
MDEVAL: Massively Multilingual Code Debugging

Anonymous ACL submission

Abstract

Code large language models (LLMs) have001
made significant progress in code debugging by002
directly generating the correct code based on003
the buggy code snippet. Programming bench-004
marks, typically consisting of buggy code snip-005
pets and their associated test cases, are used006
to assess the debugging capabilities of LLMs.007
However, many existing benchmarks primarily008
focus on Python and are often limited in terms009
of language diversity (e.g., DebugBench and010
DebugEval). To advance the field of multilin-011
gual debugging with LLMs, we propose the012
first massively multilingual debugging bench-013
mark, which includes 3.9K test samples of 20014
programming languages and covers the auto-015
mated program repair (APR) task, the bug lo-016
calization(BL) task, and the bug identification017
(BI) task. In addition, we introduce the debug-018
ging instruction corpora MDEVAL-INSTRUCT019
by injecting bugs into the correct multilingual020
queries and solutions (xDebugGen). Further,021
a multilingual debugger xDebugCoder trained022
on MDEVAL-INSTRUCT as a strong baseline023
specifically to handle bugs of a wide range of024
programming languages (e.g. “Missing Mut” in025
language Rust and “Misused Macro Definition”026
in language C). Our extensive experiments on027
MDEVAL reveal a notable performance gap be-028
tween open-source models and closed-source029
LLMs (e.g., GPT and Claude series), highlight-030
ing huge room for improvement in multilingual031
code debugging scenarios.032

1 Introduction033

Large language models (LLMs) (OpenAI, 2023;034

Touvron et al., 2023a; Yang et al., 2024a) designed035

for code, such as CodeLlama (Rozière et al., 2023),036

DeepSeekCoder (Guo et al., 2024a), and Qwen-037

Coder (Hui et al., 2024), are highly effective in038

code understanding and generation. These capabil-039

ities make them particularly useful for debugging,040

where deep comprehension of code structure and041

logic is essential. Automated program repair (APR)042

Figure 1: Massively multilingual evaluation task com-
prised of three tasks, including code generation, code
completion, and code explanation.

(Wen et al., 2024) aims to automatically fix bugs 043

without human involvement, significantly reducing 044

time and costs in development processes. 045

LLMs have recently shown considerable po- 046

tential in this area. For instance, CodeX (Chen 047

et al., 2021) and GPT-4 series (OpenAI, 2023) out- 048

performing previous conventional methods have 049

demonstrated promising results on bug benchmarks 050

such as QuixBugs (Lin et al., 2017). The recent 051

work DebugBench (Tian et al., 2024) creates a de- 052

bugging benchmark including Python, Java, and 053

CPP for LLM evaluation. However, for the di- 054

verse programming languages in Figure 1, the mul- 055

tilingual debugging scenario poses more language- 056

specific challenges for APR. Multilingual issues 057

(e.g. “Misused Macro Definition” in programming 058

language C, “Missing mut” in Rust, and “Unused 059

Variable” in Go) highlight the complexities and 060

diversities of locating and fixing bugs in the multi- 061

lingual debugging scenario. Therefore, there is an 062

urgent need to build a truly massively multilingual 063

debugging code benchmark with a wide variety of 064

generic and language-specific bug types. 065

To further characterize the debugging perfor- 066

mance of LLMs across different programming lan- 067

guages, we introduce MDEVAL, a framework for 068

data construction, evaluation benchmark, and a 069

multilingual debugging baseline xDebugCoder, to 070

advance the development of code debugging. First, 071

we propose MDEVAL, the first massively multilin- 072

1

gual evaluation benchmark for code debugging cov-073

ering 20 programming languages and 3.9K samples074

to assess the capabilities of LLMs across a wide075

range of languages. Further, we create MDEVAL-076

INSTRUCT, a multilingual debugging instruction077

corpus in 20 languages to help the LLM fix the bug078

given the buggy code snippet. Besides, we propose079

xDebugGen to create the buggy and correct code080

pair for debugging instruction tuning. The bugs are081

injected into the queries and solutions with our de-082

signed three strategies (1) Injecting bugs into query.083

(2) Injecting bugs into solution. (3) Injecting bugs084

with the round-trip code translation. Leveraging085

MDEVAL-INSTRUCT, we develop xDebugCoder086

as a strong baseline, assessing the transferability of087

LLMs in multilingual debugging tasks.088

The contributions are summarized as follows:089

(1) We propose MDEVAL, a comprehensive mul-090

tilingual code debugging benchmark consisting of091

3.9K samples spanning three tasks: automated pro-092

gram repair (APR), code localization (BL), and093

bug identification (BI). This benchmark covers 20094

languages and includes both generic and language-095

specific bug types. (2) We introduce the massively096

multilingual code debugging instruction corpora097

MDEVAL-INSTRUCT created by xDebugGen. By098

injecting bugs into the correct multilingual query099

or response, we can create pairs of buggy code100

and the correct code for instruction tuning. (3)101

We systematically evaluate the multilingual code102

debugging capabilities of 40 models on our cre-103

ated MDEVAL and create a leaderboard to evalu-104

ate them on 20 programming languages dynami-105

cally. Notably, extensive experiments suggest that106

comprehensive multilingual multitask evaluation107

can realistically measure the gap between open-108

source (e.g. DeepSeekCoder and Qwen-Coder)109

and closed-source models (e.g. Claude series).110

2 MDEVAL111

2.1 Data Overview112

In Table 1, the MDEVAL consists of 3.9K prob-113

lems. Following Yang et al. (2024c), we design 3114

multilingual debugging-related tasks: Automated115

Program Repair, Bug Localization, and Bug Identi-116

fication. Each task contains about 1.3K questions,117

with more than 60 problems in each language. Each118

problem in MDEVAL includes question, example119

test cases, buggy code, correct code, and unit tests.120

We calculate the length of the question and121

buggy code using the CodeLlama tokenizer (Roz-122

Statistics Number

Problems 3, 897
Automated Program Repair 1, 299
Bug Localization 1, 299
Bug Identification 1, 299
Total Test Cases 7, 133

#Difficulty Level
- Easy/Medium/Hard 1, 146/1, 407/1362

Length
Question

- maximum length 291 tokens
- minimum length 7 tokens
- avg length 70 tokens

Buggy code
- maximum length 19, 265 tokens
- minimum length 15 tokens
- avg length 320.6 tokens

Table 1: MDEVAL dataset statistics.

ière et al., 2023). The average question length is 123

83 words, highlighting their detailed descriptive na- 124

ture. The average buggy code length is 239 tokens, 125

indicating the complexity of the code. In addition, 126

the total number of unit tests for the dataset is 6,838, 127

to ensure the accuracy of the bug-fix judgment. 128

In Table 2, we compare MDEVAL with other 129

code debugging benchmarks. Our benchmark pro- 130

vides a valuable enhancement to existing ones, sig- 131

nificantly expanding the variety of programming 132

languages and introducing language-specific error 133

types, along with a greater number of questions and 134

diverse bug-fixing tasks. The error types in MDE- 135

VAL are shown in Figure 2. Figure 3 plots error 136

types distribution. We strive to cover all error types 137

in each language. Due to the inherent differences 138

among languages, we ensure a balanced distribu- 139

tion of difficulty levels, leading to variations in the 140

distribution of error types across languages. 141

2.2 Data Construction & Quality Control 142

To curate the massively multilingual code debug- 143

ging evaluation benchmark MDEVAL, we employ 144

a comprehensive and systematic human annotation 145

process for multilingual code samples. This pro- 146

cess is guided by meticulously defined guidelines 147

to guarantee accuracy and consistency. 148

We initially recruite 13 computer science gradu- 149

ates as multilingual debugging annotators, all pro- 150

ficient in their respective programming languages. 151

After completing a comprehensive training course 152

on annotation methods, the annotators are tasked 153

with defining problems, providing corresponding 154

solutions, and buggy code. Annotators adhere to 155

the following principles: (1) Write a clear problem 156

question and design test cases to ensure that bugs 157

2

Benchmark #Languages #Task Size
(Easy/Middle/Hard) #Error Types Source of Bugs Language-specific

Bugs

DeepFix (Yasunaga and Liang, 2021) 1 1 6,971 4 Collection ✗

Github-Python (Yasunaga and Liang, 2021) 1 1 15K 14 Collection ✗

Bug2Fix (Lu et al., 2021) 1 1 5,835 - Collection ✗

FixEval (Haque et al., 2023) 2 1 43K/243K - Collection ✗

CodeError (Wang et al., 2023) 1 1 4,463 6 Collection ✗

CodeEditorBench (Guo et al., 2024b) 3 1 676/515/716 14 GPT-4 Generation ✗

DebugBench (Tian et al., 2024) 3 1 1,438/1,401/1,414 18 GPT-4 Generation ✗

DebugEval (Yang et al., 2024c) 3 4 1,933/1,903/1,876 18 Collection & GPT-4 Generation ✗

MDEVAL (Ours) 20 3 1,692/1,209/612 47 Human Annotation ✓

Table 2: Comparison between MDEVAL and other code debugging benchmarks. MDEVAL provides a comprehensive
multilingual view by expanding the variety of programming languages and language-specific error types.

Sy
nt

ax

Reference

Lo
gi

c

Multiple

illegal

comment

ille
gal

sep
aration

m
iss

in
g

co
lon

sm
is

us
ed

=
=

/=

un
cl

os
ed

pa
re

nt
he

se
sunclosed

stringfaulty

indexingfunctionerror

illegalkeywords

undefined
methods

undefined

objects

alg
ori

thm

err
or

co
nd

iti
on

er
ro

r

op
er

at
io

n
er

ro
r

typeerror

variable error
double bug

triple bug

quadruple bug

Generic Error Types

Loading [MathJax]/extensions/MathMenu.js
(a) Generic Errors

HTML

CP
P

JavaS
cript

Markdown

C

Clisp

Go

Pa
sc

al
C
#

F#
Julia

PHP

Python

Ruby

Rust

Scala

Improper

HTML
structure

html

uncl
osed

labe
l

htm
l

val
ue

err
or

ht
m
l

wr
on
g

lab
el

Po
in

te
r e

rr
or

 M
is

us
ed

te
m

pl
te

M
is

us
ed

 M
ac

ro
D

ef
in

it
io

n
 M

isused =
>

M
isused

=
=

=
 and =

=

M
isused Spread

O
perator

m
arkdown

content

error

markdown
titleerrormarkdownunclosederror

Pointer error
Misused Macro

Definition

Misused let

Missi
ng

backtick

Misu
se

d

:=
 an

d =

Un
us

ed
Va

ria
bl
e

M
is
us

ed
:=

 a
nd

 =

M
is

us
ed

be
gi

n/
en

d

D
el

ay
ed

Ex
ec

ut
io

n M
isused

m
atch

M
isused

begin/end
M
issing $

Illegal

Indentation

Misused
begin/end

Missing mut

Misused
var and val

Loading [MathJax]/extensions/MathMenu.js
(b) Language-specific Errors

Figure 2: Error types in MDEVAL. Part (a) shows generic error types, and Part (b) lists language-specific error types.

can be effectively identified; (2) Categorize bugs158

into multiple difficulty levels (easy/medium/hard)159

based on the complexity of fixing these code.160

Figure 4 illustrates the overall process of dataset161

construction. We begin by collecting code snip-162

pets from GitHub, which are then extracted and163

filtered following StarCoder (Li et al., 2023). Prior164

to the annotation phase, we summarize generic er-165

ror types and language-specific error types. The166

three task definitions and corresponding annota-167

tion methods are explained in detail. The annota-168

tors proceede to annotate the code according to the169

identified error types and specified annotation meth-170

ods. To ensure annotation quality, they evaluate the171

annotated code based on four criteria: problem dif-172

ficulty, ambiguity, error type, and solvability. Fur-173

thermore, after completing their annotations, each174

annotator exchanges data with another annotator175

for cross-refining, aiming to minimize subjective176

bias and errors. Any discrepancies between anno-177

tators are resolved through consensus or with input178

from senior annotators. Finally, we engage three179

volunteers to assess the accuracy of the benchmark180

(targeting > 90%) and correct errors.181

2.3 Instruction Corpora for Code Debugging182

To create the instruction corpora, we need to create183

the pair of the correct code snippet and the buggy184

code. First, we select the proper code snippet from185

20 languages and prompt the code LLM to gener-186

ate a new question qLk of programming language 187

Lk. Then, we use the LLM to generate the correct 188

code cLk and filter the low-quality response with 189

an LLM filter and the generated test cases. There- 190

fore, we can regard the (qLk , cLk) as the correct 191

sample by ensuring the correctness of cLk as much 192

as possible. We propose xDebugGen comprised of 193

the following three strategies to create the code de- 194

bugging instruction corpora MDEVAL-INSTRUCT 195

to obtain the fine-tuned LLM xDebugCoder. 196

Injecting Bugs into Query. We can prompt the 197

LLM to modify the original question to another 198

similar question with minor differences, where the 199

similar question q′Lk is used to generate the answer 200

Mw(q
′Lk) by a weak LLM Mw with small size 201

(e.g. Qwen2.5-1.5B). Since there exist differences 202

between the original question qLk and the modified 203

question q′Lk , (Mw(q
′Lk), cLk) can be fed into the 204

LLM as source input and target prediction. 205

Injecting Bugs into Solution. Another more in- 206

tuitive method is to directly inject the bugs into the 207

correct code cLk . Given the bug type and the cor- 208

rect code snippet, we prompt the LLM to generate 209

the buggy code M(cLk). The pair (M(cLk), cLk) 210

can be used for the instruction tuning. 211

Injecting Bugs with Round-trip Code Transla- 212

tion. Under the multilingual scenario, we can 213

translate the correct cLk into the Mw(c
Lk ;Lk → 214

3

C C#

Cl
isp CP

P F# Go JS

Ja
va

Sw
ift

Ju
lia

PH
P

Pa
sc

al

Py
th

on R

Ru
by

Ru
st

Sc
ala

HT
M

L

JS
ON M

D

0

10

20

30

40

50
Syntax
Reference
Logic
Multiple
Language Specific

Figure 3: Error types distribution in 20 programming Languages from the MDEVAL.

Code Snippets

MdEval

Problems Curation

Task Types

Extraction & Filtering

Summarized Error Types

Generic
• Syntax Error
• Reference Error
…
Language-Specific
• Empty Pointer
• Macro Definition Error
• Buffer Overflow
…

Ø Automated Code Repair
Ø Code Review
Ø Bug Identification

Quality Control

• Question
• Buggy Code
• Correct code
• Unit Tests
• Task Instructions
• Multilingual Sandbox

• Check Problem Hard Level
• Check for ambiguity
• Check Error Type
• Check problem is solvable

Software
developers

Code Repair
1. Label Correct Code

2. Label Unit Tests

3. Check Correct Code with Unit Tests

4. Write Buggy Code based on Error Types

5. Check Buggy Code with Unit Tests

Code Review
• Prepare Buggy Code and Correct Code for Classification

Bug Identification
• Prepare error type of Buggy Code and all types for selection

Cross
Refining

def add(a, b):
return a - b def check_correctness(candidate)

assert candidate(1, 2) == 3
assert candidate(2, 4) == 6
assert candidate(1000, 200) == 1200

def add(a, b):
return a + b

Unit Tests

Figure 4: Overview of the MDEVAL construction process. We collect and filter code snippets from GitHub. Before
annotation, we summarize error types. Annotators then label the code based on these types. To ensure quality, they
use GPT-4o to evaluate the annotations on four criteria: difficulty, ambiguity, error type, and solvable. Finally, they
exchange data with each other to minimize bias and errors.

int main() {
assert(count_odd_numbers(5, 1, 4, 3,
2, 5) == 3);
assert(count_odd_numbers(4, 2, 2, 0,
0) == 0);
assert(count_odd_numbers(6, 7, 7, 8,
1, 9, 10) == 4);
return 0;

}

Test Cases

#include <assert.h>
#include <stdarg.h>
int count_odd_numbers(int count, ...)
{

va_list args;
va_start(args, count);
int ans = 0;
for (int i = 0; i < count; i++) {

int num = va_arg(args, int);
if (num & 1)

ans++;
}
va_end(args);
return ans;

}

Correct Code

#include <assert.h>
#include <stdarg.h>
#define va_start(ap, v) va_start(v, ap)
int count_odd_numbers(int count, ...)
{

va_list args;
va_start(args, count);
int ans = 0;
for (int i = 0; i < count; i++) {

int num = va_arg(args, int);
if (num & 1)

ans++;
}
va_end(args);
return ans;

}

Buggy Code

Automated Program Repair

Given the following faulty C code. Your
task is to fix up the faulty code.

Bug Localization

Given the following faulty C code and
fragments of it. Your task is to select the
fragment that contains the error code.

A.{Code Fragment A} B. {Code Fragment B}
C.{Code Fragment C} D. {Code Fragment D}

Bug Identification

Given the following faulty C code. Your
task is to select the error type of the code
based on the error list provided.
{Error Type List}

Problem Task

Docstring & Example
Count the number of odd integers in a given list of number
s.
Parameters:
- count (int): The count of numbers to evaluate.
- ... (int): A sequence of integers.
Returns: int: The count of odd numbers in the input list.
 >>> count_odd_numbers(5, 1, 4, 3, 2, 5)
 3

Figure 5: Examples of multilingual automated program repair, bug localization, and bug identification.

Lj) and then back-translate into the original lan-215

guage Lk of programming languages using the216

weak LLM M, where the round-trip transla-217

tion code snippet can be regarded as the buggy218

code. The pair (Mw(Mw(c
Lk ;Lk → Lj);Lj →219

Lk), c
Lk) can be used for the instruction tuning.220

2.4 Evaluation Task221

Automated Program Repair (APR). The auto-222

mated program repair task forces the LLM to fix223

the bug in the given code snippet and then gen-224

erates the correct code. Given the programming225

language Lk ∈ {Li}Ki=1 (K = 20 is the number of226

programming languages), we provide the question 227

qLk , the corresponding buggy code bLk , and the ex- 228

amples test cases eLk for inputs. We can organize 229

the different input settings for evaluation: 230

rLk = I(P (cLk |I;M);uLk) (1) 231

where I(·) is the executor of the multilingual sand- 232

box to verify the correctness of the generated code 233

with the test cases uLk (If the fixed code cLk passes 234

all test cases, the evaluation result rLk = 1, else 0). 235

In our work, we provide three settings for evalua- 236

tion to simulate the realistic user queries: (1) Ques- 237

tion with buggy code: I = {qLk , bLk} (2) Buggy 238

4

code with example test cases: I = {bLk , eLk} (3)239

Only buggy code: I = {bLk}.240

Bug Localization (BL). The Bug Localization241

(BL) task aims to identify the specific line(s) of242

code within a given buggy program cLK that con-243

tains the error. For each test instance in the BL244

task, a buggy code cLK is provided, from which245

four code snippets, SA, SB , SC , SD, are extracted.246

The LLMs are then tasked with identifying the247

golden snippet SG, which contains the error.248

Bug Identification (BI). In this task, LLMs are249

required to classify the type of error present in250

a given buggy program cLk with one error. The251

LLMs must choose the correct error category from252

47 bug types (including generic bug types and253

language-specific bug types).254

2.5 Evaluation Metrics255

Automated Program Repair. In the automated256

program repair task, we evaluate models by exe-257

cuting the generated code against a set of unit tests258

and assessing performance using the Pass@1 met-259

ric (pass rate for just one-time generation). Greedy260

Pass@1 indicates whether a result produced by the261

LLM successfully passes corresponding unit tests.262

Bug Localization & Bug Identification. In the263

bug localization and bug identification tasks, we264

evaluate model performance using accuracy, as265

both require the model to select from a set of pro-266

vided options.267

3 Experiments268

3.1 Experiment Setup269

Code LLMs. We evaluate 40 popular models,270

including GPTs (OpenAI, 2023), Claude-3.5 (An-271

thropic, 2023), and code-specific models like272

Qwen2.5-Coder (Hui et al., 2024), DeepSeek-273

Coder (Guo et al., 2024a), CodeLlama (Rozière274

et al., 2023), and Codegemma (Gemma Team,275

2024). Additionally, we fine-tune Qwen2.5-Coder-276

7B as our baseline xDebugCoder.277

xDebugCoder Training Setup The training data278

for xDebugCoder comprises our debugging dataset279

MDEVAL-INSTRUCT and the Magicoder-Instruct280

code generation dataset (Wei et al., 2023), ensur-281

ing fundamental instruction-following capabilities282

for code-related tasks. xDebugCoder, built on283

Qwen2.5-Coder-7B, is trained for 3 epochs using284

a cosine scheduler with an initial learning rate of285

5 × 10−5 with a 3% warmup ratio. We employ 286

AdamW (Loshchilov and Hutter, 2017) as the opti- 287

mizer, with a batch size of 1024 and a maximum 288

sequence length of 2048. (Details can be found in 289

the Appendix). 290

3.2 Main Results 291

Automated Program Repair. Table 3 presents 292

the Pass@1 results of different models on MDE- 293

VAL for the multilingual automated program re- 294

pair task (given question with buggy code, request 295

the model to fix buggy code). The results in- 296

dicate a marked disparity between closed-source 297

state-of-the-art models and the majority of open- 298

source models across nearly all programming lan- 299

guages. Notably, GPT-4o, Claude-3.5-sonnet, and 300

Qwen2.5-Coder-Instruct excel in this task and 301

demonstrate significant performance advantages 302

over other models. Furthermore, our baseline 303

model xDebugCoder, is fine-tuned using only 16K 304

bug-related data MDEVAL-INSTRUCT. Despite 305

the limited size of this dataset, the model demon- 306

strated competitive performance compared to oth- 307

ers of similar scale, highlighting the effectiveness 308

of MDEVAL-INSTRUCT in enhancing the debug- 309

ging capabilities of models. 310

Bug Localization Table 5 illustrates the accu- 311

racy of different models on the multilingual bug 312

localization task. It is evident that closed-source 313

models outperform open-source models by a sig- 314

nificant margin, demonstrating the superior bug 315

localization capabilities of closed-source models. 316

Specifically, open-source models with smaller pa- 317

rameter sizes like OpenCoder-1.5B-Instrcut, due 318

to their poor instruction-following capabilities, are 319

unable to output the correct format as required, re- 320

sulting in lower accuracy in localization. Besides, 321

it is observed that for the same model, the bug lo- 322

calization accuracy is lower than its pass@1 scores 323

in automated program repair task. We hypothesize 324

that this discrepancy arises because the bug local- 325

ization task requires a strong understanding of loca- 326

tion information, which happens to be a weakness 327

of large language models. Therefore, improving 328

LLMs’ ability to understand location information 329

is a critical issue that needs to be addressed. 330

Bug Identification. In the bug identification task, 331

the goal is to identify the error type in a given 332

code snippet, where the LLMs analyze source code 333

for defects and choose the correct bug type from 334

the pre-defined 47 bug types. Table 4 lists the 335

5

Model Size Avgall C C# CLISP CPP F# Go HTML JS Java Json Julia MD PHP Pascal Python R Ruby Rust Scala Swift

Closed-Source Models

o1-preview µ 70.2 68.6 73.1 91.7 63.8 89.2 38.6 15.5 84.0 90.0 39.0 89.6 20.0 84.1 80.0 91.8 60.0 93.7 85.7 84.4 56.7
o1-mini µ 72.9 65.7 76.1 60.0 68.1 81.5 68.7 5.2 80.0 91.7 42.4 92.5 25.0 87.0 78.5 90.2 88.3 96.8 98.6 87.5 60.0
GPT-4o-240806 µ 67.5 14.3 64.1 85.0 66.7 86.2 56.6 13.8 57.3 83.3 42.4 80.6 20.0 87.0 72.3 91.8 86.7 84.1 84.3 89.1 86.7
GPT-4o-mini-240718 µ 65.3 18.6 64.1 71.7 57.6 75.4 56.6 8.6 61.3 85.0 47.5 83.6 23.3 85.5 67.7 88.5 80.0 81.0 87.1 76.6 85.0
GPT-4-Turbo-240409 µ 61.7 24.3 53.7 63.3 49.3 84.6 50.6 3.4 60.0 80.0 35.6 74.6 21.7 81.2 75.4 95.0 76.7 82.5 81.4 81.2 56.7
Claude-3.5-sonnet-240620 µ 66.0 34.3 56.2 83.3 60.6 83.1 63.9 5.2 65.3 70.0 47.5 68.7 20.0 76.8 67.7 91.8 71.7 84.1 90.0 93.8 80.0
Claude-3.5-sonnet-241022 µ 70.3 81.4 57.8 86.7 59.1 89.2 44.6 8.6 60.0 91.7 44.1 82.1 21.7 82.6 75.4 82.0 80.0 85.7 88.6 93.8 90.0
Yi-lighting µ 57.8 24.3 53.7 60.0 55.1 67.7 41.0 5.2 60.0 76.7 25.4 82.1 8.3 78.3 63.1 91.7 75.0 79.4 81.4 78.1 46.7
Doubao-Pro µ 60.2 68.6 55.2 56.7 55.1 78.5 53.0 8.6 56.0 80.0 15.3 70.1 8.3 72.5 66.2 85.0 81.7 82.5 87.1 78.1 35.0

0.5B+ Models

Qwen2.5-Instruct 0.5B 20.6 28.6 10.4 8.3 14.5 9.2 1.2 13.8 45.3 28.3 10.2 26.9 5.0 17.4 13.8 39.3 6.7 58.7 24.3 18.8 31.7
DS-Coder-Instruct 1.3B 33.6 28.6 42.2 13.3 43.9 24.6 38.6 5.2 44.0 48.3 18.6 47.8 1.7 33.3 27.7 44.3 16.7 61.9 41.4 34.4 45.0
Qwen2.5-Instruct 1.5B 35.5 24.3 32.8 15.0 27.5 23.1 18.1 8.6 60.0 50.0 28.8 55.2 8.3 34.8 30.8 62.3 20.0 69.8 67.1 32.8 35.0
OpenCoder-Instruct 1.5B 34.8 15.7 13.4 20.0 26.1 26.2 15.7 12.1 57.3 58.3 15.3 55.2 8.3 36.2 47.7 54.1 31.7 68.3 52.9 51.6 28.3
Yi-Coder-Chat 1.5B 32.4 37.1 34.4 3.3 30.3 7.7 28.9 8.6 45.3 53.3 15.3 55.2 1.7 34.8 41.5 52.5 28.3 49.2 42.9 28.1 40.0
Qwen2.5-Coder-Instruct 1.5B 34.8 11.4 26.9 15.0 30.4 16.9 20.5 17.2 61.3 45.0 28.8 58.2 10.0 40.6 36.9 55.7 28.3 60.3 58.6 29.7 40.0
Qwen2.5-Instruct 3B 46.0 51.4 40.3 28.3 36.2 41.5 41.0 12.1 69.3 61.7 27.1 61.2 11.7 53.6 47.7 63.9 45.0 58.7 65.7 53.1 38.3

6B+ Models

DS-Coder-Instruct 6.7B 56.3 37.1 60.9 56.7 63.6 60.0 56.6 8.6 61.3 75.0 23.7 64.2 6.9 52.2 60.0 78.7 51.7 88.9 80.0 60.9 68.3
CodeQwen1.5-chat 7B 42.6 34.3 34.4 43.3 33.3 41.5 42.2 10.3 54.7 55.0 20.3 62.7 8.6 49.3 41.5 52.5 30.0 69.8 62.9 34.4 61.7
CodeLlama-Instruct 7B 27.2 2.9 20.3 25.0 25.8 24.6 22.9 19.0 53.3 6.7 15.3 37.3 12.1 24.6 33.8 42.6 16.7 50.8 48.6 14.1 41.7
CodeGemma-Instruct 7B 45.9 34.3 32.8 3.3 43.9 44.6 44.6 19.0 60.0 68.3 25.4 64.2 0.0 56.5 36.9 65.6 40.0 73.0 67.1 56.2 70.0
Qwen2.5-Instruct 7B 50.4 57.1 47.8 38.3 50.7 61.5 26.5 8.6 60.0 81.7 32.2 61.2 8.3 73.9 47.7 70.5 50.0 58.7 62.9 60.9 45.0
Qwen2.5-Coder-Instruct 7B 61.7 58.6 60.9 61.7 60.6 70.8 47.0 19.0 60.0 81.7 37.3 74.6 22.4 73.9 61.5 77.0 65.0 73.0 78.6 70.3 75.0
OpenCoder-Instruct 8B 53.4 10.0 56.2 46.7 50.0 66.2 8.4 13.8 66.7 78.3 27.1 74.6 15.5 62.3 53.8 77.0 61.7 76.2 81.4 71.9 75.0
Meta-Llama-3-Instruct 8B 37.9 51.4 35.8 8.3 42.0 30.8 21.7 10.3 60.0 41.7 20.3 49.3 0.0 55.1 40.0 57.4 50.0 49.2 48.6 46.9 28.3
Meta-Llama-3.1-Instruct 8B 42.1 57.1 41.8 26.7 40.6 44.6 21.7 6.9 56.0 60.0 20.3 49.3 8.3 65.2 32.3 50.8 40.0 58.7 61.4 53.1 38.3
Yi-Coder-Chat 9B 50.6 45.7 54.7 28.3 47.0 40.0 42.2 22.4 65.3 76.7 20.3 58.2 3.4 52.2 58.5 65.6 45.0 68.3 68.6 71.9 68.3

14B+ Models

Qwen2.5-Instruct 14B 57.7 58.6 62.7 61.7 66.7 60.0 21.7 13.8 62.7 78.3 28.8 59.7 10.0 69.6 66.2 80.3 68.3 74.6 77.1 76.6 56.7
DS-Coder-V2-Lite-Instruct 2.4/16B 56.7 10.0 56.2 43.3 56.1 81.5 50.6 10.3 58.7 76.7 28.8 68.7 17.2 65.2 63.1 72.1 71.7 76.2 80.0 60.9 81.7
Starcoder2-Instruct-v0.1 15B 34.2 10.0 34.3 20.0 33.3 29.2 25.3 5.2 50.7 46.7 16.9 50.7 0.0 37.7 56.9 44.3 35.0 57.1 58.6 39.1 25.0

20B+ Models

Codestral-v0.1 22B 56.1 72.9 64.2 43.3 63.8 63.1 31.3 10.3 64.0 85.0 27.1 79.1 11.7 63.8 47.7 68.9 55.0 79.4 72.9 68.8 41.7
Qwen2.5-Instruct 32B 65.8 64.3 53.7 75.0 50.7 87.7 53.0 10.3 65.3 93.3 32.2 74.6 13.3 81.2 75.4 90.2 80.0 85.7 82.9 84.4 58.3
Qwen2.5-Coder-Instruct 32B 68.2 78.6 60.9 75.0 56.1 83.1 44.6 13.8 61.3 91.7 33.9 85.1 22.4 82.6 64.6 91.8 80.0 79.4 82.9 82.8 91.7
DS-Coder-Instruct 33B 57.7 65.7 59.4 46.7 50.0 70.8 39.8 19.0 65.3 75.0 28.8 73.1 10.3 58.0 55.4 73.8 61.7 79.4 68.6 78.1 70.0
CodeLlama-Instruct 34B 28.6 70.0 23.9 18.3 26.1 15.4 18.1 10.3 40.0 18.3 25.4 46.3 3.3 24.6 24.6 49.2 11.7 60.3 38.6 14.1 25.0
Meta-Llama-3-Instruct 70B 50.1 27.1 29.9 61.7 34.8 73.8 4.8 10.3 56.0 75.0 27.1 76.1 13.3 75.4 73.8 70.5 60.0 73.0 60.0 64.1 43.3
Meta-Llama-3.1-Instruct 70B 56.6 48.6 49.3 55.0 44.9 75.4 8.4 17.2 61.3 71.7 35.6 83.6 16.7 79.7 67.7 75.4 63.3 76.2 77.1 81.2 46.7
DS-V2.5 21/236B 65.1 14.3 60.9 70.0 62.1 78.5 51.8 12.1 61.3 80.0 40.7 83.6 23.3 82.6 69.2 83.6 80.0 81.0 87.1 92.2 86.7
DS-V3 37/671B 64.9 42.9 59.7 66.7 55.1 83.1 42.2 8.6 70.7 81.7 40.7 88.1 13.3 81.2 76.9 90.0 75.0 88.9 82.9 92.2 55.0
Qwen2.5-Instruct 72B 63.6 62.9 53.7 68.3 56.5 81.5 34.9 10.3 62.7 81.7 37.3 67.2 21.7 82.6 69.2 90.2 76.7 87.3 82.9 82.8 61.7
xDebugGen (Our Method) 7B 47.5 21.4 57.8 36.7 62.1 60.0 31.3 17.2 56.0 33.3 25.4 67.2 12.1 62.3 41.5 60.7 43.3 61.9 77.1 45.3 70.0

Table 3: Pass@1 (%) scores of different models for Automated Program Repair tasks on MDEVAL. The underlined
numbers are the best scores for each language. “Avgall” represents the average scores of all code languages.

all results of the bug identification. Notably, the336

closed-source LLMs, such as GPT-4o and Claude337

series, have the dominant advantages, outperform-338

ing the open-source LLMs by nearly +10 points.339

Bug identification with 47 bug types poses a daunt-340

ing challenge to the LLMs, requiring alignment341

capability of LLMs between the given code snippet342

and its corresponding bug type. As a result, some343

open-source models with smaller parameter sizes344

perform poorly in this task345

4 Further Analysis346

Performance across Different Error Types. In347

Figure 7, The performance of models on the auto-348

mated program repair task varies across different349

error types, highlighting the strengths and weak-350

nesses of these models in addressing specific chal-351

lenges. Consistently, the models demonstrate ro-352

bust capabilities in repairing syntax errors, refer-353

ence errors, and logic errors. These error types354

tend to be more straightforward and well-defined,355

allowing the models to leverage their knowledge356

effectively to identify and correct issues with high357

accuracy. In contrast, the models exhibit their worst358

performance when dealing with language-specific359

errors. Language-specific errors can arise from360

unique syntax rules, idiomatic expressions, or even361

cultural programming practices that are not uni-362

versally applicable. As a result, addressing these 363

types of errors presents a significant challenge and 364

underscores the need for further improvements in 365

model training. 366

Other APR Settings In Figure 6, we explore two 367

additional automated program repair settings that 368

aim to simulate realistic user queries in software 369

debugging. Part (a) presents the results for the 370

scenario in which models are given both buggy 371

code and corresponding example test cases. This 372

setup allows for a comprehensive evaluation of 373

the ability of models to understand and correct 374

specific issues based on contextual examples. In 375

contrast, Part (b) illustrates the results for a more 376

challenging scenario where only the buggy code is 377

provided to the models, requiring them to identify 378

and rectify errors without any additional context. 379

This comparison highlights the varying capabilities 380

of models in different settings, emphasizing the 381

importance of context in automated program repair. 382

Anslysis of Code Review task Besides auto- 383

mated program repair tasks, code review tasks also 384

play a crucial role in software development. To an- 385

alyze the performance of different models on code 386

review tasks, we conducted experiments based on 387

MDEVAL. For the code review task, we present 388

two versions of code to LLMs: the correct code 389

6

Model Size Avgall C C# CLISP CPP F# Go HTML JS Java Json Julia MD PHP Pascal Python R Ruby Rust Scala Swift

Closed-Source Models

o1-preview µ 37.0 34.3 37.3 18.3 36.2 38.5 47.0 25.9 52.0 31.7 13.6 40.3 28.3 33.3 32.3 52.5 41.7 38.1 60.0 35.9 31.7
o1-mini µ 32.8 32.9 29.9 25.0 30.4 23.1 38.6 27.6 53.3 30.0 13.6 28.4 23.3 29.0 29.2 49.2 35.0 34.9 55.7 29.7 28.3
GPT-4o-240806 µ 24.2 30.0 25.0 15.0 25.8 12.3 39.8 24.1 44.0 20.0 8.5 14.9 23.3 21.7 13.8 45.9 21.7 30.2 31.4 14.1 13.3
GPT-4o-mini-240718 µ 20.9 21.4 18.8 11.7 21.2 16.9 25.3 19.0 29.3 23.3 10.2 11.9 26.7 24.6 12.3 29.5 38.3 22.2 27.1 9.4 16.7
Claude-3.5-sonnet-240620 µ 31.7 44.3 26.6 20.0 24.2 26.2 44.6 19.0 45.3 23.3 13.6 35.8 25.0 33.3 33.8 45.9 38.3 34.9 30.0 29.7 30.0
Claude-3.5-sonnet-241022 µ 33.1 37.1 28.1 16.7 30.3 29.2 37.3 22.4 45.3 23.3 8.5 38.8 25.0 33.3 43.1 55.7 40.0 36.5 38.6 34.4 30.0

1B+ Models

Qwen2.5-Instruct 1.5B 2.0 1.4 4.5 1.7 4.3 1.5 0.0 5.2 1.3 1.7 0.0 1.5 5.0 1.4 0.0 4.9 0.0 1.6 4.3 0.0 0.0
OpenCoder-Instruct 1.5B 4.2 0.0 0.0 18.3 1.4 0.0 2.4 1.7 1.3 0.0 25.4 1.5 10.0 7.2 1.5 0.0 0.0 1.6 12.9 1.6 0.0
Qwen2.5-Instruct 3B 10.2 10.0 10.4 3.3 5.8 16.9 14.5 5.2 10.7 8.3 3.4 6.0 18.3 8.7 4.6 11.5 15.0 6.3 10.0 14.1 20.0

7B+ Models

Qwen2.5-Coder-Instruct 7B 8.4 11.4 4.7 8.3 3.0 6.2 15.7 8.6 14.7 8.3 10.2 7.5 13.8 4.3 1.5 16.4 8.3 11.1 8.6 0.0 3.3
Meta-Llama-3-Instruct 8B 3.0 2.9 4.5 3.3 2.9 0.0 3.6 0.0 8.0 6.7 1.7 0.0 0.0 4.3 0.0 9.8 1.7 0.0 7.1 0.0 1.7
Meta-Llama-3.1-Instruct 8B 5.4 7.1 10.4 3.3 11.6 0.0 7.2 1.7 5.3 3.3 1.7 6.0 3.3 8.7 3.1 9.8 1.7 6.3 4.3 1.6 10.0
Yi-Coder-Chat 9B 8.7 25.7 9.4 5.0 9.1 4.6 10.8 5.2 12.0 11.7 1.7 16.4 6.9 5.8 4.6 14.8 5.0 3.2 5.7 7.8 5.0

20B+ Models

Codestral-v0.1 22B 16.2 21.4 19.4 10.0 21.7 6.2 31.3 12.1 20.0 18.3 6.8 16.4 20.0 7.2 10.8 32.8 8.3 20.6 14.3 12.5 6.7
Qwen2.5-Instruct 32B 19.4 28.6 25.4 10.0 23.2 9.2 34.9 12.1 24 18.3 10.2 26.9 30.0 11.6 10.8 32.8 13.3 25.4 14.3 9.4 10.0
Qwen2.5-Coder-Instruct 32B 23.6 30.0 25.0 13.3 31.8 15.4 37.3 22.4 28.0 16.7 11.9 31.3 29.3 18.8 21.5 36.1 36.7 28.6 20.0 4.7 6.7
DS-Coder-Instruct 33B 12.3 14.3 15.6 0.0 15.2 6.2 15.7 12.1 22.7 8.3 6.8 11.9 27.6 10.1 10.8 24.6 6.7 17.5 11.4 4.7 1.7
Qwen2.5-Instruct 72B 17.6 28.6 16.4 13.3 18.8 7.7 25.3 19.0 26.7 15.0 8.5 20.9 28.3 13.0 6.2 26.2 21.7 22.2 12.9 7.8 10.0
DS-Coder-V2.5 21/236B 19.2 21.4 17.2 11.7 16.7 13.8 32.5 19.0 29.3 18.3 5.1 13.4 20.0 8.7 15.4 37.7 15.0 23.8 25.7 17.2 15.0
xDebugGen (Our Method) 7B 2.3 2.9 4.7 3.3 4.5 0.0 1.2 6.9 8.0 0.0 0.0 0.0 0.0 1.4 3.1 4.9 0.0 0.0 2.9 0.0 1.7

Table 4: Accuracy of different models for Bug Identification tasks on MDEVAL. The underlined numbers are the
best scores for each language. “Avgall” represents the average accuracy of all code languages.

Model Size Avgall C C# CLISP CPP F# Go HTML JS Java Json Julia MD PHP Pascal Python R Ruby Rust Scala Swift

Closed-Source Models

o1-preview µ 64.9 72.9 50.7 30.0 62.3 60.0 49.4 74.1 72.0 66.7 79.7 74.6 50.0 79.7 55.4 86.9 71.7 66.7 54.3 71.9 73.3
o1-mini µ 68.1 78.6 65.7 41.7 63.8 67.7 47.0 69.0 81.3 71.7 67.8 76.1 53.3 84.1 60.0 78.7 78.3 79.4 60.0 73.4 66.7
GPT-4o-240806 µ 56.1 60.0 53.1 30.0 54.5 61.5 47.0 65.5 65.3 60.0 62.7 50.7 46.7 58.0 53.8 63.9 61.7 66.7 55.7 57.8 48.3
GPT-4o-mini-240718 µ 36.8 51.4 28.1 23.3 25.8 32.3 37.3 58.6 54.7 36.7 45.8 20.9 40.0 30.4 26.2 44.3 36.7 50.8 37.1 23.4 31.7
Claude-3.5-sonnet-240620 µ 62.9 74.3 62.5 61.7 60.6 50.8 59.0 67.2 73.3 63.3 69.5 71.6 55.0 60.9 58.5 68.9 68.3 58.7 58.6 57.8 56.7
Claude-3.5-sonnet-241022 µ 64.2 67.1 60.9 58.3 59.1 55.4 59.0 69.0 73.3 56.7 72.9 73.1 65.0 60.9 66.2 68.9 76.7 55.6 67.1 57.8 61.7

1B+ Models

Qwen2.5-Instruct 1.5B 22.8 22.9 40.3 13.3 21.7 9.2 26.5 8.6 26.7 36.7 16.9 34.3 21.7 15.9 21.5 19.7 30.0 12.7 24.3 15.6 33.3
OpenCoder-Instruct 1.5B 10.5 1.4 17.9 10.0 5.8 6.2 16.9 5.2 25.3 13.3 8.5 10.4 8.3 14.5 15.4 6.6 1.7 6.3 14.3 7.8 8.3
Qwen2.5-Instruct 3B 21.4 30.0 14.9 16.7 13.0 23.1 18.1 29.3 21.3 31.7 27.1 19.4 21.7 20.3 20.0 36.1 26.7 17.5 12.9 23.4 8.3

7B+ Models

Qwen2.5-Coder-Instruct 7B 26.8 42.9 21.9 16.7 27.3 23.1 31.3 8.6 32.0 33.3 32.2 25.4 10.3 23.2 32.3 41.0 18.3 36.5 28.6 31.2 13.3
Meta-Llama-3-Instruct 8B 7.8 8.6 6.0 3.3 5.8 1.5 10.8 12.1 10.7 11.7 18.6 6.0 18.3 4.3 3.1 3.3 1.7 6.3 11.4 10.9 1.7
Meta-Llama-3.1-Instruct 8B 7.0 7.1 9.0 10.0 5.8 3.1 12.0 17.2 0.0 6.7 27.1 4.5 13.3 2.9 1.5 3.3 3.3 0.0 8.6 7.8 0.0
Yi-Coder-Chat 9B 29.5 42.9 40.6 20.0 34.8 29.2 22.9 0.0 60.0 40.0 18.6 28.4 1.7 42.0 30.8 6.6 26.7 36.5 35.7 25.0 33.3

20B+ Models

Codestral-v0.1 22B 43.6 52.9 41.8 35.0 44.9 43.1 42.2 32.8 62.7 48.3 32.2 53.7 20.0 50.7 43.1 60.7 40.0 47.6 38.6 42.2 31.7
Qwen2.5-Instruct 32B 58.4 68.6 50.7 33.3 65.2 55.4 49.4 75.9 65.3 60.0 66.1 68.7 53.3 56.5 50.8 62.3 68.3 61.9 58.6 51.6 46.7
Qwen2.5-Coder-Instruct 32B 59.4 81.4 50.0 46.7 65.2 64.6 63.9 13.8 72.0 68.3 52.5 68.7 12.1 66.7 55.4 73.8 85.0 63.5 60.0 59.4 50.0
DS-Coder-Instruct 33B 17.8 28.6 12.5 8.3 19.7 16.9 20.5 1.7 38.7 33.3 8.5 20.9 3.4 13.0 12.3 1.6 10.0 27.0 31.4 15.6 21.7
Qwen2.5-Instruct 72B 57.4 74.3 44.8 43.3 44.9 66.2 55.4 65.5 64.0 68.3 61.0 67.2 45.0 50.7 47.7 68.9 61.7 60.3 50.0 59.4 50.0
DS-Coder-V2.5 21/236B 52.3 75.7 50.0 28.3 56.1 40.0 54.2 63.8 64.0 68.3 59.3 44.8 43.3 58.0 27.7 70.5 53.3 34.9 47.1 57.8 46.7
xDebugGen (Our Method) 7B 18.7 30.0 21.9 3.3 15.2 10.8 20.5 8.6 30.7 36.7 28.8 23.9 8.6 18.8 15.4 13.1 5.0 33.3 20.0 15.6 6.7

Table 5: Accuracy of different models for Bug Localization tasks on MDEVAL. The underlined numbers are the
best scores for each language. “Avgall” represents the average scores of all code languages.

bLk and the buggy code cLk with only a few minor390

differences between them. The correct code and391

buggy code are listed in a random order to feed into392

LLM for distinguishing the buggy code. Figure 8393

displays the accuracy for code review tasks. The394

results show that closed-source models still signifi-395

cantly outperform open-source models in the code396

review task. The closed-source models demon-397

strate a strong ability to understand complex code398

logic, achieving an accuracy rate of approximately399

90%. In contrast, the smaller open-source model400

exhibits significant challenges, with an accuracy401

rate of around 50%. This disparity underscores402

the limitations of the current open-source model in403

effectively interpreting intricate coding patterns.404

Effect of Bug Location for APR In previous405

studies, bug localization has been regarded as the406

first step in program repair, playing a critical role.407

To verify whether the bug location information can408

also have a positive impact when using large lan-409

guage models for automated program repair, we410

designed and conducted a series of comparative411

experiments, as shown in Figure 9. We test two 412

scenarios: providing the bug location information 413

and not providing it and task the model with repair- 414

ing buggy code in both cases. The results indicate 415

that providing the bug location information sig- 416

nificantly improves Pass@1 scores of automated 417

program repair. However, our prior experimental 418

results reveal that for LLMs, the difficulty of the 419

bug localization task is notably higher than that 420

of the automated program repair task. Therefore, 421

improving the bug localization capabilities of the 422

model is essential for enhancing its overall auto- 423

mated program repair performance. 424

5 Related Work 425

The rapid progress of large language mod- 426

els(OpenAI, 2023; Touvron et al., 2023b; AI, 2024; 427

Bai et al., 2023; Yang et al., 2024a) has enabled 428

complex code-related tasks. Early models like 429

BERT(Devlin et al., 2019) and GPT (Radford et al., 430

2018), trained on billions of code snippets, focused 431

on code understanding and generation (Chen et al., 432

7

Average C C# Clisp CPP F# Go HTML JavaScript Java JSON
0

50

GPT-4o-240806
Claude-3.5-sonnet-241022

Qwen2.5-Coder-7B-Instruct
CodeQwen-1.5-7B-Chat

DS-Coder-1.3B-Instrcut
xDebugGen (Ours)

Julia Markdown PHP Pascal Python R Ruby Rust Scala Swift
0

50

100

1

(a) Buggy code with example test cases

Average C C# Clisp CPP F# Go HTML JavaScript Java JSON
0

50

GPT-4o-240806
Claude-3.5-sonnet-241022

Qwen2.5-Coder-7B-Instruct
CodeQwen-1.5-7B-Chat

DS-Coder-1.3B-Instrcut
xDebugGen (Ours)

Julia Markdown PHP Pascal Python R Ruby Rust Scala Swift
0

50

1

(b) Only buggy code

Figure 6: Two additional automated program repair
settings are designed to simulate realistic user queries.
Part (a) presents results for the scenario where models
are provided with buggy code along with example test
cases, while Part (b) illustrates results for the scenario
where only the buggy code is provided to the models.

GPT-4o-240806

Claude-3.5-sonnet-241022

Yi-Coder-1.5B-Chat

DS-Coder-6.7B-Instruct

DS-Coder-V2-Lite-Instruct

xDebugCoder(Ours)

DS-Coder-6.7B-Instruct

Figure 7: Performance of models on the automated
program repair task across error types.

30

40

50

60

70

80

90

100

Avg C C#
Clis

p
CPP F# Go

HTML

Ja
va

Scri
pt

Ja
va

JS
ON

Ju
lia

Mark
do

wn
PHP

Pas
ca

l

Pyth
on R

Rub
y

Rus
t

Sca
la

Swift

GPT-4o-240806 Claude-3.5-sonnet-241022 Yi-Coder--1.5B-Chat Qwen2.5-Coder-7B-Instruct OpenCoder-8B-Instruct xDebugGen (Ours)

Figure 8: Accuracy of different models for Code Review
tasks on MDEVAL.

2021; Feng et al., 2020; Scao et al., 2022; Li et al.,433

2022; Wang et al., 2021; Allal et al., 2023). Re-434

cent advances in domain-specific pre-training and435

instruction fine-tuning (Zheng et al., 2024a; Yue436

et al., 2024) have enhanced models like CodeL-437

lama (Rozière et al., 2023) and WizardCoder (Luo438

et al., 2023), achieving strong performance in code439

completion, synthesis, and repair.440

GPT-4o-240806

GPT-4o-mini-240718

Claude-3.5-sonnet-240620

Claude-3.5-sonnet-241022

DS-v2.5

DS-Coder-1.3B-Instrcut

Yi-Coder-1.5B-Chat

DS-Coder-6.7B-Instruct

CodeLlama-7B-Instruct

CodeGemma-7B-Instruct

CodeQwen1.5-7B-Chat

Qwen2.5-Coder-7B-Instruct

OpenCoder-8B-Instruct

Yi-Coder-9B-Chat

DS-Coder-V2-Lite-Instruct

Qwen2.5-Coder-32B-Instruct

DS-Coder-33B-Instruct

xDebugCoder(Ours)

0% 25% 50% 75% 100%

Only buggy code Error location and buggy code

Figure 9: Comparison of the Pass@1 (%) scores with
only the buggy code provided versus when additional
bug location information is supplied.

LLMs have also gained popularity for automatic 441

program debugging, a critical task for bug detec- 442

tion, vulnerability identification (Pradel and Sen, 443

2018; Allamanis et al., 2021), fuzz testing (Deng 444

et al., 2023; Xia et al., 2024), and program re- 445

pair (Wen et al., 2024; Gu et al., 2024). Bench- 446

mark tests, such as DebugBench (Tian et al., 2024) 447

and DebugEval (Yang et al., 2024c), assess LLM 448

debugging capabilities across error categories and 449

tasks. However, these focus on 1-3 languages, ne- 450

glecting language-specific errors. To fill this gap, 451

we propose MDEVAL, a comprehensive debugging 452

benchmark for 20 languages to evaluate LLM per- 453

formance from a broader perspective. 454

6 Conclusion 455

In this work, we introduce MDEVAL of instruction 456

corpora MDEVAL-INSTRUCT, evaluation bench- 457

mark, and a strong baseline xDebugCoder, where 458

the benchmark includes automated program repair 459

(APR), bug localization (BL), and bug identifica- 460

tion (BI) of 20 programming languages (total 3.9K 461

samples), aiming to assess the debugging capabil- 462

ities of large language models (LLMs) in multi- 463

lingual environments. Further, we propose xDe- 464

bugGen to construct a multilingual debugging in- 465

struction corpus, where we inject the bugs into the 466

query or answer to create the pair of the buggy code 467

and correct code. Based on MDEVAL-INSTRUCT, 468

we develop xDebugCoder, a multilingual LLM for 469

debugging in a wide range of programming lan- 470

guages as a strong baseline. Through extensive 471

experiments, this paper reveals a substantial perfor- 472

mance gap between open-source and closed-source 473

LLMs, underscoring the need for further improve- 474

ments in multilingual code debugging. In the fu- 475

ture, we will continue expanding the number of 476

languages in MDEVAL. 477

8

Limitations478

Language Coverage. Although MDEVAL cov-479

ers 20 programming languages, there are still many480

languages not included, particularly those that are481

less commonly used or have niche applications. Ex-482

panding the benchmark to include more languages483

would provide a more comprehensive evaluation of484

multilingual debugging capabilities.485

Real-world Applicability. While MDEVAL aims486

to simulate realistic debugging scenarios, the tasks487

and data may not fully capture the complexity and488

variability of real-world software development. In-489

corporating more diverse and complex real-world490

projects into the benchmark could improve its ap-491

plicability and relevance.492

Instruction Tuning Data. The instruction cor-493

pora MDEVAL-INSTRUCT used for fine-tuning494

the baseline model xDebugCoder is generated by495

LLM-based bug injection. While this approach has496

shown promise, the quality and diversity of the gen-497

erated data could be further improved. Exploring498

alternative methods for generating high-quality in-499

struction data, such as leveraging more advanced500

LLMs or incorporating feedback from real-world501

debugging sessions, could enhance the effective-502

ness of the instruction tuning process.503

Ethical Considerations504

Potential Risks505

MDEVAL, as evaluation tools, can comprehen-506

sively assess the capability of large language mod-507

els in debugging tasks across a wide range of pro-508

gramming languages, thereby advancing the devel-509

opment of large language models in this domain.510

However, improper or erroneous use of MDEVAL511

may pose significant risks, such as incorrect pro-512

gram analysis and faulty program repair, which513

could even lead to severe consequences such as pro-514

gram crashes or operating system failures. There-515

fore, to ensure the security and reliability of the516

evaluation process, we strongly recommend using517

MDEVAL within a sandbox environment. Such an518

environment can effectively isolate potential sys-519

tem risks, ensuring the accuracy and safety of the520

evaluation.521

References 522

Meta AI. 2024. Introducing meta llama 3: The most 523
capable openly available llm to date. https://ai. 524
meta.com/blog/meta-llama-3/. 525

Loubna Ben Allal, Raymond Li, Denis Kocetkov, 526
Chenghao Mou, Christopher Akiki, Carlos Munoz 527
Ferrandis, Niklas Muennighoff, Mayank Mishra, 528
Alex Gu, Manan Dey, et al. 2023. SantaCoder: Don’t 529
reach for the stars! arXiv preprint arXiv:2301.03988. 530

Miltiadis Allamanis, Henry Jackson-Flux, and Marc 531
Brockschmidt. 2021. Self-supervised bug detection 532
and repair. Advances in Neural Information Process- 533
ing Systems, 34:27865–27876. 534

Anthropic. 2023. Introducing Claude. 535

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 536
Bosma, Henryk Michalewski, David Dohan, Ellen 537
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 538
Program synthesis with large language models. arXiv 539
preprint arXiv:2108.07732. 540

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 541
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 542
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 543
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 544
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 545
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 546
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng- 547
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, 548
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, 549
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx- 550
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang 551
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang 552
Zhu. 2023. Qwen technical report. arXiv preprint 553
arXiv:2309.16609, abs/2309.16609. 554

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 555
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 556
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 557
Molly Q Feldman, et al. 2023. Multipl-e: A scal- 558
able and polyglot approach to benchmarking neural 559
code generation. IEEE Transactions on Software 560
Engineering. 561

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, 562
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu, 563
Guoliang Dong, Artem Aliev, et al. 2024. Coder: Is- 564
sue resolving with multi-agent and task graphs. arXiv 565
preprint arXiv:2406.01304. 566

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 567
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 568
Harrison Edwards, Yuri Burda, Nicholas Joseph, 569
Greg Brockman, Alex Ray, Raul Puri, Gretchen 570
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 571
try, Pamela Mishkin, Brooke Chan, Scott Gray, 572
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 573
Kaiser, Mohammad Bavarian, Clemens Winter, 574
Philippe Tillet, Felipe Petroski Such, Dave Cum- 575
mings, Matthias Plappert, Fotios Chantzis, Eliza- 576
beth Barnes, Ariel Herbert-Voss, William Hebgen 577
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 578

9

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,579
William Saunders, Christopher Hesse, Andrew N.580
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan581
Morikawa, Alec Radford, Matthew Knight, Miles582
Brundage, Mira Murati, Katie Mayer, Peter Welinder,583
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya584
Sutskever, and Wojciech Zaremba. 2021. Evaluat-585
ing large language models trained on code. arXiv586
preprint arXiv:2107.03374, abs/2107.03374.587

Ken Deng, Jiaheng Liu, He Zhu, Congnan Liu, Jingxin588
Li, Jiakai Wang, Peng Zhao, Chenchen Zhang, Yanan589
Wu, Xueqiao Yin, et al. 2024. R2c2-coder: Enhanc-590
ing and benchmarking real-world repository-level591
code completion abilities of code large language mod-592
els. arXiv preprint arXiv:2406.01359.593

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng,594
Chenyuan Yang, and Lingming Zhang. 2023. Large595
language models are zero-shot fuzzers: Fuzzing deep-596
learning libraries via large language models. In Pro-597
ceedings of the 32nd ACM SIGSOFT international598
symposium on software testing and analysis, pages599
423–435.600

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and601
Kristina Toutanova. 2019. BERT: pre-training of602
deep bidirectional transformers for language under-603
standing. In Proceedings of the 2019 Conference of604
the North American Chapter of the Association for605
Computational Linguistics: Human Language Tech-606
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,607
June 2-7, 2019, Volume 1 (Long and Short Papers),608
pages 4171–4186. Association for Computational609
Linguistics.610

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,611
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing612
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.613
Codebert: A pre-trained model for programming and614
natural languages. In Findings of the Association615
for Computational Linguistics: EMNLP 2020, pages616
1536–1547, Online. Association for Computational617
Linguistics.618

Google Gemma Team. 2024. Gemma: Open models619
based on gemini research and technology. arXiv620
preprint arXiv:2403.08295.621

Alex Gu, Wen-Ding Li, Naman Jain, Theo X Olaus-622
son, Celine Lee, Koushik Sen, and Armando623
Solar-Lezama. 2024. The counterfeit conundrum:624
Can code language models grasp the nuances625
of their incorrect generations? arXiv preprint626
arXiv:2402.19475.627

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,628
Kai Dong, Wentao Zhang, Guanting Chen, Xiao629
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-coder:630
When the large language model meets program-631
ming – the rise of code intelligence. arXiv preprint632
arXiv:2401.14196.633

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,634
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,635

Ruibo Liu, Yue Wang, et al. 2024b. Codeeditor- 636
bench: Evaluating code editing capability of large 637
language models. arXiv preprint arXiv:2404.03543. 638

Md Mahim Anjum Haque, Wasi Uddin Ahmad, Is- 639
mini Lourentzou, and Chris Brown. 2023. Fixe- 640
val: Execution-based evaluation of program fixes 641
for programming problems. In 2023 IEEE/ACM In- 642
ternational Workshop on Automated Program Repair 643
(APR), pages 11–18. IEEE. 644

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 645
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 646
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder 647
technical report. arXiv preprint arXiv:2409.12186. 648

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 649
sch, Chris Bamford, Devendra Singh Chaplot, Diego 650
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 651
laume Lample, Lucile Saulnier, et al. 2023. Mistral 652
7b. arXiv preprint arXiv:2310.06825. 653

Carlos E Jimenez, John Yang, Alexander Wettig, 654
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 655
Narasimhan. 2023. Swe-bench: Can language mod- 656
els resolve real-world github issues? arXiv preprint 657
arXiv:2310.06770. 658

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 659
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 660
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 661
cient memory management for large language model 662
serving with pagedattention. In Proceedings of the 663
ACM SIGOPS 29th Symposium on Operating Systems 664
Principles. 665

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 666
Muennighoff, Denis Kocetkov, Chenghao Mou, 667
Marc Marone, Christopher Akiki, Jia Li, Jenny 668
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 669
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 670
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 671
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 672
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 673
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 674
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 675
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 676
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 677
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 678
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 679
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 680
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 681
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 682
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 683
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 684
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine 685
Jernite, Carlos Muñoz Ferrandis, Sean Hughes, 686
Thomas Wolf, Arjun Guha, Leandro von Werra, and 687
Harm de Vries. 2023. Starcoder: may the source 688
be with you! arXiv preprint arXiv:2305.06161, 689
abs/2305.06161. 690

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush- 691
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 692
cles, James Keeling, Felix Gimeno, Agustin Dal 693

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161

Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-694
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-695
Sen Huang, Johannes Welbl, Sven Gowal, Alexey696
Cherepanov, James Molloy, Daniel J. Mankowitz,697
Esme Sutherland Robson, Pushmeet Kohli, Nando698
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.699
2022. Competition-level code generation with700
alphacode. arXiv preprint arXiv:2203.07814,701
abs/2203.07814.702

Derrick Lin, James Koppel, Angela Chen, and Armando703
Solar-Lezama. 2017. Quixbugs: a multi-lingual pro-704
gram repair benchmark set based on the quixey chal-705
lenge. In Proceedings Companion of the 2017 ACM706
SIGPLAN international conference on systems, pro-707
gramming, languages, and applications: software for708
humanity, pages 55–56.709

Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai710
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan711
Wu, Ke Jin, Ge Zhang, Zekun Moore Wang, Guoan712
Zhang, Bangyu Xiang, Wenbo Su, and Bo Zheng.713
2024. M2rc-eval: Massively multilingual repository-714
level code completion evaluation.715

Ilya Loshchilov and Frank Hutter. 2017. Decou-716
pled weight decay regularization. arXiv preprint717
arXiv:1711.05101.718

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-719
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,720
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,721
et al. 2024. Starcoder 2 and the stack v2: The next722
generation. arXiv preprint arXiv:2402.19173.723

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey724
Svyatkovskiy, Ambrosio Blanco, Colin Clement,725
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.726
Codexglue: A machine learning benchmark dataset727
for code understanding and generation. arXiv728
preprint arXiv:2102.04664.729

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-730
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,731
Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:732
Empowering code large language models with evol-733
instruct. arXiv preprint arXiv:2306.08568.734

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai735
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam736
Singh, Xiangru Tang, Leandro von Werra, and737
Shayne Longpre. 2023. OctoPack: Instruction tun-738
ing code large language models. arXiv preprint739
arXiv:2308.07124, abs/2308.07124.740

OpenAI. 2023. Gpt-4 technical report. arXiv preprint741
arXiv:2303.08774.742

Michael Pradel and Koushik Sen. 2018. Deepbugs:743
A learning approach to name-based bug detection.744
Proceedings of the ACM on Programming Languages,745
2(OOPSLA):1–25.746

Julian Aron Prenner, Hlib Babii, and Romain Robbes.747
2022. Can openai’s codex fix bugs? an evaluation on748
quixbugs. In Proceedings of the Third International749

Workshop on Automated Program Repair, pages 69– 750
75. 751

Julian Aron Prenner and Romain Robbes. 2023. Runbu- 752
grun – an executable dataset for automated program 753
repair. arXiv preprint arXiv:2304.01102. 754

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 755
Sutskever, et al. 2018. Improving language under- 756
standing by generative pre-training. OpenAI blog. 757

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 758
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 759
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 760
Code llama: Open foundation models for code. arXiv 761
preprint arXiv:2308.12950. 762

Teven Le Scao, Angela Fan, Christopher Akiki, El- 763
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman 764
Castagné, Alexandra Sasha Luccioni, François Yvon, 765
Matthias Gallé, et al. 2022. Bloom: A 176b- 766
parameter open-access multilingual language model. 767
arXiv preprint arXiv:2211.05100. 768

Dominik Sobania, Martin Briesch, Carol Hanna, and 769
Justyna Petke. 2023. An analysis of the auto- 770
matic bug fixing performance of chatgpt. In 2023 771
IEEE/ACM International Workshop on Automated 772
Program Repair (APR), pages 23–30. IEEE. 773

Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin, 774
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun 775
Yang, and Zhoujun Li. 2024. UniCoder: Scaling 776
code large language model via universal code. In 777
Proceedings of the 62nd Annual Meeting of the As- 778
sociation for Computational Linguistics (Volume 1: 779
Long Papers), pages 1812–1824, Bangkok, Thailand. 780
Association for Computational Linguistics. 781

Florian Tambon, Arghavan Moradi Dakhel, Amin 782
Nikanjam, Foutse Khomh, Michel C Desmarais, and 783
Giuliano Antoniol. 2024. Bugs in large language 784
models generated code: An empirical study. CoRR. 785

Wei Tao, Yucheng Zhou, Wenqiang Zhang, and 786
Yu Cheng. 2024. Magis: Llm-based multi-agent 787
framework for github issue resolution. arXiv preprint 788
arXiv:2403.17927. 789

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai 790
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De- 791
bugbench: Evaluating debugging capability of large 792
language models. arXiv preprint arXiv:2401.04621. 793

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 794
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 795
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 796
Azhar, et al. 2023a. LLaMA: Open and effi- 797
cient foundation language models. arXiv preprint 798
arXiv:2302.13971. 799

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 800
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 801
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 802
Bhosale, et al. 2023b. Llama 2: Open founda- 803
tion and fine-tuned chat models. arXiv preprint 804
arXiv:2307.09288. 805

11

https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://arxiv.org/abs/2410.21157
https://arxiv.org/abs/2410.21157
https://arxiv.org/abs/2410.21157
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.01102
https://arxiv.org/abs/2304.01102
https://arxiv.org/abs/2304.01102
https://arxiv.org/abs/2304.01102
https://arxiv.org/abs/2304.01102
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://aclanthology.org/2024.acl-long.100
https://aclanthology.org/2024.acl-long.100
https://aclanthology.org/2024.acl-long.100
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-806
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,807
Di Yin, Xing Sun, et al. 2024a. Mac-sql: A multi-808
agent collaborative framework for text-to-sql. arXiv809
preprint arXiv:2312.11242.810

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui,811
Ning Ding, Zhiyuan Liu, and Ge Yu. 2023. Inter-812
venor: Prompt the coding ability of large language813
models with the interactive chain of repairing. arXiv814
preprint arXiv:2311.09868.815

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH816
Hoi. 2021. Codet5: Identifier-aware unified817
pre-trained encoder-decoder models for code un-818
derstanding and generation. arXiv preprint819
arXiv:2109.00859.820

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang,821
Shengmai Chen, Lei Ma, and Tianyi Zhang. 2024b.822
Where do large language models fail when generating823
code? arXiv preprint arXiv:2406.08731.824

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and825
Lingming Zhang. 2023. Magicoder: Source code826
is all you need. arXiv preprint arXiv:2312.02120,827
abs/2312.02120.828

Hao Wen, Yueheng Zhu, Chao Liu, Xiaoxue Ren, Wei-829
wei Du, and Meng Yan. 2024. Fixing code genera-830
tion errors for large language models. arXiv preprint831
arXiv:2409.00676.832

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,833
Michael Pradel, and Lingming Zhang. 2024.834
Fuzz4all: Universal fuzzing with large language mod-835
els. In Proceedings of the IEEE/ACM 46th Interna-836
tional Conference on Software Engineering, pages837
1–13.838

Chunqiu Steven Xia and Lingming Zhang. 2023. Con-839
versational automated program repair. arXiv preprint840
arXiv:2301.13246.841

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,842
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan843
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2844
technical report. arXiv preprint arXiv:2407.10671.845

Liqun Yang, Jian Yang, Chaoren Wei, Guanglin Niu,846
Ge Zhang, Yunli Wang, Linzheng ChaI, Wanxu Xia,847
Hongcheng Guo, Shun Zhang, et al. 2024b. Fuz-848
zcoder: Byte-level fuzzing test via large language849
model. arXiv preprint arXiv:2409.01944.850

Weiqing Yang, Hanbin Wang, Zhenghao Liu, Xinze Li,851
Yukun Yan, Shuo Wang, Yu Gu, Minghe Yu, Zhiyuan852
Liu, and Ge Yu. 2024c. Enhancing the code debug-853
ging ability of llms via communicative agent based854
data refinement. arXiv preprint arXiv:2408.05006.855

Michihiro Yasunaga and Percy Liang. 2021. Break-it-856
fix-it: Unsupervised learning for program repair. In857
International conference on machine learning, pages858
11941–11952. PMLR.859

Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Ming- 860
wei Liu, Xin Peng, and Yiling Lou. 2023. Eval- 861
uating instruction-tuned large language models on 862
code comprehension and generation. arXiv preprint 863
arXiv:2308.01240. 864

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. 865
2024. Mammoth2: Scaling instructions from the web. 866
arXiv preprint arXiv:2405.03548. 867

Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang, 868
Yuhong Li, and Hui Li. 2024. Prompt-enhanced soft- 869
ware vulnerability detection using chatgpt. In Pro- 870
ceedings of the 2024 IEEE/ACM 46th International 871
Conference on Software Engineering: Companion 872
Proceedings, pages 276–277. 873

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong 874
Fang, Bowen Yu, Weisong Sun, and Zhenyu Chen. 875
2023. A critical review of large language model 876
on software engineering: An example from chat- 877
gpt and automated program repair. arXiv preprint 878
arXiv:2310.08879. 879

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 880
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 881
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. 882
Codegeex: A pre-trained model for code generation 883
with multilingual evaluations on humaneval-x. arXiv 884
preprint arXiv:2303.17568, abs/2303.17568. 885

Tianyu Zheng, Shuyue Guo, Xingwei Qu, Jiawei Guo, 886
Weixu Zhang, Xinrun Du, Chenghua Lin, Wen- 887
hao Huang, Wenhu Chen, Jie Fu, et al. 2024a. 888
Kun: Answer polishment for chinese self-alignment 889
with instruction back-translation. arXiv preprint 890
arXiv:2401.06477. 891

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 892
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 893
Yue. 2024b. Opencodeinterpreter: Integrating code 894
generation with execution and refinement. arXiv 895
preprint arXiv:2402.14658. 896

Zhiyuan Zhong, Sinan Wang, Hailong Wang, Shaojin 897
Wen, Hao Guan, Yida Tao, and Yepang Liu. 2024. 898
Advancing bug detection in fastjson2 with large lan- 899
guage models driven unit test generation. arXiv 900
preprint arXiv:2410.09414. 901

12

https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658

A Human Annotation902

To construct the massively multilingual code de-903

bugging benchmark MDEVAL, we designed and904

implemented a comprehensive and systematic hu-905

man annotation process to ensure the accuracy,906

consistency, and high quality of multilingual code907

samples. This process strictly adheres to carefully908

formulated annotation guidelines and incorporates909

multiple quality control mechanisms.910

We recruited 13 computer science graduates as911

multilingual debugging annotators, all of whom are912

proficient in at least one programming language913

and possess a solid foundation in computer science.914

Prior to the formal annotation process, annotators915

underwent systematic training on annotation meth-916

ods, covering core tasks such as problem definition,917

solution design, and buggy code generation.918

Our annotation training guidelines focus on the919

following key aspects:920

• Standardized Format: We provide detailed921

annotation examples and templates for 20 pro-922

gramming languages. Annotators must strictly923

adhere to a standardized format throughout924

the annotation process to ensure data consis-925

tency and reusability.926

• Accessibility: All annotation reference data927

are sourced from open-source materials that928

allow free use and distribution, ensuring com-929

pliance with academic research purposes and930

relevant legal and ethical requirements.931

• Difficulty Classification: We establish a de-932

tailed difficulty classification guideline for933

each programming language. Annotators934

must categorize each problem according to935

complexity, error type, and problem scale, as-936

signing an appropriate difficulty level (e.g.,937

easy, middle, hard) following the guidelines.938

• Self-Containment: Annotators must ensure939

that each problem description is complete and940

unambiguous, containing all necessary infor-941

mation for problem-solving. Provided exam-942

ple inputs and outputs must be accurate, the943

generated buggy code must be ensured to fail944

execution correctly, and the reference solu-945

tion must pass all test cases. Additionally, test946

cases should comprehensively cover various947

boundary conditions and exceptional scenar-948

ios.949

To maintain annotation quality and incentivize 950

annotators, we offered a compensation of approx- 951

imately $6 per problem. Moreover, we provided 952

annotators with a comfortable working environ- 953

ment, free meals, souvenirs, and high-performance 954

computing equipment. A total of approximately 955

1,300 problems were annotated, with additional 956

annotators hired for quality inspection, leading to 957

a total cost of around $5,000. Quality inspection 958

tasks included bug identification, bug localization, 959

and code review. 960

A.1 Quality Control 961

To ensure the high quality of the MDEVAL, we 962

implemented a rigorous quality control mechanism. 963

First, annotators were required to evaluate the anno- 964

tated code based on four core criteria: problem dif- 965

ficulty, ambiguity, error type, and solvability. Sec- 966

ond, we adopted a dual verification system, where 967

each code snippet was independently annotated by 968

at least two annotators to minimize subjective bias 969

and human errors. In cases of disagreement, res- 970

olution was achieved through discussion or by a 971

senior annotator making the final decision. 972

To further ensure the reliability of the bench- 973

mark, we employed three volunteers to assess 974

whether MDEVAL achieved a correctness rate of at 975

least 90% and to correct any errors, thereby guar- 976

anteeing the accuracy of the annotations. 977

B Experiment Detail 978

xDebugCoder Training Corpora. The training 979

corpora consist of our debugging dataset MDEVAL- 980

INSTRUCT, which contains 16K samples, and the 981

Magicoder-Instruct code generation dataset (Wei 982

et al., 2023), comprising 180K samples. This com- 983

bination ensures that the model possesses a funda- 984

mental capability to follow instructions for basic 985

code tasks. We apply data decontamination be- 986

fore training our xDebugGen. Following Li et al. 987

(2023); Wei et al. (2023), we adopt the N-gram ex- 988

act match decontamination method with MDEVAL, 989

HumanEval (Chen et al., 2021), MultiPL-E (Cas- 990

sano et al., 2023), MBPP (Austin et al., 2021). 991

xDebugCoder Optimization. Our model, xDe- 992

bugCoder, based on Qwen2.5-Coder-7B, is trained 993

for 3 epochs using a cosine scheduler, starting at a 994

learning rate of 5× 10−5 with 3% of total training 995

steps for warmup. We utilize AdamW (Loshchilov 996

and Hutter, 2017) as the optimizer; the batch size 997

is set to 1024, with a maximum sequence length 998

13

of 2048. All experiments are performed with 8999

NVIDIA A800-80GB GPUs.1000

Code LLMs. We evaluate 40 popular models,1001

both closed-source and open-source (sizes rang-1002

ing from 1.3B to 605B parameters). For general1003

models, we evaluate GPTs (OpenAI, 2023) (GPT4-1004

o, GPT4-o-mini), Claude-3.5 (Anthropic, 2023).1005

For code models, we test Qwen2.5-Coder (Hui1006

et al., 2024), DeepSeekCoder (DS-Coder) (Guo1007

et al., 2024a), CodeLlama (Rozière et al., 2023),1008

and Codegemma (Gemma Team, 2024). Further-1009

more, we fine-tune the Qwen2.5-Coder-7B to pro-1010

vide a baseline model xDebugCoder for reference.1011

For closed-source models, the responses are gener-1012

ated by the official API. For the open-source mod-1013

els, we perform inference on all models using the1014

vLLM (Kwon et al., 2023) framework. All models1015

adopt a greedy decoding strategy during inference,1016

the temperature is set to 0, and the maximum gen-1017

eration length is 4096.1018

C Related Work1019

Code Large Language Model. With the1020

rapid advancement of large language mod-1021

els(LLMs) (OpenAI, 2023; Touvron et al., 2023b;1022

AI, 2024; Bai et al., 2023; Yang et al., 2024a), solv-1023

ing complex code-related tasks has become increas-1024

ingly feasible, leading to the emergence of numer-1025

ous Code LLMs. Early studies utilized models like1026

BERT (Devlin et al., 2019) or GPT (Radford et al.,1027

2018) as backbones, trained on billions of code1028

snippets to enable tasks involving code understand-1029

ing and generation (Chen et al., 2021; Feng et al.,1030

2020; Scao et al., 2022; Li et al., 2022; Wang et al.,1031

2021; Allal et al., 2023). Recently, advancements1032

in domain-specific pre-training and instruction fine-1033

tuning techniques (Zheng et al., 2024a; Yue et al.,1034

2024) have led to extensive efforts in fine-tuning1035

models on large-scale code corpora and crafting1036

code-related task instructions (Rozière et al., 2023;1037

Zheng et al., 2023; Luo et al., 2023; Muennighoff1038

et al., 2023; Gemma Team, 2024; Zheng et al.,1039

2024b; Guo et al., 2024a; Wei et al., 2023; Sun1040

et al., 2024; Lozhkov et al., 2024; Jiang et al., 2023;1041

Hui et al., 2024; Wang et al., 2024a; Deng et al.,1042

2024; Liu et al., 2024). These models demonstrate1043

remarkable performance in tasks like code comple-1044

tion, synthesis, and program repair.1045

Debugging with Large Language Models. Au-1046

tomatic program debugging holds substantial prac-1047

tical value. With the emergence of LLM capabili- 1048

ties, a growing number of individuals are utilizing 1049

LLMs for code debugging, leading to extensive 1050

research in this field. Code Debugging includes 1051

serval tasks such as bug or vulnerability detec- 1052

tion (Pradel and Sen, 2018; Allamanis et al., 2021; 1053

Yuan et al., 2023; Zhang et al., 2024; Zhong et al., 1054

2024), fuzz test (Deng et al., 2023; Xia et al., 2024; 1055

Yang et al., 2024b), program repair (Wen et al., 1056

2024; Lin et al., 2017; Zhang et al., 2023; Prenner 1057

and Robbes, 2023; Gu et al., 2024; Tambon et al., 1058

2024; Wang et al., 2024b), GitHub issues auto re- 1059

solving (Jimenez et al., 2023; Chen et al., 2024; 1060

Tao et al., 2024). To effectively assess the code 1061

debugging capabilities of LLMs, several bench- 1062

mark tests have been introduced (Prenner et al., 1063

2022; Sobania et al., 2023; Xia and Zhang, 2023; 1064

Zhang et al., 2023; Tian et al., 2024; Yang et al., 1065

2024c). Notably, DebugBench (Tian et al., 2024) 1066

provides a comprehensive classification of error 1067

types and analyzes the debugging capabilities of 1068

LLMs based on these categories. Similarly, De- 1069

bugEval (Yang et al., 2024c) has designed various 1070

debugging-related tasks to evaluate LLM perfor- 1071

mance across different task dimensions. However, 1072

these studies focus on 1 to 3 languages. In real- 1073

ity, there are significant differences in code errors 1074

between languages, leading to numerous language- 1075

specific errors. To address this gap, we propose 1076

MDEVAL, a comprehensive code debugging bench- 1077

mark covering 20 languages, aiming to assess LLM 1078

debugging capabilities from a broader perspective. 1079

14

	Introduction
	MdEval
	Data Overview
	Data Construction & Quality Control
	Instruction Corpora for Code Debugging
	Evaluation Task
	Evaluation Metrics

	Experiments
	Experiment Setup
	Main Results

	Further Analysis
	Related Work
	Conclusion
	Human Annotation
	Quality Control

	Experiment Detail
	Related Work

