
Transformers over Directed Acyclic Graphs

Yuankai Luo
Beihang University

luoyk@buaa.edu.cn

Veronika Thost∗
MIT-IBM Watson AI Lab, IBM Research

veronika.thost@ibm.com

Lei Shi∗
Beihang University

leishi@buaa.edu.cn

1 Introduction
Graph-structured data is ubiquitous in various disciplines [1–3] and hence graph representation
learning has the potential to provide huge impact. There are various types of graph neural net-
works (GNNs), the majority of which is based on a so-called message-passing scheme where node
representations are computed iteratively by aggregating the embeddings of neighbor nodes [1]. Yet,
this mechanism in its basic form has limited expressivity [4] and research is focusing on extensions [5].

Transformer models have recently gained popularity in graph learning as they have the potential
to learn complex relationships beyond the ones captured by regular GNNs, and in a different way
[6, 7]. Technically, they can be considered as graph neural networks operating on fully-connected
computational graphs, decoupled from the input graphs. The main research question in this context is
how to inject the structural bias of the given input graphs (i.e., which nodes are actually connected)
into the transformer architecture by adapting their attention and positional encoding appropriately.
Several promising proposals have been made to encode undirected molecular graphs [8, 9] and recent
works take into account the scalability challenge [10], also over larger network graphs [11, 12].

We focus on directed acyclic graphs (DAGs), which are of special interest across various domains;
examples include parsing results of source code [13], logical formulas [14], conversational emotion
recognition [15], as well as probabilistic graphical models and neural architectures [16]. In a DAG,
the edges define a partial order over the nodes. This partial order represents an additional strong
inductive bias, which offers itself to be integrated into the models.

In fact, various kinds of neural networks tailored to DAG structures have been proposed over the
years; from early descriptions of recursive neural networks over DAGs [17, 18], which already point
out a similarity to sequence learning, to more recent works, such as DAG-RNN [19], DAG-LSTM
[14], D-VAE [16], and DAGNN [20]. The latter models focus on encoding the entire DAG and, in a
nutshell, compute that embedding in a message-passing fashion by iterating over the DAG nodes in an
asynchronous way, given by the partial order, and thereafter aggregating the final node representations
into one for the DAG. This procedure yields state-of-the-art performance, but its asynchronous nature
leads to comparatively (to regular GNNs) very slow performance. The more parallel computation of
transformers more would seem to make them more suitable models and [21] have recently proposed
one such model, PACE, which shows convincing performance in terms of both quality and efficiency.

In this paper, we focus on transformers over DAGs more generally, motivated by the highly flexible,
parallel, and expressive nature of their computation. In particular, their success in sequence learning
opens up the question how they can be tailored to DAGs, which are essentially sequential graphs.
Based on the above-mentioned insights in DAG learning, we propose a straightforward and efficient
DAG attention framework, which effectively biases any transformer towards DAGs.

• As outlined in Figure 1, we (1) adapt the attention mechanism by restricting the receptive field of
each node to its predecessor and successor nodes so that it faithfully captures the DAG structure -
in terms of its reachability relation - and at the same time gets considerably more efficient than the
regular quadratic complexity; and (2) employ the positional encoding in a complementary way, to
further bias the computation towards the DAG topology, by explicitly encoding the node depth.

• We show that the attention is not restricted effectively, even if it seems so technically. Moreover,
we draw a connection to random walk theory.
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Y. Luo et al., Transformers over Directed Acyclic Graphs (Extended Abstract). Presented at the Second Learning
on Graphs Conference (LoG 2023), Virtual Event, November 27–30, 2023.



Transformers over Directed Acyclic Graphs

Not to calculate attention

To calculate attention Node Feature
···

		𝑥!

		𝑥"

		𝑥!

		𝑥"

		𝑥##

		𝑥#$

		𝑥#%

		𝑥#

		𝑥$

		𝑥%		𝑥&

		𝑥'

		𝑞𝑢𝑒𝑟𝑦!

𝑞𝑢
𝑒𝑟
𝑦

𝑘𝑒𝑦
𝑥!			𝑥"		𝑥#			𝑥$ 		𝑥% 			𝑥& 		𝑥'			𝑥(		𝑥)		𝑥!*	𝑥!!	𝑥!"

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥&
𝑥'
𝑥(
𝑥)
𝑥!*
𝑥!!
𝑥!"

Linear

MatMul

Scale

SoftMax

MatMul

𝑄 𝐾 𝑉
Linear Linear

DAG Positional Encoding

···

Figure 1: Overview of our DAG attention. A mask matrix is used to restrict the receptive field of the
node under consideration to nodes that are directly reachable in the DAG. Our positional encoding
(right), additionally captures its position as its depth in the DAG.

• We rigorously evaluate our proposal in ablation studies and show that it successfully improves
different kinds of baseline transformers, from vanilla transformers [22] to state-of-the-art graph
transformers [11, 23–25], over various types of DAG data. Our experiments range from classifying
source code graphs to nodes in citation networks, and go far beyond related works’ problem focus.
Most importantly, our proposal is proven effective in two important aspects: in making graph
transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA
graph transformer performance in terms of both quality and efficiency.

In this abstract, we give an overview of our main findings; for details and additional results, see the
full version of this paper [26]. Our code is available at https://github.com/LUOyk1999/DAGformer.

2 Transformers for Directed Acyclic Graphs
Directed Acyclic Graphs (DAGs). We refer to a graph as tuple G = (V,E,X), with node set V ,
edge set E ⊆ V × V , and node features X ∈ Rn×d, with each row representing the feature vector
of one node, n denoting the number of nodes, and d the feature dimension. xv ∈ Rd denotes the
features of node v. A directed acyclic graph is a directed graph without directed cycles. For any
DAG G, one can define a unique strong partial order ⩽ on the node set V , such that for all pairs of
nodes u, v ∈ V , u ⩽ v if and only if there is a directed path from u to v. We define the reachability
relation ⩽ over a DAG based on that partial order. That is, u ⩽ v if and only if v is reachable from u;
further, if u ⩽ v, then u is called a predecessor of v, and v is a successor of u. All nodes without
predecessors are source nodes, and all nodes without successors are sink nodes. The depth of a node
v ∈ V is defined as follows. The depth of a DAG is the maximum depth over its nodes.

depth(v) =

{
0 if v is a source node
1 + max

(u,v)∈E
depth(u) otherwise

Attention based on DAG Reachability (DAGRA). In contrast to regular graphs, the partial order
in DAGs creates particular relations between connected nodes, in the sense that a given node’s
predecessors and successors are most likely more important to it than other graph nodes. Note that
this intuition is also captured in the processing of DAG neural networks. Hence the reachability
relation suggests itself to be exploited in our architecture. We apply it to bias the receptive field
of nodes during attention to their predecessors and successors in the graph, similar to [21]. [22]
already mentioned the possibility to use restricted attention in order to reduce complexity and, indeed,
our proposal does not only yield an architecture which is biased towards the DAG structure, but
additionally a considerably more efficient model. We compute our reachability-based attention as:

AttentionDAGRA (xv) =
∑

u∈N(v)

κ (xv, xu)∑
w∈N(v) κ (xv, xw)

f (xu) ,∀v ∈ V, (1)

κ (x, x′) = exp

(
⟨xWQ, x′WK ⟩√

dK

)
, (2)
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where N(v) = {(u, v) ∈ ⩽} ∪ {(v, u) ∈ ⩽} represents the receptive field of node v. The input node
features X are projected as usual by three matrices WQ ∈ Rd×dK , WK ∈ Rd×dK and WV ∈ Rd×dK

to the corresponding representations of query Q, key K, and value V, f(x) = WVx, and κ is a
non-symmetric exponential kernel. Note that our formulation is based on a reformulation of the
original self-attention mechanism as a kernel smoother as proposed in [24].

DAG Positional Encodings based on DAG Depth (DAGPE). Positional encodings have been
recognized as important and proven effective for incorporating graph structure into transformers.
Observe that the sequential nature of DAGs makes them possess special position information, the
depth of a node within the DAG. We propose to include this knowledge in the form of DAG positional
encodings as follows, exactly as suggested for the original transformer architecture [22]:

PE(v,2i) = sin
(depth(v)
10000

2i
d

)
, PE(v,2i+1) = cos

(depth(v)
10000

2i
d

)
,

where d is the node feature dimension and i the index of the dimension under consideration.

DAG Attention. We obtain the following model, combining DAGRA and DAGPE, for v ∈ V :

AttentionDAG (xv) =
∑

u∈N(v)

κ (xv + PEv, xu + PEu)∑
w∈N(v)

κ (xv + PEv, xw + PEw)
f (xu) . (3)

Our attention incorporates both similarity of node features and of node depths. We argue that
these are the most critical aspects of DAGs and our evaluation will show their impact and general
effectiveness. In particular, note that most kinds of DAG data (e.g., citation networks) do not require
us distinguishing between predecessor or successor nodes of same depth.

Theoretical Intuition. While we technically restrict the attention to reachable nodes, we can show
that this design offers similar expressivity to regular transformers. Specifically, each node directly
communicates with at least one source node by the DAG structure. Hence, 2 transformer layers
are always enough to establish communication beyond two nodes that have a common source node.
We can generalize this result. Hence, our architecture’s bias emphasizes DAG relationships while
re-directing the remaining relationships in the regular transformer’s full attention matrix. This can
also be shown to be in line with random walk theory.

Implementation. Our DAG attention framework can be implemented in two ways, either using a
mask matrix on top of existing transformer models, or based on message-passing GNNs. Given
usually sparse graphs, observe that the latter yields considerably performance gains with a complexity
of O(|V | × deg

l × d), with average node degree deg and the DAG depth l.

3 Evaluation
Datasets. We conducted experiments over a wide range of data and tasks including ogbg-code2
[27], a large dataset of ASTs derived from Python methods; NA [16], a dataset with much smaller
graphs, containing neural architecture DAGs; Self-citation [28, 29], containing scholars’ academic
self-citation networks; and the established Cora, Citeseer, Pubmed [30] where, only for our method,
we removed a small number of cyclic citation links to make them DAGs.

Baselines. We chose MixHop [31], LDS-GNN [32], IDGL [33] and PNA, as more recent GNN
proposals. In terms of transformer models, we considered vanilla Transformer (TF), Graph Trans-
former (GT), GraphTrans, SAT, and the recent and competitive GraphGPS and NodeFormer.
Lastly, we consider neural networks tailored to DAGs: D-VAE, DAGNN, and PACE.

DAG+ Models. We implemented our DAG attention on top of vanilla Transformer, GraphTrans, SAT,
GraphGPS and NodeFormer only (1) modifying their self-attention module by restricting attention in
terms of reachability and (2) using DAGPE instead of the original one. For fair comparisons, we use
the same hyperparameters and readout as baseline transformers.

Overall Performance, Tables 1, 2, 3 and 4. First, observe that the results are very consistent,
although the datasets differ greatly in size, DAG sizes, DAG shape (e.g., in ogbg-code2 we have
trees), and nature of data (e.g., node features). The message-passing GNNs represent standardized
baselines but do not reach the performance of networks tailored to DAGs, such as DAGNN. Note that
the latter is however comparatively bad on the node-level task. This can be explained by its processing.
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Table 1: Code graph classification on ogbg-code2.
The baseline results were taken from the OGB leader-
board.

Model Valid F1 (%) Test F1 (%) Time(epoch)

PNA 14.5 ± 0.3 15.7 ± 0.3 427s
DAGNN 16.1 ± 0.4 17.5 ± 0.5 6018s

PACE 16.3 ± 0.3 17.8 ± 0.2 2410s

Transformer 15.5 ± 0.2 16.7 ± 0.2 1817s
DAG+Transformer 17.4 ± 0.1 18.8 ± 0.2 591s

GraphTrans 16.6 ± 0.1 18.3 ± 0.2 1117s
DAG+GraphTrans 17.0 ± 0.2 18.7 ± 0.2 526s

GraphGPS 17.4 ± 0.2 18.9 ± 0.2 1919s
DAG+GraphGPS 17.6 ± 0.1 19.3 ± 0.2 608s

SAT (SOTA) 17.7 ± 0.2 19.4 ± 0.3 2437s
DAG+SAT 18.5 ± 0.1 20.2 ± 0.2 681s

Table 2: Node classification results for
the self-citation dataset; AP (%) and ROC-
AUC (%).

Model AP ↑ ROC-AUC ↑

PNA 62.4 ± 0.7 81.0 ± 0.4
DAGNN 61.2 ± 0.6 81.0 ± 0.3

PACE 52.1 ± 1.8 75.9 ± 0.7

Transformer 56.8 ± 1.8 78.7 ± 0.3
DAG+Transformer 63.8 ± 0.8 82.2 ± 0.5

GraphGPS 61.6 ± 2.6 81.3 ± 0.6
DAG+GraphGPS 63.5 ± 1.2 80.8 ± 0.5

SAT 59.8 ± 1.7 79.8 ± 0.7
DAG+SAT 62.7 ± 1.5 80.6 ± 0.7

NodeFormer 39.6 ± 0.6 69.4 ± 0.3
DAG+NodeFormer 64.9 ± 0.8 81.7 ± 0.8

Table 3: Node classification accuracy (%).The base-
line results were taken from [25].

Model Cora Citeseer Pubmed

MixHop 87.59 ± 0.52 73.64 ± 0.73 89.32 ± 0.25
IDGL 87.88 ± 0.34 74.32 ± 0.51 89.22 ± 0.14

LDS-GNN 87.82 ± 0.62 75.22 ± 0.23 OOM
PACE 79.47 ± 0.63 73.65 ± 1.23 OOM

Transformer 75.92 ± 0.86 72.23 ± 1.06 OOM
DAG+Transformer 87.80 ± 0.53 74.42 ± 0.22 89.01 ± 0.13

SAT 75.18 ± 0.62 74.88 ± 0.73 OOM
DAG+SAT 87.48 ± 0.37 76.64 ± 0.26 89.17 ± 0.15

NodeFormer 88.80 ± 0.26 76.33 ± 0.59 89.32 ± 0.25
DAG+NodeFormer 90.49 ± 0.17 78.24 ± 0.33 89.44 ± 0.24

Table 4: Regression. Predictive perfor-
mance of latent representations over NA.

Model RMSE ↓ Pearson’s r ↑

D-VAE 0.375 ± 0.003 0.924 ± 0.001
DAGNN 0.264 ± 0.004 0.964 ± 0.001

PACE 0.254 ± 0.002 0.964 ± 0.001

Transformer 0.285 ± 0.004 0.957 ± 0.001
GT 0.275 ± 0.003 0.961 ± 0.001

DAG+Transformer 0.253 ± 0.002 0.966 ± 0.001

GraphGPS 0.306 ± 0.004 0.950 ± 0.001
DAG+GraphGPS 0.267 ± 0.005 0.964 ± 0.001

SAT 0.298 ± 0.003 0.952 ± 0.001
DAG+SAT 0.262 ± 0.004 0.964 ± 0.001

It computes node representations in the order of the partial order, and hence the representations of
nodes in the beginning of the order contain only few information about the entire graph. Intuitively,
transformers should be able to capture this information, but the transformers we tested do neither
perform better, not even the ones tailored to graphs. This shows that they are missing information
captured by those message-passing neural networks that were tailored to DAGs. Yet, the results clearly
show that our DAG attention is successful in providing good improvements, over the best graph
transformer SAT and even better ones over vanilla Transformer. On ogbg-code2, the improvement is
smaller for GraphTrans and SAT. However, this benchmark task is heavily dependent on other features
(e.g., language understanding) and hence presents a special challenge; in this regard, the NA and
Self-citation contain “cleaner” graphs. It is interesting to see that our framework lifts the transformers
from below the level of DAGNN to above, in terms of all metrics, over these two datasets. Lastly,
we observe that the PACE transformer tailored to DAGs is similarly outperformed by our simpler,
but more effective technique. In summary, our DAG attention makes the transformers outperform
(1) the original transformers and (2) the neural networks tailored to DAGs. This shows that the
straightforward, DAG-specific bias provided by DAG attention is the right bias in many scenarios.

Ablation Studies and Analysis. (1) Our ablation studies removing DAGRA and DAGPE individually
confirm the impact of both modules. (2) We also experimented with replacing DAGPE with LapPE
[6] and the random-walk-based RWPE [34] to show that the DAG-specific nature of our PE is of
advantage. (3) We experimented with adding attention bias which captures the graph structure
more directly (e.g., shortest-path [8] and edge directionality), although they are implicit in DAGPE;
interestingly, the more direct representation does not make a noticeable difference.

4 Conclusions
Based on the insights from models for directed acyclic graphs, we have developed a framework to
bias transformer models towards DAGs. It allows for incorporating the main characteristic of DAGs
- their partial order - into any transformer architecture, by encoding the reachability relation and
positions resulting from it. Our architecture is simple and universal as we have demonstrated in our
experiments. Most importantly, it has been proven effective in improving existing graph transformers
over DAGs with improvements in quality and impressive increases in efficiency.
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A DAG Attention
Bounded Reachability. While graphs to classify are usually of manageable size, graph learning in
general may face much larger ones. For this reason, we formulate our model in a more general way,
based on a bounded reachability relation, representing the receptive field of each node: Nk(v) =
{(u, v) ∈ ⩽k} ∪ {(v, u) ∈ ⩽k}. Note that we generally used the maximal k = ∞ in our evaluation,
and therefore only consider N = N∞ in the main text.

A.1 Expressive Power of DAG Attention

Technically, we restrict the attention to reachable nodes and, in this way, obtain considerable efficiency
gains. Yet, our architecture is tailored to the special DAG structure, and we can show that this design
offers similar expressivity to regular transformers.

It is important to note that in our framework, all nodes directly communicate with at least one source
node (i.e., node without predecessors) by the DAG structure. This is specifically the case because
we do not restrict the radius k of the receptive field (not introduced in the main text), but consider
k = ∞. Hence, 2 layers are always enough to establish communication beyond any two nodes that
have a common source node. Furthermore, especially DAG classification datasets usually contain
DAGs with a single source node (e.g., ogbg-code2 [27] and NA [16]).

For DAGs with m source nodes we need 2m layers for full communication, if we assume the DAG
to be connected. In the latter case, every pair of source nodes has a common successor through
which communication can happen. Further, connectedness is a reasonable assumption, otherwise
communication is likely not needed in most scenarios.

The source nodes may seem to represent a certain kind of bottlenecks since, essentially, our archi-
tecture’s bias emphasizes DAG relationships while re-directing the remaining relationships in the
regular Transformer’s full attention matrix. But in the next section, we show that the importance of
relationships we model is in line with well-known random walk theory, and our qualitative perfor-
mance increases also demonstrate that putting more emphasis on DAG relationships can be beneficial
in a variety of use cases.

A.2 Further Theoretical Intuition of DAG Attention

To justify our attention method, focusing only on reachable nodes, we draw a connection to PageRank
[35, 36]. Specifically, we consider a PageRank variant that takes the root node into account -
personalized PageRank. We define the root node x via the teleport vector ix, which is a one-hot
indicator vector. The personalized PageRank can be obtained for node x using the recurrent equation
πG(ix) = (1 − α)ArwπG(ix) + αix, with teleport (or restart) probability α ∈ (0, 1]. Solving this
equation, we obtain: πG(ix) = α(In − (1 − α)Arw)

−1ix, where Arw = AD−1, with A and D
being the adjacency and the degree matrix, respectively [36].

We invert the directions of the edges in G to create a reverse DAG G̃. We can show that, for every
node x, only nodes y not reachable from x (i.e., y /∈ N∞(x)) will satisfy that πG(ix)[y] + πG̃(ix)[y]
(the y-th element of πG̃(ix)) equals 0.

Proof. Personalized PageRank is defined as πG(ix) = (1 − α)ArwπG(ix) + αix. Through rear-
rangement, we obtain: (In − (1 − α)Arw)πG(ix) = αix. Now we prove that (In − (1 − α)Arw)
is an invertible matrix. The matrix is invertible iff the determinant det(In − (1 − α)Arw) ̸= 0,
which is the case iff det(Arw − 1

1−αIn) ̸= 0, i.e., iff 1
1−α is not an eigenvalue of Arw. This

value is always larger than 1 since the teleport probability α ∈ (0, 1]. However, the largest eigen-
value of the row-stochastic matrix Arw is 1, as can be proven using the Gershgorin circle theorem.
Hence, 1

1−α cannot be an eigenvalue and (In − (1− α)Arw) is an invertible matrix. So we obtain
πG(ix) = α(In − (1 − α)Arw)

−1ix. Because the spectral radius (largest eigenvalue) of matrix
(1− α)Arw is less than 1, from the Neumann series theorem, we obtain

(In − (1− α)Arw)
−1 =

∞∑
m=0

((1− α)Arw)
m

=

∞∑
m=0

(
(1− α)AD−1

)m
.

Because D is a diagonal matrix and 1 − α is a constant, they do not affect whether an element in
the matrix is 0 or not. Therefore, we only need to discuss

∑∞
m=0 A

m. Because A is the adjacency
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matrix of the DAG G, in this matrix, iff there is not a directed path from x to y (x ⩽̸ y), we deduce
that (

∑∞
m=0 A

m)[x, y] = 0. This leads us to the conclusion that πG(ix)[y] = 0.

We invert the directions of the edges in G to create a reverse DAG G̃. We can also obtain that, iff
x ⩽̸ y, then πG̃(ix)[y] = 0.

Therefore, for every node x, only nodes y that y /∈ N∞(x) will satisfy that πG(ix)[y] + πG̃(ix)[y]
equals 0.

This means that for the random walk’s limit distribution, the probability of nodes that are not reachable
from x is 0.

A.3 Implementation

We describe two ways of implementing our model, especially DAGRA, based upon transformers and
message-passing GNNs, respectively.

Masked Attention for Transformers. As shown in Figure 1, we can implement DAG attention in a
very straightforward fashion using a mask that masks out node pairs based on the DAG reachability
relation as follows, with the attention mask M being defined as a symmetric matrix over node pairs
(v, u) ∈ V × V .

Attention (X) = softmax

(
QKT

√
dK

+M

)
V, M(v, u) =

{
0 if u ∈ Nk(v)

−∞ otherwise.

While this masking represents a simple technique to extend and bias existing transformer models
to DAGs, the resulting architecture does not benefit from the restricted node set to be considered,
leading to unnecessary, costly matrix operations during attention calculation. Moreover, it consumes
O(|V |2) of additional memory to store M. Thus, the runtime complexity per layer is still O(|V |2d)
for the vanilla transformer - and may be even higher, depending on the underlying transformer.

DAG Attention using Message Passing. Based on the formulation in Equation (3), we propose to
follow the message-passing scheme; that is, for a node v, we compute Nk(v) and only aggregate
messages from the nodes in that set to compute the DAG attention. For the latter aggregation, we
can use readily available frameworks, such as PyG [37]. We analyze the complexity of this proposal
below.

A.4 Computational Complexity

Clearly, the time complexity of the proposed model is lower than that of the standard transformer.
We consider two computation steps:

Computing DAG Reachability. To obtain Nk, we compute the transitive closure of E for each node
in the graph using a breadth-first search starting at the node and iteratively expanding Nk based on
E. Hence, the overall complexity of this step is O(|E||V |). Observe that, during training, we can
consider this step as pre-processing since it only has to be run once, in the very beginning.

DAG Attention. The matrix product QKT of self-attention has a cost O(|V |2d) which is quadratic
in the number of nodes in G, and hence especially critical for large graphs. Yet, for our DAG attention,
we only aggregate messages from reachable nodes. Therefore, the time complexity of reachability
relation attention is O(|V | × nk × d), where nk is the average size of Nk. In the worst case, we
have nk = |V | − 1, but we assume that nk << |V | in general. Especially for sparse graphs, the
complexity gets significantly lower, i.e., O(|V | × deg

k × d), where deg is the average node degree.

Finally, observe that directed rooted trees represent a special kind of DAGs broadly seen across
domains, such as abstract syntax trees of source code [13]. For them, the runtime of DAG attention
scales almost linearly, as illustrated in the following theorem.
Theorem 1. In a directed rooted tree T = (V,E) with the number of nodes |V |, the runtime of DAG
attention is O(|V | × k ×∆+ × d), where ∆+ is the maximum out degree of the T and d is feature
dimension. When k = ∞, the runtime of DAG attention is O(|V | × ℓ × ∆+ × d), where ℓ is the
depth of T .
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Table 5: Statistics of the datasets we used.

ogbg-code2 NA Self-citation Cora Citeseer Pubmed

# graphs 452,741 19,020 1,000 1 1 1
Avg # nodes 125.2 8.0 59.1 2,708 3,327 19717

Avg n∞ 9.78 7.00 4.30 20.88 5.33 60.56

Proof. In DAG attention, for each node v, we need to calculate the attention to Nk(v), whose runtime
is upper bounded by O(|Nk(v)| × d). So the runtime of DAG attention is linear in the sum of the
sizes of receptive fields

∑
v∈V |Nk(v)|. We only need to show that

∑
v∈V |Nk(v)| ⩽ |V | × k×∆+.

When k = ∞,
∑

v∈V |Nk(v)| ⩽ |V | × ℓ×∆+.

Next, we prove this theorem for the case of k = ∞. For bounded k, the proof is similar. We prove by
induction on the depth ℓ of T .

We assume that ∆+ ⩾ 2, since when ∆+ = 1, T is a 1-ary tree,
∑

v∈V |N∞(v)| = |V | × |V | ⩽
|V | × ℓ×∆+.

For the basis step, when ℓ = 0, T only has one node. So
∑

v∈V |N∞(v)| = 0 ⩽ |V | × ℓ×∆+.

For the inductive step, we assume that∑
v∈V |N∞(v)| ⩽ |V | × ℓ×∆+ holds when ℓ ⩾ 0. Consider a tree Tnew of depth ℓ+ 1 whose root

is denoted by r. Then the sub-trees whose roots are the children of r have depth at most ℓ. Let s be
the number of these sub-trees, s ⩽ ∆+, and Vi be the node set of the i-th sub-tree. Since the number
of reachability relations with r involved is 2(|V | − 1), we have

∑
v∈V

|N∞(v)|

=
∑
i∈[s]

∑
v∈Vi

|N∞(v)|+ 2(|V | − 1)

⩽ |V1| × ℓ×∆+ + ...+ |Vs| × ℓ×∆+ + 2(|V | − 1)

⩽ ℓ×∆+ × (|V | − 1) + 2(|V | − 1)

⩽ ℓ×∆+ × (|V | − 1) + ∆+ × (|V | − 1)

⩽ (ℓ+ 1)×∆+ × |V |
This completes the proof of Theorem 1 for the case of k = ∞.

B Experimental Details
B.1 Computing Environment

Our implementation is based on PyG [37]. All reported results are averaged over 10 runs using
different random seeds. The experiments are conducted with two RTX 3090 GPUs.

B.2 Dataset Details

We provide details of the datasets used in our experiments, including ogbg-code2 [27], Neural
architectures (NA) [16], Self-citation, Cora, Citeseer and Pubmed [30]. Table 5 shows the diversity
of the datasets we used.
ogbg-code2. ogbg-code2 [27] is a dataset containing 452,741 Python method definitions extracted
from thousands of popular Github repositories. It is made up of Abstract Syntax Trees as DAGs where
the task is to correctly classify the sub-tokens that comprise the method name. The min/avg/max
numbers of nodes in the graphs are 11/125/36123, respectively. We use the standard evaluation metric
(F1 score) and splits provided by [27].
Neural architectures (NA). This dataset is created in the context of neural architecture search. It
contains 19,020 neural architectures generated from the ENAS software [38]. Each neural architecture
has 6 layers (i.e., nodes) sampled from 6 different types of components, plus an input and output
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Table 6: The statistics of academic self-citation dataset.

Min Avg Max

# nodes 30 59 296
DAG depth 1 5 21

Node degree 0 1.8 83

layer. The input node vectors are one-hot encodings of the component types. The weight-sharing
accuracy [38] (a proxy of the true accuracy) on CIFAR-10 [39] is taken as performance measure.
Since it is a regression task, the metrics are RMSE and Pearson’s r. We use the splits as is used in
[20]. Details about the generation process can be found in [16].
Self-citation. The academic self-citation dataset is a directed acyclic graph, representing the scholar’s
academic self-citation network on the natural language processing (NLP) field extracted from ACL
Anthology Reference Corpus [28]. This dataset contains 1000 academic self-citation networks from
scholars ranked top-1000 by number of papers. In a self-citation networks, each node is a paper
of this scholar and each directed edge indicates that one paper is cited by another one. Each graph
node includes two quantitative attributes: the publication year, the paper’s total citation count. The
task is to predict missing citation counts given existing citation counts. Specifically, for each scholar
self-citation network, we randomly select 10% of its papers and drop their citation counts, and the
node-level task is to predict whether a paper which misses its citation count is highly-cited or not. In
Computer Science, Engineering, and Mathematics, for papers in ISI (Web of science database) listed
journals that are 10 years old, around 20 citations gets in the top 10%. So we consider papers with
a citation count greater than or equal to 20 as highly-cited papers. As the class balance is skewed
(only 27.2% of data is positive), we use the Average Precision (AP) and ROC-AUC as the evaluation
metrics. We randomly split the dataset into 80% training, 10% valid and 10% test sets. The statistics
is shown in Table 6.
Cora, Citeseer and Pubmed [30]. These three datasets are commonly used citation networks for
evaluating models on node classification tasks. These datasets are medium-scale networks (with
2K~20K nodes) and the goal is to classify the topics of documents (instances) based on input features
of each instance (bag-of-words representation of documents) and graph structure (citation links). For
the baselines, the citation links are treated as undirected edges [25] and each document has a class
label. Only for our method, we treated citation links as directed edges and removed a small number of
cyclic citation links to make them DAGs. We use the same evaluation metric (classification accuracy)
and splits provided by NodeFormer [25].

B.3 Hyperparameter and Reproducibility

ogbg-code2. We implemented DAG attention on vanilla Transformer, GraphTrans, GraphGPS and
SAT that we only modify the self-attention module to DAG attention module. And we do not use
any PE as well as baselines because it makes very little performance improvement [24]. For fair
comparisons, we use the same hyperparameters (including training schedule, optimizer, number of
layers, batch size, hidden dimension etc.) as baseline models for all of our four versions.
NA. We train the transformer-based baselines (vanilla Transformer, GraphGPS and SAT) in front
of DAGNN [20]. For SAT, we use the 3-subtree GNN extractor (GIN). For GraphGPS, we use
GatedGCN as GPS-MPNN and vanilla Transformer as GPS-GlobAttn. And we implement DAG
attention on those respectively. We follow the exact training settings of DAGNN [20]. Then we also
train a sparse Gaussian process (SGP) [40] with a learning rate of 4e-4, a epochs number 200 as the
predictive model to evaluate the performance of the latent representations. The transformer-based
hyperparameters are summarized in Table 7. All other hyperparameters are the same as those of
DAGNN [20].
Self-citation. We implement DAG attention on the vanilla Transformer, GraphGPS, SAT and
NodeFormer. In general, we perform a hyperparameter search to produce the results for our model
and baselines. The hyperparameters on the academic self-citation dataset are summarized in Table
7, where # Attention heads is tuned for transformer-based models. For SAT, we conduct positional
encodings search on LapPE-8, RWPE-20 or None, and we use the 3-subtree GNN extractor (GIN). For
GraphGPS, we use GatedGCN as GPS-MPNN and vanilla Transformer as GPS-GlobAttn. The other
hyper-parameters for NodeFormer are the default parameters in their public code. In all experiments,
we use the validation set to select the best hyperparameters. All our models and baselines are trained
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Table 7: Hyperparameter search on different datasets.

Hyperparameter NA Self-citation Cora, Citeseer and Pubmed

# Layers {2,3} {2, 3, 4, 5} {2, 3, 4, 5}
Hidden dimensions {32,128} {32, 64, 128} {16, 32, 64, 128}

Dropout 0.2 {0.1, 0.2, 0.5} 0.0
Learning rate 1e-3 {1e-4, 5-e4, 1e-3, 5e-3} {1e-3, 1e-2}

# Epochs 100 {50, 100} 1000
Weight decay None 1e-6 5e-3

# Attention heads {2, 4} {2, 4, 8} {2, 4}

Table 8: Number of parameters for DAG+ models.

Model ogbg-code2 NA Self-citation Cora Citeseer Pubmed

DAG+Transformer 127,06k 399k 478k 291k 404k 14k
DAG+SAT 149,53k 631k 710k 276k 165k 14k

with the AdamW optimizer [41] and we use the cross-entropy loss on this classification task. The
learning rate scheduler is the cosine scheduler [41].
Cora, Citeseer and Pubmed. We implement DAG attention on the vanilla Transformer, SAT and
NodeFormer. And we perform a hyperparameter search to produce the results for our model and those
transformer-based baselines in Table 7. We follow all other training setting and hyperparameters of
NodeFormer [25]. For SAT, we use the 1-subtree GNN extractor (GCN).

In Table 8, we report the number of parameters for DAG+ models using the hyperparameters selected
from Table 7.

B.4 Ablation Study

Table 9: Ablation study results.

Ablation ogbg-code2 NA Self-citation
Valid F1 Test F1 RMSE ↓ Pearson’s r ↑ AP ↑ ROC-AUC ↑

DAG+TF 0.1731 ± 0.0014 0.1895 ± 0.0014 0.253 ± 0.002 0.966 ± 0.001 0.638 ± 0.008 0.822 ± 0.005
(-) DAGRA 0.1546 ± 0.0018 0.1670 ± 0.0015 0.284 ± 0.003 0.957 ± 0.001 0.573 ± 0.011 0.790 ± 0.003
(-) DAGPE 0.1739 ± 0.0013 0.1879 ± 0.0015 0.263 ± 0.002 0.963 ± 0.001 0.594 ± 0.028 0.782 ± 0.018
(+) RWPE - - 0.267 ± 0.003 0.962 ± 0.001 0.628 ± 0.014 0.819 ± 0.010
(+) LapPE - - 0.271 ± 0.002 0.961 ± 0.001 0.609 ± 0.017 0.786 ± 0.015
(+) SPD [8] 0.1749 ± 0.0011 0.1881 ± 0.0017 - - 0.639 ± 0.006 0.823 ± 0.004
(+) Edge Direction 0.1751 ± 0.0018 0.1870 ± 0.0021 - - 0.636 ± 0.015 0.817 ± 0.005
TF 0.1546 ± 0.0018 0.1670 ± 0.0015 0.285 ± 0.004 0.957 ± 0.001 0.568 ± 0.018 0.787 ± 0.003

DAG+SAT 0.1821 ± 0.0013 0.1982 ± 0.0010 0.262 ± 0.004 0.964 ± 0.001 0.627 ± 0.015 0.806 ± 0.007
(-) DAGRA 0.1773 ± 0.0023 0.1937 ± 0.0028 0.292 ± 0.003 0.954 ± 0.001 0.598 ± 0.031 0.800 ± 0.012
(-) DAGPE 0.1846 ± 0.0010 0.2018 ± 0.0021 0.282 ± 0.002 0.958 ± 0.001 0.623 ± 0.014 0.806 ± 0.005
(+) SPD [8] 0.1851 ± 0.0008 0.1991 ± 0.0018 - - 0.627 ± 0.016 0.810 ± 0.006
(+) Edge Direction 0.1839 ± 0.0014 0.1978 ± 0.0028 - - 0.623 ± 0.013 0.804 ± 0.007
SAT 0.1773 ± 0.0023 0.1937 ± 0.0028 0.298 ± 0.003 0.952 ± 0.001 0.598 ± 0.017 0.798 ± 0.007
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B.5 Additional Results

B.5.1 Semi-supervised Node Classification

We test our model on three citation networks Cora, Citeseer and Pubmed. We implement DAG
attention on DIFFormer-a [42]. Table 10 reports the testing accuracy. This show that our framework
likely increases both quality and runtime here as well.

Table 10: Node classification accuracy (%).The baseline results were taken from [42].

Model Cora Citeseer Pubmed
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

NodeFormer 83.4 ± 0.2 - 73.0 ± 0.3 - 81.5 ± 0.4 -
DIFFORMER-a 84.1 ± 0.6 14.21 75.7 ± 0.3 8.48 80.5 ± 1.2 1013.31

DAG + DIFFORMER-a 85.1 ± 0.7 10.96 76.2 ± 0.4 7.01 81.6 ± 0.5 84.15

B.5.2 MalNet-Tiny

Here we consider MalNet-Tiny. MalNet-Tiny [43] is a subset of MalNet which consists of function
call graphs (FCGs) obtained from Android APKs. This subset includes 5,000 graphs with a maximum
of 5,000 nodes, originating from benign software or 4 malware types. The FCGs do not have any
original node or edge features. The benchmark version of this dataset usually employs Local Degree
Profile as the set of node features. And the objective is to predict the type of software solely based on
the structure.

Note that we did not do any hyperparameter tuning. Further, we implemented DAG attention on
top of GraphGPS by only modifying the self-attention module, switching it to DAG attention. As
shown in Table 11, Our DAG+GraphGPS achieves a test accuracy of 93.45% while only requiring 20
seconds per epoch. This demonstrates the quality and efficiency of DAG attention.

Table 11: Graph classification on MalNet-Tiny.

Model Accuracy (%) Time(epoch)

GraphGPS 92.64 ± 0.78 46s
DAG+GraphGPS 93.45 ± 0.41 20s
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