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ABSTRACT

Current evaluations of Large Language Model (LLM) steering techniques focus
on task-specific performance, overlooking how well steered representations align
with human cognition. Using a well-established triadic similarity judgment task,
we assessed steered LLMs on their ability to flexibly judge similarity between
concepts based on size or kind, two central dimensions organizing human men-
tal representations. We found that prompt-based steering methods outperformed
other methods both in terms of steering accuracy and model-to-human alignment.
We also found LLMs were biased towards ‘kind’ similarity and struggled with
‘size’ alignment. This evaluation approach, grounded in human cognition, adds
further support to the efficacy of prompt-based steering and reveals privileged rep-
resentational axes in LLMs prior to steering.

1 INTRODUCTION

Central to the flexibility of human cognition is the ability to marshal both one’s knowledge of the
world and the current context to guide behavior (Wong et al., 2025). Different aspects of a learned
concept can be preferentially activated to execute different tasks. For example, the size of an orange
might be important when a shopper is deciding how many can fit inside their shopping basket,
whereas the kind of produce it is (i.e., fruit) might be important when a grocer is arranging their
wares on a shelf. Such flexible behavior is facilitated by learning robust representations of concepts,
captured by theories and models of semantic knowledge (Rogers & McClelland, [2004}; Rogers|2024;
Saxe et al., |2019), and by ‘guiding’ these representations through context-sensitive mechanisms,
captured by accounts of cognitive/semantic control (Cohen et al.| [1990; Miller & Cohen| 2001}
Ralph et al., [2017} |Giallanza et al., |[2024).

These aspects of human semantic cognition—representation and control—provide strong analogies
to two important axes of evaluation for large language models (LLMs): (1) representation learning
through pre-training and (2) intervention-based steering. This isomorphism is important insofar as
cognitive scientists have developed methods for characterizing human mental representations under
varied contexts for naturalistic tasks that underpin a variety of human behaviors. Here, we focus on
evaluating current LLM steering techniques through the lens of cognitive science-inspired methods,
which constitute a critical complement to efforts in interpretability research, primarily stemming
from the computer sciences. This allows for evaluating steering techniques not just in terms of
performance, but in terms of how aligned the resultant model behaviors and representations are to
those of humans when presented with qualitatively similar interventions.

In the present work, we used a triadic similarity judgment task (Sievert et al.| 2023 |[Hebart et al.,
2020), a technique that has been shown to be effective at characterizing human mental representa-
tions, where humans judged the similarity between concepts in terms of either size or kind. We
then tested a suite of LLM intervention steering techniques on gemma2-27b and gemma2-9b and
assessed each method’s (1) accuracy, measured as the number of ‘correct’ judgments on the size and
kind tasks, and (2) human alignment, measured as the Procrustes correlation between embeddings
generated from human judgments versus those generated from model judgments. Model accuracy
differed dramatically across steering methods, with some approaches yielding human-level perfor-
mance; but surprisingly, human alignment was poor, especially for size judgments across all steering
methods. These results suggest critical differences between semantic control in humans and large
language models.
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2 RELATED WORK

2.1 TRIADIC JUDGMENT TASKS

Triadic judgment tasks, coupled with advances in embedding algorithms (Jamieson et al., 2015}
Sievert et al., 2023; Muttenthaler et al., 2022) have enabled the characterization of the represen-
tational geometry underlying human concepts (Jamieson et al., 2015} Sievert et al., 2023} Mutten-
thaler et al., 2022; Hebart et al., 2020; Muttenthaler et al., [2023b; [Suresh et al., 2024} |Giallanza
et al.| 2024). The general approach is to present participants with three concepts and to ask them to
indicate either the odd one out or which of two options is most similar to a designated target (Sievert
et al., 2023} Muttenthaler et al., 2022). These judgments are used to estimate a low-dimensional
embedding where similar concepts are closer together. These techniques have been extended to Al
systems, specifically vision models (Muttenthaler et al.,2023a; Mukherjee & Rogers, 2025)), to esti-
mate how human-like neural network representations are (see \Sucholutsky et al.,|2023). Judgments
made by LLMs on such tasks can also be used to estimate model embeddings, helping uncover
representational structures in otherwise opaque systems (Hebart et al., [2020; Sucholutsky et al.|
2023). This approach has revealed fundamental differences: human conceptual structures remain
consistent across cultures, while LLMs exhibit task-dependent variation (Suresh et al., 2023). Ap-
plications extend to standardized similarity norms (Hout et al., [2022) and semantic organization
principles (Mirman et al., 2017).

2.2 MODEL STEERING METHODS

Although language models are already context-sensitive due to their outputs being conditioned on
prior text, steering methods further control behavior via internal interventions or structured prompts.
Because these methods allow for fine-grained control over LLM behavior at inference time, they
offer a potential alternative to more expensive methods—such as supervised fine tuning (SFT)-which
directly modify model weights (Wu et al., 2025)).

Prompting In many instances, model outputs can be steered directly through prompt instructions
provided in natural language (Sahoo et al.l |2025)). Zero-shot prompting involves providing a single
task instruction or example to direct LLM outputs, and is capable of shaping responses to support
emergent behaviors including multi-step reasoning (Kojima et al.||2023)), social simulation (Chuang
et al., 2024) and image classification (Abdelhamed et al.l |2025). Even without explicit instruction,
LLMs can induce general rules and abstractions from minimal examples via in-context learning.
This is sufficient to steer model behavior for translation tasks, (Brown et al.}[2020), logical reasoning
(Yin et al., [2024), and task induction (Honovich et al.|, [2022).

Task vectors [Hendel et al.| (2023)) find that LLMs encode in-context task instructions as a linear
direction in intermediate layers. This direction, 6, is a compressed representation of the abstract
rule underlying the sequence. When 6 is extracted from the forward pass on a rule-based prompt
2 and patched into the forward pass of an empty prompt 2’ with no task instructions, the model is
able to produce the correct sequence completion for the empty prompt. Initial work by Hendel et al.
(2023) demonstrates the efficacy of task vectors for steering model behavior in domains including
translation, semantic knowledge (country-capitol mappings) and syntactic rules. [Todd et al.| (2024)
extends this general paradigm to recover finer-grained representations from the activations of indi-
vidual attention heads. Subsequent work has since applied task vectors to causal interventions in
a variety of applications from visual image-masking tasks (Hojel et al.l [2024) to more naturalistic
domains (Kang et al., 2025), while improvements to the paradigm itself include training mecha-
nism modifications to induce task vectors (Yang et al.,|2025) and the superposition of multiple task
vectors during in-context learning (Xiong et al., [2024).

Difference-in-means (DiffMean) While task vectors demonstrate, in-practice, that transformer
hidden layers encode abstract rules for task representations, these representations are often noisy as
a result of extracting the entire hidden state at a given token position (Hendel et al.| [2023)). | Marks
& Tegmarkl (2024) introduce a fine-grained method for extracting the steering vector as a linear
direction 6 in the activation space that represents the difference between the mean hidden states
of positive and negative prompt examples. This vector, represented as 6, consistently shifts model
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activations along the direction 6, from positive to negative or negative to positive (where negative
and positive are examples along some dimension). [Marks & Tegmark|(2024) demonstrate that these
vectors capture significantly less noise compared to simple linear probes, and generalize to a range
of naturalistic domains.

Sparse autoencoders A key difficulty in extracting steering directions from model activations is
the dense nature of these activations: a single neuron will activate for many different tasks and
concepts as a part of the distributions representing those concepts. Sparse autoencoders attempt
to solve this issue by learning a compressed set of activations z corresponding to the activations
in a given transformer layer [, with a sparsity penalty applied Lgparse (Cunningham et al., [2023).
This allows for the unsupervised discovery of human-interpretable concepts, represented by the
activations of single SAE neurons. Formally, the SAE objective is

£ =|h®Y — D(EMLY))]12 4+ X Loparse;

where h(®) are the transformer activations, £/ and D are the encoder and decoder, and ) is the
sparsity penalty. The concepts identified by SAEs range from world knowledge and semantic prop-
erties to syntactic features and compositional abstractions (Shu et al. [2025). Interestingly, SAE
neurons can be used to steer model outputs along dimensions of interest, such as translating LLM
outputs to French given the activation of a corresponding latent feature in the sparse autoencoder
(He et al.l 2025). While the extent to which SAEs provide a practical means of model steering and
interpretability is disputed (Wu et al., 2025)), subsequent work provides methods for obtaining more
interpretable, coherent concepts (Bussmann et al., 2025} Rajamanoharan et al., [2024).

2.3 PERFORMANCE VERSUS ALIGNMENT

Task performance and representational alignment are distinct axes of evaluation. |Linsley et al.
(2023) found that higher object recognition accuracy led to poorer alignment with human visual
cortex. |Liu et al.| (2023) reported tradeoffs between alignment and task performance. This suggests
that models can match human performance but rely on different internal representations (Piantadosi
& Hill, 2021). As|De Bruin et al|(2024)) argue, evaluations should assess not only what systems do,
but how. Thus, we evaluate both competence and alignment.

3 METHODS

3.1 DATASET

We use the Round Things Dataset (Giallanza et al.| [2024) to evaluate these aspects. This dataset
comprises 46 concrete objects: 25 human-made artifacts and 21 natural kinds (fruits and vegetables).
All items are roughly spherical in shape, varying along a discrete kind dimension (artifacts versus
plants) and a continuous size dimension.

Dataset design. The Round Things Dataset was specifically designed to investigate how semantic
representations can be contextually modulated along orthogonal dimensions. The choice of roughly
spherical objects serves multiple methodological purposes: (1) it facilitates size comparisons by
minimizing shape-based confounds, (2) it ensures that size judgments are based primarily on scale
rather than geometric complexity, and (3) it creates a controlled stimulus set where the two key
dimensions of interest—kind and size—are orthogonal rather than confounded.

The dataset was constructed to include commonly known objects to ensure high familiarity across
participants. Each item possesses an empirically-derived ground-truth average diameter obtained
through systematic internet searches. Specifically, the authors conducted Google searches using the
phrase “average diameter of a _____ ;> recording the answer yielded by search engine summaries.
When searches returned size ranges, the midpoint was taken as the median diameter. For items
that naturally occur in multiple sizes (e.g., pumpkins, yoga balls), searches were refined by adding
“medium-size” to obtain more standardized measurements.

Data composition. The 46 items are distributed across two semantic categories: 25 human-made
artifacts (such as balls, spherical tools, and round household objects) and 21 fruits and vegetables
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(such as apples, oranges, and other roughly spherical produce). Importantly, object sizes are approx-
imately balanced across the two categories, ensuring that neither semantic domain is systematically
associated with larger or smaller items. This balanced distribution is crucial for investigating how
semantic category membership interacts with size-based similarity judgments without confounding
effects.

The dataset thus provides stimuli that differ along two clear but unrelated abstract semantic dimen-
sions: the discrete taxonomic dimension of kind (artifact versus natural) and the continuous physical
dimension of size. This orthogonal structure allows for controlled investigation of how task context
can selectively emphasize one dimension while de-emphasizing another, and whether such emphasis
preserves or eliminates information from the non-target dimension.

Human behavioral data collected using this dataset has been used to derive two-dimensional em-
beddings via crowd kernel ordinal embedding algorithms, allowing for quantitative analysis of how
different task contexts reshape the geometric organization of semantic space while preserving cross-
context similarities.

3.2 TRIADIC SIMILARITY JUDGMENT TASK

We employ a triadic judgment task where both humans and LLMs identify which of two items x
or z is most similar to a reference item ¢ along a specified semantic dimension. Participants are
instructed to judge which of the two options is most similar to the target item either “in terms of
size” or as “a more similar kind of thing.”

This paradigm is motivated by the hypothesis that when people estimate similarity along specific
dimensions, they use task instructions to steer their semantic representations toward task-relevant
features. We test whether different LLM steering methods can similarly modulate representations to
achieve both high accuracy (competence) and human-like similarity patterns (alignment).

The dataset’s balanced design—with sizes approximately distributed across both semantic cate-
gories—enables investigation of how task instructions influence the relative weighting of size versus
kind information in similarity computations. This provides insights into whether context-dependent
steering preserves or eliminates information from non-target dimensions, revealing the flexibility
and constraints of semantic representations under controlled processing conditions.

3.3 STEERING METHODS
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Figure 1: General workflow for deriving human and steered model embeddings.

We evaluated four different steering methods—prompting, task vectors, DiffMean, and SAEs—
alongside two prompting baselines (zero-shot and in-context) for comparison. All methods
were tested on two open-source LLMs capable of running on a single NVIDIA H100 GPU:
gemma2-27b and gemma2-9b. Figure [ shows the general workflow for applying these steer-
ing methods to the triadic judgment task.

For the prompting-based approaches, different steering conditions required tailored prompts to elicit
appropriate similarity judgments along specific semantic dimensions. Each prompt was designed to
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direct the model’s attention toward either kind-based or size-based similarity, or to allow for general
similarity assessment in the neutral condition, as shown in Table |1} All trials received independent
prompt evaluation to ensure consistent application of each steering method.

For the activation-based steering methods (task vectors, DiffMean, and SAEs), we applied the cor-
responding interventions to the model’s internal representations while using a consistent neutral
prompt format across all trials. This approach allows us to isolate the effects of representational
steering from prompt-based steering, providing a comprehensive comparison of different steering
mechanisms.

Detailed implementation specifics for each steering method are provided in Appendix [A.T]

Table 1: Prompt templates used for different steering conditions. The placeholder {p} is re-
placed with the triplet comparison question: “Which item is most similar to {item x}: {item_y}
or {item_z}?”

Condition Prompt Template

Kind Choose the second item that is most similar to the
first item in terms of the KIND of thing it is.
Respond only with the name of the item exactly as
written. {p}

Size Choose the second item that is most similar to the
first item in terms of SIZE. Respond only with the name
of the item exactly as written. {p}

Neutral Choose the second item that is most similar to the
first item. Respond only with the name of the item
exactly as written. {p}

3.4 ANALYSIS APPROACH

Embedding algorithm. We applied an ordinal embedding algorithm (Tamuz et al.l 2011} |Sievert
et al.| 2023) to similarity judgments from both humans and models, creating semantic spaces where
frequently co-judged similar items were positioned closer together. The embedding construction
process minimized crowd-kernel triplet loss (Tamuz et al.,[2011) by optimizing Euclidean distances
between word pairs. To ensure reliable estimates, we reserved 20% of our data for validation pur-
poses and monitored crowd-kernel loss throughout the fitting procedure.

Under this framework, each triplet judgment yields an ordinal constraint of the form “item i is closer
to item j than to item k.” Let D* be the squared Euclidean distance matrix of unknown embedding
points {z7}?; C R? The ordinal embedding model assumes a monotone link function (e.g.,
logistic):

Pr [y =1 = A(D —Dy),  f(0)=1. (1)

The ordinal embedding algorithm minimizes an empirical surrogate of the negative log-likelihood
using crowd-kernel triplet loss over a low-rank parameterization.

Sample complexity considerations. If the true embedding has rank d and triplet judgments are sam-
pled approximately uniformly at random, then with high probability the out-of-sample prediction
error is

_ 1 _
Epred = O( dn|;gn>7 = |5 = @(dnlogn) 2)

Thus, ©(ndlogn) triplet judgments suffice for accurate prediction of new comparisons, and at least
Q(dnlogn) ordinal comparisons are information-theoretically necessary (Jain et al.,|2016)). For our
implementation with n = 46 items and d = 2 dimensions, we collected Niyiplets = ¢ - d - nlogn
triplet judgments per steering method (where ¢ ~ 5 based on our 2,500 judgments), balancing
statistical efficiency with computational constraints.
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Accuracy measurement. We evaluated the competence of each steering method by measuring
LLM accuracy on the triadic judgment task compared to ground-truth and human performance.
Human accuracy benchmarks were derived from human embeddings by evaluating the same 2,400
triplets used in model assessments: when the Euclidean distance from z.f to 1 was shorter than
from z.¢ to x2, we classified x; as the correctly identified more similar item. This approach en-
ables direct comparison between human and model performance on identical triplet sets, providing
a unified measure of task competence across all steering conditions.

Alignment analysis. To quantify alignment between human and LLM representations, our main
measure of human-model alignment was the amount of variance in human semantic embeddings
explained by model-based semantic embeddings (R2) after Procrustes aligning the two spaces (?).
Procrustes transformation aligns two vector spaces of equal dimensionality by finding the optimal
set of linear transformations (rotations, scalings, and translations) to minimize the sum of squared
distances between corresponding points in the two spaces (residual SSE). Using the sum of squared
distances in the human embeddings (human SSE) as the target, we computed an R? metric as:

residual SSE

2
=1 human SSE

This approach measures how well variations in pairwise distances in LLM-derived representations
correspond to those in human representations after allowing for optimal linear transformations in the
representational geometry. Since both embedding spaces are of the same dimensionality and permit-
ting these linear transformations makes our alignment estimate maximally generous, this provides a
robust upper bound on the correspondence between human and model semantic representations.

4 RESULTS

4.1 MODEL REPRESENTATIONS SHOW DEFAULT KIND ALIGNMENT

Figure [3] shows how successful different steering methods were in guiding LLMs to make accurate
kind and size judgments. Neutral prompts that simply asked LLMs to indicate which of the two
options was most similar to the target, without additional context, were better aligned to kind judg-
ments than to size judgments. This is evidenced by the high accuracy of neutral prompts for kind
judgments relative to their lower accuracy for size judgments (3 = 0.187, p < 0.001). A simi-
lar pattern arose for human alignment (bottom row of Figure [3): neutral prompt embeddings were
moderately aligned with human kind embeddings but weakly aligned with human size embeddings
(R? 1= 0.50 vs. R? =0.02, p < 0.001).

neutral, King neutral, size

4.2 PROMPTING OUTPERFORMS OTHER STEERING METHODS AT PREDICTING GROUND
TRUTH

Intervention methods (SAEs, task vectors, and DiffMean) consistently performed worse than
prompting (Bry = —0.29, Spm = —0.30, Bsag = —0.29, p < 0.001), particularly for kind judg-
ments (Bxina = 0.19, p < 0.001). For size judgments, although prompting methods result in higher
accuracies than non-prompting methods, only the zero-shot size prompt produced higher represen-
tational alignment than the other methods. Interestingly, we observed higher alignment with human
representations in both task vector conditions for the smaller-parameter gemmaZ2-9b,

5 CONCLUSION

We evaluated a set of popular LLM steering techniques using a well-established method in the
cognitive sciences—triadic similarity judgments. By using both steered LLM and human judgments
as input into embedding algorithms that capture an agent’s representational geometry, we applied
a commensurate standard to evaluate how human-like different steering methods are. Critically,
we looked beyond raw accuracy (competence) and evaluated steered models on how strongly their
embeddings aligned with human embeddings. Similar to prior work (Wu et al.| [2025)), we found that
prompting methods tended to outperform other steering techniques in terms of both accuracy and
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Figure 2: Representational geometry of the concepts in the Round Things Dataset based on em-
beddings derived from triadic judgments for humans (top row) and gemma2-27b (bottom 2 rows)
using two steering methods. Plots for all methods can be seen in@

alignment. We also found that LLMs, without any steering, tended to be predisposed to privilege
the kind dimension of similarity over the size dimension, indicated both by the stronger alignment
of the neutral prompt condition with embeddings from human kind judgments and by the difficulty
steered models had aligning with human size representations.

Taken together, these findings provide a novel perspective on how steering methods can and should
be evaluated in order to assess how aligned steered model representations are to those of people. We
find converging evidence that prompt-based steering is currently the best route for both accurate and
aligned steering, and that some axes such as kind are privileged over size. Future work should seek
to further integrate insights from controlled semantic cognition (Giallanza et al.} [2024) to uncover
the basis of prompting’s success in guiding LLMs’ learned representations in a context-sensitive
manner, and to test a wider variety of contexts beyond size and kind judgments.

6 LIMITATIONS

Model suite. Due to compute constraints we only evaluated models that could be run on consumer-
grade GPUs (gemma2-9b and gemma?2-27b). Further, we did not evaluate gemma2—-27b on the
SAE method due to the lack of available trained SAEs for that model. Despite this, we believe the
presented results constitute a fair comparison between methods. Future work can scale up this ap-
proach to larger models. The efficacy of different steering methods for both accuracy and alignment
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Figure 3: Steering accuracy (top row) and alignment of steered LLM representations to human rep-
resentations (bottom row) for each steering technique. the dashed line labeled ‘human embeddings’
corresponds to how accurately human judgments can be predicted from human embeddings. SAE
results are reported only for gemma-9b-it.

may scale differently with model parameter size. Between the 9B—27B scale we did not observe
drastic changes, but this could change at larger scales.

Method suite. While we evaluated a representative set of steering methods for ‘online’ steering
based on prompts or activation changes, we did not exhaustively test alternative ‘in-weight’ methods
of changing model behavior (Anand et all,[2024)), including supervised fine-tuning (SFT), low-rank
adaptation (LoRA), and others. Since we are modeling human steering, which is thought to invoke
online ‘control’ processes as opposed to in-weight learning (Giallanza et al., [2024), we argue that
our chosen set of methods provided fair comparisons to the human data. Nevertheless, future work
should compare the relative efficacy of in-weight vs. in-context styles of steering.

Order effects. While we randomized the order in which concepts were presented to the models
for the triplet task—a common method in the behavioral sciences to protect against order effects—
we note that we only ran the LLM evaluations with a single ordering. Since humans were also
only presented with a single overall ordering, and our goal was to make commensurate comparisons
across agent types, we chose to trade off robustness against order effects for fairer comparisons.
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Limited evaluation methods. We relied on the triadic similarity judgment task since it is a well-
established and validated method for evaluating human mental representations. In practice, there
are more complex and naturalistic behaviors that humans perform that require ‘steering’ semantic
representations (Giallanza et al) 2024). In the future, it will be crucial to incorporate such tasks
when benchmarking different language model steering methods.
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A STEERING METHOD AND EMBEDDING METHOD IMPLEMENTATIONS

A.1 DETAILED IMPLEMENTATION OF STEERING METHODS

Let f be a decoder-only language model with L layers and hidden size d. Each triplet comparison is
denoted as t; = (@rer,i, ¥1,4, T2,4) for i = 1, ..., n. Each prompt consists of a sequence of n triplets
[t1,...,t,], serialized into a token sequence = [z1,...,2r]. The model produces hidden states
hé € R? at each token position x; and layer [.

For all prompting, prompts are formatted as natural language strings of the form:

Choose the item that is most similar to the first item
in terms of <d>. Respond only with the name of the
item exactly as written.

<x_ref> + <x_1> OR <x_ref> + <x.2>7?

answer: <x_.ref> +

For steering methods, training examples consist of triplets without a natural language instruction
like so:

<x_ref> + <x_1> OR <x_ref> + <x_2>7
<x_ref> + <x_answer>

Where examples are concatenated by commas. Each training example consisting of n triplets has a
final incomplete training instance like so:

<x_.ref> + <x_1> OR <x_ref> + <x_2>7
<x_.ref> +

LLIMEL)

This ”+” token is used to extract and steer representations for a corresponding ”+” token in the
zero-shot test example, which is identical to the final training example:

<x_ref> + <x_1> OR <x_ref> + <x_2>7
<x_ref> +

Fields are interpolated for some d € {size, kind, neutral}, triplet t,, = (Zrf, 1, %2), and answer
tanswer given the dimension d. We extract activations, logits, and apply all steering methods at the
final input token x7 = + in the last triplet ¢,,, depending on each method.

ZERO-SHOT PROMPT

In the zero-shot condition, the model is given a single triplet ¢,, = (Zrer, 21, 22) and is asked to make
a discrimination along a semantic dimension d € {size, kind, neutral}.

PROMPT WITH IN-CONTEXT EXAMPLES

In the in-context condition, the model is given a sequence of n = 15 complete triplets [t1, ..., t15]
and is asked to make a discrimination for the final triplet 15 = (Zf, 21, Z2) along semantic dimen-
sion d € {size, kind}.

TASK VECTOR

Following Hendel et al.|(2023), we extract tfask vectors for the KIND and SIZE conditions by first
constructing two prompts organized along each condition: xy,i,, containing 14 complete triplet
examples and one final incomplete example (with "+"), and zg, containing a single zero-shot
incomplete triplet.

For each layer ¢ € {0,..., L}, we extract the hidden activation in the residual stream at the final
token position of g, (i.e., the "+") and patch it into the corresponding position in zy. The
language model f then autoregressively generates a sequence xg, . . . , £} until a complete output is
produced.
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We repeat this procedure over 200 randomly generated (& iain, Tiest) PAirs, selecting the layer £ that
yields the highest accuracy. Finally, using this optimal layer ¢%, we repeat the procedure across 2400
additional prompt pairs to generate task vector embeddings for both the SIZE and KIND conditions.

DIFFMEAN

DIFFMEAN constructs a steering vector by computing the average difference between latent repre-
sentations of positive and negative examples along a target output dimension. Specifically, the mean
latent representation of the positive examples is subtracted from that of the negative examples, pro-
ducing a steering vector. This vector is then added (as opposed to task vectors, where it is patched)
to the latent representation of a held-out prompt x in order to steer the model’s output generation.

For a target steering dimension d € {size, kind} and its contrast d’, we generate 15 triplet examples
organized along d, and 15 along d’, where the final triplet in each set is incomplete and ends with
the "+" token.

Then, for a given layer £ € {0, ..., L}, we extract the residual stream representation 4. at the final
token position 1" from both Zrin,q and Trin,-. The DIFFMEAN steering vector is then computed as
the difference:

Vaitt = T (Tuain.d) — T (Tirain,ar)

This resulting vector vgsr defines a direction in the residual stream corresponding to the contrast
between the dimensions d € {size, kind}.

Similar to the task vector condition, We repeat this procedure over 200 randomly generated
(Ztrain, Teest) Pairs, selecting the layer £ that yields the highest accuracy. Finally, using this opti-
mal layer £};, we repeat the procedure across 2400 additional prompt pairs to generate DiffMean
embeddings for both the SIZE and KIND conditions.

SAES

We use sparse autoencoders (SAEs) from GEMMASCOPE (Lieberum et al., [2024)) to steer the model
along interpretable directions in residual space. An SAE is a linear model that decomposes a residual
stream vector € R% as a sparse linear combination of features, where W € RI*E i a learned
feature dictionary and z € R¥ is a sparse activation vector. Each column of W defines a directional
feature in residual space, and only a small number of features are active for any given input.

For each semantic dimension d € {size, kind}, we construct 20 prompts and identify the feature
f € R? with the highest average activation at layer £ = 20. We steer the model by injecting c - f
(with ¢ = 50) into the residual stream at layer 20 (the only available layer for gemma-2-9b-it
on GEMMASCOPE), and generate 2400 zero-shot completions from held-out prompts xs. These
completions are used to construct semantic embeddings for each SAE-steered dimension.
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A.2 PROCRUSTES CORRELATIONS FOR ALL PROMPT AND STEERING METHODS

The comprehensive set of procrustes correlations for all steering methods, for gemma—-2-9b—-it
and gemma-2-27b-1it.
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Figure 4: Full procrustes correlations for all methods
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A.3 ICL PROMPT ANALYSIS

We systematically vary the number of example triplet pairs included in the KIND condition for
gemma-2-9b-1it to examine how changes to the input prompt affect model accuracy and human
alignment. We find that there is no significant impact of the number of ICL examples on accuracy
or alignment.

Procrustes Correlation to Human Kind Embedding Mean Accuracy by In-Context Length
1.00 1.00
0.79 .
0.9 0.76 0.76
0.75 0.75
8 5 052 0.53 0.52 0.53
EREY goso
Q
3 5
. s
0.25 0.25
0.00 0.00
icl4 icl8 icl12 icl16 icl4 icl8 icl12 icl16
Context Length Context Length
(a) Procrustes correlations with varied ICL examples (b) Mean accuracy with varied ICL examples

Figure 5: Impact of varying the number of ICL examples on model performance

A.4 EMBEDDINGS DIMENSIONS ANALYSIS

Cumulative variance explained by the first k£ dimensions of the embeddings for gemma—-2-27b-1it,
size condition. The first two dimensions of all embeddings were used for comparisons of represen-
tations.

Cumulative Variance Explained by First 8 PCs (gemma-2-27b-it prompt condition (size))

1.0 > > ®
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Figure 6: Cumulative variance explained by embedding dimensions

A.5 FULL EMBEDDING PLOTS
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