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Abstract
Label distribution learning (LDL) is a novel ma-
chine learning paradigm that can handle label am-
biguity. This paper focuses on the interpretability
issue of label distribution learning. Existing local
interpretability models are mainly designed for
single-label learning problems and are difficult to
directly interpret label distribution learning mod-
els. In response to this situation, we propose an
improved local interpretable model-agnostic ex-
planations algorithm that can effectively interpret
any black-box model in label distribution learning.
To address the label dependency problem, we in-
troduce the feature attribution distribution matrix
and derive the solution formula for explanations
under the label distribution form. Meanwhile, to
enhance the transparency and trustworthiness of
the explanation algorithm, we provide an analyt-
ical solution and derive the boundary conditions
for explanation convergence and stability. In ad-
dition, we design a feature selection scoring func-
tion and a fidelity metric for the explanation task
of label distribution learning. A series of numer-
ical experiments and human experiments were
conducted to validate the performance of the pro-
posed algorithm in practical applications. The ex-
perimental results demonstrate that the proposed
algorithm achieves high fidelity, consistency, and
trustworthiness in explaining LDL models.

1. Introduction
Learning with ambiguity has emerged as an important
research direction in the fields of machine learning and

1School of Computer Science and Engineering, Nanjing Univer-
sity of Science and Technology, China 2Department of Computing,
The Hong Kong Polytechnic University, China 3College of School
of Computer Science and Technology, Nanjing University of Aero-
nautics and Astronautics, China. Correspondence to: Weiwei Li
<liweiwei@nuaa.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

data mining in recent years. There are currently several
paradigms for dealing with label ambiguity, such as multi-
label learning (Tsoumakas & Katakis, 2007), multi-instance
learning (Carbonneau et al., 2018), and label distribution
learning (LDL) (Geng, 2016). Among these, LDL stands
out as an innovative learning paradigm that not only an-
swers which labels are relevant to the sample but also fur-
ther characterizes the relative importance of labels to the
sample. LDL handles multi-label samples where labels
exhibit co-occurrence patterns (simultaneous changes) and
dependency propagation (one label’s presence affects others’
distributions). Given that LDL can provide richer semantic
information, it has been widely applied in practical applica-
tion scenarios such as disease diagnosis (Wang et al., 2022),
emotion recognition (Jia et al., 2019), etc. Existing LDL
research primarily focuses on the design and optimization
of algorithms, but the interpretability of LDL algorithms
have been neglected.

Interpretability plays a crucial role in understanding the
decision-making logic of models on given data, helping re-
searchers optimize models more effectively, and promoting
the application of models in real-world scenarios. Within
the existing field of interpretable machine learning, the
LIME (local interpretable model-agnostic explanations) al-
gorithm (Ribeiro et al., 2016) is widely used to enhance
the interpretability of models. This is achieved by gener-
ating simple models to approximate the local behavior of
black-box models. However, the LIME algorithm is de-
signed for single-label learning tasks and focuses on the
local region of a single label, making it unsuitable for direct
application to LDL tasks that involve multiple interdepen-
dent real-valued labels. One intuitive approach is to apply
the LIME algorithm in parallel to LDL tasks, but this ap-
proach faces significant challenges: (1) In LDL tasks, there
are complex dependencies and interactions among labels. In
such cases, the single-label explanations provided by LIME
can be misleading due to the disregard for inter-label corre-
lations. For example, in medical diagnostic tasks, “pneumo-
nia” and “acute respiratory distress syndrome” often need to
be addressed simultaneously; a parallel explanation might
overestimate the risk of pneumonia alone and underestimate
the risk when both pneumonia and acute respiratory distress
syndrome are present. (2) The approach encounters compu-
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tational complexity issues; when the dataset is very large,
generating a large number of perturbed samples for a single
label and training local models becomes extremely time-
consuming. (3) The local solution of parallelized LIME
tends to violate the constraints of label distribution, which
can lead to invalid label description degrees and unreliable
explanations. For instance, when the true description degree
of a label is very low, it can be predicted as a negative value,
an invalid label description degree.

To address these challenges, we propose an improved LIME
method for the local interpretability issues in LDL, named
LIMEFLDL. Within this interpretive framework, (1) to ex-
plain the dependencies among labels, we design a feature
attribution matrix that forms a feature attribution distribu-
tion for each feature. This distribution considers the impact
of features on the entire label distribution and can be used
to explain the inter-label dependencies, resulting in more
consistent explanations. (2) To reduce computational com-
plexity, we minimize the distance between the black-box
model and the explanation model’s output within the gen-
erated local region in the form of a label distribution. This
process requires only one local sampling and does not neces-
sitate generating a local region for each label, significantly
reducing computational complexity. Additionally, we also
provide a feature selection scoring function suitable for the
label distribution format to accelerate the efficiency of expla-
nation generation. (3) To avoid violating label distribution
constraints, we incorporate linear constraints and penalty
function constraints within the local model, ensuring that
the local model’s predictions meet the label distribution
constraints while remaining clear and transparent.

In addition to designing the LIMEFLDL model specifically
for the interpretability issues of LDL algorithms, we have
also conducted proof analysis and experimental validation
of the related theories of this model. First, we have pro-
vided analytical solution formulas for the improved inter-
pretation algorithm under certain assumption conditions
and proved the boundary conditions for the explanations to
reach convergence and stability. Second, we have analyzed
the properties of the interpretation algorithm, including lo-
cal accuracy, dummy features, etc., and provided proofs,
which enhances the theoretical completeness of the algo-
rithm and also increases its usability and trustworthiness.
Third, most traditional fidelity measures are only applica-
ble to single-label cases. However, for label distribution
scenarios, these measures cannot be directly applied. To
address this, we have introduced metrics for LDL as fidelity
measures. These measures can quantify the fidelity of the
explanation model’s output to the actual model’s decisions.
Finally, through numerical experiments and human exper-
iments, we have verified that the proposed method offers
high fidelity, consistency, and trustworthiness in the inter-
pretation of LDL models.

Our main contributions can be summarized as follows.

• We propose the LIMEFLDL method, which is suit-
able for interpretability tasks of LDL algorithms. This
method takes into account the label distribution in the
local region, generating local linear models to approx-
imate the overall behavior of the black-box model’s
output label distribution. It can be widely applied to
interpret complex models in various LDL tasks.

• We conduct extensive theoretical proofs and property
analyses of the proposed LIMEFLDL method, ensuring
that the interpretations it provides in LDL tasks are
reliable and effectively approximate the true decision-
making process. We also validate the reliability of the
proposed method through various experiments.

2. Related Works
Label distribution learning. LDL aims to learn a pre-
dictive function that maps features to the sample’s label
distribution, where each value in the distribution represents
the degree to which the corresponding label describes the
sample. (Geng, 2016) first introduced maximum entropy
model to represent the prediction function, laying the foun-
dation for LDL. Subsequently, many studies have extended
traditional learning algorithms to adapt to LDL tasks. For
example, (Geng & Hou, 2015) proposed LDSVR by ex-
tending the support vector machine to handle LDL problem.
(Xing et al., 2016) applied the LogitBoost model to LDL
tasks. (Shen et al., 2017) developed LDLF by extending the
drivable decision tree model for LDL. To further improve
the generalization ability of label distribution learning mod-
els, some research has focused on mining the correlations
between labels, aiming to capture the interdependencies
among labels (Jia et al., 2018; Zhao & Zhou, 2018; Zheng
et al., 2018). In addition, there are also efforts that enhance
the expressive power of models by mapping labels to a low-
dimensional space through label embedding methods (Peng
et al., 2018; Wang & Geng, 2018; Xu et al., 2019). Al-
though these approaches have significantly advanced the
performance of the LDL model, the integration of LDL with
interpretability techniques remains a largely unexplored
area, presenting opportunities for future research.

Improvements to LIME. LIME is one of the most widely
used techniques for interpreting black-box models, and
many studies have also made improvements to it. For ex-
ample, (Shi et al., 2020) proposed a modification to the
perturbation sampling method to handle the correlations
between features, thereby improving the accuracy of the ex-
planations. Like other explanation methods, LIME relies on
reference points (also known as baseline inputs) to generate
samples. In (Kapishnikov et al., 2019), both black and white
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references are used. In contrast, (Fong & Vedaldi, 2017)
employed a combination of constant, noisy, and gaussian
blur references. DLIME (Zafar & Khan, 2019), ALIME
(Shankaranarayana & Runje, 2019) and GLIME (Tan et al.,
2023) applied auto-encoders, deterministic methods, and
integration of the locality weighting function, respectively,
into the sampling process methods to refine the weighting
function, improving the accuracy and stability of the lo-
cal surrogate model. It is worth mentioning that there are
also some works that apply LIME to multi-label classifica-
tion tasks (Kakogeorgiou & Karantzalos, 2021; Belal et al.,
2023; Vinogradova & Myers, 2023). These methods directly
decompose the multi-label classification task into a series
of binary classification tasks and then use LIME to seek
explanations for each of them. After reviewing the existing
research related to LIME, there has been no direct work on
interpretability for LDL tasks. This paper will attempt to
address this issue.

3. Proposed Interpretability Algorithm
3.1. Problem formation

Let X = {x1, x2, . . . , xn}, where X ∈ Rn×f repre-
sents the input space, xi denotes the i-th instance, n is
the number of instances, and f is the feature dimension.
D = {D1,D2, . . . ,Dn}, where D ∈ Rn×r represents
the output space, and r is the number of labels. Each
Di =

[
dy1
xi
, dy2

xi
, . . . , dyr

xi

]
is the label distribution for xi,

where dyj
xi represents the description degree of the label yj

in the label distribution of instance xi, satisfying dyj
xi ∈ [0, 1]

and
∑r

j=1 d
yj
xi = 1. The goal of LDL is to learn a mapping

function ς from X to D that can predict the label distribu-
tions for unseen instances. Furthermore, in order to inter-
pretate the LDL model, we aim to approximate the local
behavior of the complex LDL mapping ς by simple linear
model, i.e., min ∥ςsimple − ς∥2F , where ςsimple is the simple
linear model.

3.2. Main framework

The main goal of our work is to train a local linear model
to approximate the overall behavior of a black-box model
in LDL. For a given instance xi that needs to be explained,
we generate m local sampling instances for it and trans-
form them into an interpretable feature representation ma-
trix Z = (zjq) ∈ {0, 1}m×f , where zjq represents the q-th
interpretable feature representation of the j-th local sam-
pling instance. If the instance xi is an image, we can use
a segmentation algorithms, such as Quickshift (Vedaldi &
Soatto, 2008), to divide it into f blocks. For the generated
j-th local sampling instance, zjq = 1 indicates the q-th
block using the original image block, and zjq = 0 indicates
the q-th block using the average of the channels. If xi is
an instance from tabular data, each column is divided into

several individual boxes based on entropy algorithm (Gar-
reau & von Luxburg, 2022). For the generated j-th local
sampling instance, zjq = 1 indicates that the q-th feature is
in the same box as the value of the q-th feature of xi, and
zjq = 0 indicates that the q-th feature is in a different box
as the value of the q-th feature of xi. In summary, for the
to-be-explained instance xi, we generate the corresponding
local sampling instance matrix Z based on the Bernoulli
distribution.

Additionally, since each feature in LDL corresponds to mul-
tiple labels, we generate an attribution vector ai for each fea-
ture, the length of ai corresponds to the labeling sequence,
with ai ∈ Rr×1, where each element aij denotes the at-
tribution value of the i-th feature to the j-th label. These
feature attribution values are then combined to form the
feature attribution matrix A. We uses uniform initialization
as initialization. The local linear model for LDL can thus
be expressed as follows:

G (Z) = ZA⊤ + b, (1)

where Z ∈ {0, 1}m×f is the distribution matrix sampled
from the instances to be interpreted, A ∈ Rr×f is the fea-
ture attribution matrix, and b ∈ Rr×1 is the bias term. We
can simplify the equation as follows:

G (Z) =
[
Z;1

] [
A⊤, b⊤

]
= Z ′A′⊤. (2)

However, each locally sampled instance differs from the
one to be interpreted, for each instance zi in Z, we assign a
sampling weight π(zi), and the sampling weight matrix Π
is then defined for the entire locally sampled set Z.

π(zi) = exp
(
−σ−2∥1− zi∥22

)
,Π = diag(π(zi)), (3)

where σ is the kernel width parameter, and 1 denotes the
all-one vector as the interpretable representation of the term
to be interpreted. In this framework, we use the L2 norm
by default. However, other metrics such as the L1 norm,
cosine, or euclidean distance can also be applied. Typically,
cosine distance is used for image data, while the L1 norm
is preferred for tabular data. For additional analysis, please
refer to the Appendix A.3.

We restore the logical values in Z back to the correspond-
ing original input h(Z) through a process of inverse dis-
cretization, and then input into the original black-box model
F to obtain the label distribution on locally sampled in-
stances, F (h(Z)). To ensure interpretability and fidelity,
our objective is to minimize the distance betweenG (Z) and
F (h(Z)), while still satisfying the LDL constraints. Since
not all interpretations of A′ are simple and smooth, we use
∥A′∥2F to constrain the complexity of the interpretation. We
use the alternating direction method of multipliers (ADMM)
(Boyd et al., 2011) to solve objective functions with lin-
ear constraints. Ultimately, we express the LIMEFLDL
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generation as an explanation.

min
A′

1

2m

∥∥Π(Z ′A′⊤ − F (h(Z)))
∥∥2
F
+

λ

2m
∥A′∥2F ,

s.t. Z ′A′⊤ × 1r×1 = 1m×1,Z
′A′⊤ ≥ 0m×r.

(4)

Equation (4) can be solved by the following alternative
methods in iteration t:

A′⊤
t+1 =argmin

A′⊤
t

1

2m
∥Π(Z ′A′⊤

t − F (h(Z))∥2F

+
ρ

2m
∥Z ′A′⊤

t × 1r×1 − 1m×1∥22 +
λ

2m
∥A′⊤

t ∥2F

+⟨u
(t)

m
,Z ′A′⊤

t × 1r×1 − 1m×1⟩

+
v

2m

∑
max(−Z ′A′⊤

t , 0), (5)

u(t+1) =u(t) +
ρ

m

(
Z ′A′⊤

t+1 × 1r×1 − 1m×1

)
, (6)

where m represents the number of sampled instances, u ∈
Rm×1 is the Lagrange multiplier, and ρ and v are the penalty
factors. For the non-negative constraint, we introduce a
penalty term and provide Assumption 3.1 to ensure that the
non-negative constraint is satisfied.
Assumption 3.1. For a given ϵ > 0, ∃N > 0,
v
m

∑
max(−Z ′A′⊤

t , 0) < ϵ holds for any v
m > N , we

assume that the nonnegative constraint is satisfied.

Here, we use the limited-memory quasi-Newton method
(L-BFGS) for optimization. The computation of L-BFGS
is mainly related to the first-order gradient, which can be
obtained by:

∇A′⊤
t+1 =Z ′⊤Π

(
Z ′A′⊤

t − F (h(Z))
)
+Z ′⊤u1⊤

r×1

+Z ′⊤ρ
(
Z ′A′⊤

t 1r×1 − 1m×1

)
1r×1. (7)

To ensure that the final interpretation model is concise and
efficient, we must select the most important features. There-
fore, we design a new scoring function S, which accurately
evaluates the contribution of each feature to the overall dis-
tribution of the labels.

S = 1− KL (G (Zc) , F ((h(Z)))

KL (Ymean , F ((h(Z)))
, (8)

where F (h(Z)) represents the output of the black-box
model, and G (Zc) denotes the output of the local linear
model based on the selected features. Ymean is the uniform
distribution. KL divergence are used to measure the distance
between these two outputs. Based on the value ranking of
S, we select the most explanatory features.

3.3. Analytical solution analysis

To better understand the specific form of the feature attri-
bution matrix A′ when the constraints are minimized, we

first provide a simplified form. All proofs for theorems
and properties presented in this section can be found in
Appendix B.

Z ′⊤ΠZ ′ = B, Z ′⊤ΠF (h(Z)) = D,

ρZ ′⊤Z ′ = C, Z ′⊤u11×r = L,

1r×1 × 11×r = E, ρZ ′⊤1m×111×r = O,

B =
1

m
(
∑
i

π(zi)((zij)
2 − (zijziq))I +

∑
i

π(zi)(zijziq)11
⊤).

(9)
Set the gradient to zero to obtain the iterative form of A′,

A′⊤ = B−1
(
D −L+O −CA′⊤E

)
, (10)

where ∥B−1∥F ≤ (f +1)
1
2 2fe

1
σ2 , ∥C∥F ∈

[
0, f2ρm−1

]
,

∥E∥F = r/m. From this we give an iterative form for A′.

Theorem 3.2. If Assumption 3.1 holds and Z ′ follows
the {0, 1} distribution, ignoring the regularization con-
straints, the condition for convergence is given by: ρ <
2−f (f + 1)−

1
2m2f−2r−1e−

1
σ2 . By the Contraction Map-

ping Principle (Banach fixed-point principle), there exists
an iterative fixed point A′∗ that minimizes the loss.

However, Theorem 3.2 only shows that the feature attribu-
tion matrix has iterative fixed points, but it does not provide
a specific form due to the iterative structure. We find that
this is caused by the L2 norm constraints on vectors with
a sum of 1. Building Theorem 3.2, to derive an approxi-
mate analytic solution, we apply linear constraints using the
lagrange multiplier method and the KKT conditions. This
allows us to obtain an analytic solution for A′.

A′⊤ =
(
Z ′⊤ΠZ ′)−1 (

Z ′⊤ΠF (h(Z))−Z ′⊤u11×r

)
,

s.t. Z ′A′⊤ × 1r×1 = 1m×1.
(11)

We divide the solution into two parts: Z ′⊤ΠZ ′ = ∆,
Z ′⊤ΠF (h(Z)) − Z ′⊤u11×r = Γ, which allows us to
determine the constraint ranges for both the numerical and
desired solutions of A′.∥∥∥∆−1

m Γm − ∆̃−1Γ̃
∥∥∥
F
≤
∥∥∥∆̃−1

∥∥∥
F

∥∥∥Γm − Γ̃
∥∥∥
F
+∥∥∥∆−1

m − ∆̃−1
∥∥∥
F
∥Γm∥F ,

(12)

where ∆m represents the computed value of ∆ obtained
through the model, ∆̃ denotes the expected value. Similarly,
Γm corresponds to the computed value of Γ, Γ̃ denotes the
expected value. A′⊤

m = ∆−1
m Γm represents the computed

value of A′⊤, Ã′⊤ denotes the expected value.

From Appendix B.1 and the form of ∆, we can conclude
each element of ∆m − ∆̃ falls within the range

[
− 1

4 , 1
]
.
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Using the matrix Hoeffding inequality (Tropp, 2015), for
any t > 0, we have,

P
(∥∥∥∆m − ∆̃

∥∥∥
F
≥ t
)
≤ 2f exp

(
−mt

2

8f2

)
. (13)

Similarly, given F (h(Z)) ⊆ [0, 1]m×r, π(·) ∈ [0, 1], and
u ⊆ (0, 1)m×1, the form of Γ ensures that each element of
Γm − Γ̃ is bounded by [−1, 1]. Thus, for any t > 0, we
have,

P
(∥∥∥Γm − Γ̃

∥∥∥
F
≥ t
)
≤ 2f exp

(
−mt

2

8f2

)
, (14)

where P represents the probability that the Frobenius norm
of each matrix satisfies the given condition.

Theorem 3.3 (Convergence). Based on Theorem 3.2
∀ϵ > 0, δ ∈ (0, 1), if m = Ω(max(25+2f (f +

1)f3e
2
σ2 ϵ−2 ln

(
4f
δ

)
, 25f

5
2 r

1
2 ϵ−2 ln( 4fδ )), then we have

P(∥A′⊤
m−Ã′⊤∥F < ϵ) ≥ 1−δ, and Ã′⊤ = limm→∞ A′⊤

m ,
where Ω represents the lower bound on the number of in-
stances required for this problem.

We aim not only to ensure the solution converges, but also
to ensure that minor changes to the black-box model do
not affect the interpretation. That is the stability of the
interpretation.

Theorem 3.4 (Stability). Based on Theorem 3.3, for
any two similar black-box models P and Q, define
T (h (Z)) = |P (h (Z)) − Q (h (Z)) |, and T (h(Z)) of
each element t (h(Z)) < ϵ, there exists a constant λ ∈[
0,mf2−

1
2+fr

1
2 e

1
σ2 ϵ
]

such that
∥∥A′⊤

P −A′⊤
Q

∥∥
F
≤ λ.

The mathematic expectation of the explanation is calculated
according to the analytical solution formula as the number
of sampling instances increases exponentially. The expla-
nations obtained from the model are then compared, and
the Top-20 Jaccard index is computed for both. As shown
in Figure 1(a), as the number of sampling instances grows,
the two explanations become more similar and eventually
converge. This confirms the correctness of convergence.
However, due to the inherent rounding errors in the numer-
ical computation of the inverse matrix, the calculation of
A−1 may instead result in (A+ δA)−1, where δ is a small
error matrix. This introduces inaccuracies, affecting the
final index results. As shown in Figure 1(b), the difference
gradually decreases, and the interpretations of the two black-
box model outputs become increasingly consistent. This
demonstrates the correctness of stability. Therefore, we con-
clude that our explanation algorithm is stable in LDL task
and can effectively approximate the real decision-making
process. The overall flow of our algorithm is outlined in
Algorithm 1.

(a) (b)

Figure 1. Convergence and stability visualization. (a): Conver-
gence visualization, where x-axis denotes the exponentially in-
creasing number of samples (log scale), and y-axis denotes the Top
20 Jaccard Index. It demonstrates convergence as Jaccard Index ↑
and stabilized. (b): Stability visualization, where x-axis denotes
the decreasing divergence between two black-box models, and
y-axis denotes the Top 20 Jaccard Index. It shows Jaccard Index ↑
when predictive distribution divergence between black-box models
↓ (x-axis).

Algorithm 1 LIMEFLDL
Input: instance to be interpreted x, LDL model F , sampling
sample size m, weight kernel π.
Initialization: A0, u(0), ρ, t = 1.
Output: A.
1: Π,Z ← {};
2: for i ∈ {1, 2, . . . ,m} do
3: zi ← sample around{x};
4: π(zi)← zi; ▷ Equation (3)
5: Z ← Z ∪ (zi), Π← π(zi);
6: end for
7: while the stopping criterion is not satisfied do
8: Zc ← S(Z); ▷ Equation (8)
9: update At+1; ▷ Equation (5)

10: update u(t+1); ▷ Equation (6)
11: t← t+ 1;
12: end while
13: return A;

3.4. Analysis of algorithm properties

To make the interpretation algorithm easy to understand,
we highlight some important properties that aid in its use.
First, we show that the explanatory model is consistent with
additive feature attribution (Lundberg & Lee, 2017). We
present Property 3.5 to illustrate this.

Property 3.5. Let x be the instance to be interpreted, and
ξ be its interpretable data representation. ξi represents the
i-th interpretable feature representation. Let F denote the
black-box model and G represent the locally interpretable
model. Then, we have

F (x) ≈ G (ξ) = ϕ0 +
[∑f

i=1 ξiai1 · · ·
∑f

i=1 ξiair

]⊤
,

(15)
where ϕ0 = F (h(0)) is the output corresponding to an
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(a) (b)

Figure 2. Local accuracy and dummy features visualization. (a):
Local accuracy in multiple forms of fidelity, where x-axis denotes
the number of added features, and y-axis denotes the forms of
fidelity. (b): Dummy features, where x-axis denotes the index of
test set example, and y-axis denotes the top-20 Jaccard indices.

all-0 vector. This represents the output when no features
are selected, which is consistent with the architecture of
additive feature attribution.

Property 3.6. For any interpretable representation ξ, let
its k-th feature be ξik or ξjk, where ξik ̸= ξjk. If the interpre-
tation model G(ξik, ξf\k) = G(ξjk, ξf\k), then the feature
attribution of the k-th is 0, indicating that the feature is
dummy.

Property 3.7. For any interpretable representation ξ, let
its i-th and j-th features be ξi and ξj , where ξi ̸= ξj . If
these two feature values are swapped to form ξ′, and the
explanatory model satisfiesG (ξ) = G (ξ′), then the feature
attribution for the i-th and j-th features remains the same.

Some features contribute positively or negatively to the
model’s output, while others do not. To empirically val-
idate these observations. Initially, we first apply a mask
to the image based on the mean value of each superpixel
block. This mask has impact on the interpretation model’s
predictions. Next, the highest-ranked features are gradually
added. As shown in Figure 2(a), as the number of features
increases, the fidelity of the local model improves consis-
tently, indicating that some features contribute positively
or negatively to the model’s output and the local accuracy
is both reliable and precise. To demonstrate that certain
features do not affect model outputs, for each test image, the
lowest-ranked feature is marked with a black smudge and
outlined in green. Clean and processed images are evaluated
under the same black-box model. Top-20 Jaccard indices
are computed, with a dashed blue line showing the mean
and a shaded area for standard deviation. As shown in Fig-
ure 2(b) explanations remain unchanged for some images,
exhibit minor variations for others, and undergo significant
changes in a small subset.

4. Experiments
In this section, we will evaluate the proposed method on
eight real-world datasets, test the fidelity and robustness of
the explanation algorithm, and conduct human experiments
to assess whether meaningful explanations are provided to
end-users.

4.1. Numerical data sets

We conduct experiments on eight label distribution
datasets from different kinds of real-world tasks to eval-
uate our approach. Yeast alpha (alpha) and Yeast cold
(cold) (Geng, 2016) are collected from biological ex-
periments. JAFFE (Lyons et al., 1998), SBU 3DFE
(3DFE) (Yin et al., 2006), and Emotion6 (Emo) (Peng et al.,
2015) are collected from sentiment mining tasks. Natu-
ral Scene(Scene) (Geng, 2016) is generated from a natural
scene recognition task. JAFFE and Emotion6 have both
image data and processed tabular data. For the tabular data
in these six datasets, we employ table-based interpretation
approaches. For the JAFFE (iJAFFE) and Emotion6 (iEmo)
image datasets, we apply image interpretation methods di-
rectly on visual data. The details of all eight data sets are
summarized in Table 1.

Table 1. Statistics from eight real-world datasets.

ID Dataset # examples # features # labels

1 Yeast alpha(alpha) 2465 24 18
2 Yeast cold(cold) 2465 24 4
3 JAFFE 213 243 6
4 SBU 3DFE (3DFE) 2500 243 6
5 Emotion6 (Emo) 1980 168 7
6 Natural Scene (Scene) 2000 294 9
7 Image-JAFFE (iJAFFE) 213 243 6
8 Image-Emotion6 (iEmo) 1980 168 7

4.2. Numerical experimental evaluations

Fidelity is one of the most widely used metrics in inter-
pretable artificial intelligence to evaluate how well an inter-
pretation model mimics black-box decisions. Depending on
the type of interpretation, as analyzed in (Guidotti et al.,
2019), fidelity can be specialized in various forms. In our
setup, we evaluate the fidelity using six distinct metrics,
grouped into two categories. The first group includes Can-
berra distance, Clark distance, Kullback-Leibler divergence,
and Chebyshev distance metrics, which measure the dis-
tance between two distributions. Lower values (↓) of these
metrics indicate better fidelity. The second group comprises
intersection similarity and cosine similarity metrics, which
assess the similarity between distributions. Higher values
(↑) of these metrics represent better performance. For the

6



LIMEFLDL: A Local Interpretable Model-Agnostic Explanations Approach for Label Distribution Learning

Table 2. The effectiveness of two interpretation algorithms is evaluated on different datasets, using fidelity and consistency metrics under
black-box modeling with RBF-LDL-LRR. Results are marked with • for better outcomes and ◦ for anomalous data.

Index Algorithms Chebyshev ↓ Clark ↓ Canberra ↓ KL ↓ Cosine ↑ Intersection ↑ Jaccard ↑

1 PULIME .0009±.0000 .0137±.0001 .0452±.0002 .0001±.0000 .9999±.0000 .9975±.0000 • .6428±.3192

1 LIMEFLDL • .0006±.0000 •.0108±.0000 •.0358±.0003 •.0000±.0000 •1.000±.0000 •.9980±.0000 .5044±.3426

2 PULIME .0035±.0000 • .0089±.0001 • .0153±.0002 ◦ -.0001±.0001 • .9999±.0000 •.9961±.0001 .3608±.2175

2 LIMEFLDL • .0033±.0000 .0096±.0000 .0165±.0001 • .0001±.0000 .9999±.0000 .9960±.0000 •.6200±.2843

3 PULIME .0461±.0029 .1990±.0107 .3763±.0210 ◦ -.0306±.0050 .9903±.0011 .9403±.0036 .5790±.0957

3 LIMEFLDL • .0338±.0018 • .1493±.0074 •.2949±.0127 • .0078±.0009 •.9935±.0006 •.9538±.0020 •.7080±.0753

4 PULIME .0583±.0008 .1916±.0020 .3601±.0033 ◦ -.0320±.0013 .9870±.0003 .9361±.0007 .4318±.0707

4 LIMEFLDL • .0348±.0005 • .1328±.0017 • .2613±.0034 • .0075±.0002 •.9926±.0002 • .9559±.0006 • .4675±.0540

5 PULIME •.0001±.0000 • .0001±.0000 • .0001±.0000 ◦ -.0001±.0000 1.000±.0000 •.9999±.0000 .1556±.1245

5 LIMEFLDL .0001±.0001 .0749±.0027 .0782±.0028 • .0001±.0000 1.000±.0000 .9999±.0000 •.3804±.0468

6 PULIME .0010±.0000 • .0151±.0002 • .0398±.0005 .0011±.0001 .9997±.0000 .9986±.0000 .2846±.3556

6 LIMEFLDL • .0008±.0000 .0154±.0001 .0395±.0006 • .0007±.0001 •.9999±.0000 •.9989±.0001 •.3487±.2426

7 PULIME .0040±.0000 .0142±.0002 .0289±.0005 .0002±.0001 .9998±.0000 .9951±.0001 .7470±.1220

7 LIMEFLDL • .0033±.0000 • .0116±.0002 •.0236±.0005 • .0000±.0000 • .9999±.0000 • .9960±.0000 • .7903±.1054

8 PULIME •.0003±.0000 • .0032±.0001 • .0069±.0002 ◦ -.0001±.0000 .9999±.0000 • .9996±.0000 .1591±.1298

8 LIMEFLDL .0033±.0000 .0116±.0002 .0236±.0005 • .0001±.0000 .9999±.0000 .9960±.0001 •.7903±.1054

instances to be explained, we calculate the distance between
the label distributions predicted by the black-box model and
those output by the local linear model. This serves as the
fidelity metric for the interpretation model.

Consistency is a fundamental requirement for any trustwor-
thy method. Here, we compute the average top-K Jaccard
index (JI) for interpretations generated using 10 different
random seeds. Let w1, . . . , w10 represent the interpretations
obtained from these seeds. For the first K highest-ranked
features in wi, the set is denoted asRi,K . We then calculate
the average Jaccard index betweenRi,K andRj,K , defined
as: JI(Ri,K ,Rj,K) =

|Ri,K∩Rj,K |
|Ri,K∪Rj,K | . A JI value closer to 1

indicates greater stability in interpretation consistency. The
instances used in this analysis are randomly selected from
the test set, ensuring diverse coverage across random seeds.

4.3. Experimental setup for numerical experiments

The proposed interpretation algorithm, in conjunction
with the parallel use of the traditional LIME algorithm
(PULIME), is applied to widely used LDL methods, includ-
ing LDL-SCL (Zheng et al., 2018), LDL-LRR (Jia et al.,
2023), AA-KNN and the Maximum Entropy Model (MEM).
Since the feature extraction module in the LDL-LRR model
is relatively simple, we incorporate a Gaussian kernel func-
tion to enhance feature extraction during training (RBF-
LDL-LRR). This improves the model’s performance while
also increasing its complexity. All codes are provided by the
original authors and we adopt the recommended parameters
reported in their respective studies. For image datasets, us-
ing the L2 norm as a distance metric during local sampling

proved problematic. Apart from the target sample, all other
local samples received a weight of zero. To address this,
we use cosine distance for local sampling in image datasets.
This approach ensures that each local sample is assigned a
weight proportional to its distance from the target sample.
For tabular datasets, we retain the L2 norm as a distance
metric. Detailed parameter configurations for LIMEFLDL
and PULIME are documented in the Appendix A.1. These
settings align with the implementations used in our numeri-
cal experiments.

4.4. Human experiments

In addition to the numerical experiments, we conduct human
interpretability experiments to evaluate whether LIMEFLDL
offers more meaningful interpretations for users. The exper-
iment has two parts, with 10 participants in each. Details of
the experimental process are provided below.

Can LIMEFLDL improve the understanding of model predic-
tions? To evaluate this, we select images that the black-box
model predicted correctly. The participants are shown both
the original image and the generated interpretation. They
are then asked to assess the degree of agreement between
the interpretation and their intuitive understanding of each
label. For each label, the participants first evaluate whether
the provided reason is reasonable. If so, they then rate the
degree of agreement on a scale of 1 to 5, where 1 indicates
no match and 5 indicates perfect agreement.

Can LIMEFLDL help identify modeling errors? To exploit
this, we select images where the black-box model showed a
significant difference between the predicted and actual label
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Table 3. The effectiveness of two interpretation algorithms is evaluated on different datasets, using fidelity and consistency metrics under
black-box modeling with LDL-SCL. Results are marked with • for better outcomes and ◦ for anomalous data.

Index Algorithms Chebyshev ↓ Clark ↓ Canberra ↓ KL ↓ Cosine ↑ Intersection ↑ Jaccard ↑

1 PULIME •.0008±.0000 •.0131±.0001 •.0431±.0003 ◦ -.0001±.0000 • .9999±.0000 •.9976±.0000 • .6446±.1244

1 LIMEFLDL .0009±.0000 .0150±.0002 .0501±.0007 •.0000±.0000 .9999±.0000 .9972±.0000 .6434±.1732

2 PULIME •.0034±.0000 • .0087±.0001 • .0149±.0002 ◦ -.0002±.0001 •.9999±.0000 • .9962±.0001 .3924±.0956

2 LIMEFLDL .0037±.0000 .0097±.0001 .0168±.0002 • .0001±.0000 .9999±.0000 .9958±.0001 •.7558±.1823

3 PULIME .0523±.0022 .2236±.0091 .4222±.0191 ◦ -.0368±.0088 .9885±.0009 .9332±.0031 .5687±.0824

3 LIMEFLDL • .0337±.0018 •.1468±.0088 •.2903±.0170 • .0077±.0008 •.9936±.0006 •.9544±.0025 • .6508±.0880

4 PULIME .0326±.0005 .1235±.0017 .2298±.0031 ◦ -.0113±.0006 .9950±.0001 .9613±.0005 .5881±.1904

4 LIMEFLDL • .0240±.0005 •.0919±.0016 •.1778±.0032 • .0034±.0001 •.9966±.0001 •.9701±.0005 •.6462±.1501

5 PULIME .1966±.0023 .9352±.0052 1.997±.0130 ◦ -.0500±.0284 .9129±.0022 .7106±.0031 .4464±.0906

5 LIMEFLDL • .1317±.0022 • .8892±.0079 •1.800±.0214 • .7059±.0409 •.9132±.0029 •.8058±.0033 •.5979±.1281

6 PULIME .3584±.0036 1.995±.0025 5.330±.0110 ◦ -.5122±.0087 .7999±.0036 .1487±.0039 .4387±.0440

6 LIMEFLDL • .1692±.0030 • 1.694±.0095 •4.139±.0309 • 1.200±.0590 •.8840±.0038 •.7141±.0036 • .5481±.0985

7 PULIME .0051±.0001 • .0192±.0004 • .0385±.0008 .0003±.0002 •.9998±.0000 •.9935±.0001 •.8661±.0829

7 LIMEFLDL • .0049±.0001 .0217±.0010 .0429±.0020 • .0001±.0000 .9998±.0000 .9931±.0002 .8292±.0555

8 PULIME •.0063±.0001 • .0372±.0011 • .0753±.0015 • .0003±.0001 •.9997±.0000 • .9912±.0001 .2149±.1040

8 LIMEFLDL .0081±.0001 .0506±.0008 .1033±.0013 .0006±.0000 .9995±.0000 .9881±.0001 • .8740±.0510

distribution. The participants are shown both the original
image and the generated interpretations. They are then
asked to assess the degree of deviation in the individual
label interpretations and provide reasons for the model’s
incorrect predictions based on these interpretations, along
with their own reasoning. The participants first evaluate
whether the reasons are reasonable. If so, they then rate the
usefulness of the explanation on a scale from 1 to 5, where
1 meant that the explanation offered no insight into the
model’s incorrect prediction and 5 meant the explanation is
extremely helpful in understanding the incorrect prediction.

4.5. Results and discussion

Tables 2 and 3 present the detailed experimental results for
the fidelity and consistency metrics of the LDL algorithm.
These results are based on six tabular datasets and two image
datasets. For each data set, we performed 10-fold cross-
validations and recorded the mean and standard deviation
for each evaluation metric.

Based on the results of the numerical experiments, the fol-
lowing observations can be made: (1) alpha and cold dataset
shows better results both on multiple fidelity metrics and
with different black-box modeling algorithms. The rank-
ings of the two interpretation algorithms have their own
strengths because the label distributions of these datasets are
approximately uniformly distributed. This makes it easy to
approximate whether the parallel interpretation or the inter-
pretation distribution. For data sets JAFFE, 3DFE, Emo and
Scene, regardless of the LDL algorithm used, LIMEFLDL
outperforms PULIME. In addition, the label distributions in

these datasets are derived from subjective labeling or rank-
ing, making them more representative. The results from the
two image datasets show better performance compared to
the tabular datasets. This is due to the image dataset being
characterized by pixel blocks, while the tabular dataset has
feature columns with a partial range, leading to higher error
in the latter. (2) Our interpretation algorithm generally out-
performs PULIME in terms of consistency metric (Jaccard
index), which aligns with the stability shown in the theoreti-
cal section of this paper. (3) Anomalous data are observed
in the KL metric under the PULIME, with its KL divergence
being negative. This occurs because the PULIME fits the la-
bel distribution individually. Although this approach better
captures the description degree of each label, it can result in
the sum of the description degree exceeding 1. This leads to
the possibility of P =

∑r
j Θj(ξ)−1∑r

j Θj(ξ)
, which causes the final

KL divergence to be negative (see the Appendix B.6 for the
overall proof), where Θj(ξ) represents the descriptive mea-
sure of each label in the fit. Experiments on two additional
black-box models are provided in the Appendix A.8.

Figure 3 presents a qualitative evaluation method based
on human visual perception to assess the consistency of
the interpretation results with human understanding. In
Figure 3, purple (a blend of blue and pink) denotes the
cases where LIME = LIMEFLDL; blue denotes the cases
where LIME > LIMEFLDL; pink denotes the cases where
LIMEFLDL > LIME. Participants are shown images with
accurate model predictions along with interpretations of
PULIME and LIMEFLDL. On average, PULIME receives a
score of 2.1, while LIMEFLDL receives a score of 3.1.
Thus, LIMEFLDL outperforms PULIME by 1.0 points.
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(a) (b)

Figure 3. Human-interpretability results. Purple (a blend of blue
and pink) denotes the cases where LIME = LIMEFLDL; blue
denotes the cases where LIME > LIMEFLDL; pink denotes the
cases where LIMEFLDL > LIME. (a): Human-interpretability
results for accurate predictions. (b): Human-interpretability results
for incorrect predictions.

Meanwhile, when participants review images with incorrect
model predictions and corresponding interpretations from
both methods, PULIME receives an average score of 2.3,
while LIMEFLDL scores 3.1. Again, LIMEFLDL achieves
a higher score, with a difference of 0.8 points. These re-
sults strongly indicate that LIMEFLDL is more effective in
explaining model behavior compared to PULIME.

5. Conclusions
In this paper, we propose a local interpretable model-
agnostic explanation approach for LDL, called LIMEFLDL.
This algorithm adapts the original explanation approach
to fulfill the constraints of the label distribution learning
paradigm. We introduce a new constraint on the form of
label distribution and the corresponding feature attribution
matrix solution based on the alternating direction method of
multipliers. Besides, we give new feature selection functions
to improve the interpreting efficiency of model. We then
provide a theoretical analysis of the solutions, convergence
behaviors, and stability cases of the model. Furthermore,
we present a series of properties of our proposed explana-
tion algorithm to facilitate the practical utilization. Finally,
we demonstrate the effectiveness of LIMEFLDL by both
theoretical analysis and experimental studies.
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A. More discussions
A.1. Details of parameter settings

In the fidelity-metric experiments, we set the number of sampled instances m to 100, and select the top 10 ranked features for
evaluation on all test sets. For the consistency experiments, to ensure the explanatory model captures sufficient information,
we increase m to 1000 and do not impose restrictions on feature rankings. Furthermore, in all experiments, the lagrange
multiplier u(0) is initialized as an all-zero vector. The penalty coefficients λ, v and ρ are set to 0.01.

Parallel Utilization of LIME (PULIME) decomposes label distribution into a series of single-label. For each label, the
explanation task is performed independently. Specifically, the sampling size m and weighting parameters align with
LIMEFLDL. Other hyperparameters retain its default settings.

Feature transformation. For image data, the first step is to crop each image to a size of (256, 256, 3). The image is then
segmented into superpixels using the Quickshift method from scikit-image, with the following parameters: kernel-size=4,
max-dist=200, ratio=0.2, and random-seed=2024. These settings align with the default configuration in LIME, except
for the modified random seed. This ensures that the same images produce the same superpixels, reducing computational
instability in the interpretation process. However, different images are still segmented in different ways. For tabular data, the
parameters are set as follows: discretizer=“entropy”, random-seed=2024, and discretize-continuous=‘True’. The decision
tree method is used to adaptively bin feature columns. Fixed random seeds ensure consistency while guaranteeing that each
feature column is involved in the binning process.

Computing Explanations. For image explanations, the masking operation follows the original LIME settings. The
hide-color parameter is set to None, meaning that the average value of each superpixel serves as its reference when that
superpixel is removed. For distance weights, cosine is used for image datasets, while the L2 norm is applied for tabular
datasets. To balance accuracy and efficiency, the maximum number of iterations for L-BFGS is set to 50. In addition, all
random seed parameters are fixed to ensure reproducibility and consistency across runs.

A.2. Supplementary notes on human experimentation

We conducted the human evaluation with full adherence to ethical standards. Here is the required information: Our design
mitigated bias via 10 postgraduate students participated in the study, with 7 specializing in machine learning and the
remaining 3 focusing on other areas within computer science. The evaluation was conducted through in-person scoring
sessions. Each participant independently evaluated 20 randomly selected cases from our test set. All participants signed
informed consent forms outlining data usage. No personally identifiable information was collected. Raw responses were
aggregated to prevent individual identification. Random recruitment (ML/non-ML backgrounds), independent evaluation of
20 randomized interpretation results, and high inter-rater agreement despite participant diversity.

A.3. Sampling weight

For image data, a sampled instance zi, can differ significantly from the original image. For instance, if most of the elements
of ziq are zero, zi will be close to the mean. When constructing a local model, each sampled instance differs slightly from
the instance to be interpreted. Therefore, we treat the proximity as a weight π(zi),

∀1 ≤ i ≤ m, π(zi) = exp

(
−dcos (1, zi)2

σ2

)
, (16)

where σ > 0 is the kernel width parameter and dcos is the cosine distance.

∀u,v ∈ Rd, dcos(u,v) = 1− u⊤v

∥u∥ · ∥v∥
. (17)

We can find that the weights π(zi) depend solely on the number of hyperpixel blocks, each taking the mean of its
corresponding channel. For example, if zi has exactly s elements equal to zero, we have z⊤

i 1 = m−s, and ∥zi∥ =
√
m− s.

So ∥1∥ =
√
m, according to Equation (16), we deduce that π(zi) = ρ( s

m ),

∀a ∈ [0, 1], ρ(a) = exp

(
−(1−

√
1− a)2

σ2

)
. (18)
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Algorithm 2 Get Summary Statistics: Getting summary statistics from training data
Input: Train set X = {ζ1, . . . , ζn}, number of bins p.

1: for j = 1 to f do
2: for b = 0 to p do
3: qjb ← Quantile (ζ1j , . . . , ζfj ; b/p)
4: end for
5: for b = 1 to p do
6: S ← {ζij s.t. qjb−1 < ζij ≤ qjb}
7: µjb ← Mean(S)
8: σ2

jb ← Var(S)
9: end for

10: end for
11: return qjb, µjb, and σ2

jb for 1 ≤ j ≤ f and 1 ≤ b ≤ p

Tabular data sampling begins by dividing the input space of each column of features in the training set into bins. These bins
are used to create interpretable features. The method not only uses the ranges of the features, but also computes the mean
and variance of the training set data once transformed into interpretable features. These values are then used to generate
subsequent sampling instances. For detailed specifics, please refer to Algorithm 2.

Boundary extraction. The boundaries are determined by taking the quantiles at level b
p for b ∈ {0, 1, . . . , p} . In other

words, the qjb are such that

∀1 ≤ j ≤ f, ∀1 ≤ b ≤ p, 1

m

m∑
i=1

1ζij∈[qjb−1,qjb] ≈
1

p
, (19)

where, for each 1 ≤ j ≤ f , qj0 = min1≤i≤m ζi,j , and qjp = max1≤i≤m ζi,j . On the other hand, the indices of the bins are
used to sample new samples z1, . . . ,zm. For 1 ≤ i ≤ m, each new sample zi is sampled dimension-wise independently:
zjq follows the distribution of a truncated Gaussian random variable with parameters qjbij−1

, qjbij , µjbij and σ2
jbij

. So, we
condition, when falling into the b-th bin, the probability density function of zjq is given by the following expression.

ρjb(t) =
1

σjb
√
2π
·
exp

(
−(t−µjb)

2

2σ2
j,b

)
Φ (rjb)− Φ (ℓjb)

1t∈[qjb−1,qjb], (20)

where we let ℓjb =
qjb−1−µjb

σjb
and rjb =

qjb−µjb

σjb
and Φ is the cumulative distribution function of a standard Gaussian

random variable.

In the tabular data, the weights of the newly sampled instances are given by:

π(zi) = exp

(
−∥1− zi∥2

σ2

)
= exp

− 1

σ2

f∑
j=1

1bij ̸=bj

 , (21)

where ∥·∥ denotes the L2 norm, and σ is the kernel width parameter. This weight calculation is based on how many
coordinates the bins of the sampled instance differ from those of the instance to be explained, followed by the application
of exponential scaling. If all bins are identical, the weight is 1. On the other hand, if the sampled instance is far from the
instance to be explained, π(zi) can be very small. Here, far means that Z does not belong to the same bins as the instance
to be explained, and the bandwidth parameter ν is fixed at

√
0.75f .

Limitations. If two interpretations instances A1 and A2 are very close, they may share the same bin indices and,
consequently, the same A. On the other hand, if A1 and A2 are close but do not share the same bin indices, their
explanations may differ significantly. From a practical perspective, if one believes that the exact values of A are important,
increasing bins is a solution. This results in thinner bins per dimension. In the limit, setting p = 0, no discretization is also
an option.
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A.4. Convergence of LIMEFLDL

Figure 4 extends the experimental analysis in the main text by incorporating two additional common LDL black-box models:
AA-KNN and MEM. In these experiments, all data sets from the main text are used. The number of sampling instances
increases sequentially from 100, 500, 1000, to 5000, with the top-20 average Jaccard index serving as the evaluation metric.
Notably, the results in Figure 4 align closely with those in Figure 1(a). As the number of sampling instances increases,
LIMEFLDL consistently converges, regardless of the dataset or the choice of black-box model.

A.5. Stability of LIMEFLDL

To introduce variability in the black-box model’s predictions while avoiding overly biased distribution, we adjusted the
number of iteration rounds. For RBF-LDL-LRR and LDL-LRR, the iteration rounds were varied from 10 to 500. For the
AA-KNN model, the number of clusters was modified from 1 to 5. Additionally, we calculated the average difference in the
descriptiveness of each label between each prediction and the best prediction. The top-20 average Jaccard index was used as
the evaluation metric. As shown in Figure 5, the results align closely with those in Figure 1(b). As the average difference
in label descriptiveness between each model’s predictions and the best model’s predictions decreases, the explanations
generated by the models become increasingly consistent with those of the best model. These findings demonstrate that
smaller perturbations in the black-box model lead to more consistent interpretations across different models.

A.6. Attribution of additive features in LIMEFLDL

To ensure the additive feature attribution holds, we add features one at a time. For image data, we first mask each superpixel
using the mean of the three color channels. Secondly, based on the interpretation results of the original image, we compute
the feature attribution distribution for each superpixel block. We take the absolute values of these attributions and sum
them. A larger value indicates a greater impact on the overall label distribution. Thirdly, we select the top 10 superpixel
blocks and incrementally add the highest-ranked block from the original image, starting with a mean mask for each block.
The masking operation flow for this process is shown in Figure 11. Fourthly, we observe the distance between the local
prediction and the original image’s local prediction, which is represented using fidelity. For the tabular dataset, we compute
the top 10 features of the instances to be interpreted and add the features one at a time. For unselected features, we set
the corresponding column to 0, indicating it was not chosen for the bin. The results in Figure 7, show that, as features are
gradually added, the individual fidelity metrics increase, meaning the predictions get closer to the original instance. This
indicates that LIMEFLDL’s additive feature attribution is correct.

A.7. Dummy features of LIMEFLDL

Due to the harsh conditions of the virtual features, it is difficult to find feature attribution distribution that do not affect the
whole label distribution in any way. However, it is possible to find the feature with the least impact based on the feature
attribution ranking. Therefore, we choose to focus on the feature with the lowest ranks. For the image data, we first identify
the lowest-ranked superpixel block. To demonstrate that the feature is almost false, we apply a complex process: we
mask the superpixel, and add a green border. A specific example is shown in Figure 6. We then evaluate the fidelity and
consistency of both the original and processed images. Consistency results are in Figure 8 and Figure 9, and fidelity result is
in Figure 10.

A.8. Comparison of fidelity and consistency metrics in AA-KNN and MEM

Our goal is to enable our explanation algorithm to interpret complex black-box models. However, if the explanations for
simpler models do not provide sufficient fidelity, it is challenging to trust explanations for more complex black-box models.
Therefore, in addition to comparing the fidelity and consistency rankings of our algorithm with PULIME on RBF-LDL-LRR
and LDL-SCL black-box models, we also conducted experiments on simpler black-box models such as AA-KNN and
Maximum Entropy. These models have relatively simpler processes. AA-KNN integrates a clustering algorithm within the
model, while MEM employs KL divergence as its loss function. Experimental results show that our algorithm performs
better on simpler black-box models than on more complex ones. Furthermore, in most datasets, our method outperforms
PULIME in both fidelity and consistency metrics.
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A.9. The ranking information in the comparison results between LIMEFLDL and PULIME

We give ranking statistics to illustrate the extent to which LIMEFLDL is ahead of PULIME in terms of evaluation metrics,
the results are in Table 4, from the result, we can see that LIMEFLDL leads the rankings for the vast majority of measures.

Table 4. The ranking information in the comparison results between LIMEFLDL and PULIME.
Model Algorithm Chebyshev Clark Canberra KL Cosine Intersection Jaccard

RBF-LDL-LRR
LIME 1.75 1.5 1.625 2 1.625 1.625 1.875

LIMEFLDL 1.25 1.5 1.375 1 1.375 1.375 1.125

LDL-SCL
LIME 1.625 1.5 1.5 1.875 1.5 1.5 1.625

LIMEFLDL 1.375 1.5 1.5 1.125 1.5 1.5 1.375

AA-KNN
LIME 1.625 1.625 1.625 1.5 1.625 1.625 1.75

LIMEFLDL 1.375 1.375 1.375 1.5 1.375 1.375 1.25

MEM
LIME 1.75 1.75 1.75 1.875 1.75 1.75 1.75

LIMEFLDL 1.25 1.25 1.25 1.125 1.125 1.25 1.25

A.10. The computational complexity of the LIMEFLDL algorithm compared to PULIME

We analyze the computational complexity of LIMEFLDL and PULIME. For LIMEFLDL, sampling and forming weight
matrix Π requires O(m). Matrix multiplication contributes O(mfr), black-box model inference accounts for O(mrk).
Element-wise matrix subtraction and F-paradigm operations each add O(mr), with regularization terms contributing
O(fr). The total complexity is O(mfr +mrk +mr +mr + fr +m). PULIME’s per-label workflow involves sampling
(O(m)), vector operations (O(m) for subtraction/squaring and O(mf) for multiplication), black-box inference (O(mrk)),
regularization (O(f)). With parallel computation, its total complexity isO(mrf+mkr2+mr+mr+mr+rf). PULIME’s
ridge regression solver has O(f3 +mf2) complexity, LIMEFLDL uses L-BFGS optimization with O(T (zr +mf)) cost,
where z ≈ 5–20 (stored gradient pairs) and T denotes iterations.

A.11. R²-score aligned with LIME metric and expanded baselines

We conducted supplementary experiments using R²-score aligned with LIME metric and expanded baselines to GLIME and
DLIME, all evaluated under default parameters. The result is in Table 5. It can be seen that LIMEFLDL leads in the original
fidelity metrics for most of the table and image datasets.

Table 5. R²-score aligned with LIME metric and expanded baselines.
Model Index LIME DLIME GLIME LIMEFLDL

LDL-SCL

1 0.16 0.15 0.16 0.67
2 0.15 0.15 0.16 0.67
3 0.48 0.35 0.34 0.58
4 0.39 0.33 0.34 0.40
5 0.34 0.25 0.25 0.30
6 0.37 0.34 0.32 0.38
7 0.94 - 0.95 0.99
8 0.89 - 0.89 0.98

RBF-LDL-LRR

1 0.17 0.17 0.16 0.99
2 0.16 0.15 0.17 0.99
3 0.34 0.33 0.33 0.36
4 0.25 0.31 0.29 0.36
5 0.26 0.47 0.36 1.00
6 0.52 0.49 0.47 0.99
7 0.93 - 0.96 0.99
8 0.67 - 0.94 0.99
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(a) Top20-jaccard metrics for LDL-SCL black-box model-
ing under locally sampled exponential-level growth.

(b) Top20-jaccard metrics for AA-KNN black-box modeling
under locally sampled exponential-level growth.

Figure 4. Visualization the convergence of explanation algorithms.

(a) Top-20 jaccard metrics
on the Yeast alpha tabular
dataset.

(b) Top-20 jaccard metrics on
the Yeast cold tabular dataset.

(c) Top-20 jaccard metrics on
the Emotion6 image dataset.

(d) Top-20 jaccard metrics on
the Emotion6 tabular dataset.

(e) Top-20 jaccard metrics
on the Natural Scene tabular
dataset.

(f) Top-20 jaccard metrics
on the SBU 3DFE tabular
dataset.

(g) Top-20 jaccard metrics on
the JAFFE image dataset.

(h) Top-20 jaccard metrics on
the JAFFE tabular dataset.

Figure 5. Stability evaluation with AA-KNN black-box models.
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(a) Original image: 3. (b) Original image: 29. (c) Original image: 90. (d) Original image: 201.

(e) Processed image: 3. (f) Processed image: 29. (g) Processed image: 90. (h) Processed image: 201.

Figure 6. Dummy feature processing in image data.

(a) Changes in fidelity met-
rics under the JAFFE image
dataset.

(b) Changes in fidelity met-
rics under the Yeast cold tab-
ular dataset.

(c) Changes in fidelity met-
rics under the Emotion6 im-
age dataset.

(d) Changes in fidelity met-
rics under the JAFFE tabular
dataset.

Figure 7. Additive feature attribution using AA-KNN black-box models.

(a) Interpretation consistency
scatter distribution under the
Yeast cold tabular data test
set.

(b) Interpretation consistency
scatter distribution under the
Yeast alpha tabular data test
set.

(c) Interpretation consistency
scatter distribution under the
JAFFE tabular data test set.

(d) Interpretation consistency
scatter distribution under the
Emotion6 tabular data test set.

Figure 8. Dummy feature attribution of the LDL-SCL black-box model.
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(a) Interpretation consistency
scatter distribution under the
Yeast cold tabular data test
set.

(b) Interpretation consistency
scatter distribution under the
Yeast alpha tabular data test
set.

(c) Interpretation consistency
scatter distribution under the
JAFFE image data test set.

(d) Interpretation consistency
scatter distribution under the
Emotion6 tabular data test set.

Figure 9. Dummy feature attribution of the AA-KNN black-box model.

(a) Modifying the lowest-ranked feature using the LDL-SCL
black-box model.

(b) Modifying the lowest-ranked feature using the AA-KNN
black-box model.

Figure 10. Dummy feature attribution under fidelity metrics.

B. Proofs
B.1. The range of

∥∥B−1
∥∥
F

, ∥C∥F , and the specific value of ∥E∥F
First, the specific form of the B matrix is presented,

B =


1
m

∑
i π (zi) (zi1)

2 1
m

∑
i π (zi) zi1zi2 · · · 1

m

∑
i π (zi) zi,1zif+1

1
m

∑
i π (zi) zi1zi2

1
m

∑
i π (zi) (zi2)

2 · · · 1
m

∑
i π (zi) zi2zif+1

...
...

. . .
...

1
m

∑
i π (zi) zi1zif+1

1
m

∑
i π (zi) zi2zif+1 · · · 1

m

∑
i π (zi) (zif+1)

2

 . (22)
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Table 6. The effectiveness of two interpretation algorithms is evaluated on different datasets, using fidelity and consistency metrics under
black-box modeling with AA-KNN. Results are marked with • for better outcomes and ◦ for anomalous data.

Index Algorithms Chebyshev ↓ Clark ↓ Canberra ↓ KL ↓ Cosine ↑ Intersection ↑ Jaccard ↑

1 PULIME • .0025±.0000 •.0400±.0003 •.1319±.0008 •.0001±.0001 •.9998±.0000 • .9927±.0000 .4206±.0462

1 LIMEFLDL .0027±.0000 .0447±.0002 .1485±.0008 .0002±.0000 .9998±.0000 .9918±.0000 •.4743±.0816

2 PULIME •.0105±.0001 • .0278±.0003 • .0477±.0006 •.0003±.0001 • .9996±.0000 •.9881±.0002 .4908±.0675

2 LIMEFLDL .0107±.0001 .0291±.0002 .0504±.0004 .0004±.0000 .9995±.0000 .9875±.0001 •.5183±.1561

3 PULIME .0350±.0017 .1466±.0056 .2841±.0095 ◦ -.0306±.0046 .9940±.0005 .9533±.0016 .4261±.1107

3 LIMEFLDL • .0242±.0011 • .0996±.0052 •.1977±.0104 • .0038±.0004 •.9964±.0003 •.9675±.0017 •.4322±.0821

4 PULIME .0576±.0007 .2080±.0011 .3904±.0026 ◦ -.0662±.0014 .9886±.0001 .9327±.0005 •.4167±.0555

4 LIMEFLDL • .0322±.0005 • .1256±.0019 • .2493±.0037 • .0062±.0001 •.9939±.0001 • .9581±.0006 .3845±.0602

5 PULIME .0794±.0012 .6438±.0080 1.225±.0153 ◦ -.0054±.0040 .9723±.0009 .8835±.0017 .3742±.0606

5 LIMEFLDL •.0554±.0011 •.5206±.0087 •.9571±.0160 • .0389±.0037 •.9839±.0004 • .9173±.0013 •.4229±.0800

6 PULIME .1505±.0020 1.686±.0033 3.777±.0121 •.0088±.0126 .9320±.0012 .7791±.0020 .0650±.0818

6 LIMEFLDL • .1094±.0015 • 1.610±.0061 •3.573±.0142 .1494±.0053 •.9523±.0011 •.8408±.0018 •.1565±.0203

7 PULIME .0060±.0007 .0249±.0027 .0467±.0043 .0006±.0003 .9996±.0001 .9924±.0007 •.3553±.1402

7 LIMEFLDL • .0049±.0002 • .0189±.0011 •.0366±.0023 • .0003±.0000 • .9997±.0000 • .9937±.0003 .3516±.0750

8 PULIME •.0201±.0003 •.1626±.0023 •.2816±.0025 • .0065±.0009 •.9966±.0001 •.9735±.0003 .1833±.1249

8 LIMEFLDL .0215±.0003 .2030±.0034 .3423±.0053 .0083±.0019 .9958±.0001 .9707±.0004 •.2844±.0929

The expected value of each element in the matrix B is:

E
[
π (zi) (zij)

2
]
=

f∑
k=0

e
(k−f)

σ2
k

f

f !

2f (f − k)!k!

=

f∑
k=0

e
(k−f)

σ2
(f − 1)!

2f (f − k)!(k − 1)!

=

f∑
k=0

e
(k−1)

σ2 e
(1−f)

σ2
(f − 1)!

2f (f − k)!(k − 1)!

= e(1−f)/σ2

(
1 + e

1
σ2

)f−1

2f

=

(
1 + e−

1
σ2

)f−1

2f
,

(23)

similarly,

E[π(zi)(zijzit)] =
f∑

k=0

e
(k−f)

σ2
k(k − 1)

f(f − 1)

f !

2f (f − k)!k!

=

f∑
k=0

e
(k−f)

σ2
(f − 2)!

2f (f − k)!(k − 2)!

=

f∑
k=0

e
(k−2)

σ2 e
(2−f)

σ2
(f − 2)!

2f (f − k)!(k − 2)!

= e(2−f)/σ2

(
1 + e

1
σ2

)f−2

2f

=

(
1 + e−

1
σ2

)f−2

2f
.

(24)
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Table 7. The effectiveness of two interpretation algorithms is evaluated on different datasets, using fidelity and consistency metrics under
black-box modeling with MEM. Results are marked with • for better outcomes and ◦ for anomalous data.

Index Algorithms Chebyshev ↓ Clark ↓ Canberra ↓ KL ↓ Cosine ↑ Intersection ↑ Jaccard ↑

1 PULIME •.0008±.0000 •.0127±.0001 •.0417±.0004 ◦ -.0001±.0000 • .9999±.0000 •.9976±.0000 .6612±.1533

1 LIMEFLDL .0009±.0000 .0157±.0002 .0523±.0006 •.0000±.0000 .9999±.0000 .9971±.0000 • .7029±.1506

2 PULIME •.0034±.0001 • .0087±.0001 • .0149±.0003 ◦ -.0001±.0001 •.9999±.0000 • .9962±.0001 .7324±.1984

2 LIMEFLDL .0036±.0001 .0097±.0001 .0168±.0002 • .0001±.0000 .9999±.0000 .9958±.0001 •.7883±.1601

3 PULIME .0721±.0033 .3030±.0111 .5723±.0168 .0612±.0149 .9810±.0015 .9084±.0031 .5218±.0732

3 LIMEFLDL • .0470±.0032 •.2198±.0130 •.4296±.0241 • .0205±.0146 •.9874±.0016 •.9349±.0037 • .6763±.0884

4 PULIME .1158±.0020 .3675±.0034 .6878±.0059 ◦ -.1023±.0084 .9651±.0005 .8712±.0013 .5213±.1396

4 LIMEFLDL • .0544±.0010 •.2096±.0035 •.4074±.0072 • .0188±.0022 •.9828±.0006 •.9323±.0013 •.6152±.1426

5 PULIME .1529±.0026 .8101±.0103 1.703±.0206 ◦ -.0784±.0160 .9344±.0017 .7758±.0026 .5412±.0922

5 LIMEFLDL • .1051±.0017 • .7260±.0057 •1.468±.0121 • .3255±.0289 •.9420±.0018 •.8442±.0019 •.6344±.1243

6 PULIME .4383±.0033 2.113±.0034 5.783±.0139 ◦ -.6579±.0160 .7737±.0023 ◦-.1340±.0083 •.0699±.0823

6 LIMEFLDL • .2022±.0027 • 1.868±.0134 •4.692±.0451 • 1.855±.0742 •.8339±.0043 •.6454±.0042 .0200±.0063

7 PULIME .0086±.0004 .0358±.0012 .0715±.0025 .0005±.0000 .9995±.0000 .9883±.0004 .8755±.0639

7 LIMEFLDL • .0050±.0001 • .0192±.0003 • .0384±.0007 • .0002±.0002 •.9999±.0000 •.9936±.0001 •.9000±.1349

8 PULIME .0079±.0001 .0485±.0007 .1008±.0013 • .0006±.0000 .9995±.0000 .9882±.0001 •.8580±.0580

8 LIMEFLDL •.0074±.0001 •.0400±.0004 • .0828±.0009 .0007±.0001 • .9997±.0000 •.9900±.0001 .7670±.1061

Let,

µ1 =

(
1 + e−

1
σ2

)f−1

2f
, µ2 =

(
1 + e−

1
σ2

)f−2

2f
, (25)

ignoring the added bias term, the expected value of the B matrix can be expressed as:

B = (µ1 − µ2) If×1 + µ2 (1f×1 × 11×f ) . (26)

Then, the inverse of matrix B can be expressed as:

B−1 = ((µ1 − µ2) If×1 + µ2 (1f×1 × 11×f ))
−1
, (27)

at the same time, we can obtain:

1
2f
≤

(
1+e

− 1
σ2

)f−1

2f
≤ 2f−1

2f
= 1

2 ,

1
2f
≤

(
1+e

− 1
σ2

)f−2

2f
≤ 2f−2

2f
= 1

4 .

(28)

By applying the Sherman-Morrison formula, we obtain:

B−1 = ((µ1 − µ2) If×f + µ2(1f×1 × 11×f )
−1

=
1

µ1 − µ2

(
If×f +

µ2

µ1 − µ2
1f×11
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1×f

)−1

=
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µ1 − µ2

(
If×f −

µ2

µ1−µ2
1f×11
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1×f

1 + µ2

µ1−µ2
f

)
.

(29)

Let,

ν1 =
µ1 + (f − 2)µ2

(µ1 − µ2) (µ1 + (f − 1)µ2)
, ν2 = − µ2

(µ1 − µ2) (µ1 + (f − 1)µ2)
, (30)

then, B−1 = (ν1 − ν2) If×f + ν2 (1f×1 × 11×f ) in that case, we get:∥∥B−1
∥∥2
F
= fν21 +

(
f2 − f

)
ν22 . (31)
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We can get the ranges of ν21 and ν22 ,

ν21 = (
µ1 + (f − 2)µ2

(µ1 − µ2) (µ1 + (f − 1)µ2)
)2 ≤ 1
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Thus, the upper bound of
∥∥B−1

∥∥
F

is:∥∥B−1
∥∥
F
≤
√
22ffe2/σ2 + (f2 − f) f−222fe2/σ2 ≤ (f + 1)

1
2 2fe1/σ

2

. (33)

The second step presents the specific form of the C matrix,

C =
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 , (34)

each element of the C matrix is less than or equal toρf
m , then we have ∥C∥F ∈

[
0, f2ρm−1

]
.

Eventually, for the matrix E, which is a r × r matrix where each element is 1
m , we have ∥E∥F = r

m .

B.2. Iterative optimal solution forA′⊤

By the banach fixed point theorem, there exists self-mapping of A′⊤ denoted as T (A′⊤
1 ) or T (A′⊤

2 ), which satisfies the
conditions of the theorem.∥∥T (A′⊤

1

)
− T

(
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]
, ∥E∥F = r

m ,

π(·) ∈ [0, 1],Z ∈ {0, 1}m×f ,∥∥B−1
∥∥
F
≤ (f + 1)

1
2 2fe1/σ

2

.

(35)

To ensure that
∥∥B−1

∥∥
F
∥C∥F ∥E∥F < 1, the condition on the condition on ρ is: ρ < 2−f (f + 1)−

1
2m2f−2r−1e−

1
σ2 .

This inequality guarantees that the product of the Frobenius norms
∥∥B−1

∥∥
F

, ∥C∥F , and∥E∥F is less than 1.

So, if Assumption 3.1 holds and Z follows the {0, 1} distribution, ignoring the regularization constraints, the condition for
convergence is given by: ρ < 2−f (f + 1)−

1
2m2f−2r−1e−

1
σ2 , there exists an iterative fixed point A′∗ that minimizes the

loss.

Let Z ′⊤Π
(
Z ′A′⊤ − F (h(Z))

)
+Z ′⊤u1⊤

r×1 = 0, then,

A′⊤ =
(
Z ′⊤ΠZ ′)−1 (

Z ′⊤ΠF (h(Z))−Z ′⊤u1×r

)
,

s.t. Z ′A′⊤ × 1r×1 = 1m×1.
(36)

B.3. Proof of convergence

Matrix Hoeffding’s Inequality: Let Mi be an independent, random symmetric matrix of dimension Φ. Let Vi represent a
sequence of fixed symmetric matrices, assume that each random matrix satisfies the following conditions:

E [Mi] = 0 and M2
i ≼ V 2

i almost surely. (37)
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For any t ≥ 0,

P

(
λmax

(
n∑

i=1

Mi

)
≥ t

)
≤ Φ · exp

(
−t2

8σ2

)
, (38)

where σ2 :=
∥∥∑m

i=1 V
2
i

∥∥
op

. Let v ∈ RD such that ||v|| = 1, we have

∣∣∣(Miv)j

∣∣∣ = Φ∑
k=1

(Mi)j,k vk ≤
∥∥∥(Mi)j

∥∥∥ · ∥v∥ ≤ √Φ. (39)

This leads to ||Miv|| ≤ Φ, and for any i, we have||Mi||op ≤ Φ. Therefore, if we choose Vi = ΦIΦ, we obtain

P

(
λmax

(
m∑
i=1

Mi

)
≥ t

)
≤ Φ · exp

(
−t2

8mΦ2

)
, (40)

by exchanging Vi and Mi, we have Mi ≼ Vi , which implies M2
i ≼ V 2

i . Assuming that each element of Mi satisfies
(Mi)j,k ∈ [−1, 1], we can then conclude that for ∀t ≥ 0,

P

∥∥∥∥∥ 1

m

m∑
i=1

Mi

∥∥∥∥∥
op

≥ t

 ≤ 2Φ · exp
(
mt2

8Φ2

)
. (41)

Then, for each element of ΠZZ⊤, it belongs to [0, 1], and similarly, for each element of the weight matrix π ∈ [0, 1], the
same holds for each element of ∆. We define,

Mi := ΠZZ⊤ −∆, (42)

in this case, the assumption is satisfied, and since Φ = ϕ+ 1, we have 1
m

∑m
i=1 Mi = ∆̃−∆. Therefore, ∀t ≥ 0,

P
(
∥∆̃−∆∥op ≥ t

)
≤ 4ϕ · exp

(
−mt2

32ϕ2

)
. (43)

Since each element of ∆m − ∆̃ is within the range
[
− 1

4 , 1
]
, for ∀t ≥ 0, we obtain

P
(∥∥∥∆m − ∆̃

∥∥∥
F
≥ t
)
≤ 2f exp

(
−mt

2

8f2

)
, (44)

similarly, since Γm − Γ̃ is also in matrix form, with each element in the range[−u, 1− u] ⊆ [−1, 1], for ∀t ≥ 0, we have

P
(∥∥∥Γm − Γ̃

∥∥∥
F
≥ t
)
≤ 2f exp

(
−mt

2

8f2

)
, (45)

let t1 = 2−(1+f)(f + 1)−
1
2 f−

1
2 e−

1
σ2 ϵ, m1 = 25+2f (f + 1)f3e

2
σ2 ϵ−2 ln

(
4f
δ

)
, we obtain

P
(∥∥∥∆̃−1

∥∥∥
F

∥∥∥Γm − Γ̃
∥∥∥
F
≥ ϵ

2

)
≤ δ

2
, (46)

similarly, t2 = 2−1f−
1
2 r−

1
2 ϵ, m2 = 25f

5
2 r

1
2 ϵ−2 ln

(
4f
δ

)
, we obtain

P
(∥∥∥∆−1

m − ∆̃−1
∥∥∥
F
∥Γm∥F ≥

ϵ

2

)
≤ δ

2
, (47)

therefore, when m = max(m1,m2), we have

P
(∥∥∥∆−1

m Γm − ∆̃Γ̃
∥∥∥
F
≤ ϵ
)
≥ 1− δ. (48)
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It is worth noting that the theorem provides a default statement for the theoretical realization of LIMEFLDL. The key
distinction is that regularization terms are not considered. Additionally, Theorem 3.3 holds under fairly mild assumptions
about the model F to be explained. Essentially, we only require that F is bounded on the bins. If these bins are computed
from a finite training set X , then Z is compact. We essentially require that F is well-defined on Z. This condition is almost
always satisfied for most machine learning models.

Limitations. The strongest limitation of Theorem 3.3 is the poor concentration for small bandwidths. In fact, for small σ
(i.e., σ < 1), Theorem 3.3 requires the use of n-degree polynomials in F to achieve convergence. This often means that,
once the dimensionality exceeds 10, applying Theorem 3.3 in practice becomes very challenging for σ < 1. In such cases,
the effects of regularization start to play a key role. However, as long as f > 10 and the default bandwidth, the performance
of Theorem 3.3 in LIMEFLDL remains highly satisfactory. On the other hand, as σ → 0 it can be directly shown that
A→ 0 for any 1 ≤ j ≤ f . In the extremes, the behavior of the interpretable coefficients is not straightforward. In particular,
the sign of the interpretable coefficients can change as the bandwidth varies. This is a concerning phenomenon: for certain
values of the bandwidth σ, the explanations provided by LIMEFLDL can become zero.

B.4. Proof of stability

For any two similar black-box models P and Q, define T (h (Z)) = |P (h (Z)) − Q (h (Z)) |, and T (h(Z)) of each
element t (h(Z)) < ϵ. To compare two similar black-box models, we first obtain their explanatory feature attribution
matrices, A′

P , andA′⊤
Q . Then, we calculate the distance between these matrices,

∥∥A′
P −A′⊤

Q

∥∥
F
=
∥∥∥(Z ′⊤ΠZ ′)−1 (

Z ′⊤ΠT (h(Z))
)∥∥∥

F

≤ ∥∆−1∥F ∥Z ′⊤ΠT (h((Z))∥F ,
(49)

where
∥∥∆−1

∥∥
F
≤ (f + 1)

1
2 2fe1/σ

2

, and that each element ofZ ′⊤ΠT (h((Z)) is mπzϵ, where the expected value of πz is

less than 1
2 , we can conclude that when λ ∈

[
0,m2f−1(f + 1)

1
2 f

1
2 r

1
2 e

1
σ2 ϵ
]
, the following holds:

∥∥A′
P −A′⊤

Q

∥∥
F
≤ λ.

B.5. Proof of property

From a more practical perspective, considering the properties of additive feature attribution, let us assume that our knowledge
of F is imperfect. More precisely, we can decompose the function into two parts for explanation, the part originating from
the black-box model F itself, and the part arising from perturbations.

Let A′⊤ represent the obtained interpretation, ξki be the feature originally located at the k-th position. By replacing it with
ξkj and ensuring that the output of the interpreted model remains consistent, we obtain the following:

(ξ1, ξ2 . . . ξki . . . ξf )A
′⊤ = (ξ1, ξ2 . . . ξkj . . . ξf )A

′⊤, (50)

based on this, we can obtain the following:

ξkiakt = ξkjakt,∀t ∈ {1, 2, . . . , r}, (51)

where akt is the explained value of the t-th label for the k-th feature in the explained feature attribution matrix. As seen
above, the k-th row of A′⊤ is all zeros, This means that the feature attribution for all labels of the k-th feature are 0. This
indicates the process of feature selection. For unselected features, which were not involved in training the local linear
model, their feature attributions are all 0. We randomly select two features, ξi and ξj , from the interpretable representation ξ,
ensuring that ξi ̸= ξj . We then exchange these two features to create a new interpretable representation, ξ′. Meanwhile,
we ensure that the outputs of the interpretation models remain consistent across the different interpretable representations.
This results in:

(ξ1, ξ2, . . . ξi, . . . ξj , . . . ξf )A
′⊤ = (ξ1, ξ2, . . . ξj , . . . ξi, . . . ξf )A

′⊤. (52)

Based on this, we can obtain
ξiaik + ξjajk = ξiajk + ξjaik,∀k ∈ {1, 2, . . . , r}, (53)

based on this random exchange, we can deduce that the i-th and j-th rows of the feature attribution matrix A′⊤ are identical.
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B.6. Probabilistic proof of the possibility of negative KL scatter

The KL divergence between two discrete probability distributions Ψ and Θ, defined over the same probability space Ω, is
given by:

DKL(Ψ∥Θ) =
∑
x∈Ω

Ψ(x) log

(
Ψ(x)

Θ(x)

)
, (54)

for continuous probability distributions with density functions ψ(x) and θ(x), the KL divergence is defined as:

DKL(Ψ∥Θ) =

∫
Ω

ψ(x) log

(
ψ(x)

θ(x)

)
dx, (55)

our goal is to show that DKL(Ψ∥Θ) ≥ 0 is constant when the sum of the probabilities of the predicted distribution is unity.
However, DKL(Ψ∥Θ) can be less than 0 if the sum of the probabilities of the predicted distribution exceeds 1.

Consider the function β(t) = − log t, which is convex for t > 0, this follows from its second derivative:

β′′(t) =
1

t2
> 0, (56)

for a random variable Y and a convex function β, Jensen’s inequality states that:

E[β(Y )] ≥ β(E[Y ]), (57)

where E denote the expected value. We define Y (x) = Θ(x)
Ψ(x) . When Ψ(x) = 0, Y (x) is undefined. However, since the

points where Ψ(x) = 0 do not contribute to the expected value, we can disregard them. Now, we proceed by computing
EΨ[β(Y )],

EΨ[β(Y )] =
∑
x∈Ω

Ψ(x)β

(
Θ(x)

Ψ(x)

)
=
∑
x∈Ω

Ψ(x)

[
− log

(
Θ(x)

Ψ(x)

)]
=
∑
x∈Ω

Ψ(x) log

(
Ψ(x)

Θ(x)

)
= DKL(Ψ∥Θ).

(58)

To compute β (EΨ[Y ]),

EΨ[Y ] =
∑
x∈Ω

Ψ(x)

(
Θ(x)

Ψ(x)

)
=
∑
x∈Ω

Θ(x), (59)

therefore,
β (EΨ[Y ]) = β(

∑
x∈Ω

Θ(x)) = − log(
∑
x∈Ω

Θ(x)). (60)

According to Jensen’s inequality:

DKL(Ψ∥Θ) = EΨ[β(Y )] ≥ β (EΨ[Y ]) = − log(
∑
x∈Ω

Θ(x)). (61)

When
∑

x∈Ω Θ(x) = 1, we have,
− log(

∑
x∈Ω

Θ(x)) = − log(1) = 0. (62)

However, when
∑

x∈Ω Θ(x) > 1, − log(
∑

x∈Ω Θ(x)) < 0. Consequently, the KL divergence DKL(Ψ∥Θ) is greater than
or equal to a number less than 0. Therefore, there is a probability where the KL divergence can be negative. By dividing
according to the interval, we find that this probability is given by,

P(Θ(x)) =

∑
x Θ(x)− 1∑

x Θ(x)
. (63)
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(a) Original image from the Emotion6 dataset. (b) Each superpixel block is masked.

(c) Add the 1st-ranked superpixel block. (d) Add the 2nd-ranked superpixel block. (e) Add the 3rd-ranked superpixel block.

(f) Add the 4th-ranked superpixel block. (g) Add the 5th-ranked superpixel block. (h) Add the 6th-ranked superpixel block.

(i) Add the 7th-ranked superpixel block. (j) Add the 8th-ranked superpixel block. (k) Add the 9th-ranked superpixel block.

Figure 11. Processing of additive attribution of image data.
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