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Abstract

Integration between equations and data is ubiq-
uitously useful in the physical sciences: for ex-
ample, data assimilation plays an important role
in generating seamless data for climate and geo-
physics applications. However, in many practi-
cal scenarios, we have only partial or imprecise
knowledge of these equations, leading to mis-
specified problems, i.e. problems for which there
is no solution to the given equations when coupled
with real-world data. Physics-informed neural net-
works (PINNs) have been increasingly used for
data assimilation, yet their efficacy has primarily
been demonstrated for well-specified problems
where solutions for the given equation and data
exist. Moreover, in applications involving real-
world noisy data and complex PDEs, it is often
difficult to know whether the given problem is
mis-specified. We introduce a framework for de-
riving well-specified problems from mis-specified
problems—based on the Euler operator (related
to the Euler-Lagrange equation) and other tools
from mathematical analysis—closing the gap be-
tween problems which may be mis-specified in
practice and the already-proven theory for the
well-specified case. Based on this framework, we
propose a diagnostic tool for determining whether
given PDE problems are mis-specified, and prove
generalization bounds for mis-specified PINNs.
Our contributions enhance PINN reliability in the
presence of partial knowledge of governing equa-
tions or imperfect data.
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Understanding the equations that govern natural phenomena
and integrating them with data to model systems of interest
is a core aim of the physical sciences. In some domains, the
governing equations are well-understood. In others, how-
ever, we may have only partial knowledge of the governing
equations, yet this partial knowledge can still aid in better
modeling in the presence of potentially noisy observations.
In such settings, integrating data with governing equations
is challenged by possible mis-specification of the equations
with the given data, by which we mean that there may be
no solution to the hypothesized governing equations which
also fits the data precisely (Zou et al., 2024; Duffin et al.,
2021; Muchiri et al., 2024; Browning et al., 2020; Murphy
et al., 2023).

In practice, problems can be mis-specified in several ways.
Mis-specification can occur due to (i) noisy data, (ii) inaccu-
rate governing equations, or (iii) both. In PDE-constrained
optimization, for instance, observations may be so noisy
that there is no solution to the governing equation which
fits them (e.g. Figure 2) (c.f. Lu et al. (2021)). In com-
plex systems, the given governing equations may not be
fully understood and thus inaccurate. Mis-specification can
also occur due to non-existence of solutions to governing
equations (as we see in subsection 5.2).

Physics-informed neural networks (PINNs) are an emerging
tool for numerically solving PDEs, and are especially well-
suited for inverse problems (Raissi et al., 2019; Karnakov
et al., 2023). However, much of the PINN literature has fo-
cused on establishing the performance of PINNs for almost
exclusively well-specified problems.

In this work, we introduce a set of tools for diagnosing
and addressing mis-specified problems by reducing them to
well-specified alternatives. This is accomplished using the
Euler-Lagrange equations and other tools from mathemati-
cal analysis such as generalized functions. We harness this
toolkit to prove bounds on the error of mis-specified PINNs,
and to propose a diagnostic tool for determining whether
given problems are mis-specified.

More formally, we consider problems of the following type:

N[u] = 0 on Ω
u = f on D (1)

where N[u] = 0 represents a PDE to be solved on a do-
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main Ω, and f represents data collected and/or boundary
conditions enforced on a subset D of the domain of inter-
est. We say that Problem 1 is well-specified if there exists
a piecewise-smooth function u which satisfies Equation 1;
otherwise, the problem is mis-specified.

PINNs approach solving problems in the form of Equation 1
by minimizing a loss of the form

L[u] ∶= ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(D)

where λ > 0 is the hyper-parameter that balances the con-
tribution of two losses in the cost function (Raissi et al.,
2019). Here and throughout, we will assume that the min-
imal loss value infuL[u] is achieved by some piecewise
smooth function u. With this said, the condition that Prob-
lem 1 is mis-specified is equivalent to the condition that
minuL[u] > 0.

Our contributions: We introduce a framework for trans-
forming mis-specified problems of type 1 into well-specified
problems, with the property that every minimizer of L[u]
is a solution of the well-specified problem we define.1 This
allows us to

• Derive so-called generalization bounds of the form

∥u − u∗∥2 ≤ CL̃[u]

based on preceding theory of Mishra & Molinaro
(2022), where u∗ = argminuL[u], and L̃[u] is the
PINN loss corresponding to the well-specified problem
we construct, whose rigorous definition we postpone
to subsection 4.1.

• Propose a diagnostic tool for determining whether a
given problem is mis-specified, according to the behav-
ior of L and L̃. This is based on theory showing that,
with regularity assumptions,

– If the original PDE problem is well-specified, then
L[u] = O(L̃[u]).

– If the original PDE problem is mis-specified, then
L[u] = Ω(1) for all u, while L̃[u] = o(1) for a
certain sequence of u’s.

1. Setting
Let N[u] = 0 denote a PDE defined on a domain Ω, and
B[u] = 0 denote a set of additional conditions (typically
data-based conditions enforced at the Boundary), defined on
a datasetD such as ∂Ω. In Equation 1, we took B[u] = u−f .

Formally, a PDE problem is a pair (N ,B) of continuous dif-
ferential operators defined on sets Ω,D ⊂ Rn, respectively.

1Code to be made available at https://anonymous.
4open.science/r/EulerPINNs-42E6/README.md.

Such a PDE problem is well-specified if the system

N[u] = 0 on Ω
B[u] = 0 on D (2)

has a piecewise-smooth solution u, and mis-specified other-
wise.

Every PDE problem has an associated PINN loss L(N ,B),
which is the functional defined by

L(N ,B)[u] ∶= ∥N[u]∥L2(Ω) + λ∥B[u]∥L2(D) (3)

where λ > 0 is a hyperparameter. Where it is clear from
context, we will simply denote L = L(N ,B).

The minimizer of the PDE problem (N ,B) is defined to be
the minimizer u∗ ∈ C̃∞ of L(N ,B), if it exists, where C̃∞
denotes the class of piecewise-smooth functions on Ω. In
what follows, we will always assume that u∗ exists.2 When
we write infu or minu, we will intend the optima to be taken
over piecewise-smooth u, unless otherwise specified.

2. Overview of results
We introduce a set of tools for transforming mis-specified
PDE problems into well-specified alternatives. More specifi-
cally, we define a transformation T associating to every
PDE problem (N ,B) a necessarily well-specified PDE
problem T (N ,B), whose definition we postpone for sim-
plicity to subsection 4.1. The T -transformed problem has
the property that every minimizer of (N ,B) is a solution
to T (N ,B), as summarized by the schematic in Figure 1.
We will often denote (Ñ , B̃) = T (N ,B) and L̃ = L(Ñ ,B̃).
The T -transformation involves the action of the Euler oper-
ator EL , which is related to the Euler-Lagrange equations.
Intuitively, EL can be thought of as a first derivative in
function space; for more intuition on the T -transformation,
see Appendix A.

We demonstrate two applications of this transformation of
mis-specified problems into well-posed problems:

2.1. Bounds on generalization error of mis-specified
PINNs

Let u∗ be the minimizer of a given PDE problem, i.e. the
minimizer of a PINN loss L[u]. Mishra & Molinaro (2022)
answered the question “when does L[u] → 0 imply that
u → u∗?” for certain well-specified problems. For mis-
specified problems, the premise fails, since by definition
L[u∗] > 0, so we never have L[u] → 0.3

2For sufficient conditions on the existence of a minimizer, we
defer the reader to section 8.2 of Evans (2010).

3One may ask why we cannot simply define L̃[u] = L[u] −
minuL. The issue is that minuL is generally unknown for prob-
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Mis-specified problem (N ,B) PINN loss L ∶= L(N ,B)

Well-specified problem (Ñ , B̃) = T (N ,B) Transformed loss L̃ ∶= L(Ñ ,B̃)

Minimisers
↧

Solutions
EL

Figure 1: Outline of proposed method: mis-specified problems with associate loss L are transformed into well-specified
problems with associated loss L̃ through a procedure described in subsection 4.1 involving the Euler operator EL .

How can we derive bounds on the rate at which u→ u∗ in
the mis-specified setting? The T -transformation provides
one answer to this question: since L̃[u∗] = 0 by construc-
tion, we can indeed have L̃[u] → 0 despite the fact that
L[u] ↛ 0.

Provided sufficient regularity of the Euler operator, we
demonstrate bounds of the form

∥u − u∗∥2L2(Ω) ≤ CL̃[u]

on the generalization error of PINNs (well-specified or not).

2.2. Diagnosing when PDE problems are mis-specified

Many PDE problems are mis-specified when combined with
real-world data. On the other hand, some applied model-
ing problems may simply appear mis-specified on account
of the limitations of the modeling method, such as poor
optimization or expressivity.

How can practitioners distinguish between the cases of true
PDE problem mis-specification and that of methodological
limitations? We propose an application of the Euler operator
as a diagnostic tool for qualitatively distinguishing these
cases.

Namely, with regularity assumptions, we show that

• If the original PDE problem is well-specified, then
L[u] = O(L̃[u]).

• If the original PDE problem is mis-specified, then
L[u] = Ω(1) for all u, while L̃[u] = o(1) for a certain
sequence of u’s.

Given these facts, consider minimizing L̃[u] and record-
ing the values of L[u]. If L̃[u] tends to zero while L[u]
plateaus, this may provide some indication that the origi-
nal PDE problem is mis-specified. On the other hand, if
L̃[u] and L[u] plateau simultaneously, the lack of improve-
ment may be instead due to the modeling method, since by
construction minu L̃[u] = 0.

lems which are potentially mis-specified. Indeed, if one knew e.g.
whether or not minuL = 0, one would immediately know whether
the problem was well-specified or not.

3. Related work
The theoretical work that exists has largely focused on prob-
lems that are well-specified and have additional regularity
such as uniqueness and stability of solutions. Mishra &
Molinaro (2022; 2021); De Ryck & Mishra (2022); De Ryck
et al. (2024) all show, in a variety of well-specified set-
tings, that if u∗ is the unique solution to Equation 2, then
L[u] → 0 implies ∥u − u∗∥ → 0 in various constructed
norms. Separately, Shin (2020) show that, in well-specified
settings, PINNs are asymptotically consistent, in the sense
that ∥u−u∗∥ → 0 as the number of boundary datapoints pro-
vided grows. Toward mis-specified settings, Doumèche et al.
(2023) observe that in mis-specified settings, PINNs are not
necessarily asymptotically consistent, and show that a regu-
larization term is necessary to ensure consistency. Given the
focus of the theoretical literature on well-specified settings,
we aim to provide a general framework for reducing mis-
specified problems to well-specified alternatives, thereby
inheriting the preceding theory for the well-specified case.

PINNs are increasingly deployed in real world settings
(Wang et al.; Eusebi et al., 2024; Teisberg et al., 2021), in
which context one expects most models to be mis-specified
(Lv & Liu, 2014). In Lu et al. (2021), a mis-specified PINN
is employed by a practitioner who does not realize that the
data specified does not satisfy the governing Helmholtz
equation; in Wang et al., PINN mis-specification led to
an observation that the equation previously believed to be
governing the system of interest may not accurately model
ice-sheet dynamics.

Making such observations, however, is complicated by the
difficulty in distinguishing between the case of PDE mis-
specification and the case of methodological (e.g. optimiza-
tion, architectural, etc) shortcomings. Both cases will result
in L[u] being bounded away from zero, in which domain
the preceding theory of Mishra & Molinaro (2022) does not
apply. To illustrate this challenge, consider that, across opti-
mization schemes and architecture, it is difficult for PINNs
to achieve loss at the level of machine precision even for
well-specified problems, with loss smaller than 10−5 being
unachievable in many practical settings (Wang & Lai, 2024).
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On the other hand, in the deliberately mis-specified setting
of Lu et al. (2021), PINN loss was of order 10−6. In such
contexts, it seems that the PINN loss alone is not sufficient
to differentiate between well-specified and mis-specified
problems. In this work, we circumvent this difficulty by
considering the loss function of a necessarily well-specified
problem constructed according to the Euler operator, allow-
ing us to attribute large loss values universally to method-
ological shortcomings, rather than PDE mis-specification.

Recently, Zou et al. (2024) considers applications of physics-
informed deep learning to mis-specified problems. However,
their approach is to learn the governing dynamics automati-
cally, in a manner similar to Chen et al. (2021) and Brunton
et al. (2016).

The calculus of variations allows us to characterize min-
imizers of the loss by using variations in function space.
Relatedly, Müller & Zeinhofer (2023) and Jnini et al. (2024)
also consider variations in function space, although they do
so using energy natural gradients instead of the calculus of
variations, and consider their proposed scheme as a opti-
mization method for solving well-specified problems, rather
than examining mis-specified problems.

Lastly, there is a long history within mathematical PDEs of
defining loss functionals with the property that they are min-
imized precisely when a PDE of interest is solved (Evans,
2010). This is not the approach taken by PINNs, but it is
the approach taken by certain computational methods such
as E & Yu (2018), which design auxiliary well-behaved loss
functionals that are minimized precisely when a PDE of
interest is solved. PINN loss functionals are typically not
as well behaved as those designed by methods such as E &
Yu (2018), and in this work we study the properties of their
minimizers.

4. Formal results
4.1. Transforming mis-specified problems into

well-posed ones with the T -transformation

In this section we describe the general procedure for map-
ping mis-specified problems (N ,B) to well-specified ones
(Ñ , B̃) = T (N ,B).
This procedure involves computing a functional derivative
of the PINN loss L. This is accomplished using the Euler
operator from the calculus of variations, which we define
below in accordance with the Euler-Lagrange equation E-O;
Dacorogna (2024). We state the definition only for first order
here for readability, and postpone the general definition to
Definition E.1 in the appendix.

Definition 4.1 (Euler operator). The Euler operator is the
operator which accepts a function F (x,u,∇u) of x and the

derivatives of u up to first-order and acts according to

EL [F [u]](x) = [ ∂
∂u
−∇ ⋅ ∂

∂∇u]F (x,u,∇u) (4)

The Euler operator can be thought of as a functional deriva-
tive of ∫Ω F : the critical points u of ∫Ω F are those such
that Equation 4 equals zero for all x ∈ Ω. When set to zero
for all x, Equation 4 is referred to as the Euler-Lagrange
equation.

With this said, recall that the PINN loss L = L(N ,B) typi-
cally consists of two terms, one an integral over Ω, and one
an integral over D. The T -transformation consists of two
steps:

1. Transforming the integral over D to one over Ω. This
is typically done using either Stoke’s theorem (the case
D = ∂Ω), the theory of generalized functions such as
the Dirac delta (the case when D ⊂ Ωo), or Poincaré
duality more generally.

2. Once the loss is expressed as a single integral over Ω,
e.g.

L[u] = ∫
Ω
F [u]

we apply the Euler operator to F and define the trans-
formed problem (Ñ , B̃) accordingly:

Ñ [u] = EL [F [u]]

Fact 1. Every minimizer of L[u] = 0 is a solution to
Ñ [u] = 0, as a consequence of Theorem D.2.

The explicit form of (Ñ , B̃) is made precise by the follow-
ing theorems.

4.1.1. T -TRANSFORMATION FOR BOUNDARY DATA

The following theorem characterizes minimizers of mis-
specified problems when boundary data is employed. For
the general statement for arbitrary nonlinear PDEs, see The-
orem B.1. We state the special case for first-order below:

Theorem 4.2. Let N[u] = 0 be an arbitrary first-order
PDE, Ω ⊂ Rn a domain with piece-wise smooth boundary
∂Ω, and f smooth on ∂Ω. Additionally, let EL denote the
Euler operator. Consider the PINN loss function

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(∂Ω)

Then every minimizer of L over u ∈ C∞ is a solution to the
PDE

Ñ [u] = EL [N[u]2] = 0
on Ω, subject to the boundary conditions

B̃[u] = 2λ(u − f) − ∂N[u]2
∂un

= 0

4
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on ∂Ω, where un denotes the component of ∇u normal to
∂Ω. Thus, the loss function of the T -transformed problem,

L̃[u] = ∥EL [N[u]2] ∥2L2(Ω)+∥2λ(u − f) −
∂N[u]2
∂un

∥
2

L2(∂Ω)

satisfies min L̃[u] = 0 as long as minL[u] exists.

4.1.2. T -TRANSFORMED FOR INTERIOR DATA

The following theorem characterizes minimizers of the mis-
specified problem when interior data is employed. For the
general statement for arbitrary nonlinear PDEs, see The-
orem B.2. We state the special case of first-order PDEs
below.

Theorem 4.3. LetN[u] be a smooth first-order differential
operator of order k, andD ⊂ Ω be a finite set. Let f ∶ D Ð→
R be an arbitrary function and consider the PINN loss

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(D)

Then every minimizer of over u ∈ C̃∞ is a solution to the
PDE

Ñ [u] = EL [N[u]2] + 2λ ∑
x∈D

(u − f)δx = 0

on Ω, subject to the boundary conditions

B̃[u] = ∂N[u]2
∂un

= 0

on ∂Ω, where un denotes the component of ∇u normal to
∂Ω, and δx denotes the Dirac delta distribution centered at
x.

Moreover, if (Ñ ,B) is mis-specified, then every solution of
(Ñ , B̃) must develop singularities of order ≤ 2 precisely at
the points x ∈ D such that u(x) ≠ f(x). Namely, there are
no smooth minimizers u of L in this case.

4.2. Bounds on generalization error of mis-specified
PINNs

In this section, we demonstrate generalization bounds on the
error of PINNs, whether mis-specified or not, by employing
the loss of the T -transformed problem.

We recall the standard stability assumption of van der Meer
et al. (2022), Mishra & Molinaro (2022), and Mishra &
Molinaro (2021):

Assumption 4.4 (Stability of PDE problem (N ,B)). Sup-
pose that there exists a constant C such that

∥u − v∥ ≤ C (∥N[u] − N[v]∥ + ∥B[u] − B[v]∥)

where each norm is ∥ ⋅ ∥L2(Ω).

This assumption holds for many linear PDEs (see e.g. Chap-
ter 6 of Evans (2010) or Dautray & Lions (2000)) and
for some nonlinear PDEs whose linearized operator has
a bounded inverse (see Mishra & Molinaro (2022)).

Consider any PDE problem (N ,B), and the corresponding
well-specified problem induced by the T -transformation.
Then we have the following result:
Theorem 4.5. Suppose that Assumption 4.4 holds for the
transformed problem (Ñ , B̃), and suppose that the original
problem (N ,B) has the minimizer u∗ = argminuL[u].
Then for c = C

√
2max{1,1/

√
λ},

∥u − u∗∥L2(Ω) ≤ cL̃[u]1/2

4.3. Diagnosing when PDE problems are mis-specified

Let N[u] = 0 denote a first-order PDE on a domain Ω, and
f ∶ ∂ΩÐ→ R denote a continuous function on ∂Ω. Define

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(∂Ω)

and by EL the Euler operator. Let

L̃[u] ∶= ∥EL [N[u]2]∥2
L2(Ω)

+λ∥2(u − f) − ∂N[u]2
∂un

∥
2

L2(∂Ω)

denote the loss of the T -transformed problem (c.f. Theo-
rem 4.2).
Assumption 4.6 (Stability of EL ). Suppose that there is a
constant C such that

∥N[u]−N[v]∥W 1,2(Ω) ≤ C ∥EL [N[u]2 −N[v]2]∥L2(Ω)

for all smooth u, v on Ω. Moreover, suppose that there is a
constant D such that

∥∂uαN[u]2∥L2(∂Ω) ≤D∥N[u]∥L2(∂Ω)

where uα denotes a partial derivative of u.

For sufficient conditions for the second assumption, note
that this holds for all linear PDEs with bounded co-
efficients: writing N[u] = ∑α a(x;α)uα we see that
∂uα
N[u]2 = 2N[u]a(x;α). By Hölder’s inequality, we

have ∥∂uαN[u]2∥L2 ≤ 4 supx∈Ω a(x;α)∥N[u]∥L2 .
Theorem 4.7. Suppose that N satisfies Assumption 4.6.
Suppose

u∗ = argmin
u
L[u]

exists. Then there exists a constant c depending on N , Ω
and λ such that

L[u] ≤ c L̃[u] ∀u

if and only if
N[u∗] = 0

i.e., if and only if the original problem is well-specified.
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4.4. When is a solution to the T -transformed problem a
minimizer of L?

So far, we have shown that solving the T -transformed prob-
lem is a necessary condition for minimizing L. When is it
also sufficient? The strongest result we can obtain in this
direction is for linear PDEs. As usual, we prove the general
result for arbitrary linear PDEs in Theorem B.3, and state
the special case of first-order linear PDEs below.

Theorem 4.8. Let N[u] = 0 be a first-order linear PDE,
and let B[u] = u − f provide data for u on any subdomain
D ⊂ Ω. Consider the PINN loss function

L[u] = ∥N[u]∥2L2(Ω) + ∥u − f∥2L2(D)

Then the minimizers of L[u] are precisely the solutions to
the T -transformed problem specified by

Ñ [u] = EL [N[u]2] + 2λ(u − f) = 0

subject to the boundary conditions

B̃[u] = ∂N[u]2
∂un

= 0.

Even in the most general case of highly nonlinear PDEs, we
show that the loss L̃[u] of the T -transformed problem is
not trivial, in the sense that not every function minimizes it
unless the underlying PDE is trivial. Note that we state the
following theorem for PDEs of arbitrary order, not just first.

Theorem 4.9. Suppose that N is a differential operator
which is not identically zero on every subdomain of Ω, and
that (N ,B) is well-specified. Then not every smooth u is a
minimizer of the loss of the transformed problem, L̃[u].

5. Examples
The purpose of this section is to demonstrate the T -
transformation through two simple example problems. In
each case, we provide simple arguments that the problems
are mis-specified, but assume that the practitioner may be
ignorant of this mis-specification. In these settings, we ob-
serve how the standard PINN problem setup behaves, before
comparing it to the proposed T -transformed problem.

5.1. ODE example with interior data

Consider an ODE of the form

N[u] = u′ −G(u) = 0

on the interval [0,1] ⊂ R. Provided G is continuous and
bounded, there is a global solution to the governing equation
which passes through any given point (x0, y0). Provided G
is globally Lipschitz, there is a unique such global solution.4

4Theorem B, Section 70, Chapter 13 of Simmons (2022).

Figure 2: 10 datapoints are drawn from the function u(x) =
ex, and corrupted with Gaussian noise of variance 1/3. The
corresponding PINN loss L[u] consists of one term which
penalizes deviation from these 10 noisy datapoints, and one
term which penalizes deviation from the theorized governing
equation u = u′. The theoretical minimizer of L is plotted
in red, after being derived in Appendix F.

For example, when G is the identity, this ODE has the
solutions u(x) = αex for some α ∈ R, and hence is uniquely
determined by specifying the value of u to be u(x0) = y0 at
a single point (x0, y0) (in which case we have α = y0/ex0 ).
This particular example is showcased in Figure 2.

Therefore, when G is globally Lipschitz, the PDE problem

N[u] = u′ −G(u) = 0 on [0,1]
u(xi) = yi for 1 ≤ i ≤ n (5)

is well-specified when n = 1, and mis-specified when n > 1
for almost every choice of data.5

Suppose that this fact is not known to a practitioner, who
accidentally prescribes data which specifies the value of
u at a set of multiple points D = {xi}i≤n ⊂ (0,1). The
corresponding PINN loss function is then

L[u] = ∫
1

0
(u′(x) −G(u(x)))2dx + λ

n

∑
i=1

(u(xi) − yi)2

We will now construct the T -transformed problem corre-
sponding to this mis-specified problem, and in the case when
G is the identity, we will show that the minimum of value of
L[u] is positive, and that it is uniquely obtained by some u∗

which is also the unique solution to the transformed problem
we construct.

The first step is to transform L[u] such that it is a single
integral over [0,1]: this will allow us to subsequently apply
the Euler operator. This is accomplished by using Dirac
delta distributions:

L[u] = ∫
1

0
(u′ −G(u))2 + λ

n

∑
i=1

(u − y)2δxidx

5I.e., with probability 1, assuming any model in which the
datapoints are drawn i.i.d. from any distribution which is absolutely
continuous with respect to the Lebesgue measure.
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Figure 3: Example with fitting ux = t, ut = αx by minimizing L̃. This is well-specified only when α = 1.00. Throughout
training, we plot L̃ (blue), L (orange), and L/L̃ (green). We optimize using L-BFGS until convergence and a PINN with
width 20 and depth 8.

where y ∶ [0,1] Ð→ R is any smooth function satisfying
y(xi) = yi. Now that L[u] has the form ∫

1
0 F [u]dx, we

can apply the Euler operator to the integrand,6 resulting in

EL [(u′ −G(u))2 + λ
n

∑
i=1

(u − y)2δxi]

= 2(G(u)G′(u) − u′′) + 2λ
n

∑
i=1

(u − y)δxi

Applying the natural boundary conditions of Theorem D.2,
which enforce that ∂F /∂u′ = 0 at the boundary {0,1}, we
recover that the governing equation u′ = u must be satisfied
at the boundaries. The T -transformed problem is therefore
determined by

Ñ [u] = (G(u)G′(u) − u′′)

+ λ
n

∑
i=1

(G(u) − y)δxi
= 0 on [0,1]

B̃[u] = u − u′ = 0 on {0,1}

In the appendix, we solve this problem exactly and demon-
strate that it has a unique solution u∗ ∈ C̃∞ when G is
the identity. Coupled with the fact that F [u] is convex in
(u,u′) in this case, we see that L[u] must have u∗ as a
unique minimizer via Theorem D.2.

Taken together, we have shown that the minimum minuL >
0 is achieved by a unique piecewise smooth u∗, which is
also the unique solution to the T -transformed problem.

5.2. PDE example with boundary data

In the previous section, problem mis-specification was due
to a mismatch between the governing equation N[u] = 0
and the provided data. In this section, we will see how prob-
lem mis-specification can occur as a result of incompatibility
within a system of governing equations.

6Note that Theorem D.2 does not apply here, because the inte-
grand F [u] is not C2. Nevertheless, the Euler-Lagrange equation
still holds in this context, per Konjik et al. (2008) and Derr &
Kinzebulatov (2007)

Consider the function u(x, y) = xy on the unit square
[0,1]2 ⊂ R. This function satisfies the system of PDEs

∂u
∂x

= y
∂u
∂y

= x
(6)

but clearly not the system

∂u
∂x

= y
∂u
∂y

= αx
(7)

where α ≠ 1 is arbitrary. In fact, for α ≠ 1, Equation 7 has
no C2 solutions (not even locally) on any open set U ⊂ R.
To see this, note that if u ∈ C2(U), then

1 = ∂2u

∂y∂x
= ∂2u

∂x∂y
= α

In this case, the argument above was sufficient to prove
that Equation 7 is a mis-specified system.7 In more general
cases, however, it may be much less clear if a problem is
mis-specified.

We consider a practitioner who uses a PINN to fit Equation 7
for general α. So that the problem is uniquely determined,
as usual, we enforce the boundary conditions that u = f on
the boundary ∂[0,1]2 of the square, for arbitrary smooth f .
This yields the PINN loss function

L[u] = ∫
1

0
∫

1

0
(ux − y)2 + (uy − αx)2dxdy

+ λ[∫
1

0
(u − f)2(0, y)dy + ∫

1

0
(u − f)2(x,0)dx

+ ∫
1

0
(u − f)2(1, y)dy + ∫

1

0
(u − f)2(x,1)dx]

Again, the first step is to transform L[u] such that it is a
single integral over the entire domain Ω = [0,1]2: this will

7In fact, that this system is mis-specified can be
seen to be an example of the much more general
Cauchy–Kovalevskaya–Kashiwara theorem.

7
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Figure 4: Predicted u as a result of minimizing the PINN loss L considered in subsection 5.2, with α ∈ {1.00,1.01}. From
left to right: (i) ground truth for α = 1.00; (ii) PINN prediction for α = 1.00; (iii) PINN prediction for α = 1.01; (iv)
difference between PINN predictions for α = 1.00,1.01. There is little difference between the learned u fields: the relative
error is less than 0.5%. Additionally, each prediction has less than 0.5% relative error from the ground truth for α = 1.00.

subsequently allow us to apply the Euler operator. Here, this
is accomplished using Green’s theorem: one can see that
the sum of integrals multiplied by λ has the alternate form

λ∫
C
(2y − 1)(u − f)2dx + (2x − 1)(u − f)2dy (8)

where C is a curve traversing ∂Ω counter-clockwise. By
Green’s theorem, Equation 8 is equal to

λ∫
1

0
∫

1

0
4(u − f)(ux + uy)dxdy

And thus we may write L[u] with a single integral as

L[u] = ∫
Ω
(ux − y)2 + (uy − αx)2 + 4λ(u − f)(∇ ⋅ u)

Finally, we can apply the Euler operator to the integrand,
resulting in the Laplacian −2∆u. Applying the natural
boundary conditions of Theorem D.2, which enforce that
∂F /∂∇u ⋅ n at the boundary ∂Ω, we recover that u must
satisfy certain Robin boundary conditions. Taken together,
the T -transformed is the Poisson problem:

Ñ [u] = −2∆u = 0 for x, y ∈ [0,1]2

B̃1[u] = 2(ux − y) + 4λ(u − f) = 0 for x ∈ {0,1}
B̃2[u] = 2(uy − αx) + 4λ(u − f) = 0 for y ∈ {0,1}

This problem has a unique solution u∗ ∈ L2([0,1]2), per
Lanzani & Méndez (2006). Again, coupled with the fact that
the integrand of L[u] is convex in u and its derivatives, we
see thatL[u] has u∗ as a unique minimizer via Theorem D.2.
Moreover, we remark that this problem satisfies Assumption
4.4, per Theorem 5.2 of Lanzani & Méndez (2006).

In Figure 4, we plot the PINN predictions for u with sys-
tem of governing equations given by Equation 7, with
α = 1.00,1.01. As expected, the predictions are in close
agreement with each other and with the ground truth for
α = 1.00 (which is u(x, y) = xy). However, when plotting
L and L̃ in each case, L is bounded away from zero in only
the cases when α ≠ 1.00: the results are shown in Figure 3.

5.3. Redux

In each of the previous cases, we have presented mis-
specified PDE problems (N ,B) and shown how the well-
specified T -transformed problem (Ñ , B̃) is constructed so
that every minimizer of (N ,B) is a solution to (Ñ , B̃).
We emphasize that nearly everything shown in the previous
examples about the construction of the transformed problem
generalizes: in any dimension, a finite number of interior
datapoints can always be handled via Dirac delta distribu-
tions, and boundary data can always be handled by Stokes’
theorem. Precise versions of these statements are provided
in Theorem 4.2 and Theorem 4.3.

Moreover, while the previous examples may seem to have
involved tedious calculations, nearly all of these calculations
are mechanistically computable with automatic differenti-
ation in TensorFlow or PyTorch. Lastly, we remark that
the T -transformed problem is always well-specified, but
its solutions may not always be unique. In these examples
presented here, and for certain well-behaved PDE in general
(see Theorem 4.8), uniqueness holds.

6. Conclusion
In this paper, we introduced a framework to derive well-
specified PDE problems from mis-specified ones and used
it to prove error bounds for mis-specified PINNs. We also
proposed a diagnostic tool to detect mis-specified problems.
As our work is primarily theoretical, future research should
focus on experimental validation, particularly to test the
robustness of our diagnostic tool in practical settings. Ad-
ditionally, there is potential for theoretical advancements
by relaxing the assumptions needed to prove error bounds
and tool guarantees, with insights likely drawn from the
stability and regularity of the Euler operator in the calculus
of variations.
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Doumèche, N., Biau, G., and Boyer, C. Convergence and
error analysis of pinns. 2023. doi: arXiv:2305.01240.

Duffin, C., Cripps, E., Stemler, T., and Girolami,
M. Statistical finite elements for misspecified mod-
els. Proceedings of the National Academy of Sci-
ences, 118(2):e2015006118, January 2021. ISSN 0027-
8424, 1091-6490. doi: 10.1073/pnas.2015006118.
URL https://pnas.org/doi/full/10.1073/
pnas.2015006118.

E, W. and Yu, B. The deep ritz method: A deep
learning-based numerical algorithm for solving vari-
ational problems. Communications in Mathematics
and Statistics, 6(1):1–12, March 2018. ISSN 2194-
6701, 2194-671X. doi: 10.1007/s40304-018-0127-z.
URL http://link.springer.com/10.1007/
s40304-018-0127-z.

Eusebi, R., Vecchi, G. A., Lai, C.-Y., and Tong, M. Re-
alistic tropical cyclone wind and pressure fields can
be reconstructed from sparse data using deep learn-
ing. Communications Earth Environment, 5(1):8,
January 2024. ISSN 2662-4435. doi: 10.1038/
s43247-023-01144-2. URL https://www.nature.
com/articles/s43247-023-01144-2.

Evans, L. C. Partial differential equations. American
Mathematical Society, Providence, R.I., 2010. ISBN
9780821849743 0821849743.

Jnini, A., Vella, F., and Zeinhofer, M. Gauss-newton natu-
ral gradient descent for physics-informed computational
fluid dynamics, 2024.

Karnakov, P., Litvinov, S., and Koumoutsakos, P. Solving
inverse problems in physics by optimizing a discrete
loss: Fast and accurate learning without neural networks.
PNAS Nexus, 3(1):pgae005, December 2023. ISSN 2752-
6542. doi: 10.1093/pnasnexus/pgae005. URL https:
//academic.oup.com/pnasnexus/article/
doi/10.1093/pnasnexus/pgae005/7516080.

9

https://encyclopediaofmath.org/wiki/Euler_operator
https://encyclopediaofmath.org/wiki/Euler_operator
https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Lagrange_equation&oldid=1224640696
https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Lagrange_equation&oldid=1224640696
https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Lagrange_equation&oldid=1224640696
https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0652
https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0652
https://pnas.org/doi/full/10.1073/pnas.1517384113
https://pnas.org/doi/full/10.1073/pnas.1517384113
https://www.nature.com/articles/s41467-021-26434-1
https://www.nature.com/articles/s41467-021-26434-1
https://www.worldscientific.com/worldscibooks/10.1142/q0451
https://www.worldscientific.com/worldscibooks/10.1142/q0451
https://link.springer.com/deleted
https://link.springer.com/deleted
https://link.springer.com/10.1007/s10444-022-09985-9
https://link.springer.com/10.1007/s10444-022-09985-9
https://academic.oup.com/imajna/article/44/1/83/6989836
https://academic.oup.com/imajna/article/44/1/83/6989836
http://link.springer.com/10.3103/S1066369X07050040
http://link.springer.com/10.3103/S1066369X07050040
https://pnas.org/doi/full/10.1073/pnas.2015006118
https://pnas.org/doi/full/10.1073/pnas.2015006118
http://link.springer.com/10.1007/s40304-018-0127-z
http://link.springer.com/10.1007/s40304-018-0127-z
https://www.nature.com/articles/s43247-023-01144-2
https://www.nature.com/articles/s43247-023-01144-2
https://academic.oup.com/pnasnexus/article/doi/10.1093/pnasnexus/pgae005/7516080
https://academic.oup.com/pnasnexus/article/doi/10.1093/pnasnexus/pgae005/7516080
https://academic.oup.com/pnasnexus/article/doi/10.1093/pnasnexus/pgae005/7516080


Submission and Formatting Instructions for ICML 2023

Konjik, S., Kunzinger, M., and Oberguggenberger, M.
Foundations of the calculus of variations in general-
ized function algebras. Acta Applicandae Mathemat-
icae, 103(2):169–199, September 2008. ISSN 0167-
8019, 1572-9036. doi: 10.1007/s10440-008-9228-0.
URL http://link.springer.com/10.1007/
s10440-008-9228-0.

Lanzani, L. and Méndez, O. The poisson’s problem for the
laplacian with robin boundary condition in non-smooth
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A. Intuition for T -transformation
Intuitively, the T -transformation amounts to taking a first derivative of the PINN loss L in function space, so that the
solutions to T (N ,B) are precisely the critical points of L. Importantly, this is sensible because critical points of L in
function space are often genuine minima (see e.g. Theorem 4.8), in contrast to the typically non-convex loss landscapes
encountered in parameter space within machine learning.

The T -transformation is made precise by Theorem 4.2 (the case D is the boundary of Ω) and Theorem 4.3 (the case
when D contains interior points of Ω). In each case, we are able to characterize the critical points of L as solutions to the
Euler-Lagrange equations for a suitable Lagrangian, and the “first-derivative in function space” is computed with the Euler
operator, which we denote by EL .

By transforming mis-specified PDE problems into well-specified ones, the T -transformation provides one avenue for
proving bounds on generalization error of mis-specified PINNs, as well as guarantees about the diagnostic tool we propose.
At present, such statements require assumptions (namely, 4.4 and 4.6) about the stability and regularity of the EL operator,
which is a well-studied area with the field of the calculus of variations. In future work, we expect that many insights can be
drawn from this area in order to relax these assumptions.

B. Generalized theorem statements
Here we state versions of Theorem 4.2, Theorem 4.3 and Theorem 4.8 generalized to the case of higher-order derivatives.

Theorem B.1. Let N[u] = 0 be an arbitrary first-order PDE, Ω ⊂ Rn a domain with piece-wise smooth boundary ∂Ω, and
f smooth on ∂Ω. Additionally, let EL denote the Euler operator. Consider the PINN loss function

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(∂Ω)

Then every minimizer of L over u ∈ C∞ is a solution to the PDE

Ñ [u] = EL [N[u]2] = 0

on Ω, subject to the boundary conditions the system of boundary conditions

B̃(γ)[u] =
⎧⎪⎪⎨⎪⎪⎩

EL (γ) [N[u]2] γ ≠ ∅
EL (γ) [N[u]2] + 2λ(u − f) γ = ∅

= 0

on ∂Ω for every multi-subset γ of [n] of size k, where EL (γ) is defined in Definition E.1. Thus, the loss of the T -transformed
problem,

L̃[u] = ∥EL [N[u]2] ∥2L2(Ω) + ∥2λ(u − f) + EL (∅) [N[u]2]∥
2

L2(∂Ω)
+ ∑

γ≠∅

∥EL (γ) [N[u]2]∥
2

L2(∂Ω)

satisfies min L̃[u] = 0 as long as minL[u] exists.

Theorem B.2. Let N[u] be a smooth first-order differential operator of order k, and D ⊂ Ω ⊂ Rn be a finite set. Let
f ∶ D Ð→ R be an arbitrary function and consider the PINN loss

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(D)

Then every minimizer of over u ∈ C̃∞ is a solution to the PDE

Ñ [u] = EL [N[u]2] + 2λ ∑
x∈D

(u − f)δx = 0

on Ω, subject to the system of boundary conditions

B̃(γ)[u] = EL (γ) [N[u]2] = 0

on ∂Ω for every multi-subset γ of [n] of size k, where EL (γ) is defined in Definition E.1 and δx denotes the Dirac delta
distribution centered at x.

12



Submission and Formatting Instructions for ICML 2023

Theorem B.3. Let N[u] = 0 be a linear PDE, and let B[u] = u − f provide data for u on the entire domain D = Ω.
Consider the PINN loss function

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(Ω)

The minimizers of L[u] are precisely the solutions to the T -transformed problem

Ñ [u] = EL [N[u]2] + 2λ(u − f) = 0

on Ω, subject to the system of boundary conditions

B̃(γ)[u] = EL (γ) [N[u]2] = 0

on ∂Ω for every multi-subset γ of [n] of size k, where EL (γ) is defined in Definition E.1.

C. Proofs
Proof of Theorem B.1. Denote Σ = ∂Ω, so that Ω is an orientable n-manifold and Σ is an n − 1-manifold. Extend f to a
smooth function on Ω (this can be done via the tubular neighborhood theorem and bump functions). Via this extension,
ω = (u − f)2dΣ is an n − 1-form on Ω. By Stokes’ theorem,

∫
Σ
ω = ∫

Ω
dω

First of all, note that G is a total derivative, where dω = GdΩ, so it is a null Lagrangian by Lemma 5 of Olver &
Sivaloganathan (1988). This is for us to prove what Ñ must be: note that then

L[u] = ∫
Ω
N[u]2dΩ + λdω

and so the Euler-Lagrange equation reads

EL [N[u]2 + λG] = EL [N[u]2] + λEL [G] = EL [N[u]2]

by linearity of EL and the fact that G is a null Lagrangian. And so we have

Ñ [u] = EL [N[u]2]

In order to compute B̃, we must know the normal derivative of dω at ∂Ω. To do so, we change coordinate if necessary
such that in a local chart Ω is given by the half-space {x ∈ Rn ∶ x1 ≥ 0}, and the boundary Σ is given by the plane
{x ∈ Rn ∶ x1 = 0}.
In this case, we have ω = (u − f)2dx2 ∧⋯ ∧ dxn, and so

dω = 2(u − f)(u1 − f1)dx1 ∧⋯ ∧ dxn = GdΩ

where G = 2(u−f)(u1−f1). Then we have ∂G
∂u1
= 2(u−f). Additionally, ∂G

∂uα
= 0 for any α other than {x1}. Consequently,

we have
∂G

∂un
= 2(u − f)

where un denotes the partial derivative with respect to the component of u normal to Σ.

Observe from Definition E.1 that EL (γ) depends on uα for ∣α∣ = 1 only when γ = ∅, and that EL (γ) acts linearly for every
γ. We therefore derive that

EL (γ) [N[u]2 + λG] =
⎧⎪⎪⎨⎪⎪⎩

EL (γ) [N[u]2] γ ≠ ∅
EL (γ) [N[u]2] + 2λ(u − f) γ = ∅

and thus that the T -transformed problem is specified by the Ñ [u] = 0 and the system of boundary conditions

B̃(γ)[u] =
⎧⎪⎪⎨⎪⎪⎩

EL (γ) [N[u]2] γ ≠ ∅
EL (γ) [N[u]2] + 2λ(u − f) γ = ∅

= 0

for every multi-subset γ of [n] of size k.

13
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Proof of Theorem B.2. We write

∥u − f∥2L2(D)
= ∑

x∈D

((u − f)(x))2 = ∫
Ω
∑
x∈D

(u − f)2δx

The conclusion then follows from linearity of EL and EL (γ) according to Definition E.1 and the generalizations of
Theorem D.2 to generalized functions provided in (Konjik et al., 2008; Simmons, 2022; Derr & Kinzebulatov, 2007).

Proof of Theorem B.3. We have

L[u] = ∫
Ω
N[u]2 + λ(u − f)2 =∶ ∫

Ω
F [u]

By linearity of EL and EL (γ) and the fact that (u − f) does not depend on uα for any α ≠ ∅, we immediately have that u∗

solves

Ñ [u] = EL [N[u]2] + 2λ(u − f) = 0

on Ω, subject to the system of boundary conditions

B̃(γ)[u] = EL (γ) [N[u]2] = 0

on ∂Ω for every multi-subset γ of [n] of size k. To show uniqueness, we appeal to Theorem D.2 and its generalizations in
Dacorogna (2024) (see the exercises following Chapter 1), which state that every solution to (Ñ , B̃) is unique when the map
(uα)∣α∣≤k ↦ F [u] is strictly convex for all x ∈ Ω. To check this, write

N[u] = ∑
∣α∣≤k

a(x;α)uα

where a(x;α) denotes the coefficient function of uα in the linear PDE N[u] = 0. It follows that N[u]2 is convex as a
function of (uα)∣α∣≤k, while λ(u − f)2 is convex; hence their sum is also convex as desired.

Proof of Theorem 4.9. On the contrary, suppose every smooth u minimizes L̃[u]. Since the original problem is well-
specified, there exists a loss minimizer u∗ such that L[u∗] = 0, and hence L̃[u∗] = 0. Since then EL [N[u]2] = 0 for every
u, by definition, N[u]2 is a null Lagrangian.

Define f to be the trace of u∗, i.e. its value on ∂Ω. By Theorem 1 of Section 8.1.4. of Evans (2010), we know that every
smooth u with trace f satisfies L[u] = L[u∗] = 0, so in particularN[u] = 0 for all u with trace f . Now let U be an arbitrary
proper open subset of Ω. For any smooth ũ defined on U , we can smoothly extend ũ to a function u on Ω with trace f (e.g.
using bump functions). But then N[ũ] = 0 on U for all smooth ũ, and so N ≡ 0 on U .

Proof of Theorem 4.7. First of all, if N[u∗] ≠ 0, it follows from continuity of N that ∥N[u∗]∥L2(Ω) > 0, and so L[u] > 0.
Since u∗ is the minimizer of L, we have that L[u] is lower-bounded by a constant over all u. On the other hand, the fact
that L has a minimum at u∗ implies that L̃[u∗] = 0 by construction. Thus, there can be no constant C ′ with the desired
property. This suffices for one direction of the proof.

If N[u∗] = 0, it follows that u∗ is a global minimizer of ∥N[u]∥2L2(Ω), and so we have EL [N[u∗]] = 0. Applying the first
inequality of Assumption 4.6, we then have

∥N[u]∥L2(Ω) ≤ ∥N[u]∥W 1,2(Ω) ≤ C ∥EL [N[u]2]∥L2(Ω)

for all u. Applying the second inequality of Assumption 4.6 and the trace theorem, we have

∥∂N[u]
2

∂un
∥
L2(∂Ω)

≤D∥N[u]∥L2(∂Ω) ≤ c′D∥N[u]∥W 1,2(Ω)

14
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where c′ is a constant depending only on Ω. Finally, we apply each of the above to conclude that

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(∂Ω)

≤ ∥N[u]∥2W 1,2(Ω) + λ∥u − f∥2L2(∂Ω)

≤
√
2∥N[u]∥W 1,2(Ω) + λ∥2(u − f)∥2L2(∂Ω)

≤ (
√
2 + λc′2D2)∥N[u]∥2W 1,2(Ω) + λ∥2(u − f)∥2L2(∂Ω) − λ∥

∂N[u]2
∂un

∥
2

L2(∂Ω)

≤ (
√
2 + λc′2D2)∥N[u]∥2W 1,2(Ω) + λ∥2(u − f) −

∂N[u]2
∂un

∥
2

L2(∂Ω)

≤ C2(
√
2 + λc′2D2) ∥EL [N[u]2]∥2

L2(Ω)
+ λ∥2(u − f) − ∂N[u]2

∂un
∥
2

L2(∂Ω)

≤ c L̃[u]

where, in order, we applied the inequality ∥ ⋅ ∥L2 ≤ ∥ ⋅ ∥W 1,2 , multiplication by
√
2, adding the non-negative quantity

c′2D2∥N[u]∥2W 1,2(Ω) − ∥
∂N[u]2
∂un

∥
2

L2(∂Ω)

≥ 0

the reverse triangle inequality, the first inequality of Assumption 4.6, and lastly the definition

c ∶=max{1,C2(
√
2 + λc′2D2)}

Proof of Theorem 4.5. By the stability of (Ñ , B̃), there exists a constant C > 0 such that

∥u − v∥ ≤ C(∥Ñ [u] − Ñ [v]∥ + ∥B̃[u] − B̃[v]∥)

Since u∗ minimizes L, it also solves the T -transformed problem, i.e. Ñ [u∗], B̃ = 0. We then have

∥u − u∗∥ ≤ C(∥N[u]∥ + ∥B[u]∥)

and so
∥u − u∗∥2 ≤ C2(∥N[u]∥ + ∥B[u]∥)2 ≤ 2C2 (∥N[u]∥2 + ∥B[u]∥2) ≤ 2C2max{1,1/λ}L̃[u]

D. Background on PDEs and calculus of variations
D.1. Partial differential equations

Partial differential equations (PDEs) are ubiquitous in science and engineering, and are widely used to model physical
phenomena. In the most general setup, Ω ⊂ Rn denotes a domain of interest (e.g. a subset of space-time), and we seek a
smooth function

u ∶ ΩÐ→ Rm

such that a PDE
N[u] = 0 (9)

is satisfied at all points x ∈ Ω, whereN[u] is a differential operator8 applied to u. To fix notation, if u is a function of several
variables—say, x and t—we will let ux and ut denote the respective partial derivatives. More generally, to differentiate
multiple times—say, twice with respect to x and once with respect to t—we will denote uxxt. Most generally, we will denote

8E.g. ∂
∂t
+

∂2

∂x2
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uα to be the partial derivative with respect to an arbitrary multiset of variables: in the case above, α was the string xxt. We
will let ∣α∣ denote the total number of derivatives taken, which in this case is 3. Lastly, we will denote by ∂α the operation of
partial differentiation with respect to the collection of variables specified by α. With this said, a differential operator N of
order k is a functional which accepts a Ck function u and a point x ∈ Ω as input, and outputs a value depending only on x
and the derivatives of u up to order k, i.e. {uα}∣α∣≤k.

As currently stated, Equation 9 tends to have many solutions; for this reason, u is often additionally constrained by a
requirement specifying its value to be f on a subset D ⊂ Ω of the domain:

u∣D = f ∣D

This constraint is the general methodology by which data is incorporated into PDE-based modeling problems: D represents
the subdomain on which data is available, and f represents the observed data.

In the general case, exactly what data should be specified in order for u to be uniquely specified is a major open question in
mathematics: for example, when N = ∇2, it is known that D should be ∂Ω, and when N[u] = 0 denotes the Navier-Stokes
equations, it is an open question what D and f must be.

D.2. Integration of data with PDEs

While well-posedness in the general case remains an open question inside mathematics, the issue becomes further complicated
by the specifics of the setup which practitioners may be confronted with. For instance, practitioners may have access to a
set of data (or otherwise) constraints D beyond what would be required to uniquely specify a solution to the underlying
problem. Or, practitioners may hope to encode situation-specific terms into their PDEs which do appear in the versions
which are well studied in the mathematical literature.

One hope of PINNs is that they will be capable of addressing such integration issues in the general case. But if this hope is
to be realized, PINNs must be able to handle ill-posed as well as well-posed cases.

D.3. Physics-informed neural networks

PINNs are neural networks which optimize an objective intended to enforce ??. Specifically, PINNs minimize a loss function
which is the Lagrangian relaxation

L[u] = ∥N[u]∥2L2(Ω) + λ∥u − f∥2L2(D)
(10)

where λ > 0 is a hyperparameter.

The PINN loss is convenient in part because it is able to handle mis-specified problems: in the mis-specified case, one may
still solve the optimization problem minuL[u] > 0, provided that the minimum exists.

D.4. The calculus of variations

The calculus of variations is a field of analysis used to find minima u of functionals of the form

I[u] = ∫
Ω
F (x,{uα}∣α∣≤k)dx

By analogy to the first derivative test in calculus, a necessary condition for u to minimize I[u] is that I ′[u] = 0, where
I ′[u] is some suitable notion of a “derivative” of I with respect to u. This notion is made precise by the following definition:
(E-O) (E-L, 2024)

Definition D.1 (Euler operator). The Euler operator is the operator which accepts a function F (x,{uα}∣α∣≤k) of x and the
derivatives of u and acts according to

EL = ∑
∣α∣≤k

(−1)∣α∣∂α
∂

∂uα

Concretely, when k = 1 and thus F = F (x,u,∇u), we have

EL [F ](x) = [ ∂
∂u
−∇ ⋅ ∂

∂∇u]F (x,u,∇u)
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EL generalizes the notion of a derivative with respect to u. With this said, the intuition from calculus that every minimizer
of u should satisfy “I ′[u] = 0” will be replaced with the condition that EL [F [u]] = 0.

The following theorem makes this precise by providing a set of necessary and sufficient conditions for u to minimize I[u].
For simplicity, we state the theorem only for k = 1, and include the more general version in the appendix.

Theorem D.2 (Theorem 2.1 of (Dacorogna, 2024)). Let F (x,u,∇u) be twice-continuously differentiable on Ω ×R ×Rn,
and consider the minimization problem

inf
u∈C2(Ω,R)

I[u] (11)

If Equation 11 has a minimizer u∗ ∈ C2(Ω,R) then u∗ satisfies the Euler-Lagrange equation

EL [F [u∗]] = 0 (12)

on the domain Ω, subject to the boundary conditions

∂F

∂∇u ⋅ n = 0

on the boundary ∂Ω, where n denotes a vector normal to the boundary. Conversely, if u∗ satisfies Equation 12 and the map
(α,β) ↦ F (x,α, β) is convex for all x ∈ Ω, then u∗ is a minimizer of Equation 11 Moreover, if the map is instead strictly
convex, then u∗ is the unique minimizer of Equation 11.

E. Statement and derivation of Euler-Lagrange equations for higher derivatives
The authors were unable to find statements of the Euler-Lagrange equations with natural boundary conditions in full
generality in the literature. For this reason, we derive the equations and appropriate boundary conditions here, remarking
that they are references without statement in texts such as Dacorogna (2024); Evans (2010).

E.1. Statement

Let Ω ⊂ Rn be an oriented n−manifold with boundary ∂Ω, and let n̂ denote a vector normal to ∂Ω. Let F be a differential
operator of order k, and u a smooth function on Ω.

Definition E.1 (The general Euler operator and natural boundary conditions). The Euler-operator EL is defined by the
Euler-Lagrange equation

EL [F ] = ∑
∣α∣≤k

(−1)∣α∣∂αFuα

and the natural boundary conditions are defined by the set of equations

EL (γ)[F ] = ∑
µ∈[n]

n̂µ ∑
∣α∣+∣γ∣+1≤k

(−1)∣α∣∂αFuαγµ

for every γ a multi-subset of [n] of size k.

E.2. Derivation

Let
I[u] = ∫

Ω
F (x,{uα}∣α∣≤k)

where Ω is a domain with smooth boundary ∂Ω, F is a smooth function of x and the derivatives of u up to order k, for some
k ≥ 0. We recall the definition of the first-variation of I, as it appears in Dacorogna (2024):

δI[u] = ∫
Ω
∑
∣α∣≤k

Fuαδuα

By construction, δI[u∗] = 0 for all smooth δu whenever u∗ extremizes I[u]. We will now derive the Euler-Lagrange
equations and the appropriate boundary conditions from the statement that δI[u] = 0.
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We will generally use µ1, µ2,⋯ to denote dummy indices, and employ the Einstein summation convention. Let us define
recursively the k vector fields

G(k)µ1⋯µk
= Fuµ1⋯µk

G(i)µ1⋯µi
= Fuµ1⋯µi

− ∂µi+1G
(i+1)
µ1⋯µi+1

∀0 ≤ i < k

Claim: we have δI[u∗] for all smooth δu if and only if u∗ solves the system

G(0) = 0 on Ω

G(i)µ1⋯µi
nµi = 0 on ∂Ω, ∀µ1⋯µi−1, ∀0 < i ≤ k

where n is a vector normal to ∂Ω.

Proof of claim: Recalling Green’s first identity, we have for any smooth vector field G ∶ ΩÐ→ Ri+1 that

∫
Ω
Gµ1⋯µi+1δuµ1⋯µi+1 = ∫

∂Ω
Gµ1⋯µi+1nµi+1δuµ1⋯µi − ∫

Ω
∂µi+1Gµ1⋯µi+1δuµ1⋯µi

We will assume the inductive hypothesis that

∫
Ω

k

∑
i=ℓ

Fuµ1⋯µi
δuµ1⋯µi = −∫

Ω
G(ℓ)µ1⋯µℓ

δuµ1⋯µℓ
+

k

∑
i=ℓ

(−1)i−ℓ ∫
∂Ω

G(i)µ1⋯µi
nµiδuµ1⋯µi

Note that the left hand side is equal to δI[u] when ℓ = 0. On the other hand, when ℓ = k, the equality is trivially true by the
definition of G(k).

We will proceed by assuming the inductive hypothesis for ℓ, and prove it for ℓ − 1. We have

∫
Ω

k

∑
i=ℓ−1

Fuµ1⋯µi
δuµ1⋯µi = ∫

Ω

k

∑
i=ℓ

Fuµ1⋯µi
δuµ1⋯µi − ∫

Ω
Fuµ1⋯µℓ−1

δuµ1⋯µℓ−1

= −∫
Ω
G(ℓ)µ1⋯µℓ

δuµ1⋯µℓ
− ∫

Ω
Fuµ1⋯µℓ−1

δuµ1⋯µℓ−1

+
k

∑
i=ℓ

(−1)i−ℓ ∫
∂Ω

G(i)µ1⋯µi
nµiδuµ1⋯µi

= −∫
∂Ω

G(ℓ)µ1⋯µℓ
nµℓ

δuµ1⋯µℓ−1
+ ∫

Ω
∂µℓ

G(ℓ)µ1⋯µℓ
δuµ1⋯µℓ−1

− ∫
Ω
Fuµ1⋯µℓ−1

δuµ1⋯µℓ−1
+

k

∑
i=ℓ

(−1)i−ℓ ∫
∂Ω

G(i)µ1⋯µi
nµiδuµ1⋯µi

= −∫
Ω
G(ℓ−1)µ1⋯µℓ−1

δuµ1⋯µℓ−1
+

k

∑
i=ℓ−1

(−1)i−ℓ ∫
∂Ω

Gi
µ1⋯µi

nµiδuµ1⋯µi

as desired.

With this claim proven, consider the case ℓ = 0. We then have

δI[u] = −∫
Ω
G(0)δu +

k

∑
i=0

(−1)i ∫
∂Ω

G(i)µ1⋯µi
nµiδuµ1⋯µi

Thus, we have δI[u∗] = 0 for all smooth δu if and only if u∗ solves the system

G(0) = 0 on Ω

G(i)µ1⋯µi
nµi = 0 on ∂Ω, ∀µ1⋯µi−1, ∀0 < i ≤ k

as desired. This final implication requires an argument which is more technical than is appropriate here, so we defer the
reader to the proofs of either Theorem 2.1 of Dacorogna (2024) or Chapter 8 of Evans (2010). Intuitively, one can prove that
G(0) must vanish on any arbitary open subset U of Ω by considering δu to be a bump function on U ; this will not change the
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values of δu and its derivatives at the boundary ∂Ω. Similarly, one can adjust the derivatives of δu at the boundary arbitrarily
so conclude that the specified boundary conditions must hold.

Finally, we specify the form of the general Euler operator and the natural boundary conditions. The quantity G(0) derived in
the previous section is exactly the action of the Euler operator on F [u]. In general, we have

G(0) =
k

∑
i=0

(−1)i∂µ1⋯µiFuµ1⋯µi

G(ℓ)ν1⋯νℓ
=

k−ℓ

∑
i=0

(−1)i∂µ1⋯µiFuµ1⋯µiν1⋯νℓ

i.e.

G(0) = ∑
∣α∣≤k

(−1)∣α∣∂αFuα

G
(∣β∣)
β = ∑

∣α∣+∣β∣≤k

(−1)∣α∣∂αFuαβ

Finally, we define

Fact E.2 (The general Euler operator and natural boundary conditions).

EL [F ] = G(0)

EL (γ)[F ] = G(∣γ∣+1)γµ nµ

The first line is the Euler-Lagrange equation, and the second line represents the natural boundary conditions, of which there
are as many as multi-subsets γ of [n] of size at most k − 1. For instance, when n = 1, there are k boundary conditions.

F. Exact solution to the ODE example with interior data
Consider the equation

ü − u = (u − y)1 − γ
γm

m

∑
i=1

δxd
i

(13)

and recall that the solutions to the equation ü − u = 0 are

u(x) = c1ex + c2e−x (14)

for some c1, c2 ∈ R.

Now we seek to solve Equation 13. Note that except at the finitely many datapoints {xd
i }i≤m, the equation is equivalent to

ü = u. Therefore, on the intervals between datapoints, u(x) takes the form of Equation 14, where the constants c1, c2 may
be different on each interval.

How can we determine these constants? Notice that in Equation 13, ü may blow up at the datapoints xd
i . This is because the

defining property of δxd
i

is that it is infinite at xd
i . However, it will still integrate to a finite quantity. This means that we can

expect u̇ to be finite everywhere, although it might unfortunately be discontinuous (because it has an infinite rate of change
at the points xd

i ).

Here’s the good news: the fact that u̇ is finite means that it will integrate to a continuous function, and so we expect u to be
continuous, although maybe not C1. So what does u look like? Piece-wise on each interval between the datapoints, it will
take the form of Equation 14, and at the datapoints it will have a corner such that Equation 13 is satisfied.

To determine the shape of these corners, we may extract some information from Equation 13 in the following way: Pick a
datapoint x0 ∈ {xd

i }i≤m, and fixing some small ϵ > 0, integrate Equation 13 to achieve

∫
x0+ϵ

x0−ϵ
ü = ∫

x0+ϵ

x0−ϵ
u + (u − y)1 − γ

γm

m

∑
i=1

δxd
i
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We now compute this integral term-wise. Applying the fundamental theorem of calculus, the left hand side becomes

u̇(x0 + ϵ) − u̇(x0 − ϵ)

Asserting the existence of a continuous solution u, we know that

lim
ϵ→0
∫

x0+ϵ

x0−ϵ
u = 0

When ϵ is small enough that the interval (x0 − ϵ, x0 + ϵ) does not contain any datapoints {xd
i }i≤m other than x0, we have9

∫
x0+ϵ

x0−ϵ
(u − y)1 − γ

γm

m

∑
i=1

δxd
i
= (u(x0) − y(x0))

1 − γ
γm

Taking the limit as ϵ→ 0, we conclude that

lim
ϵ→0

u̇(x0 + ϵ) − u̇(x0 − ϵ) = (u(x0) − y(x0))
1 − γ
γm

(15)

This formula contains many interested facts. First, it demonstrates that the slope of the corner at each datapoint is directly
proportional to the error in the prediction of that datapoint (i.e. the quantity u(x0)−y(x0)). The prediction will contain
a corner at a datapoint if and only if it does not fit it precisely.

Moreover, because the change in slope has the same sign as u(x0) − y(x0), the formula shows that at each datapoint
x0, the prediction bends away from the given datapoint (x0, f(x0)) (to see this, note that if u(x0) > f(x0), then the
left-hand side shows that the change in slope of u at x0 is positive). Lastly, notice that the change in slope decreases with γ,
and is inversely proportional to m. This means that the development of corners becomes less pronounced as the equation
loss is weighted more heavily, and disappears as m→∞. It is perhaps for this reason that these corners are not observed in
large-scale PINN experiments with many datapoints.

Returning to solving Equation 13, recall that the optimal u will take the form of Equation 14 on each of the intervals between
the datapoints. There are N + 1 such intervals, where N ≤m is the number of distinct interior datapoints among {xd

i }i≤m.
Since Equation 14 is determined by the two constants c1, c2 which are fixed on each interval, there are 2(N + 1) total
degrees of freedom for u of this form.

At each of the N distinct interior datapoints, continuity of u enforces one constraint, and the corner equation (Equation 15)
describing the jump in u̇ enforces another. Thus we have 2N total constraints, and 2(N + 1) degrees of freedom, meaning
that a solution to Equation 13 is uniquely determined by two constants α,β. This is consistent with the fact that Equation 13
is a second-order linear ODE, albeit one containing Dirac delta functions.

In order to minimize the loss, we therefore fix some constants α,β for which Equation 13 has a unique solution, and then
optimize the loss over all choices of α,β.

Returning to the problem at hand:

In our case, we consider only a single interior datapoint ( 1
2
,1). This interior datapoint partitions the domain into two halves,

so that

u(x) =
⎧⎪⎪⎨⎪⎪⎩

c
(1)
1 ex + c(1)2 e−x x ∈ [0, 1

2
]

c
(2)
1 ex + c(2)2 e−x x ∈ ( 1

2
,1]

(16)

where at x = 1
2

the constants satisfy the continuity constraint

c
(1)
1 e1/2 + c(1)2 e−1/2 = c(2)1 e1/2 + c(2)2 e−1/2

and the corner constraint (see Equation 15)

{c(1)1 e1/2 − c(1)2 e−1/2} − {c(2)1 e1/2 − c(2)2 e−1/2} = (c(1)1 e1/2 + c(1)2 e−1/2 − 1)1 − γ
3γ

9Note that if the datapoint x0 is repeated among {xd
i }i≤m then this is not possible. But in this case, the integral formula below will

just multiply by however many distinct datapoints are equal to x0.
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These two constraints form a linear system

⎛
⎝

e1/2 e−1/2 e1/2 e−1/2

e1/2 (1 − 1−γ
3γ
) −e1/2 (1 + 1−γ

3γ
) −e1/2 e−1/2

⎞
⎠

⎛
⎜⎜⎜⎜⎜
⎝

c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

⎞
⎟⎟⎟⎟⎟
⎠

= ( 0
γ−1
3γ

) (17)

the solutions to which form a 2-dimensional vector space which we will parametrize by the constants α,β.

Now recall that the ideal loss is

(1 − γ)L1,1,1
data + γLeqn = (1 − γ){

1

3
(u(0) − 1)2 + 1

3
(u(1/2) − 1)2 1

3
(u(1) − 1)2}

+ γ ∫
1

0
(u − u̇)2dx+

= (1 − γ){1
3
(u(0) − 1)2 + 1

3
(u(1/2) − 1)2 1

3
(u(1) − 1)2}

+ γ ∫
1/2

0
(2c(1)2 e−x)2dx + γ ∫

1

1/2
(2c(2)2 e−x)2

= (1 − γ){1
3
(c(1)1 + c

(1)
2 − 1)2 +

1

3
(c(1)1 e1/2 + c(1)2 e−1/2 − 1)2 1

3
(c(2)1 e + c(2)2 /e − 1)2}

+ 2γ e − 1
e

c
(1)
2

2
+ 2γ e − 1

e2
c
(2)
2

2

which is again a quadratic form in the constants α,β which parametrize the solutions to Equation 17. Using the computer
algebra system SymPy, by optimizing over all α,β, we can compute the precise minimum ideal loss to be 0.0836. We
remark that this would also be possible to do using a more traditional method such as Lagrange multipliers.
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