With merely patch-level
information, LaDeDa significantly improves over the state-of-the-art, achieving
around 99% mAP on current benchmarks. Owing to the patch-level structure of
LaDeDa, we hypothesize that the generation artifacts can be detected by a simple
model. We therefore distill LaDeDa into Tiny-LaDeDa, a highly efficient model
consisting of only 4 convolutional layers. Remarkably, Tiny-LaDeDa has 375×
fewer FLOPs and is 10,000× more parameter-efficient than LaDeDa, allowing
it to run efficiently on edge devices with a minor decrease in accuracy. These
almost-perfect scores raise the question: is the task of deepfake detection close to
being solved? Perhaps surprisingly, our investigation reveals that current training
protocols prevent methods from generalizing to real-world deepfakes extracted from
social media. To address this issue, we introduce WildRF, a new deepfake detection
dataset curated from several popular social networks. Our method achieves the
top performance of 93.7% mAP on WildRF, however the large gap from perfect
accuracy shows that reliable real-world deepfake detection is still unsolved.

1 INTRODUCTION

Figure 1: Performance vs. efficiency trade-off.
Baselines comparison of average precision perfor-
mance on real-world data as a function of floating-
point operations per second (FLOPs) at inference
time.

Deepfake images are a leading source of disin-
formation with government and private agencies
recognizing them as a grave threat to society
(National Security Agency, 2023; World Eco-
nomic Forum, 2024). Recent improvements in
generative models, such as DALL-E (Ramesh
et al., 2021), StableDiffusion (Rombach et al.,
2022), and Midjourney (mid, 2022), signifi-
cantly lowered the bar of creating fake images.
Malicious parties are exploiting this technology
to spread false information, damage reputations,
and violate privacy online. Recent studies (Chai
et al., 2020; Isola et al., 2017; Geirhos et al.,
2018) showed that although deepfakes are se-
mantically similar to real images, they have sub-
tle, low-level artifacts that are easier to discrim-
inate. This suggests that detection methods may
gain from focusing on low-level image features.

We therefore introduce LaDeDa, a patch-based classifier that leverages local image features to detect
deepfakes effectively. LaDeDa’s algorithm: i) splits an image into multiple patches ii) predicts a
patch-level deepfake score iii) pools the scores of all image patches, resulting in the image-level
deepfake score. To allow LaDeDa to work on small image patches, we use a variant of ResNet50 (He
et al., 2016) that replaces some of the 3× 3 convolutions by 1× 1 convolutions. In particular, the best

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

version of LaDeDa uses a receptive field of 9× 9, which we find is an effective size for deepfake 1

image detection. This encourages the classifier to focus on local artifacts rather than global semantics.
Using only patch-level information, LaDeDa significantly improves over the state-of-the-art (SoTA),
achieving around 99% mAP on the most popular benchmarks.

Since LaDeDa focuses on small patches, we postulate that a very simple model may be sufficient
for detecting deepfake artifacts. To test this hypothesis, we design Tiny-LaDeDa, a highly efficient
model consisting of only 4 convolutional layers. We train Tiny-LaDeDa by performing logit-based
distillation (Hinton et al., 2015) using the patch-level deepfake scores predicted by LaDeDa (i.e., the
teacher). Remarkably, Tiny-LaDeDa demonstrates superior computational efficiency compared to
other SoTA methods (see Fig. 1), allowing efficient deepfake detection on edge devices with a minor
decrease in accuracy.

With LaDeDa and Tiny-LaDeDa achieving an almost perfect score on current standard benchmarks,
we ask whether deepfake detection is close to being solved. Arguably, the most popular source for
spreading deepfakes is social media; we therefore test the performance of recent SoTA methods
on deepfakes taken from social platforms. Perhaps surprisingly, we found that when using the
current standard training protocols, SoTA methods (including ours) fail. Standard protocols attempt
to simulate a real-world generalization, by training a detector using a single generative model
(typically ProGAN (Karras et al., 2017)), and evaluate it across other generative models. However,
the commonly used datasets in this simulation exhibit preprocessing discrepancies (e.g., real images
are in lossy JPEG format while fake images simulated directly from a generator and saved in lossless
PNG format), making the protocol less applicable for practical scenarios.

The failure in generalization to in-the-wild deepfakes persists even for methods that use post-
processing augmentations that should make them robust to distribution shifts. To address these
simulation imperfections, we introduce WildRF, a new deepfake detection dataset curated from
popular social networks (Reddit, X (Twitter) and Facebook). WildRF serves as a comprehensive
and realistic dataset that captures the diversity and complexities inherent in online environments,
which includes varying resolutions, formats, compressions, editing transformations, and generation
techniques.

We validate the effectiveness of WildRF by retraining current SoTA methods on it. Our method
achieves the top performance of 93.7% mAP on WildRF. Notably, it generalizes across social media
platforms (e.g., training on Reddit images and evaluating on Facebook images) and is robust to JPEG
artifacts, despite not using post-processing augmentations during training. The evaluation on WildRF
shows that there is still a large gap from perfect real-world deepfake detection and highlights the
importance of using a real-world benchmark.

To summarize, our main contributions are:

1. Introducing LaDeDa, a state-of-the-art patch-based deepfake detector for the real-world.

2. Distilling LaDeDa into Tiny-LaDeDa, a fast and compact, yet accurate student model for
deepfake detection on edge devices.

3. Introducing the WildRF benchmark, extending deepfake evaluation to real-world settings,
which are currently lacking in popular simulated datasets.

2 RELATED WORK

Deepfake detection aims to classify whether a given image was captured by a camera (”real”) or
generated via a generative model (”fake”). Two main paradigms exist to tackle this challenge.

Deepfake detection by supervised learning. These methods mostly focus on the architectural
designs and discriminative features for discerning real and fake images. Wang et al. (2020) proposed
using ResNet50 as a deepfake classifier, trained on real and fake images from one GAN method,
and evaluate the performance on other GAN methods. PatchFor Chai et al. (2020) extends this idea,
by learning a network that takes in a patch and outputs a deepfake score. While our method uses
patches, similarly to PatchFor, we use knowledge distillation to estimate patch-level labels while

1In this paper, we use the term ”deepfake” as in previous works, but mainly refer to AI-generated content.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

LaDeDa

Patch-wise 
Deepfake Scores

Binary Label

Real/Fake?

Average 
Pooling

Image-level 
Deepfake Score

𝐿BCE

Conv Layers

Figure 2: LaDeDa Training. By limiting its receptive field to q× q pixels, LaDeDa yields a deepfake
score for each q× q patch. The image-level deepfake score is the global pooling of the patches scores.
We use binary cross entropy loss between the image label and its deepfake score.

PatchFor simply copies the image-level labels. Ojha et al. (2023) leverages the pre-trained feature
space of CLIP (Radford et al., 2021), by performing linear probing on CLIP’s image representations.
Reiss et al. (2023) introduced the concept of ”fact checking” for detecting deepfakes, while being
training-free and relying solely on off-the-shelf features.

Artifact-based detection methods These methods leverage inductive biases in the image pre-
processing stage to discriminate between real and fake images. Marra et al. (2019) revealed that
GAN-based methods leave fingerprints in their generated images, which can be extracted using noise
residuals from denoising filters. DIRE (Wang et al., 2023) focused on diffusion-based methods,
measuring the error between an input image and its reconstruction, using a pre-trained diffusion
model. Tan et al. (2023) introduced the NPR (Neighboring Pixel Relationships) image representation,
aiming to capture the local interdependence among image pixels caused by the upsampling layers in
CNN-based generators.

Relation to PatchFor (Chai et al., 2020). Both LaDeDa and PatchFor are patch-level methods that
use deepfake detection datasets that only provide image-level labels. PatchFor labels each patch based
on its image label with equal weights i.e., all patches from real images as equally real, and all patches
from fake images as equally fake. Using a cross-entropy loss for each patch, PatchFor attempts
to correctly classify all patches. However, not all patches are equally discriminative or needed for
the overall image classification. Using an image BCE loss, LaDeDa has the extra flexibility of
adaptive importance to different patches, putting emphasis on the patches that are more discriminative.
Additionally, LaDeDa’s patch scores can serve as soft labels for distillation (see Sec. 6 for the impact
of our labeling strategy).

3 METHOD

3.1 LADEDA: LOCALLY AWARE DEEPFAKE DETECTION ALGORITHM

Our core premise is that it is possible to discriminate between real and fake images with high accuracy
based on low-level, localized features. This assumption is based on vast supporting literature (Chai
et al., 2020; Isola et al., 2017; Geirhos et al., 2018; Frank et al., 2020; Mayer & Stamm, 2020; Zhong
et al., 2023). We therefore introduce LaDeDa (denoted by ϕ), a model that maps patches pi into a
deepfake score ϕ(pi), where higher values represent fake patches and lower values real ones.

Average pooling the patch-wise scores of all image patches results in the image-level deepfake score:

S(I) =
1

N

N∑
i=1

ϕ(pi) (1)

where I denotes the suspected image and p1, p2..pN its patches.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

LaDeDa is a variant of ResNet50 He et al. (2016) (similar to BagNet Brendel & Bethge (2019)), but
replaces most of the 3 × 3 convolutions by 1 × 1 ones, limiting the receptive field to q × q pixels
(we use 9× 9). The small receptive field forces LaDeDa to focus on local artifacts rather then global
semantics, which we hypothesize is a good inductive bias for deepfake detection.

Specifically, for each image patch of size q×q, LaDeDa infers a 2048-dimensional feature representa-
tion using multiple stacked ResNet blocks. The network applies a linear layer on the final patch-based
representation, resulting in a per-patch score. The image-level score is the global pooling of the
per-patch scores. Finally, we apply a sigmoid activation on top of the image-level score resulting in
the predicted likelihood that the image is fake. We optimize the network parameters using the binary
cross entropy loss:

L = −
∑
f∈F

log(σ(S(f)))−
∑
r∈R

log(1− σ(S(r))). (2)

where R and F denote the real and fake image datasets respectively, S denotes the network output
(deepfake score) given an image, and σ is the sigmoid function. See Fig. 2 for LaDeDa illustration.

While our default choice is to pool the patch-level scores using global average pooling, it is also
possible (and sometimes desirable) to use other pooling operations. For instance, using max pooling
effectively classifies the image based on the most fake patch. Using average pooling, results in
classifying the image based on the collective characteristics of all patches. These patch-based
deepfake scores can yield an interpretable way to visualize the patches that contribute the most
for LaDeDa classification decision (see Sec. 7). Additionally, the linearity of the average pooling
operation, makes the architecture distillation-friendly, as we will elaborate on in Sec. 3.2.

Unlike many previous approaches that rely on prior knowledge from large-scale datasets (e.g.,
ImageNet (Deng et al., 2009)), LaDeDa randomly initializes its parameters and does not require
pre-training. For further details on the LaDeDa’s architecture, see App. A.2.

3.2 TINY-LADEDA

Pre-trained LaDeDa

Student 
Deepfake Score

𝐿MSE

Tiny-LaDeDa

4 Conv
Layers

Teacher
Deepfake Score

Figure 3: Tiny-LaDeDa Distillation. Pre-trained
LaDeDa (teacher) transfers patch-level deepfake
score knowledge to train Tiny-LaDeDa (student).

Since LaDeDa operates on small patches, we
hypothesize that a very simple model will suf-
fice for detecting deepfakes . To this end, we
propose Tiny-LaDeDa, a highly efficient model,
obtained by distilling LaDeDa. As LaDeDa (i.e.,
the teacher) outputs patch-wise deekfake scores,
we can train a simpler model (i.e., the student) to
mimic the teacher’s knowledge; aiming for sim-
ilar performance, while being much more com-
pact. Specifically, we leverage logit-based distil-
lation (Hinton et al., 2015), which aims to trans-
fer the knowledge encoded in the logit outputs
(deepfake scores) of the teacher model to the student model.

To train Tiny-LaDeDa, we use a trained LaDeDa model to generate a distillation training set com-
prising of samples in the form of (pi, ϕ(pi)) for each patch pi of each of LaDeDa’s training images.
We then train Tiny-LaDeDa to predict a patch-wise logit (deepfake score), using the MSE loss
between the student’s prediction and the teacher’s output (see Fig. 3). In logit-based distillation,
the student is not limited by the teacher’s architecture. Consequently, Tiny-LaDeDa uses only 4
convolutional layers with 8 channels each, yielding a model 4 orders of magnitude smaller than the
teacher. Similarly to LaDeDa, at inference time, Tiny-LaDeDa outputs an image deepfake score, by
pooling per-patch deepfake scores. See App. A.2 for further details on the Tiny-LaDeDa architecture.
In Sec. 2 we elaborate on the differences between our method and PatchFor (Chai et al., 2020).

4 IS THE TASK OF DEEPFAKE DETECTION CLOSE TO BEING SOLVED?

When training and evaluating LaDeDa using commonly used deepfake detection benchmarks (Ojha
et al., 2023; Wang et al., 2020), it achieves a near perfect score of 98.9% mAP, significantly out-
performing the current SoTA (Tab. 1). This naturally raises the question: is the task of deepfake

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Reddit

Facebook

X (Twitter)

Platform Type Years #Images

Reddit Real 2017-22 2150
Fake 2022 2150

X (Twitter) Real 2021-24 340
Fake 2021-24 340

Facebook Real 2021-24 160
Fake 2021-24 160

Figure 4: WildRF Overview. A realistic benchmark consisting of images sourced from popular social
platforms: Reddit, X (Twitter) and Facebook. WildRF contains high variability in a range of attributes
including image resolutions, formats, semantic content, and transformations encountered in-the-wild.

detection virtually solved? Essentially, deepfake detection methods must be effective in real-world
scenarios. As a sanity check, we evaluated them on a small sample of 50 images (25 real, 25 fake)
taken from popular social networks (for a more comprehensive evaluation, see Sec. 5.1). Surprisingly,
performance was near random, suggesting that the current evaluation protocol does not correlate with
in-the-wild performance. We therefore reexamine the current evaluation protocols and suggest an
alternative.

Table 1: Baseline performance on cur-
rent (simulated) protocol. mean aver-
age precision on 16 generative models
from conventional benchmarks.

Method mAP

CNNDet (Wang et al., 2020) 80.6
PatchFor (Chai et al., 2020) 94.9
CLIP (Ojha et al., 2023) 96.3
NPR (Tan et al., 2023) 96.7
LaDeDa(Ours) 98.9

Current: simulated deepfake detection protocol. Most
current methods follow a two-stage evaluation protocol.
i) training a deepfake classifier using a set of ”real” im-
ages and a set of ”fake” images generated by a single
generative model (typically ProGAN). ii) Evaluating the
classifier on a set of real images and a set of generative
models, most of which were not used for training. Many
detection methods also use post-processing augmentations
(e.g., JPEG compression, blur) during training to simulate
unknown transformations an image may undergo before
being encountered in-the-wild, potentially improving gen-
eralization. We refer to this as a simulated protocol.

The simulated protocol is suboptimal. Common datasets used in the simulated protocol comprise
real images sourced from standard datasets (e.g., LSUN (Yu et al., 2015), ImageNet (Deng et al.,
2009)) in JPEG format (lossy compression), whereas the fake images are generated and saved in
PNG format (lossless compression). Training a classifier on such datasets can introduce bias towards
differences in compression, leading to inflated perceptions of generalization performance when
evaluated on test sets with similar biases (see Sec. 5.1). Moreover, simulating real-world artifacts
through augmentations may fail to capture the full diversity of corruptions encountered in practice
(see Sec. 5.1). In App. A.4.1 we provide further details on the commonly used datasets.

WildRF: Aligning deepfake evaluation with the real-world. We propose to improve deep-
fake evaluation and align it with the real-world by introducing WildRF, a realistic benchmark
consisting of images sourced from popular social platforms. Specifically, we manually col-
lected real images using keywords and hashtags associated with authentic, non-manipulated con-
tent (e.g., #photography, #nature, #nofilter, #streetphotography), and fake im-
ages using content related to AI-generated or manipulated visuals (e.g., #deepfake, #AIart,
#midjourney, #stablediffusion, #dalle, #aigenerated). Our protocol is to train on
one platform (e.g., Reddit) and test the detector on real and fake images from other unseen platforms
(e.g., Twitter and Facebook). We denote this protocol as social. As both train and test data contain
the type of variations seen in-the-wild, WildRF is a faithful proxy of real-world performance. See
Fig. 4 for a WildRF overview.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Baseline performance - simulated protocol. All methods are trained on ForenSynth’s train
set (ProGAN), and evaluated on 16 generative models: (top) ForenSynth’s test set (Wang et al., 2020),
and (bottom) UFD’s test set (Ojha et al., 2023).

Method ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfakes Mean
ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 100 100 73.4 98.5 68.4 98.0 59.0 88.2 80.7 96.8 80.9 95.4 79.3 98.1 51.1 66.3 74.1 92.7
PatchFor (Chai et al., 2020) 99.6 99.9 93.9 99.2 94.5 99.6 74.4 89.6 85.3 93.5 76.3 90.4 64.7 92.4 89.2 92.8 84.7 94.6
CLIP (Ojha et al., 2023) 99.8 100 84.9 97.6 75.0 97.9 95.1 99.3 98.3 99.8 95.7 99.4 99.5 100 68.6 81.8 89.6 97.0
NPR (Tan et al., 2023) 99.8 100 96.3 99.8 97.3 100 87.5 94.5 95.0 99.5 99.7 100 86.6 88.8 77.42 86.2 92.5 96.1
LaDeDa(Ours) 100 100 100 100 100 100 90.1 96.5 98.9 99.8 93.7 99.7 91.0 99.2 68.1 95.6 92.7 98.9
Tiny-LaDeDa(Ours) 98.2 100 99.1 100 98.8 100 86.8 94.8 79.5 95.9 96.9 99.8 84.9 91.4 85.9 98.0 91.3 97.5

Method DALLE Glide 100 10 Glide 100 27 Glide 50 27 Guided LDM 100 LDM 200 LDM 200 cfg Mean
ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 52.5 66.8 54.2 73.7 53.3 72.5 55.6 77.7 52.3 68.4 51.3 66.6 51.1 66.5 51.4 67.3 52.3 68.4
PatchFor (Chai et al., 2020) 89.4 95.5 92.4 97.4 88.7 94.7 90.1 95.6 72.7 83.7 92.7 97.6 98.3 99.9 96.9 97.8 90.2 95.2
CLIP (Ojha et al., 2023) 87.5 97.7 78.0 95.5 78.6 95.8 79.2 96.0 70.0 88.3 95.2 99.3 94.5 99.4 74.2 93.2 82.2 95.7
NPR (Tan et al., 2023) 94.5 99.5 98.2 99.8 97.8 99.7 98.2 99.8 75.8 81.0 99.3 99.9 99.1 99.9 99.0 99.8 95.2 97.4
LaDeDa(Ours) 93.5 99.8 99.0 100 99.3 100 99.0 100 81.0 91.1 99.8 100 99.7 100 99.7 100 96.3 98.8
Tiny-LaDeDa(Ours) 80.2 98.4 98.5 99.9 98.8 99.9 98.9 100 76.2 87.8 99.4 100 99.3 100 99.1 99.9 93.8 98.2

Table 3: Poor generalization to real-world data. We show performance of SoTA methods trained on
ForenSynth’s train set (ProGAN) and evaluated on WildRF. It shows that training on the standard
dataset, instead of in-the-wild deepfakes, generalizes poorly to in-the-wild images.

Method Reddit Twitter Facebook Mean
ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 51.2 49.7 50.3 50.2 50.0 43.4 50.5 47.8
PatchFor (Chai et al., 2020) 63.9 74.0 47.8 51.3 68.2 75.3 60.0 66.9
CLIP (Ojha et al., 2023) 60.2 66.9 56.8 63.0 49.1 44.4 55.4 58.1
NPR (Tan et al., 2023) 65.1 69.4 51.7 52.5 77.8 86.3 64.8 69.4
LaDeDa(Ours) 74.7 81.8 59.9 67.8 70.3 90.1 68.3 79.9
Tiny-LaDeDa(Ours) 72.3 77.8 59.6 64.8 70.9 86.4 67.3 76.3

5 EXPERIMENTS

We compare to SoTA baselines e.g., PatchFor (Chai et al., 2020), CNNDet (Wang et al., 2020), CLIP
(Ojha et al., 2023) and NPR (Tan et al., 2023) using the standard metrics for evaluation: classification
accuracy (ACC) (threshold = 0.5), and average precision (AP).

5.1 LADEDA PERFORMANCE UNDER THE CURRENT (SIMULATED) PROTOCOL

We begin by comparing LaDeDa to the baselines using the current (simulated) protocol. For training,
we use the standard train set of the ForenSynth dataset (Wang et al., 2020), which contains real
images from LSUN (Yu et al., 2015), and fake images from ProGAN. For evaluation, we use 16
different generative models taken from the test sets of ForenSynth (Wang et al., 2020) and UFD (Ojha
et al., 2023). The results in Tab. 2 demonstrate that LaDeDa and Tiny-LaDeDa outperformed the
other baselines in terms of mAP (98.9%, 97.5% respectively), and LaDeDa also outperformed the
baselines in terms of mean ACC (92.7%). For more details on the ForenSynth and UFD datasets, see
App. A.4.1.

Poor generalization to real-world data. While methods trained on ProGAN achieve high perfor-
mance on detecting deepfakes created by a large set of other image generators, they do not perform
well when tested on real-world data. Specifically, we evaluate the baselines using our WildRF dataset
(Sec. 4). The results in Tab. 3 show much lower performance than the test set of the simulated protocol.
This gap highlights the limitations of the simulated protocol in estimating real-world performance.

JPEG compression bias. Many methods report their results on the simulated protocol (which is
biased, see Sec. 4), with two detector variants: i) training with post-processing augmentations (e.g.,
JPEG compression, blur), and ii) training without these augmentations. We claim that the later variant,
can be biased towards compression artifacts. To demonstrate this, we retrained the CNNDet and CLIP
baselines on ForenSynth without JPEG and blur training augmentations. For NPR, we used its official

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: JPEG compression bias. Detectors train under the simulated protocol demonstrate lower
performance when JPEG-compressing the test fake images. 100 JPEG quality = no compression, and
70 JPEG quality = lowest quality.

Dataset Quality
CNNDet

(Wang et al., 2020)
CLIP

(Ojha et al., 2023)
NPR

(Tan et al., 2023)
LaDeDa
(Ours)

ACC AP ACC AP ACC AP ACC AP

StyleGAN JPEG 100 83.3 96.2 88.0 98.5 97.6 99.8 100 100
StyleGAN JPEG 90 50.1 83.4 66.5 90.3 50.1 43.0 52.9 68.1
StyleGAN JPEG 80 50.0 71.3 56.8 84.6 49.9 38.0 50.3 54.5
StyleGAN JPEG 70 50.0 46.4 53.9 79.3 49.9 36.8 50.0 44.7

(a) (b)

Figure 5: (a) JPEG robustness. We show LaDeDa average precision (AP) performance on face-
book test set, as a function of JPEG compression quality from 100 (no compression) to 30 (high
compression). (b) Noise perturbation robustness. LaDeDa shows robustness to blur perturbations,
even without training with such augmentations. Training with Gaussian blur augmentations further
improves robustness, even for images with σ > 1, which are more blurred than typical attacker
manipulations.

released checkpoint that does not include augmentations. We then evaluated these detectors on 3000
StyleGAN images (1500 real, 1500 fake) from ForenSynth’s test set, where we JPEG-compressed
only the fake images. This setup allows us to examine whether compressing fake images impacts their
classification as real ones. As shown in Tab. 4, the detectors’ ability to correctly classify fake images
decreases as a function of the compression rate, even at a relatively low compression quality of 90.
Although the augmentation variants attempt to improve generalization by simulating the unknown
transformations an image may undergo, in practice, the simulation is suboptimal (see Tab. 3).

5.2 REAL-WORLD DEEPFAKE DETECTION

LaDeDa performance under our (social) protocol. We retrained and evaluate all methods using
our proposed WildRF dataset. The train set comprises (1200 real, 1200 fake) images from Reddit,
and the test set comprises (750 real, 750 fake) different images from Reddit, (340 real, 340 fake)
images from X (Twitter), and (160 real, 160 fake) images from Facebook. The results in Tab. 5 show
that training on real data is much more accurate than on simulated data.

JPEG compression robustness. Fig. 5a shows that LaDeDa is robust to a range of JPEG com-
pression rates. Note that training our method on WildRF made it JPEG-robust without using
post-processing augmentations during training.

Blur perturbation robustness. As per common protocol, we blur the images with a Gaussian
filter of varying σ values. Fig. 5b, shows that LaDeDa is generally robust to blur perturbations, even
without training with such augmentations. Training LaDeDa with such augmentations, like other
methods do, improve robustness further. Note that high noise values (e.g., σ > 1) result in a blurry
image, making manipulation more noticeable than what an attacker would typically use.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 5: Baseline performance - social protocol. All methods are trained on WildRF train set
(Reddit), and tested on WildRF test set. The results show a remarkable improvement compared to
those achieved when trained using the simulated protocol.

Method Reddit Twitter Facebook Mean
ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 75.4 86.8 71.4 84.1 70.6 83.5 72.5 85.0
PatchFor (Chai et al., 2020) 87.8 94.3 81.6 91.4 77.1 90.3 82.2 91.9
CLIP (Ojha et al., 2023) 80.8 94.2 78.1 93.1 78.4 90.6 79.1 92.5
NPR (Tan et al., 2023) 89.8 95.7 79.5 90.3 76.6 88.9 81.9 91.6
LaDeDa(Ours) 91.8 96.0 83.3 92.8 81.9 92.6 85.7 93.7
Tiny-LaDeDa(Ours) 84.5 92.4 82.3 91.7 80.7 90.4 82.5 91.6

Table 6: Real-time deepfake detection. We show number of FLOPs, Parameters and Latency baselines
comparison. In (red), we show the number relative to Tiny-LaDeDa, which demonstrates highly
computational efficiency.

Method #FLOPs #Parameters Latency

CNNDet (Wang et al., 2020) 5.40B(×95) 23.51M(×18k) 0.75 sec(×37.5)
PatchFor (Chai et al., 2020) 1.68B(×30) 0.191M(×150) 0.21 sec(×10.5)
CLIP(Ojha et al., 2023) 51.89B(×920) 202.05M(×15k) 9.37 sec(×470)
NPR (Tan et al., 2023) 2.29B(×40) 1.44M(×1.1k) 0.35 sec(×17.5)
LaDeDa(Ours) 21.23B(×375) 13.64M(×10k) 2.87 sec(×144)
Tiny-LaDeDa(Ours) 0.0566B 0.00129M 0.02 sec

5.3 REAL-TIME DEEPFAKE DETECTION

Some practical scenarios require deepfake detection to not only be accurate, but also computationally
efficient for real-time inference at scale and on edge devices. Fast inference will only get more
important as deepfake content continues to rapidly spread across online platforms. Here, we evaluate
computational efficiency in terms of floating-point operations per second (FLOPs) and network latency
(seconds). FLOPs are a hardware-independent measure of computational complexity, quantifying the
total number of floating-point operations (addition, subtraction, multiplication or division) required
for a single forward pass of a given model. Network latency measures the time it takes the model
to process an input (e.g., an image) and output its prediction. Clearly, real-time deepfake detection
needs low FLOPs and low latency. We simulate a low resource environment, similar to a mid-range
smartphone with a single CPU core, and 4GB RAM. Tab. 6 shows that Tiny-LaDeDa with only a
mild degradation in performance compared to LaDeDa, is 375× faster and 10,000× more parameter
efficient.

6 ABLATION

Is distillation helpful? To test this, we trained Tiny-LaDeDa without distillation, using exactly the
same data as the teacher. It achieved decent accuracy on WildRF (mAP of 87.4%), but was worse than
the larger LaDeDa model (mAP 93.7%) and the distilled Tiny-LaDeDa (91.6%). We further trained
Tiny-LaDeDa similarly to PatchFor (Chai et al., 2020), labeling each patch with its corresponding
image-level label, achieving 84.5% mAP, which is 7% lower than when using LaDeDa’s estimated
patch-level labels via distillation. We conclude that distillation is indeed helpful, however we see that
a relatively simple model can already achieve good results.

Patch-size. LaDeDa’s effectiveness stems from its focus on local artifacts in small image patches.
We evaluated LaDeDa using different receptive field patch sizes on WildRF. Fig. 7b shows that even
with patches of size q = 5, LaDeDa can effectively discern between real and fake images, suggesting
that small patches contain sufficient information for accurate deepfake detection.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Original Image Deepfake Scores Heatmap

(a)

Real Maximal PatchesFake Maximal Patches

(b)

Figure 6: (a) Deepfake score visualization. High deepfake score in red, and low deepfake score
in blue. (b) Maximal deepfake scores. We show the most fake patches (i.e., patches with highest
deepfake score) in fake and real images. It appears that the most fake patches are smoother in fake
images, compared to the most fake patches in real images.

Table 7: Pooling operator ablation. LaDeDa performance on the test sets of ForenSynth, UFD and
WildRF, when using average pooling or max pooling to get image-level score from the patch-level
scores.

Method Pooling
Test set

ForenSynth (Wang et al., 2020) UFD (Ojha et al., 2023) WildRF
ACC AP ACC AP ACC AP

LaDeDa Max 90.1 99.1 88.9 97.0 84.9 92.4
LaDeDa Average 92.7 98.9 96.3 98.8 85.7 93.7

Gradient inductive-bias. We investigate the inductive bias in terms of gradient-based patch
representations (See Fig. 7a). LaDeDa achieves high performance even using raw pixels without any
preprocessing, but a gradient-based representation generally works better. As we discuss in Sec. 7,
this improvement can be attributed to gradients pointing up fine details and textures by focusing on
changes in pixel values, effectively highlighting local discriminative features.

Pooling operator effectiveness. LaDeDa can use other pooling operations for image-level scoring
beyond average pooling. Tab 7 shows the effectiveness of using max pooling i.e., the score of the
most fake patch. It is slightly better on ForenSynth (AP) and worse on all other evaluation sets.

7 DISCUSSION AND LIMITATIONS

Interpretability. Since LaDeDa maps each q × q patch into a deepfake score, we can create a
heatmap visualizing the most discriminative patches. In Fig. 6a, we show two such heatmaps of fake
images, where areas with notable intensity changes tend to get high deepfake scores. Delving into
the most fake patches (maximal deepfake scores), reveals that fake image patches appear smoother
than those from real images (Fig. 6b). This aligns with studies (Durall et al., 2020; Corvi et al., 2023;
Zhong et al., 2023) showing that generative models leave artifacts in high-frequency components due
to the upsampling operation, making it difficult to synthesize realistic textures regions, thus smooth
patches potentially smoother in fake images, and less smooth in real images, where a natural camera
noise can appear.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a) (b)

Figure 7: (a) Image preprocessing. We show LaDeDa’s performance using different image prepro-
cessing as inductive bias. (b) Patch-size ablation. We show LaDeD’s performance using varying
patch sizes.

Size of WildRF. WildRF’s size is relatively small, with around 5000 images. Despite its size, Wil-
dRF serves as a valuable starting point for evaluating deepfake detection in real-world settings. Using
it for evaluation has revealed that current simulated protocols hinder detectors from generalizing to
deepfakes encountered on social media. While WildRF inevitably contains some biases, we expect
these biases to reflect those encountered in-the-wild. To further examine WildRF’s potential, we
conducted a scaling law experiment, where we trained LaDeDa on subsets of increasing proportion
(20%, 40%, 60%, 80% and 100%) of WildRF’s training set and evaluated each instance performance
on WildRF’s test set. Fig. 8b shows that performance increases as a function of subset size. Impor-
tantly, the metrics have not saturated, indicating a room for improvement with larger dataset. While
ideally, a larger and more comprehensive dataset would be beneficial, expanding WildRF is left for
future work.

Generalization to near and far deepfakes. When trained on a social network, our method and the
baselines, generalize well to the other platforms. However, when trained on ProGAN/WildRF datasets
the methods do not generalize well to the opposite dataset (WildRF/Simulated). To ensure that a
single model can succeed on both protocols, we trained LaDeDa on a combination of 4000 ProGAN
train images and WildRF train set, achieving comparable results to train and evaluate separately on
each protocol.

Broader Impacts. As deepfake content continues to spread across online platforms, effective
detection methods are crucial for mitigating the risks of malicious usage, including damage to
personal and institutional reputations, and erosion of trust in digital media. By providing efficient
and accurate deepfake detection tools, our work aims to counteract these negative impacts and help
maintain the integrity of online information ecosystems.

8 CONCLUSION

We propose LaDeDa, a patch-based classifier that effectively detects deepfakes by leveraging local
artifacts, and Tiny-LaDeDa, an efficient distilled version. Despite their high accuracy on current
simulated benchmarks, we found that existing methods struggle to generalize to real-world deepfakes
found on social media. To address this, we introduced WildRF, a new in-the-wild dataset curated
from social networks, capturing practical challenges. While our method achieves top performance
on WildRF, the considerable gap from perfect accuracy highlights that reliable real-world deepfake
detection remains unsolved. We hope WildRF will drive future research into developing robust
techniques against online disinformation that generalize to the real-world.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our method and results, we describe experiments setup, implementation
details and architectural details in Sec. 5, Sec. A.3 and in Sec. A.2, respectively. We also include
our code in the supplementary material and will make it publicly available through github upon
acceptance. We will also upload the entire WildRF dataset.

REFERENCES

Lsun dataset. https://github.com/fyu/lsun.

Midjourney. https://www.midjourney.com/home/, 2022.

https://xihe.mindspore.cn/modelzoo/wukong, 2022.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models works surprisingly
well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image
synthesis. arXiv preprint arXiv:1809.11096, 2018.

Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images detectable? understanding
properties that generalize. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXVI 16, pp. 103–120. Springer, 2020.

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3291–3300, 2018.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks. In
Proceedings of the IEEE international conference on computer vision, pp. 1511–1520, 2017.

Yiqun Chen and James Y Zou. Twigma: A dataset of ai-generated images with metadata from twitter. Advances
in Neural Information Processing Systems, 36, 2024.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8789–8797, 2018.

Riccardo Corvi, Davide Cozzolino, Giovanni Poggi, Koki Nagano, and Luisa Verdoliva. Intriguing properties of
synthetic images: from generative adversarial networks to diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 973–982, 2023.

Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for
single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11065–11074, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: Cnn based generative deep
neural networks are failing to reproduce spectral distributions. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 7890–7899, 2020.

Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz. Leveraging
frequency analysis for deep fake image recognition. In International conference on machine learning, pp.
3247–3258. PMLR, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.
arXiv preprint arXiv:1811.12231, 2018.

Patrick Grommelt, Louis Weiss, Franz-Josef Pfreundt, and Janis Keuper. Fake or jpeg? revealing common biases
in generated image detection datasets. arXiv preprint arXiv:2403.17608, 2024.

11

https://github.com/fyu/lsun
https://www.midjourney.com/home/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo.
Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10696–10706, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1125–1134, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4401–4410, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ke Li, Tianhao Zhang, and Jitendra Malik. Diverse image synthesis from semantic layouts via conditional imle.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4220–4229, 2019.

Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. Do gans leave artificial fingerprints?
In 2019 IEEE conference on multimedia information processing and retrieval (MIPR), pp. 506–511. IEEE,
2019.

Owen Mayer and Matthew C Stamm. Exposing fake images with forensic similarity graphs. IEEE Journal of
Selected Topics in Signal Processing, 14(5):1049–1064, 2020.

National Security Agency. NSA, US Federal Agencies Advise on Deepfake Threats. https:
//www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/
Article/3523329/nsa-us-federal-agencies-advise-on-deepfake-threats/,
2023.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever,
and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741, 2021.

Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize across
generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 24480–24489, 2023.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-
adaptive normalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2337–2346, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, pp.
8821–8831. Pmlr, 2021.

Tal Reiss, Bar Cavia, and Yedid Hoshen. Detecting deepfakes without seeing any. arXiv preprint
arXiv:2311.01458, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684–10695, 2022.

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner.
Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1–11, 2019.

12

https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3523329/nsa-us-federal-agencies-advise-on-deepfake-threats/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3523329/nsa-us-federal-agencies-advise-on-deepfake-threats/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3523329/nsa-us-federal-agencies-advise-on-deepfake-threats/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta,
Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million
image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking the up-
sampling operations in cnn-based generative network for generalizable deepfake detection. arXiv preprint
arXiv:2312.10461, 2023.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated images
are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8695–8704, 2020.

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Houqiang Li.
Dire for diffusion-generated image detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 22445–22455, 2023.

World Economic Forum. The Global Risks Report 2024. https://www3.weforum.org/docs/WEF_
The_Global_Risks_Report_2024.pdf, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365,
2015.

Nan Zhong, Yiran Xu, Zhenxing Qian, and Xinpeng Zhang. Rich and poor texture contrast: A simple yet
effective approach for ai-generated image detection. arXiv preprint arXiv:2311.12397, 2023.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232, 2017.

Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie
Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. Advances in
Neural Information Processing Systems, 36, 2024.

Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A challenging
real-world dataset for deepfake detection. In Proceedings of the 28th ACM international conference on
multimedia, pp. 2382–2390, 2020.

13

https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2024.pdf
https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2024.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

A.1.1 LOCAL IS ALL YOU NEED?

While LaDeDa achieves SoTA performance by focusing on local artifacts, we ask if global features
provide complementary information.

Ensemble with CLIP (Ojha et al., 2023) We linearly ensemble LaDeDa with the CLIP baseline,
which trains a linear classifier on top of the semantic CLIP features. The resulting score is:

S(I) = LaDeDa(I) + α× CLIPs(I)

Where I is an input image. The results in Fig. 8a show an increase of ≥ 3% mAP on WildRF, when
using the combined score, highlighting that semantic features are also useful for detecting deepfakes.

Patches ensemble We trained 7 variants of LaDeDa with (5, 9, 17, 33, 65, 129, 257) patch sizes.
To examine their importance, we set the weighted sum of the variants score as the image score. Equal
weights (i.e., 1

7 weight for each variant score) achieved 94.6% mAP on WildRF. Optimizing the
weights on a validation set achieved 95.4% mAP, with smaller patches receiving higher weights. We
further jointly trained 4 LaDeDa variants (9, 17, 129 and 257 patch size), as well as optimized their
weighted sum, yielded a 96.1% mAP, with smaller patches again contribute more. Tab 8 shows that
9×9 patch-size LaDeDa achieves best AP of all patches, showing the effectiveness of small receptive
fields. Still, there is benefit in using both high and low resolutions.

Table 8: Patches ensemble. Performance of LaDeDa with different patch sizes.

Patch Size 5 9 17 33 65 129 257
AP 92.3 93.7 91.8 92.6 91.2 90.3 88.9

A.2 ARCHITECTURE DETAILS

LaDeDa architecture. The LaDeDa architecture is almost identical to the ResNet50 architecture,
except for a few changes in the convolutional layers kernel sizes, strides parameters, and the final
fully connected layer. We describe the architecture used for 9× 9 patch-size receptive field. LaDeDa
follows the standard ResNet50 design with four main residual blocks (layer1, layer2, layer3, layer4)
consisting of bottleneck residual units. The first convolutional layer has a kernel size of 1x1 and 64
output channels, followed by a 3x3 convolution with the same number of channels. The residual
blocks employ bottleneck units with 1x1 convolutions for dimensionality reduction and expansion.
The downsampling operation is a 1× 1 convolution with stride 2. The number of channels increases
from 64 in layer1 to 256, 512, 1024, and 2048 in subsequent layers. Layer1 consists of 3 parallel
bottleneck units, layer2 has 4 parallel units, layer3 contains 6 parallel units, and layer4 has 3 parallel
units. Layer2 is the last layers that uses a kernel size of 3 (the layers after uses a kernel size of 1),
thus limiting the receptive field of the topmost convolutional layer. After layer4, a global average
pooling operation is applied, followed by a fully connected layer with a single output neuron and a
sigmoid activation function, for binary classification.

Tiny-LaDeDa architecture. The Tiny-LaDeDa architecture is a compact version of LaDeDa,
designed for efficient performance with a reduced parameter count, using only 4 convolutional layers
with 8 channels each. The architecture includes the following convolutional layers:

• 1× 1 convolution (3 input channels, 8 output channels)

• 3× 3 convolution (8 input channels, 8 output channels)

• 1× 1 convolution (8 input channels, 8 output channels)

• 3× 3 convolution (8 input channels, 8 output channels)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) (b)

Figure 8: (a) Local and global deepfake scores. We show average precision (AP) performance on
WildRF, when ensemble LaDeDa deepfake scores with CLIP (Ojha et al., 2023) deepfake scores. (b)
Scaling law. LaDeDa was trained on incrementally larger subsets of WildRF’s training set and tested
on WildRF’s teset set. Performance increased with subset size, indicating room for improvement
with a larger dataset.

Tiny-LaDeDa results in a 5× 5 receptive field. The final fully connected layer maps the 8 features to
a single output, which is passed through a sigmoid activation function for binary classification. This
streamlined architecture is lightweight and computationally efficient, making it suitable for real-time
deepfake detection.

A.3 IMPLEMENTATION DETAILS

Training LaDeDa. To train LaDeDa, we use the Adam optimizer (Kingma & Ba, 2014) with
β1 = 0.9, β2 = 0.999, batch size 32 and initial learning rate of 2×10−4. Learning rate is dropped by
10× if after 5 epochs the validation accuracy does not increase by 0.1%, which is the same stopping
criteria of (Wang et al., 2020; Ojha et al., 2023). During training, to have a uniform size, all images
are resized to 256×256 resolution, and then randomly cropped to native size of 224×224 resolution.
Note that we do not use post-processing augmentations (JPEG compression and Gaussian blur) as
popular works (Wang et al., 2020; Ojha et al., 2023) do. During validation and test time, we directly
resize the image to 256× 256 resolution. As for the other baselines, we train them according to their
official code repository. To train LaDeDa, we used a single NVIDIA RTX A5000 (21g).

Training Tiny-LaDeDa. To train Tiny-LaDeDa, we use LaDeDa’s patch-wise deepfake scores as
soft labeling. We then use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999,
batch size of 729 (which is the number of 9x9 patches in an input image, and initial learning rate of
2× 10−4. To train Tiny-LaDeDa, we used a single NVIDIA RTX A5000 (21g).

A.4 SIMULATED PROTOCOL

A.4.1 STANDARD BENCHMARKS IN THE SIMULATED PROTOCOL

ForenSynth (Wang et al., 2020) and UFD (Ojha et al., 2023) datasets. In this work, they chose
ProGAN (Karras et al., 2017) as their single generative model in train set. Specifically, they used
real images from LSUN (Yu et al., 2015), and fake images by train ProGAN on 20 different object
categories of LSUN, and generate 18K fake images per category, resulting in 360K real and 360K
fake images as the train set. As for the test set, they used ProGAN (Karras et al., 2017), BigGAN
(Brock et al., 2018), StyleGAN (Karras et al., 2019), GauGAN (Park et al., 2019), CycleGAN (Zhu
et al., 2017), StarGAN (Choi et al., 2018), Deepfakes (Rossler et al., 2019), SITD (Chen et al., 2018),
SAN (Dai et al., 2019), IMLE (Li et al., 2019), and CRN (Chen & Koltun, 2017). Another work of
(Ojha et al., 2023) has suggested the UFD dataset, comprising variations of diffusion models: guided
(Dhariwal & Nichol, 2021), GLIDE (Nichol et al., 2021), LDM (Rombach et al., 2022), and DALL-E
(Ramesh et al., 2021) as the fake images.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

The real images sourced from the LAION (Schuhmann et al., 2021) and ImageNet (Deng et al., 2009)
datasets. In this work they also utilize the train set of the ForenSynth dataset to train their detector.
By examining the dataset publication of LSUN (lsu) (the real images in the ForenSynth train set), we
can see that all images have been resized to 256× 256 resolution, and JPEG compressed with quality
of 75. Additionally, the real images in the UFD datasets are also in JPEG format. In 5.1 we show that
methods that use the train set of ForenSynth dataset, can become biased towards JPEG compression
artifacts, when tested on a test set with the same biases.

GenImage Dataset Zhu et al. (2024) In this dataset, the real images are all the images in ImageNet
(Deng et al., 2009). The fake images was generated using 100 distinct labels of ImageNet. The
train set fake images were generated using Stable Diffusion V1.4 (Rombach et al., 2022), and the
test set fake images were generated using Stable Diffusion V1.4, V1.5 (Rombach et al., 2022),
GLIDE (Nichol et al., 2021), VQDM (Gu et al., 2022), Wukong (wuk, 2022), BigGAN (Brock et al.,
2018), ADM (Dhariwal & Nichol, 2021) and Midjourney (mid, 2022). In total, GenImage contains
1, 331, 167 real and 1, 350, 000 fake images. However, also here, we can observe the preprocessing
discrepancy mentioned above. ImageNet images (the real images in GenImage) are in JPEG format,
while the generated images in GenImage saved in PNG.

A.4.2 APPROACHES FOR MITIGATING THE DATASETS BIASES

A concurrent work of Grommelt et al. (2024) showed that training a detector on GenImage can
cause it functions as a JPEG detector. To overcome this discrepancy, the authors suggested using an
unbiased GenImage dataset where the real and fake images have similar resolutions and are JPEG
compressed with the same quality factor. Chai et al. (2020) suggested to preprocess the images
to make the real and fake dataset as similar as possible, in an effort to minimize the possibility of
learning differences in preprocessing. To do so, they pass the real images through the data loading
pipeline used to train the generator. As these approaches aim to mitigate the preprocessing differences
between real and fake images, our approach uses images sampled from the distribution encountered
in-the-wild, aiming to capture real-world artifacts differences between real and fake images.

A.5 RELATED DATASETS EXTRACTED FROM SOCIAL NETWORKING PLATFORMS

Chen & Zou (2024). In this work, they introduce a dataset of 800k ai-generated images with
metadata from X (Twitter). However, the dataset is not opensourced and they did not provide real
images, so we could not tested our method on it.

Zi et al. (2020). In this work, they introduce a dataset comprising 7300 face sequences, with more
persons in each scene, and more facial expressions, compared to other deepfakes videos datasets. The
faces extracted from 700 deepfake videos collected from video-sharing websites. As we were not
able to get access to this dataset, we could not tested our method on it.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 9: Another WildRF image examples.

17


	Introduction
	Related work
	Method
	LaDeDa: Locally Aware Deepfake Detection Algorithm
	Tiny-LaDeDa

	Is the task of deepfake detection close to being solved?
	Experiments
	LaDeDa performance under the current (simulated) protocol
	Real-world deepfake detection
	Real-time deepfake detection

	Ablation
	Discussion and limitations
	Conclusion
	Reproducibility Statement
	Appendix
	Additional experiments
	Local is all you need?

	Architecture details
	Implementation details
	Simulated protocol
	Standard benchmarks in the simulated protocol
	Approaches for mitigating the datasets biases

	Related datasets extracted from social networking platforms


