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ABSTRACT

Autoregressive models are predominant in natural language generation, while their
application in tabular data remains underexplored. We posit that this can be at-
tributed to two factors: 1) tabular data contains heterogeneous data type, while the
autoregressive model is primarily designed to model discrete-valued data; 2) tabular
data is column permutation-invariant, requiring a generation model to generate
columns in arbitrary order. This paper proposes a Diffusion-nested Autoregressive
model (TABDAR) to address these issues. To enable autoregressive methods for
continuous columns,TABDAR employs a diffusion model to parameterize the con-
ditional distribution of continuous features. To ensure arbitrary generation order,
TABDAR resorts to masked transformers with bi-directional attention, which simu-
late various permutations of column order, hence enabling it to learn the conditional
distribution of a target column given an arbitrary combination of other columns.
These designs enable TABDAR to not only freely handle heterogeneous tabular
data but also support convenient and flexible unconditional/conditional sampling.
We conduct extensive experiments on ten datasets with distinct properties, and the
proposed TABDAR outperforms previous state-of-the-art methods by 18% to 45%
on eight metrics across three distinct aspects.

1 INTRODUCTION
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Figure 1: Challenges in Auto-Regressive tabular data generation. (a) The conditional distribution of
continuous columns is hard to express. (b) Tabular data is column-permutation-invariant.
Due to the widespread application of synthetic tabular data in real-world scenarios, such as data
augmentation, privacy protection, and missing value prediction (Fonseca & Bacao, 2023; Assefa
et al., 2021; Hernandez et al., 2022), an increasing number of studies have begun to focus on
deep generative models for synthetic tabular data generation. In this domain, various approaches,
including Variational Autoencoders (VAEs)(Liu et al., 2023), Generative Adversarial Networks
(GANs)(Xu et al., 2019), Diffusion Models (Zhang et al., 2024b), and even Large Language Models
(LLMs)(Borisov et al., 2023), have demonstrated significant progress. However, Auto-Regressive
models, a crucial category of generative models, have been largely overlooked in this process. In
language modeling, autoregressive models have become the de facto solution (e.g., GPTs (Mann et al.,
2020; Achiam et al., 2023)). Tabular data shares similarities with natural language in its discrete
structure, making an autoregressive decomposition of its distribution a natural approach, i.e.,

p(x) = p(x1)

D∏
i=2

p(xi|x1, x2, · · · , xi−1) = p(x1)

D∏
i=2

p(xi|x<i) (1)
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where each xi represents the value at the i-th column, x<i = {x1, x2, · · · , xi−1}. However, research
on autoregressive models for tabular data generation has not received adequate attention.

We posit that this is primarily due to two key challenges (see Fig. 1): 1) Modeling continuous
distribution: Autoregressive models aim to learn the per-token (conditional) probability distribution,
which is convenient for discrete tokens (such as words in Natural Languages) because their probability
can be represented as a categorical distribution. However, the same approach is challenging to apply to
continuous tokens unless there are strong prior assumptions about their distribution, such as assuming
they follow Gaussian distributions. 2) No fixed order: Unlike natural language, which possesses
an inherent causal order from left to right, tabular data exhibits column permutation invariance .
To reflect this property in the autoregressive model, we need to ensure a sequence of tokens can
be generated in arbitrary order. Existing autoregressive models for tabular data generation adopt
simplistic approaches to address these challenges. For instance, they discretize continuous columns,
allowing them to learn corresponding categorical distributions (Castellon et al., 2023; Gulati &
Roysdon, 2023). However, this method inevitably leads to information loss. Regarding the generation
order, these models typically default to a left-to-right column sequence (Castellon et al., 2023), failing
to reflect the column permutation invariant property.

To address these challenges, this paper proposes Diffusion-nested AutoRegressive Tabular Data
Generation (TABDAR in short). TABDAR addresses the aforementioned issues through two design
features: 1) Nested diffusion models for modeling the conditional probability distributions of
the next continuous-valued tokens. TABDAR nests a small diffusion model (Ho et al., 2020;
Karras et al., 2022) into the autoregressive framework for learning the conditional distribution of
a continuous-valued column. Specifically, we employ two distinct loss functions for learning the
distribution of the next continuous/discrete-valued tokens, respectively. For discrete columns, their
conditional distribution is learned by directly minimizing the KL divergence between the prediction
vector and the ground-truth one-hot category embedding. For continuous columns, we learn their
distribution through a diffusion model conditioned on the output of the current location. In this
way, TABDAR can flexibly learn the distribution of tabular data containing arbitrary data types. 2)
Masked Transformers with bi-directional attention. TABDAR simulates arbitrary sequence orders
via a transformer-architectured model with bi-directional attention mechanisms and masked inputs.
The masked/unmasked locations indicate the columns that are missing/observed, ensuring that when
predicting a new token, the model has only access to the known tokens. During training, TABDAR
follows the form of masked language modeling, predicting the distribution of masked tokens based
on unmasked tokens. During testing, TABDAR generates entire rows of data in an autoregressive
manner according to a given order.

TABDAR offers several advantages. 1) TABDAR employs the most appropriate generative models
for different data types, i.e., diffusion models for continuous columns and categorical prediction
for discrete columns, seamlessly integrating them into a unified framework. This avoids contrived
processing methods such as discrete diffusion models (Lee et al., 2023; Kotelnikov et al., 2023),
continuous tokenization of categorical columns (Zhang et al., 2024b), and ineffective discretiza-
tion (Castellon et al., 2023). 2) Through an autoregressive approach, TABDAR models the conditional
distribution between different columns, thereby better capturing the dependency relationships among
various columns and achieving superior density estimation. 3) Combining autoregression and masked
Transformers enables a trained TABDAR to compute and sample from the conditional distribution of
target columns given an arbitrary set of observable columns, enabling generation in arbitrary order.
This capability facilitates precise and convenient posterior inference (e.g., conditional sampling and
missing data imputation).

We conduct comprehensive experiments on ten tabular datasets of various data types and scales to
verify the efficacy of the proposed TABDAR. Experimental results comprehensively demonstrate
TABDAR’s superior performance in: 1) Statistical Fidelity: The ability of synthetic data to faithfully
recover the ground-truth data distribution; 2) Data Utility: The performance of synthetic data
in downstream Machine Learning tasks, such as Machine Learning Efficiency; and 3) Privacy
Protection: Whether the synthetic data is sampled from the underlying distribution of the training
data rather than being a simple copy. In missing value imputation tasks, TABDAR exhibits remarkable
performance, even surpassing state-of-the-art methods that are specially designed for missing data
imputation tasks. For a genuine and fair comparison, we have released the code to reproduce
our method and all baseline results. The code is available at https://anonymous.4open.
science/r/ICLR-TabDAR.
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2 RELATED WORKS

Synthetic Tabular Data Generation Generative models for tabular data have become increasingly
important and have widespread applications Assefa et al. (2021); Zheng & Charoenphakdee (2022);
Hernandez et al. (2022). For example, CTGAN and TAVE (Xu et al., 2019) deal with mixed-type
tabular data generation using the basic GAN (Goodfellow et al., 2014) and VAE (Kingma & Welling,
2013) framework. GOGGLE (Liu et al., 2023) incorporates Graph Attention Networks in a VAE
framework such that the correlation between different data columns can be explicitly learned. DP-
TBART (Castellon et al., 2023) and TabMT (Gulati & Roysdon, 2023) use discretization techniques
to numerical columns and then apply autoregressive transformers for a generation. Recently, inspired
by the success of Diffusion models in image generation, a lot of diffusion-based methods have been
proposed, such as TabDDPM (Kotelnikov et al., 2023), STaSy (Kim et al., 2023), CoDi (Lee et al.,
2023), and TabSyn (Zhang et al., 2024b), which have achieved SOTA synthesis quality.

Autoregressive Models for Continuous Space Data In text generation, autoregressive next-token
generation is undoubtedly the dominant approach (Mann et al., 2020; Achiam et al., 2023). However,
in image generation, although autoregressive models (Van den Oord et al., 2016; Salimans et al.,
2017) were proposed early on, their pixel-level characteristics limited their further development.
Subsequently, diffusion models, which are naturally suited to modeling continuous distributions, have
become the most popular method in the field of image generation. In recent years, some studies have
attempted to use discrete-value image tokens (van den Oord et al., 2017; Razavi et al., 2019) and
employ autoregressive transformers for image-generation tasks (Kolesnikov et al., 2022). However,
discrete tokenizers are both difficult to train and inevitably cause information loss. To this end, recent
work has attempted to combine continuous space diffusion models with autoregressive methods.
For example, Li et al. (2024b) employs an autoregressive diffusion loss in a causal Transformer
for learning image representations; Li et al. (2024a) proposes using a diffusion model to model the
conditional distribution of the next continuous image and employs a masked bidirectional attention
mechanism to enable the generation of any number of tokens in arbitrary order.

3 PRELIMINARIES

3.1 DEFINITIONS AND NOTATIONS

In this paper, we always use uppercase boldface (e.g., X) letters to represent matrices, lowercase
boldface letters (e.g., x) to represent vectors, and regular italics (e.g., x) to denote scalar entries
in matrices or vectors. Tabular data refers to data organized in a tabular format consisting of rows
and columns. Each row represents an instance or observation, while each column represents a
feature or variable. In this work, we consider heterogeneous tabular data that may contain both
numerical and categorical columns or only one of these types. Let D = {xi}Ni=1 denote a tabular
dataset comprising N instances, where each instance x = (x1, x2, . . . , xD) is a D-dimensional
vector representing the values of D features or variables. We further categorize the features into
two types: 1) Numerical/continuous features: N = {i | xi ∈ R} is the set of indices corresponding
to numerical features. 2) Categorical/discrete features: C = {i | xi ∈ Ci} is the set of indices
corresponding to categorical features, where Ci is the set of possible categories for the i-th feature.
Note that N ∪ C = 1, 2, . . . , D and N ∩ C = ∅.

3.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022) learn the data distribution
p(x) through a diffusion SDE, which consists of a forward process that gradually adds Gaussian
noises of increasing scales to x (which are pre-normalized to have zero-mean and unit-variance), and
a reverse process that recovers the clean data from the noisy one1:

xt = x0 + σ(t)ε, ε ∼ N (0, I), (Forward Process) (2)

dxt = −2σ̇(t)σ(t)∇xt
log p(xt)dt+

√
2σ̇(t)σ(t)dωt, (Reverse Process) (3)

1This formulation is a simplified version of VE-SDE (Song et al., 2021). See Appendix B for details.
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where ωt is the standard Wiener process. σ(t) is the noise schedule, and σ̇(t) is the derivative of σ(t)
w.r.t. t A diffusion model is learned by using a denoising/score network ϵθ(xt, t) to approximate the
conditional score function ∇xt

log p(xt|x0) (named score-matching). The final loss function could
be reduced to a simple formulation where the denoising network is optimized to approximate the
added noise ε, i.e.,

L(x) = Et∼p(t)Eε∼N (0,I)∥ϵθ(xt, t)− ε∥2. (4)

The sampling process starts from a large timestep T such that xT ≈ N (0, σ2(T )I) recovers x0 via
solving the reverse SDE in Eq. 3, using mature numerical solution tools.

4 METHODS

4.1 KEY INGREDIENTS OF TABDAR

Modeling tabular data using autoregression. TABDAR follows the autoregressive criteria for
modeling the distribution of tabular data. Autoregressive modeling decomposes the joint data
distribution into the product of a series of conditional distributions in raster order, and the optimization
is achieved by minimizing the standard negative log-likelihood:

p(x) =

D∏
i=1

p(xi|x<i), L = − log p(x) = −
D∑
i=1

log p(xi|x<i) (5)

Therefore, instead of directly modeling the complicated joint distribution, one can seek to model each
conditional distribution, i.e., p(xi|x<i), separately, which is intuitively much simpler.

Autoregression is natural for language modeling, as language inherently possesses a left-to-right
(L2R in short) order, and we can expect that the generation of a new word depends entirely on the
observed words preceding it. Therefore, Transformers (Vaswani et al., 2017) with causal attention
(where only the previous tokens are observable to predict the following tokens) are widely used for
text generation. Unlike text data, tabular data has long been considered column permutation invariant.
In this case, one has to randomly shuffle the columns many times and then apply causal attention to
each generated order, which is conceptually complicated.
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workeducation
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Figure 2: With appropriate masking, bidirec-
tional attention is equivalent to causal atten-
tion in arbitrary order.

Simulate arbitrary order using masked Bi-
directional Attention. To deal with this, an inter-
esting observation is that even if given the default
order of data, we can simulate arbitrary-order causal
attention using masked bi-directional attention. As
illustrated in Fig. 2, giving the tabular data arranged
in the default order [‘age’, ‘capital gain’, ‘work’, ‘ed-
ucation’, ‘income’] and a shuffled generation order
[‘education’→ ‘income’→ ‘capital gain’,→ ‘age’,
→ ‘work’], the prediction of ‘capital gain’ can be
equivalently achieved by 1) causal attention based on
the previous columns ‘education’ and ‘income’; 2)
bidirectional attention where all other columns (‘age,
‘capital gain’, and ‘work’) are masked.

Column-specific losses for discrete/continuous columns Autoregressive models aim at learning
the conditional distribution of the target column given the observations of previous columns, i.e.,
p(xi|x<i). Take x<i as input, Transformers are able to generate column-specific output vectors, i.e.,
zi for column i. Then we only need to model the conditional distribution p(xi|zi).
Discrete Columns. For a discrete column xi, the target distribution is a categorical distribution,
which could be represented by a |Ci|-dimensional vector. Consequently, we can directly project zi

to a |Ci|-way classifier using a prediction head fi(·) (e.g., a shallow MLP: Rd → R|Ci|), and then
minimize the KL-divergence between the predicted distribution and the one-hot encoding of a sample:

L(xi, zi) = − log p(xi|zi) = Cross-Entropy(xi, softmax(fi(zi)), i ∈ C (6)
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Figure 3: Framework of TABDAR. An embedding layer
first encodes each column into a vector. The masks are
then added to the target columns (‘age’ and ‘education’).
With Bi-direction Transformers’ decoding, the output
vectors z are used as conditions for predicting the distri-
bution of current columns. TABDAR nests a diffusion
model in the autoregressive framework to learn the con-
ditional distribution of a continuous column.
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Figure 4: An illustration of TABDAR’s
generation process. Given a random gen-
eration order, e.g., ‘capital gain’→ ‘edu-
cation’→ · · · ‘income’, TABDAR gen-
erates the value for each column in a row
according to the conditional distribution
learned by the masked Transformers.

Continuous Columns. Unlike discrete columns, a continuous column might have infinite value states
and, therefore, cannot be modeled by a categorical distribution2. Inspired by the prominent capacity
of Diffusion models in modeling arbitrary continuous distributions, we hereby adopt a conditional
diffusion model to learn the conditional continuous distribution (Li et al., 2024a) p(xi|zi). Compared
with the unconditional diffusion loss in Eq. 4, the denoising function ϵθ takes the condition vector zi
as an additional input. The final loss function is expressed as follows:

L(xi, zi) = − log p(xi|zi) = − logEt∼p(t)Eε∼N (0,I)∥ϵθ(xi
t, t, z

i)− ε∥2, i ∈ N (7)

4.2 DETAILED ARCHITECTURE OF TABDAR

In this section, we introduce the detailed architecture and implementations of TABDAR. The overall
framework of TABDAR is presented in Fig. 3.

Tokenization layer. Given a row of tabular data x = (x1, x2, · · · , xD), the tokenization layer
embeds each feature to a d-dimensional vector using column-specific learnable linear transformation.
For a continuous column, the linear transformation is Wi ∈ R1×d, while for a discrete column,
the transformation matrix is Wi ∈ R|Ci|×d. The output token of column i is denoted by hi, and
we obtain an embedding matrix of D tokens H ∈ RD×d. We also add column-specific learnable
positional encoding so that the token embeddings at different locations can be discriminated.

Input masking. As illustrated in Section 4.1, we can use masked bidirectional attention to simulate
arbitrary causal attention. Therefore, we first uniformly sample the number of tokens to mask/predict
M ∼ U(1, D). Given M , we randomly sample a masking vector m ∈ {0, 1}D, s.t.,

∑
i m

i = M .
mi = 1 indicates that column i is masked and vice versa. Then, the input embeddings of masked
columns are set as zero, making them unobservable when predicting the target columns.

H′ = (1−m)⊙H. (8)

Bi-directional Transformers. Given the masked token sequence, we then follow the standard
pipeline of Transformer implementations. We first pad the embedding of the class token [pad] at
the beginning of the sequence. The [pad] tokens not only enable class-conditional generation but
also help stabilize the training process (Li et al., 2024a). By default, we use one unique [pad] token,
equivalent to unconditional generation (we may use class-specific [pad] tokens for class-conditional
distribution). Afterward, these tokens are processed by a series of standard Transformer blocks and
will finally output column-wise latent vectors {zi}Di=1.

2MSE loss is also not acceptable since it is a deterministic mapping rather than a conditional distribution
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Loss function and model training. After obtaining the latent vector zi for a target/masked column i,
we use it as the condition for predicting the distribution of xi, i,e., p(xi|zi).
Discrete columns. As presented in Eq. 6, we use a column-specific prediction head fi(·) to obtain the
|Ci|-dimensional prediction then compute the cross-entropy loss.

Continuous columns. For predicting the distribution of the continuous column xi, we use the
conditional diffusion loss described in Eq. 7. The training of the conditional diffusion model follows
the standard process of diffusion models (Karras et al., 2022). To be specific, we first randomly
sample a timestep t ∼ p(t), and standard Gaussian noise ε ∼ N (0, 1), obtaining xi

t = xi + σ(t) · ε.
Then, a denoising neural network ϵθ(x

i
t, t, z

i) takes xi
t, t, and zi as input to predict the added noise ε

(via the MSE loss in Eq. 7). The denoising neural network is implemented as a shallow MLP, and its
detailed architecture is presented in Appendix C.

Model Training. The training of TABDAR is end-to-end: all the model parameters, including the
Embedding layer, transformers, prediction heads for discrete columns, and diffusion models for the
continuous columns, are jointly trained via gradient descent on the summation of the losses of the
target/masked columns in the current batch.

Model inference. After TABDAR is trained, we can easily perform a variety of inference tasks, e.g.,
unconditional and conditional generation. An illustration of TABDAR’s auto-regressive sampling
process is presented in Fig. 4.

Unconditional Sampling. To generate unconditional data examples x ∼ p(x), we can first randomly
sample a generation order. Then, starting with all columns masked (except the [pad] token), we can
generate the value of each column one by one according to the sampled order.

Conditional Sampling. One important advantage of TABDAR’s autoregressive generation manner
is that one can perform flexible conditional sampling, such as simple class-conditional generation.
This can be achieved by directly setting the corresponding column values to the desired ones and
then randomly sampling the generation order of other columns. Missing value imputation can be
regarded as a special case of conditional sampling by resorting to the conditional distribution of
missing columns given observed values. More implementation details can be found in Appendix D.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We select ten real-world tabular datasets of varying data types and sizes: 1) two contain
only continuous features – California and Letter; 2) two contain only categorical features – Car
and Nursery; 3) six datasets of mixed continuous and discrete features – Adult, Default, Shoppers,
Magic, News, and Beijing. The detailed introduction of these datasets can be found Appendix D.2.

Baselines. We compare the proposed TABDAR with ten powerful synthetic tabular data generation
methods belonging to six categories. 1) The non-parametric interpolation method SMOTE (Chawla
et al., 2002). 2) VAE-based methods TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023). 3) GAN-
based method CTGAN (Xu et al., 2019). 4) LLM-based method GReaT (Borisov et al., 2023). 5)
Diffusion-based methods: STaSy (Kim et al., 2023), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov
et al., 2023), and TabSyn (Zhang et al., 2024b). 6) Autoregressive methods DP-TBART (Castellon
et al., 2023) and Tab-MT (Gulati & Roysdon, 2023). The proposed TABDAR belongs to the
autoregressive family, yet it utilizes a diffusion model for modeling continuous columns.

Evaluation Methods. We evaluate the quality of synthetic tabular data from three distinct dimensions:
1) Fidelity - if the synthetic data faithfully recovers the ground-truth data distribution. 2) Utility -
the performance when applied to downstream tasks, and we focus on Machine Learning Efficiency
(MLE). 3) Privacy - if the synthetic data is not copied from the real records. More introduction of
these metrics is in Appendix D.6.

Implementations. Since TABDAR’s diffusion loss is applied to each single column, the denoising
network εθ can be light-weighted, and we implement it as a three-layer MLP with 256 hidden
dimension. For the diffusion model, we follow Zhang et al. (2024b) and set σ(t) = t, which enables
a small number of diffusion step, i.e., NFE = 50.
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Table 1: Comparison of different methods regarding the statistical fidelity of the synthetic data.
All metrics have been scaled so that lower numbers indicate better performance, to facilitate better
numerical comparison.

Method Marginal↓ % Joint↓ % α-Precision↓ % β-Recall↓ % C2ST↓ % JSD↓ 10−2

Interpolation
SMOTE (Chawla et al., 2002) 1.72±1.36 2.95±1.66 3.78±3.94 16.7±9.16 3.00±3.66 0.11±0.10

VAE-based
TVAE (Xu et al., 2019) 15.8±17.1 17.4±18.3 18.2±20.1 70.9±26.3 43.9±22.7 1.01±0.70

GOGGLE (Liu et al., 2023) 17.2±6.28 29.1±11.8 21.8±17.3 90.8±5.64 - -

GAN-based
CTGAN (Xu et al., 2019) 17.9±6.99 18.4±9.11 17.7±15.1 69.1±33.8 53.0±22.5 1.18±0.69

LLM-based
GReaT (Borisov et al., 2023) 12.9±6.05 44.3±27.3 17.2±12.8 53.2±26.0 42.4±19.2 1.43±1.18

Diffusion-based
STaSy (Kim et al., 2023) 14.3±7.40 13.5±9.76 21.8±24.7 55.6±29.6 53.9±16.6 1.25±1.13

CoDi (Lee et al., 2023) 17.4±11.3 15.2±19.8 10.0±5.93 51.7±31.1‘ 44.0±33.3 0.76±0.50

TabDDPM (Kotelnikov et al., 2023) 15.0±25.3 7.92±8.16 23.6±2.93 49.6±34.5 24.6±38.9 1.03±1.60

TabSyn (Zhang et al., 2024b) 1.73±0.76 2.53±1.45 2.52±2.93 44.1±24.5 2.76±2.19 .12±0.09

Autoregressive-based
DP-TBART (Castellon et al., 2023) 3.24±1.76 2.71±1.56 2.11±2.15 48.0±27.8 5.36±4.58 0.16±0.11

Tab-MT (Gulati & Roysdon, 2023) 14.9±15.1 8.11±10.8 23.2±31.9 63.5±38.3 48.6±47.7 0.60±0.83

TABDAR (ours) 1.21±0.51 1.80±0.72 1.33±1.10 37.2±20.1 1.50±1.42 0.09±0.048

Improvement 29.65% 28.85% 36.97% - 45.65% 18.18%

5.2 MAIN RESULTS

Statistical Fidelity We first investigate whether synthetic data can faithfully reproduce the distribu-
tion of the original data. We use various statistical metrics to reflect the degree to which synthetic
data estimates the distribution density of the original data. These metrics include univariate density
estimation (i.e., the marginal distribution of a single column), the correlation between any two vari-
ables (which reflects the joint probability distribution), α-Precision (reflecting whether a synthetic
data example is close to the true distribution), β-Recall (reflecting the coverage of synthetic data
over the original data), Classifier Two Sample Test (C2ST, reflecting the difficulty in distinguishing
between synthetic data and real data), and Jensen-Shannon divergence (JSD, estimating the distance
between the distributions of real data and synthetic data). Due to space limitations, in this section, we
only present the average performance with standard deviation on each metric across all ten datasets.
The detailed performance on each individual dataset is in Appendix E.

In Table 1, we present the performance comparison on these fidelity metrics. As demonstrated, our
model achieved performance far surpassing the second-best method in five out of six fidelity metrics,
with advantages ranging from 18.18% to 45.65%. Considering that these metrics have already been
elevated to a considerably high level due to the explosive development of recent deep generative
models for tabular data, our improvement is very significant. The only exception is β-Recall, which
measures the degree of coverage of the synthetic data over the entire data distribution. On this metric,
the simple classical interpolation method SMOTE achieved the best performance, far surpassing
other generative models. On the other hand, SMOTE also achieves very good performance on other
metrics, surpassing many generative methods. These phenomena indicate that simple interpolation
methods can indeed obtain synthetic data with a distribution close to that of real data. However, the
limitation of interpolation methods lies in the fact that the synthetic data is too close to the real data,
making it resemble a copy from the training set rather than a sample from the underlying distribution,
which may cause privacy issues. Detailed experiments are in the Privacy Protection section.

Utility on Downstream Tasks We then evaluate the quality of synthetic data by assessing their
performance in Machine Learning Efficiency (MLE) tasks. Following previous settings (Zhang
et al., 2024b), we first split a real table into a real training and a real testing set. The generative
models are trained on the real training set, from which a synthetic set of equivalent size is sampled.
This synthetic data is then used to train a classification/regression model (XGBoost Classifier and
XGBoost Regressor (Chen & Guestrin, 2016)), which will be evaluated using the real testing set. The
performance of MLE is measured by the AUC score for classification tasks and RMSE for regression
tasks. As demonstrated in Table 2, the proposed TABDAR gives a fairly satisfying performance on
the MLE tasks, and the classification/regression performance obtained via training on the synthetic
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Table 2: AUC (classification task) and RMSE (regression task) scores of Machine Learning Efficiency.
↑ (↓) indicates that the higher (lower) the score, the better the performance.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Default Shoppers Magic News Beijing
AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ RMSE↓ RMSE ↓

Real data 0.999 0.989 0.999 1.000 0.927 0.770 0.926 0.946 0.842 0.423

VAE-based
TVAE 0.986 0.989 0.746 0.939 0.846 0.744 0.898 0.912 0.979 1.010
GOGGLE - - - - 0.778 0.584 0.658 0.654 1.09 0.877

GAN-based
CTGAN 0.925 0.729 0.899 1.000 0.874 0.736 0.868 0.874 0.845 1.065

LLM-based
GReaT 0.996 0.983 0.979 0.999 0.913 0.755 0.902 0.888 - 0.653

Diffusion-based
STaSy 0.997 0.990 0.927 0.982 0.903 0.749 0.909 0.923 0.933 0.672
CoDi 0.981 0.998 0.995 1.000 0.829 0.497 0.855 0.930 0.999 0.750
TabDDPM 0.992 0.513 0.995 1.000 0.911 0.763 0.915 0.933 - 2.665
TabSyn 0.993 0.990 0.971 0.997 0.904 0.764 0.913 0.934 0.862 0.669

Autoregressive
DP-TBART 0.993 0.985 0.990 0.917 0.918 0.717 0.896 0.924 0.896 0.676
Tab-MT 0.988 0.985 0.981 1.000 0.873 0.714 0.912 0.822 1.002 2.098

TABDAR 0.994 0.994 0.996 1.000 0.904 0.764 0.916 0.935 0.856 0.579

Table 3: Probability that a synthetic
example’s DCR to the training set
rather than that of the holdout set),
a score closer to 50% is better.

Method Default Shoppers

SMOTE 91.41% 96.40%
TabDDPM 51.30% 51.74%

TabSyn 50.88% 51.50%

TABDAR 51.13% 50.97%
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Figure 5: Distributions of the DCR scores between the syn-
thetic dataset and the training/holdout datasets.

set is rather close to that on the original training set. Also, similar to the observations in (Zhang
et al., 2024b), the differences between various methods on MLE tasks are very small, even though
some methods may not correctly learn the distribution of the original data. Therefore, it is important
to combine this with the fidelity metrics in Table 1 to obtain a more comprehensive evaluation of
synthetic data.

Privacy Protection Finally, a good synthetic dataset should not only faithfully reproduce the
original data distribution but also ensure that it is sampled from the underlying distribution of the real
data rather than being a copy. To this end, we use the Distance to Closest Record (DCR) score for
measurement. Specifically, we divide the real data equally into two parts of the same size, namely the
training set and the holdout set. We train the model based on the training set and obtain the sampled
synthetic dataset. Afterward, we calculate the distribution of distances between each synthetic data
example and its closest sample in both the training set and the holdout set. Intuitively, if the training
set and holdout set are both drawn uniformly from the same distribution and if the synthetic data has
learned the true distribution, then on average, the proportion of synthetic data samples that are closer
to the training set should be the same as those closer to the holdout set (both 50%). Conversely, if
the synthetic data is copied from the training set, the probability of it being closer to samples in the
training set would far exceed 50%.

In Table 3 and Figure 5, we present the probability comparison and the distributions of the DCR
scores of SMOTE, TabDDPM, TabSyn, and the proposed TABDAR. As demonstrated, SMOTE is
poor at privacy protection, as its synthetic sample tends to be closer to the training set rather than the
holdout set, as its synthetic examples are obtained via interpolation between training examples. By
contrast, the remaining deep generative methods are all good at preserving the privacy of training
data, leading to almost completely overlapped DCR distributions.
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Figure 6: (30% MCAR) Comparison of missing value
imputation performance with 4 competitive baselines.

Table 4: Ablation Studies: Effects of
the Diffusion loss and random order
sampling.

Variants Margin Joint

w/o. both 14.82% 8.94%
w/o. Diff. loss 12.35% 6.11%

w/o. rand. order 1.83% 2.05%

TABDAR 1.21% 1.80%

Table 5: Impacts of the model depth (number of
Transformer layers) on Adult and Beijing.

Depth Margin Joint α-Precision β-Recall

2 1.10% 2.37% 0.56% 47.56%
4 1.02% 2.19% 1.56% 47.37%
6 0.79% 1.81% 0.50% 45.88%
8 0.96% 2.09% 1.02% 46.84%

Table 6: Impacts of the embedding dimension d
on Adult and Beijing.

Dim Margin Joint α-Precision β-Recall

8 1.15% 2.88% 1.15% 53.37%
16 0.99% 2.25% 0.68% 50.27%
32 0.79% 1.81% 0.50% 45.88%
64 1.05% 2.24% 1.62% 42.21%

5.3 MISSING DATA IMPUTATION

Since TABDAR directly models the factorized conditional probability of the target column(s) given
the observation of other columns, it has a strong potential for missing data imputation. In this section,
we compare the proposed TABDAR with the current state-of-the-art (SOTA) methods for missing
data imputation, including KNN (Pujianto et al., 2019), GRAPE (You et al., 2020), MOT (Muzellec
et al., 2020), and Remakser (Du et al., 2024). We consider the task of training the model on the
complete training data and then imputing the missing values of testing data. The missing mechanism
is Missing Completely at Random (MCAR), and the missing ratio of testing data is set at 30%.
In Figure 6, we present the performance comparison on four datasets: Letter, Adult, Default, and
Shoppers (as well as the average imputation performance). The proposed TABDAR demonstrates
superior performance on these four datasets, significantly outperforming the current best methods on
three out of four datasets. On the Adult dataset, it was slightly inferior. These results confirm that
TABDAR is not only suitable for unconditional generation but also applicable to other conditional
generation tasks, demonstrating a wide range of application values.

5.4 ABLATION STUDIES

Effects of diffusion loss and random ordering. We first study if the two key ingredients of
TABDAR– 1) the diffusion loss and 2) random ordering – are indeed beneficial. We consider three
variants of TABDAR: ‘w/o. Diff. Loss’, which indicates that we discretize the continuous columns
into 100 uniform bins, treating them as discrete ones, such that we can apply the cross-entropy loss;
‘w/o rand. order,’ which indicates that we follow the default left-to-right order in both the training
and generation phases using a causal attention Transformer model; ‘w/o. both’, which indicates the
version that combines the two variants. In Table 4, we compare TABDAR with the three variants on
the average synthetic data’s fidelity across all the datasets. We can observe that both the diffusion loss
and random training/generation order are important to TABDAR’s success. Specifically, the diffusion
loss targeting the modeling of the conditional distribution of the continuous columns contributes the
most, and the random ordering further improves TABDAR’s performance. Furthermore, random
ordering enables TABDAR to perform flexible conditional inference tasks like imputation.

Sensitivity to hyperparameters. We then study TABDAR’s sensitivity to its hyperparameters
that specify its transformer architecture: the model depth (number of Transformer layers) and the
embedding dimension d. From Table 5 and Table 6 (grey cells indicate the default setting), we
can observe that although there exists an optimal hyperparameter setting (i.e., depth = 6, d = 32),
the change of the two hyperparameters has little impact on the model performance. These results
demonstrate that our model is relatively robust to these hyperparameters. Therefore, good results can
be obtained for different datasets without the need for specific hyperparameter tuning.
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6 VISUALIZATIONS
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Figure 9: Heatmaps of the joint column correlation estimation
error. Lighter areas indicate a lower error in estimating the
correlation between two columns.

In this section, we visualize the syn-
thetic data to demonstrate that the
proposed TABDAR can generate
synthetic data that closely resembles
the ground-truth distribution. In Fig-
ure 7 and Figure 8, we plot the 2D
joint distribution of two columns of
the Adult and California datasets to
investigate if the ground-truth joint
distribution density can be learned
by the synthetic data. In Figure 9,
we further plot the heatmaps of the
estimation error of column pair cor-
relations. These results visually
demonstrate that TABDAR can gen-
erate synthetic samples very close
to the distribution of real data and
faithfully reflect the correlations be-
tween different columns of the data.

7 CONCLUSION

This paper has presented TABDAR, a generative model that embeds a diffusion model within an
autoregressive transformer framework used for multi-modal tabular data synthesis. TABDAR uses
a novel diffusion loss and traditional cross-entropy loss to learn the conditional distributions of
continuous columns and discrete columns, respectively, enabling a single autoregressive model to
generate both continuous and discrete features simultaneously. Furthermore, TABDAR employs
masked bidirectional attention to simulate arbitrary autoregressive orders, allowing the model to
generate in any direction. This not only enhances the accuracy of joint probability modeling but
also enables more flexible conditional generation. Extensive experimental results demonstrate the
effectiveness of the proposed method.
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REPRODUCIBILITY STATEMENT

We describe the algorithm of TABDAR in Appendix A. The detailed implementations are provided
in Appendix C and Appendix D. The codes for implementing baselines and the proposed TAB-
DAR are provided in the anonymous github repo https://anonymous.4open.science/r/
ICLR-TabDAR.
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A ALGORITHMS

In this section, we provide detailed algorithms of TABDAR. Algorithm 3 provides the training
algorithm of TABDAR. Algorithm 4 and 5 provide the unconditional and conditional generation
algorithm of TABDAR, respectively. For simplicity, the algorithms are presented with a single data
as input, it is straightforward to extend to batch setting.

Algorithm 1: Loss for continuous columns

1: Input: Condition vector zi, target continuous value xi, denoising network ϵθ
2: Output: Loss L(p(xi|zi))
3: Sample t ∼ p(t)
4: Sample ε ∼ N (0, 1)
5: Get xi

t = xi + σ(t) · ε
6: Compute loss: L(p(xi|zi)) = ∥ϵθ(xi

t, t, z
i)− ε∥22

Algorithm 2: Loss for discrete columns

1: Input: Condition vector zi, target discrete value xi, prediction head fi(θ)
2: Output: Loss L(p(xi|zi))
3: Get x̂i = fi(z

i)
4: Compute loss: L(p(xi|zi)) = CrossEntropy(xi,Softmax(x̂i))

Algorithm 3: TABDAR: Training

1: Input: data x = (x1, x2, · · ·xD)
2: Output: Model parameters
3: 1. Tokenization
4: for i ∈ 1, 2, · · · , D do
5: hi = Wixi

6: end for
7: Let H = [h1,h2, · · · ,hD]
8: Add positional encoding
9:

10: 2. Adding mask
11: Sample the masking number M ∼ Uniform(1, D)
12: Sample the masking vector m ∈ {0, 1}D, s.t.,

∑
i m

i = M
13: Let H′ = (1−m)⊙H
14:
15: 3. Transformer layers
16: Append padding token [pad]
17: Z = Transformers(H′)
18:
19: 4. Compute Losses
20: for i ∈ 1, 2, · · · , D do
21: if mi == 1 then
22: if i ∈ C then
23: Compute L(p(xi|zi)) as discrete columns ; ▷ Algorithm 2
24: else
25: Compute L(p(xi|zi)) as continuous columns ; ▷ Algorithm 1
26: end if
27: end if
28: end for

29: Compute L =
D∑
i=1

L(p(xi|zi)) ·mi ; ▷ Compute losses only for target/masked columns

30: Back-propagation to optimize model parameters

15
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Algorithm 4: TABDAR: Unconditional Generation
1: Input: A generation order o = [o1, o2, · · · , oD] = Shuffle([1, 2, 3, · · ·D])
2: Output: A sample x̃ ∈ RD

3: m← 1 ∈ RD ; ▷ All tokens are unknown initially
4: H = 0
5: for i ∈ 1, 2, · · · , D do
6: Add positional encoding
7: H′ = (1−m)⊙H = 0 ∈ RD×d ; ▷ All token embedding are set zero
8: Z = Transformers(H′)
9: Sample x̃oi from p(xoi |zoi) ; ▷ Sample for location oi

10: if i ∈ C then
11: Compute x̂oi = foi(z

oi) ∈ RCi

12: Sample x̃oi ∼ Multi(x̃oi) ; ▷ Sample discrete component
13: else
14: Sample x̃oi from the diffusion sampler ; ▷ Sample continuous component
15: end if
16: h̃oi = Woi x̃oi ; ▷ Tokenization for the newly sampled column value
17: H′

oi ← h̃oi ; ▷ Update the input
18: moi ← 1 ; ▷ Update the mask
19: end for
20: The finally sampled data is x̃ = (x̃1, x̃2, · · · , x̃D)

Algorithm 5: TABDAR: Conditional Generation (Imputation)
1: Input:. A generation order o = [o1, · · · , oD−M · · · , oD] = Shuffle([1, 2, 3, · · ·D]), such that

o1, · · · , oD−M are the indices of D −M observed columns, oD−M+1, · · · , oD are the indices
of M columns to impute. xo1 , · · ·xoD−M are the D −M observed values.

2: Output: A sample x̃ ∈ RD, such that x̃o1 = xo1 , · · · , x̃oD−M = xoD−M

3:
4: for i ∈ 1, · · · , D do
5: if i <= D −M then
6: x̃oi = xoi

7: else
8: x̃oi = 0
9: end if

10: hoi = Woi x̃oi

11: end for
12: Initialize the mask vector m = [0D−M , 1M ] ; ▷ Tokens at missing positions are masked
13:
14: for i ∈ D −M + 1, · · · , D do
15: H′ = (1−m)⊙H
16: Z = Transformers(H′)
17: Sample x̃oi from p(xoi |zoi) ; ▷ Sample for location oi
18: if i ∈ C then
19: Compute x̂oi = foi(z

oi) ∈ RCi

20: Sample x̃oi ∼ Multi(x̃oi) ; ▷ Sample discrete component
21: else
22: Sample x̃oi from the diffusion sampler ; ▷ Sample continuous component
23: end if
24: h̃oi = Woi x̃oi ; ▷ Tokenization for the newly sampled column value
25: H′

oi ← h̃oi ; ▷ Update the input
26: moi ← 1 ; ▷ Update the mask
27: end for
28: The finally sampled data is x̃ = (x̃1, x̃2, · · · , x̃D)

16
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B DIFFUSION SDES

This paper adopts the simplified version of the Variance-Exploding SDE in (Song et al., 2021). Song
et al. (2021) has proposed the following general-form forward SDE:

dx = f(x, t)dt+ g(t) dwt = dx = f(t) x dt+ g(t) dwt. (9)

Then the conditional distribution of xt given x0 (named as the perturbation kernel of the SDE) could
be formulated as:

p(xt|x0) = N (xt; s(t)x0, s
2(t)σ2(t)I), (10)

where

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, and σ(t) =

√∫ t

0

g2(ξ)

s2(ξ)
dξ. (11)

Therefore, the forward diffusion process could be equivalently formulated by defining the perturbation
kernels (via defining appropriate s(t) and σ(t)).

Variance Exploding (VE) implements the perturbation kernel Eq. 10 by setting s(t) = 1, indicating
that the noise is directly added to the data rather than weighted mixing. Therefore, The noise variance
(the noise level) is totally decided by σ(t). When s(t) = 1, the perturbation kernels become:

p(xt|x0) = N (xt;0, σ
2(t)I) ⇒ xt = x0 + σ(t)ε, (12)

which aligns with the forward diffusion process in Eq. 2.

The sampling process of diffusion SDE is given by:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dwt. (13)

For VE-SDE, s(t) = 1⇔ f(x, t) = f(t) · x = 0, and

σ(t) =

√∫ t

0

g2(ξ)dξ ⇒
∫ t

0

g2(ξ)dξ = σ2(t),

g2(t) =
dσ2(t)

dt
= 2σ(t)σ̇(t),

g(t) =
√
2σ(t)σ̇(t).

(14)

Plugging g(t) into Eq. 13, the reverse process in Eq. 3 is recovered:

dxt = −2σ(t)σ̇(t)∇xt log p(xt)dt+
√

2σ(t)σ̇(t)dωt. (15)

C DETAILED MODEL ARCHITECTURES

In this section, we introduce the detailed architecture of TABDAR, which consists of a tokenization
layer, several transformer blocks, and two (group of) predictors for numerical and categorical features,
respectively.

C.1 TOKENIZERS AND TRANSFORMERS

Tokenization. We first apply one-hot encoding to the categorical features and then project both
numerical and categorical features into the embedding space. We employ column-wise tokenizers for
the feature of every single column, respectively, following the setup in Zhang et al. (2024b).

• For a numerical column, we use a simple linear projection to map the scalar into a d-
dimensional vector.

hi = Wixi, where Wi ∈ R1×d (16)

• For a categorical column, we use a simple linear projection to map the one-hot encoding of
xi into a d-dimensional vector.

hi = Wixi, where Wi ∈ RCi×d (17)

17
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Transformer layers After tokenization, we add column-wise positional encoding to each token
embedding, and then we apply a]the zero mask to the predefined masked/target tokens. Furthermore,
we append the [pad] token embedding at the beginning of the obtained data sequence. The proposed
data will be further processed by a series of Transformer blocks.

We use ViT (Dosovitskiy, 2021) as the backbone of the Transformer layers, which consists of
multiple Transformer blocks (Vaswani et al., 2017). Each Transformer block contains a multi-head
self-attention mechanism and a feed-forward network. Specifically, we use a stack of six Transformer
blocks with four attention heads.

Predictors. Given the output token embeddings from the Transformer layers, i.e., zi, we further
use additional predictors such that it is tailored for learning the conditional distribution p(xi|zi)
We apply a simple MLP predictor fi(·) for each token. For each discrete column, fi(·) is a 4-layer
MLP with ReLU activation.

For each continuous column, the output token embedding zi be further fed into the denoising neural
network to predict the noise. We defer this part to Appendix C.2.

C.2 DIFFUSION MODEL

In this section, we introduce the architecture of the diffusion model. In a nutshell, we use simple
MLPs as our denoising neural network, which is similar to the design in Zhang et al. (2024b) and
(Kotelnikov et al., 2023), the only difference is our denoising network takes an additional input zi as
the conditional information.

Denoising neural network. The denoising neural network takes three inputs: the noisy data
xi
t = xi + σ(t) · ε (note that we let σ(t) = t), the current timestep t, and the conditional information

zi. Following the practice in (Kotelnikov et al., 2023), the current timestep t is first embedded with
sinusoidal positional embedding, then further embedded with a 2-layer fully connected MLP with
SiLU activation;

epe = PE(t), et = MLPt(epe)

where PE denotes the sinusoidal positional embedding (Vaswani et al., 2017).

Similarly, the conditional information zi is embedded with a similar 2-layer MLP with SiLU activa-
tion.

ez = MLPz(z
i)

Now we have the embeddings of current timestep and conditional information, we add them together
as the final condition embedding e∗.

e∗ = et + ec

For the noisy data xi
t, we first project it with a single linear layer to align the dimension with the

conditional embedding, then add it with e∗ and feed into a 4-layer MLP with SiLU activation for the
final prediction of the denoised data.

ϵθ(x
i
t, t, z

i) = MLP(Linear(xi
t) + e∗)

Finally, we minimize the MSE loss between the output of the denoising neural network and the added
noise:

min ∥ϵθ(xi
t, t, z

i)− ε∥22

D DETAILED EXPERIMENTAL SETUPS

D.1 HARDWARE SPECIFICATION AND ENVIRONMENT

We run our experiments on a single machine with Intel i9-14900K, Nvidia RTX 4090 GPU with 24
GB memory. The code is written in Python 3.10.14 and we use PyTorch 2.2.2 on CUDA 12.2 to train
the model on the GPU.
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D.2 DATASETS

The dataset used in this paper could be automatically downloaded using the script in the provided
code. We use 10 tabular datasets from Kaggle3 or UCI Machine Learning Repository4: Adult5,
Default6, Shoppers7, Magic8, Beijing9, and News10, California11, Letter12, Car13, and Nursery14,
which contains varies number of numerical and categorical features. The statistics of the datasets are
presented in Table 7.

Table 7: Dataset statistics.

Dataset # Rows # Continuous # Discrete # Target # Train # Test Task

California 20, 640 9 - 1 18, 390 2, 520 Classification
Letter 20, 000 16 - 1 18, 000 2, 000 Classification

Car 1, 728 - 7 1 1, 555 173 Classification
Nursery 12, 960 - 9 1 11, 664 1, 296 Classification

Adult 32, 561 6 8 1 22, 792 16, 281 Classification
Default 30, 000 14 10 1 27, 000 3, 000 Classification
Shoppers 12, 330 10 7 1 11, 098 1, 232 Classification
Magic 19, 021 10 1 1 17, 118 1, 903 Classification
Beijing 43, 824 7 5 1 39, 441 4, 383 Regression
News 39, 644 46 2 1 35, 679 3, 965 Regression

In Table 7, # Rows denote the number of rows (records) in the table. # Continuous and # Discrete
denote the number of continuous features and discrete features, respectively. Note that there is an
additional # Target column. The target columns are either continuous or discrete, depending on the
task type. All datasets (except Adult) are split into training and testing sets with the ratio 9 : 1 with
a fixed random seed. As Adult has its official testing set, we directly use it as the testing set. For
Machine Learning Efficiency (MLE) evaluation, the training set will be further split into training and
validation split with the ratio 8 : 1.

D.3 TABDAR IMPLEMENTATION DETAILS

Data Preprocessing. We first fill the missing values with the columns’s average for numerical
columns. For categorical columns, missing cells are treated as an additional category. Then numerical
columns are transformed to follow a normal distribution by QuantileTransformer15 and categorical
columns are encoded as integers by OrdinalEncoder16. Finally, we normalize the numerical features
to have 0 mean and 0.5 variance, following (Karras et al., 2022).

3https://www.kaggle.com
4https://archive.ics.uci.edu/datasets
5https://archive.ics.uci.edu/dataset/2/adult
6https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
7https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+

intention+dataset
8https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
9https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data

10https://archive.ics.uci.edu/dataset/332/online+news+popularity
11https://www.kaggle.com/datasets/camnugent/california-housing-prices
12https://archive.ics.uci.edu/dataset/59/letter+recognition
13https://archive.ics.uci.edu/dataset/19/car+evaluation
14https://archive.ics.uci.edu/dataset/76/nursery
15https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.QuantileTransformer.html
16https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.OrdinalEncoder.html
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Hyperparameters. TABDAR uses a fixed set of hyperparameters for all datasets. Table 8 shows
the hyperparameters. Our experiments show that TABDAR is robust to the choice of hyperparameters,
saving the time of meticulous hyperparameter tuning for each dataset.

Type Parameter Value

Training

optimizer Adam
initial learning rate 1e-3

weight decay 1e-6
LR scheduler ReduceLROnPlateau

training epochs 5000
batch size 4096

Transformers
#Transformer blocks 6

embedding dim 32
#heads 4

Table 8: Default hyperparameter setting of TABDAR.

D.4 MISSING VALUE IMPUTATION

Following (Zhang et al., 2024a), we use the Expected A Posteriori (EAP) estimator to impute the
missing values. Specifically, denote a sample x with missing values as x = (xobs,xmis) where xobs
and xmis are the observed and missing values, respectively. Our goal is to compute the expectation of
the missing values conditioned on the observed values:

Exmis∼p(xmis|xobs)[xmis]

To estimate the expectation, we sample k times from the posterior distribution p(xmis|xobs) (with
Algorithm 5) and obtain a set of samples {x̂i

mis}ki=1.

For numerical features, the imputation x̂mis is set to the mean of the samples:

x̂mis =
1

k

k∑
i=1

x̂i
mis

For categorical features, we apply a majority vote on every column to approximate the expectation.
Suppose the column has categories C = {c1, c2, · · · , cm}, the imputation x̂mis is set to the most
frequent category:

x̂mis = argmaxcj∈C
1

k

k∑
i=1

δ(x̂i
mis = cj)

where δ(·) is an indicator function that equals to 1 if the input is true and 0 otherwise. The majority
vote can be understood as a mean estimator that is more robust to outliers.

Finally, we concatenate the observed values with the imputed missing values to obtain the final
imputed sample:

ximputed = (xobs, x̂mis)

In our experiments, we find that k = 10 is a good trade-off between performance and efficiency.

D.5 BASELINE IMPLEMENTATIONS

Tab-MT and DP-TBART. Tab-MT (Gulati & Roysdon, 2023) and DP-TBART (Castellon et al.,
2023) are two recently proposed tabular data generation models based on MAE. To handle numerical
features (with continuous distribution), Tab-MT quantizes the numerical features into 100 uniform
bins, and DP-TBART quantizes the numerical features into 100 bins where each bin has the same
nearest center determined by K-means. Additionally, DP-TBART employs DP-SGD (Abadi et al.,
2016) to enhance the differential privacy performance. Since the focus of this paper is not on
differential privacy, in our implementation, we use Adam (Kingma & Ba, 2015) optimizer.
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Other Baselines. The implementations of SMOTE (Chawla et al., 2002), CTGAN (Xu et al., 2019),
TVAE (Xu et al., 2019), GOOGLE17 (Liu et al., 2023), GReaT (Borisov et al., 2023), CoDi (Lee
et al., 2023), STaSy (Kim et al., 2023), TabDDPM (Kotelnikov et al., 2023), TabSyn (Zhang et al.,
2024b) follows the codebase of Zhang et al. (2024b)18.

D.6 METRICS

Most of the metrics (including Marginal, Joint, α-Precision, β-Recall, C2ST, MLE, and DCR) used
in this paper directly follow the setups in Zhang et al. (2024b). Here is a reference:

• Marginal: Appendix E.3.1 in Zhang et al. (2024b).

• Joint: Appendix E.3.2 in Zhang et al. (2024b).

• α-Precision and β-Recall: Appendix F.2 in Zhang et al. (2024b).

• C2ST: Appendix F.3 in Zhang et al. (2024b).

• MLE: Appendix E.4 in Zhang et al. (2024b).

• DCR: Appendix F.6 in Zhang et al. (2024b).

Below is a summary of how these metrics work.

D.6.1 MARGINAL DISTRIBUTION

The Marginal metric evaluates if each column’s marginal distribution is faithfully recovered by the
synthetic data. We use Kolmogorov-Sirnov Test for continuous data and Total Variation Distance for
discrete data.

Kolmogorov-Sirnov Test (KST) Given two (continuous) distributions pr(x) and ps(x) (r denotes
real and s denotes synthetic), KST quantifies the distance between the two distributions using the
upper bound of the discrepancy between two corresponding Cumulative Distribution Functions
(CDFs):

KST = sup
x
|Fr(x)− Fs(x)|, (18)

where Fr(x) and Fs(x) are the CDFs of pr(x) and ps(x), respectively:

F (x) =

∫ x

−∞
p(x)dx. (19)

Total Variation Distance (TVD) TVD computes the frequency of each category value and ex-
presses it as a probability. Then, the TVD score is the average difference between the probabilities of
the categories:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (20)

where ω describes all possible categories in a column Ω. R(·) and S(·) denotes the real and synthetic
frequencies of these categories.

D.6.2 JOINT DISTRIBUTION

The Joint metric evaluates if the correlation of every two columns in the real data is captured by the
synthetic data.

17We find the result of GOOGLE is hard to reproduce due to memory issues, so we directly use the results
in Zhang et al. (2024b)

18https://github.com/amazon-science/tabsyn/tree/main/baselines
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Pearson Correlation Coefficient The Pearson correlation coefficient measures whether two con-
tinuous distributions are linearly correlated and is computed as:

ρx,y =
Cov(x, y)

σxσy
, (21)

where x and y are two continuous columns. Cov is the covariance, and σ is the standard deviation.

Then, the performance of correlation estimation is measured by the average differences between the
real data’s correlations and the synthetic data’s corrections:

Pearson Score =
1

2
Ex,y|ρR(x, y)− ρS(x, y)|, (22)

where ρR(x, y) and ρS(x, y)) denotes the Pearson correlation coefficient between column x and
column y of the real data and synthetic data, respectively. As ρ ∈ [−1, 1], the average score is divided
by 2 to ensure that it falls in the range of [0, 1], then the smaller the score, the better the estimation.

Contingency similarity For a pair of categorical columns A and B, the contingency similarity
score computes the difference between the contingency tables using the Total Variation Distance. The
process is summarized by the formula below:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (23)

where α and β describe all the possible categories in column A and column B, respectively. Rα,β

and Sα,β are the joint frequency of α and β in the real data and synthetic data, respectively.

D.6.3 α-PRECISION AND β-RECALL

α-Precision and β-Recall are two sample-level metrics quantifying how faithful the synthetic data
is proposed in Alaa et al. (2022). In general, α-Precision evaluates the fidelity of synthetic data
– whether each synthetic example comes from the real-data distribution, β-Recall evaluates the
coverage of the synthetic data, e.g., whether the synthetic data can cover the entire distribution of the
real data (In other words, whether a real data sample is close to the synthetic data).

D.6.4 CLASSIFIER-TWO-SAMPLE-TEST (C2ST)

C2ST studies how difficult it is to distinguish real data from synthetic data, therefore evaluating
whether synthetic data can recover real data distribution. The C2ST metric used in this paper is
implemented by the SDMetrics19 package.

D.6.5 MACHINE LEARNING EFFICIENCY (MLE)

In MLE, each dataset is first split into the real training and testing set. The generative models are
learned on the real training set. After the models are learned, a synthetic set of equivalent size is
sampled.

The performance of synthetic data on MLE tasks is evaluated based on the divergence of test scores
using the real and synthetic training data. Therefore, we first train the machine learning model on the
real training set, split into training and validation sets with a 8 : 1 ratio. The classifier/regressor is
trained on the training set, and the optimal hyperparameter setting is selected according to the perfor-
mance on the validation set. After the optimal hyperparameter setting is obtained, the corresponding
classifier/regressor is retrained on the training set and evaluated on the real testing set. We create
20 random splits for training and validation sets, and the performance reported is the mean of the
AUC/RMSE score over the 20 random trails. The performance of synthetic data is obtained in the
same way.

19https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/
detection-single-table
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D.6.6 DISTANCE TO CLOSEST RECORD

We follow the ‘synthetic vs. holdout’ setting 20. We initially divide the dataset into two equal parts:
the first part served as the training set for training our generative model, while the second part was
designated as the holdout set, which is not used for training. After completing model training, we
sample a synthetic set of the same size as the training set (and the holdout set).

We then calculate the DCR scores for each sample in the synthetic set concerning both the training
set and the holdout set. We further calculate the probability that a synthetic sample is closer to the
training set (rather than the holdout set). When this probability is close to 50% (i.e., 0.5), it indicates
that the distribution of distances between synthetic and training instances is very similar (or at least
not systematically smaller) than the distribution of distances between synthetic and holdout instances,
which is a positive indicator in terms of privacy risk.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide a more detailed empirical comparison between the proposed TABDAR
and other baseline methods.

E.1 DETAILED RESULTS ON THE FIDELITY METRICS

Note that in Table 1, we only present the average performance of each method on the six fidelity
metrics across the ten datasets. In this section, we present a detailed performance comparison of each
individual dataset:

• Marginal Distribution: Table 9

• Joint Correlation: Table 10

• α-Precision: Table 11

• β-Recall: Table 12

• Classifier-Two-Sample-Test: Table 13

• Jensen-Shannon Divergence: Table 14

Table 9: Performance comparison on the Marginal Distribution Density metric. Numbers represent
the error rate in %, the lower the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.99 0.97 1.00 0.57 1.59 1.78 1.49 1.07 5.28 2.48

VAE-based
TVAE 5.37 16.70 24.12 9.81 24.32 25.13 9.94 4.39 18.48 23.93

GAN-based
CTGAN 12.84 18.79 16.46 12.33 19.32 21.98 18.25 5.69 13.90 25.71

LLM-based
GReaT 14.93 4.88 2.22 5.08 12.12 8.25 19.94 16.16 − 14.51

Diffusion-based
STaSy 10.82 11.93 24.38 10.93 10.41 6.38 11.34 13.02 8.54 16.14
CoDi 18.98 22.62 1.53 0.65 24.84 12.54 16.54 11.64 28.13 36.48
TabDDPM 57.34 61.43 1.53 0.65 1.32 1.20 7.59 1.09 − 2.86
TabSyn 1.00 2.53 2.48 1.04 2.75 2.43 0.95 0.79 1.77 1.52

Autoregressive
DP-TBART 3.30 4.46 1.98 0.53 1.17 2.68 5.03 3.90 6.28 3.05
Tab-MT 5.87 3.29 0.96 0.70 17.20 25.10 25.17 21.88 46.54 2.20

TABDAR 0.99 1.79 1.31 0.73 0.59 0.80 1.74 0.80 2.03 1.32

20https://www.clearbox.ai/blog/2022-06-07-synthetic-data-for-privacy-\
preservation-part-2
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Table 10: Performance comparison on the Joint Column Correlation metric. Numbers represent the
error rate in %, the low the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 2.70 1.19 3.16 1.21 3.56 1.53 6.93 2.84 2.87 3.53

VAE-based
TVAE 5.85 5.28 38.66 18.34 36.65 31.12 19.37 4.46 6.45 20.12

GAN-based
CTGAN 14.49 11.40 25.63 18.14 27.35 27.08 30.52 5.04 5.22 24.24

LLM-based
GReaT 9.66 3.46 4.72 8.38 17.59 59.60 70.02 59.96 − 45.16

Diffusion-based
STaSy 3.59 5.34 36.40 15.02 13.50 8.71 10.65 5.58 3.06 15.29
CoDi 6.89 5.25 3.52 1.31 22.72 6.42 67.88 6.93 10.81 20.18
TabDDPM 19.83 22.35 3.52 1.31 2.50 3.31 11.55 0.67 − 6.23
TabSyn 0.78 1.78 4.28 1.85 4.64 4.16 3.30 0.91 1.43 2.18

Autoregressive
DP-TBART 2.52 1.94 3.54 1.19 2.50 2.55 6.70 1.73 1.60 2.83
Tab-MT 5.87 3.29 0.96 0.70 17.20 25.10 25.17 21.88 46.54 2.20

TABDAR 0.61 1.45 2.99 1.36 1.36 2.27 2.83 1.86 1.50 1.89

Table 11: Performance comparison on the α-Precision metric. Numbers represent 1− α-Precision.
The lower the better. Note that the numbers in Table 1 are in % while numbers in this table are in raw
scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.0173 0.0222 0.0103 0.0040 0.0729 0.0118 0.0228 0.0186 0.1256 0.0725

VAE-based
TVAE 0.0191 0.0937 0.2322 0.0972 0.4124 0.1100 0.1610 0.0338 0.1530 0.5655

GAN-based
CTGAN 0.2933 0.0522 0.1023 0.0677 0.2528 0.0723 0.3595 0.1106 0.0177 0.1292

LLM-based
GReaT 0.1665 0.0891 0.0262 0.0836 0.4421 0.0168 0.1410 0.1454 1.0000 0.2112

Diffusion-based
STaSy 0.8385 0.0158 0.3347 0.1385 0.2250 0.0350 0.1320 0.1853 0.0809 0.1656
CoDi 0.1333 0.0963 0.0323 0.0037 0.1805 0.0471 0.1722 0.1434 0.1041 0.0825
TabDDPM 0.8385 1.0000 0.0323 0.0037 0.0444 0.0130 0.0924 0.0146 1.0000 0.0807
TabSyn 0.0062 0.0998 0.0206 0.0056 0.0239 0.0049 0.0123 0.0053 0.0457 0.0279

Autoregressive
DP-TBART 0.0256 0.0427 0.0093 0.0054 0.0054 0.0049 0.0727 0.0160 0.0149 0.0145
Tab-MT 0.0239 0.0415 0.0140 0.0146 0.1776 0.4839 0.0581 0.5507 0.9369 0.0158

TABDAR 0.0080 0.0383 0.0190 0.0052 0.0029 0.0070 0.0133 0.0147 0.0218 0.0025

E.2 TRAINING / SAMPLING TIME

In Table 15, we compare the training and sampling time of TABDAR with other methods on the
Adult dataset.

E.3 ADDITIONAL VISUALIZATIONS

We present the 2D visualizations (Figure 7 and Figure 8) of the synthetic data generated by all
baseline methods in Figure 10 and Figure 11, respectively. We also present the heat maps of all
methods on the four datasets (Figure 9) in Figure 12, Figure 13, Figure 14, and Figure 15, respectively.
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Table 12: Performance comparison on the β-Recall metric. Numbers represent 1− β-Recall. The
lower the better. Note that the numbers in Table 1 are in % while numbers in this table are in raw
scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

Interpolation
SMOTE 0.2157 0.1338 0.0045 0.0012 0.2325 0.2080 0.2390 0.1934 0.2011 0.2386

VAE-based
TVAE 0.6512 0.8324 0.4369 0.2625 0.8969 0.9392 0.7078 0.6243 0.7413 0.7672

GAN-based
CTGAN 0.8412 0.9903 0.9879 0.0530 0.8246 0.6230 0.8889 0.8472 0.7732 0.7441

LLM-based
GReaT 0.5515 0.6643 0.0034 0.0024 0.5088 0.5666 0.5796 0.6509 1.0000 0.5510

Diffusion-based
STaSy 0.9288 0.7332 0.1075 0.0029 0.6812 0.5061 0.6421 0.5686 0.6033 0.7174
CoDi 0.5998 0.4551 0.0040 0.0009 0.9032 0.4472 0.7811 0.5139 0.6505 0.8187
TabDDPM 0.9288 1.0000 0.0040 0.0009 0.5152 0.4335 0.6150 0.5206 1.0000 0.4492
TabSyn 0.5706 0.7486 0.0031 0.0007 0.5484 0.4847 0.5365 0.5146 0.5602 0.4399

Autoregressive
DP-TBART 0.6138 0.8859 0.0038 0.0010 0.5033 0.4536 0.5562 0.6044 0.6532 0.5285
Tab-MT 0.6272 0.8385 0.0067 0.0008 0.9681 0.4930 0.9179 0.9844 1.0000 0.5105

TABDAR 0.5038 0.4562 0.0040 0.0008 0.4928 0.4249 0.5162 0.3887 0.5277 0.4078

Table 13: Performance comparison on the C2ST metric. Numbers represent 100× (1− C2ST) (i.e.
in base of 10−2). The lower the better.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.61 0.00 0.00 0.00 3.05 0.44 7.69 1.93 6.49 9.80

VAE-based
TVAE 12.48 22.27 70.30 52.73 72.39 45.53 41.65 12.07 60.27 70.04

GAN-based
CTGAN 50.11 82.40 59.59 48.63 36.79 56.82 64.60 14.15 27.64 48.86

LLM-based
GReaT 28.38 16.14 6.05 18.41 46.24 31.07 52.90 56.74 − 57.15

Diffusion-based
STaSy 54.61 47.75 78.52 40.43 54.02 23.48 49.29 53.97 50.21 62.20
CoDi 47.48 42.85 0.00 0.22 80.02 15.70 52.37 27.70 91.62 81.84
TabDDPM 88.01 96.86 0.00 0.22 3.95 3.29 11.75 0.95 − 16.37
TabSyn 0.71 3.18 2.90 2.88 8.05 3.60 1.33 0.08 1.77 3.05

Autoregressive
DP-TBART 3.89 11.07 0.07 0.00 0.81 3.63 7.41 5.01 12.96 8.73
Tab-MT 8.71 9.34 0.37 0.00 99.86 99.97 91.62 74.47 100.00 1.47

TABDAR 1.27 0.55 0.00 0.74 0.47 1.55 3.43 0.1100 3.12 3.74

Table 14: Performance comparison on the Jensen-Shannon Divergence (JSD) metric. The lower the
better. Note that the numbers in Table 1 are in % while numbers in this table are in raw scale.

Method Continuous only Discrete only Heterogeous

California Letter Car Nursery Adult Beijing Default Magic News Shoppers

interpolation
SMOTE 0.0006 0.0006 0.0013 0.0008 0.0008 0.0003 0.0006 0.0008 0.0040 0.0015

VAE-based
TVAE 0.0041 0.0072 0.0323 0.0132 0.0078 0.0077 0.0052 0.0036 0.0109 0.0107

GAN-based
CTGAN 0.0182 0.0135 0.0220 0.0165 0.0038 0.0033 0.0114 0.0056 0.0078 0.0066

LLM-based
GReaT 0.0111 0.0022 0.0030 0.0068 0.0182 0.0023 0.0076 0.0107 − 0.0056

Diffusion-based
STaSy 0.0380 0.0057 0.0326 0.0146 0.0041 0.0030 0.0055 0.0107 0.0070 0.0086
CoDi 0.0152 0.0085 0.0020 0.0009 0.0073 0.0017 0.0067 0.0142 0.0092 0.0103
TabDDPM 0.0380 0.0382 0.0020 0.0009 0.0004 0.0092 0.0008 0.0013 − 0.0019
TabSyn 0.0006 0.0017 0.0033 0.0014 0.0004 0.0012 0.0003 0.0007 0.0016 0.0007

Autoregressive
DP-TBART 0.0023 0.0010 0.0023 0.0008 0.0004 0.0006 0.0025 0.0018 0.0036 0.0008
Tab-MT 0.0038 0.0019 0.0013 0.0009 0.0026 0.0024 0.0034 0.0211 0.0221 0.0007

TABDAR 0.0004 0.0010 0.0018 0.0010 0.0003 0.0004 0.0007 0.0011 0.0015 0.0008
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Table 15: Comparison of training and sampling time of different methods, on Adult dataset.

Method Training Sampling

CTGAN 1029.8s 0.8621s
TVAE 352.6s 0.5118s
GReaT 2h 27min 2min 19s
STaSy 2283s 8.941s
CoDi 2h 56min 4.616s
TabDDPM 1031s 28.92s
TabSyn 2422s 11.84s
DP-TBART 2355.8s 2.11s
Tab-MT 2352.23s 2.18s
TABDAR 2701.5s 21.66s
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(k) TabDAR (Ours)
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(l) Ground Truth

Figure 10: Kernel density estimation (KDE) plot of the 2D joint density of ‘education.num’ and
‘age’ features in the Adult dataset. The results from GOGGLE and Tab-MT are not plotted since
they either fail to generate or generate singleton synthetic data on one feature (e.g. always generate
‘education.num’ equals one).
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(l) Ground Truth

Figure 11: Scatter plots of the 2D joint density of the Longitude and Latitude features in the California
Housing dataset. Blue lines represent the geographical border of California.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

CTGAN TVAE GREAT CoDi StaSy

TabDDPM TabSyn DP-TBART Tab-MT TabMAR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 12: Heat map of synthetic data of Letter dataset.
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Figure 13: Heat map of synthetic data of Adult dataset.
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Figure 14: Heat map of synthetic data of Default dataset.
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Figure 15: Heat map of synthetic data of Magic dataset.
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