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ABSTRACT

The visual representation of a pre-trained model prioritizes the classifiability on
downstream tasks. However, widespread applications for pre-trained visual mod-
els have proposed new requirements for representation interpretability. It remains
unclear whether the pre-trained representations can achieve high interpretability
and classifiability simultaneously. To answer this question, we quantify the rep-
resentation interpretability by leveraging its correlation with the ratio of inter-
pretable semantics within the representations. Given the pre-trained representa-
tions, only the interpretable semantics can be captured by interpretations, whereas
the uninterpretable part leads to information loss. Based on this fact, we pro-
pose the Inherent Interpretability Score (IIS) that evaluates the information loss,
measures the ratio of interpretable semantics, and quantifies the representation in-
terpretability. In the evaluation of the representation interpretability with different
classifiability, we surprisingly discover that the interpretability and classifiability
are positively correlated, i.e., representations with higher classifiability provide
more interpretable semantics that can be captured in the interpretations. This ob-
servation further supports two benefits to the pre-trained representations. First,
the classifiability of representations can be further improved by fine-tuning with
interpretability maximization. Second, with the classifiability improvement for
the representations, we obtain predictions based on their interpretations with less
accuracy degradation. The discovered positive correlation and corresponding ap-
plications show that practitioners can unify the improvements in interpretability
and classifiability for pre-trained vision models. Codes are included in the supple-
ment and will be released on GitHub.

1 INTRODUCTION

With the rapid development of vision pre-training models, their representations have been employed
in diverse scenarios (Li et al., 2022a; Kirillov et al., 2023; Cui et al., 2024), achieving remarkable
performance on downstream tasks (Dosovitskiy et al., 2021; Liu et al., 2021; Tong et al., 2022; Wang
et al., 2023). However, except for better classifiability, the extensive applications that require reliable
predictions underscore the interpretability of vision representations. To this end, interpretability-
oriented methods (Koh et al., 2020; Wang et al., 2021; Garau et al., 2022; Chen et al., 2024) impose
pre-defined semantics on each dimension of the representation space. These semantics serve as the
interpretability constraints for further predictions, different from the training strategies that solely
prioritize classifiability improvement (Dosovitskiy et al., 2021; Tong et al., 2022). However, the pre-
defined semantics gain representations with interpretability but degraded classifiability, indicating
an inherent conflict between interpretability and classifiability (Rudin et al., 2022; Zarlenga et al.,
2022; Dombrowski et al., 2023).

Different from the above interpretability-oriented representations, the other type of methods (Kim
et al., 2018; Ghorbani et al., 2019; Oikarinen et al., 2023) obtain interpretations by extracting in-
terpretable semantics within the classifiability-oriented pre-trained representations. However, in
contrast to the pre-defined semantics for the interpretability-oriented representations, the semantics
of the classifiability-oriented representations are not guaranteed to be interpretable and fully cap-
tured during interpretation. As a result, semantic information loss occurs when only a subset of the
original semantics can be interpreted (Yüksekgönül et al., 2023). The interpretability difference be-
tween the classifiability-oriented representations facilitates us to further explore the interpretability-
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classifiability conflict: first, whether the reduced interpretability of the classifiability-oriented repre-
sentations is due to their high classifiability; second, whether the improvements in the interpretabil-
ity always lead to reduced classifiability. Our target is to answer that can the classifiability-oriented
representations achieve high interpretability and classifiability simultaneously?
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Figure 1: Classifiability-oriented representations have unin-
terpretable semantics, causing an interpretability reduction.
We propose the IIS to quantify representation interpretability
with the maintenance of task-relevant semantics in interpreta-
tions (left). By comparing the IIS and prediction accuracy of
representations from different models, we observe a positive
correlation between interpretability and classifiability (right).

In this paper, we present stud-
ies on the aforementioned ques-
tion and discover that interpretabil-
ity and classifiability are not con-
flicting but positively correlated
for classifiability-oriented represen-
tations. To quantify the repre-
sentation interpretability, we intro-
duce the Inherent Interpretability
Score (IIS). IIS is defined as the
ability of representations to preserve
task-relevant semantics (e.g., con-
cepts and patterns useful for clas-
sification) in interpretations (Fig-
ure 1). More interpretable repre-
sentations should have less semantic
information loss in interpretations.
For the representation classifiability,
we employ prediction accuracy as
the evaluation metric. With accuracy
and our proposed IIS, we investigate
the interpretability-classifiability re-
lationship of pre-trained representations. Extensive experiments on different datasets (Krizhevsky
et al., 2009; Wah et al., 2011; Russakovsky et al., 2015) and pre-trained representations (He et al.,
2016; Dosovitskiy et al., 2021; Liu et al., 2021; 2022) reveal the positive correlation between in-
terpretability and classifiability, rather than a contradictive one as discussed in (Mori & Uchihira,
2019; Mahinpei et al., 2021; Zarlenga et al., 2022; Dombrowski et al., 2023).

The outcome of our study benefits two aspects. First, improving interpretability during representa-
tion fine-tuning can further promote the classifiability on downstream tasks. Second, representations
with higher classifiability possess enhanced interpretability, which also indicates more interpretable
task-relevant semantics. Therefore, predictions based on the interpretations become more compa-
rable to the original classifiability-oriented representations and exceed that of the interpretability-
oriented representations (Sarkar et al., 2022; Yang et al., 2023). The mutual promoting relation
between interpretability and classifiability provides new pathways for interpretable representation
learning. The contributions of our work are as follows:

• We propose a quantitive measure for the representation interpretability, called Inherent
Interpretability Score.

• We uncover the positive correlation between the interpretability and classifiability of the
classifiability-oriented pre-trained representations.

• We discover the mutual promoting relation between the interpretability and classifiability
of the classifiability-oriented representations, indicating that improving the interpretability
can further improve the classifiability, and representations with higher classifiability are
more interpretable to preserve more task-relevant semantics in interpretations.

2 REPRESENTATION INTERPRETABILITY MEASUREMENT

In this section, we propose IIS to quantify the representation interpretability, which measures the
semantic information loss during interpretation by the accuracy retention rate. Given a dataset D,
a pre-trained vision model f : RI → RD that maps the inputs from RI to representation space
RD, we first interpret the representation space RD by correlating it with M human-understandable
concepts which span a concept space in RM (Section 2.1). Then we project the representation to
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Figure 2: Definition and computation of the IIS. Given a pre-trained model and a downstream task,
we first collect task-relevant concept libraries (left) and interpret model representations by projecting
them into the concept space. By interpreting representations with sparse concepts, we can extract
their interpretable semantics (middle). The IIS is defined as the representation’s ability to retain
accuracy when predicting solely based on interpretations (right).

RM as interpretations, which can also serve for making predictions on downstream tasks (Section
2.2). IIS with the accuracy retention rate between the representation and interpretation predictions
measures the semantic information loss from the representation space RD to the constructed space
RM , indicating the representation interpretability (Section 2.3).

2.1 BRIDGING REPRESENTATION SEMANTICS WITH CONCEPTS

The representation space can be interpreted by correlating to human-understandable concepts. To
achieve this, we collect a task-relevant concept library with M concepts inspired by previous meth-
ods (Kim et al., 2018; Ghorbani et al., 2019; Oikarinen et al., 2023). These concepts span a concept
space RM , which can be employed for interpretations by correlating with the vectors in RD.

Concept Library. As the fundamental issue of interpretations, how to define the concept library has
an important impact on our investigations regarding the interpretability-classifiability relationship.
To ensure our investigations are not confined to a specific concept library, we perform investigations
based on four types of concept libraries (Prototype, Cluster, End2End, Text) respectively. These
libraries can be categorized into Visual and Textual based on the concept modalities. Note that
different concept libraries are utilized separately during investigations without being concatenated.

Visual. A visual concept is represented by several image patches (Kim et al., 2018) or seg-
ments (Ghorbani et al., 2019). Here we take the patch as an example. Given a set of patches, a
pre-trained vision model is utilized to extract visual concepts. This model takes each patch as input
and generates a corresponding feature. Then the patches are aggregated into visual concepts based
on their features. Specifically, we build three types of concept libraries according to their aggrega-
tion strategies. (i) Prototype: each patch serves as a concept without being aggregated. (ii) Cluster:
patches are aggregated into concepts with pre-defined clustering methods applied to their features.
(iii) End2End: patches are aggregated in a learnable manner during end-to-end training.

Textual. A textual concept is represented by a single word or phrase. The development of large
language models (Brown et al., 2020) enables the automated collection of a Text concept library
based on target classes. This capability stems from the domain knowledge encapsulated within these
models regarding the salient concepts for detecting each class. In light of the success of previous
work (Yang et al., 2023; Oikarinen et al., 2023), we utilize GPT-3 (Brown et al., 2020) to extract
textual concepts for each class with pre-defined prompts.

The detailed introduction of these concept libraries is presented in Appendix A.1.1.

Projecting Relations between Representation Space and Concept Space. Given a pre-trained
vision model f : RI → RD, an image classification dataset D and a concept library C =
{c1, c2, ..., cM} constructed based on D, we can denote each concept ci with a vector ci ∈ RD.
If ci is a visual concept comprised of n image patches/segments {x1, ..., xn}, its concept vector
ci ∈ RD is obtained by averaging the representations of these patches/segments,

ci =
1

n

n∑
j=1

f(xj). (1)
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If ci is a textual concept, the corresponding vector ci is obtained in a learnable manner. A vision-
language model (Radford et al., 2021) fvl : RI × C → R is utilized to generate the soft label ycix =
fvl(x, ci) ∈ R for concept ci on image x ∈ D. The vector ci is obtained through the minimization
of the discrepancy between ycix and the inner product of ci and the image representation f(x)

ci = argmin
c∗
i

Ex

[
(ycix − f(x)⊤c∗i )

2
]
. (2)

The concatenated concept vectors C = [c1, c2, ..., cM ] ∈ RD×M can project representations from
RD to RM , empowering the interpretation of the representations in RD with M concepts.

2.2 INTERPRETING REPRESENTATIONS WITH SPARSE CONCEPTS

With the concatenated concept vectors C, the pre-trained representation x = f(x) ∈ RD of image
x can be projected into the constructed concept space RM ,

xC = gC(x) = C⊤x, (3)

the i-th dimension of the projection result xC ∈ RM can be regarded as the contribution quantifica-
tion of the concept ci to the original representation x. However, these contribution values can not be
employed as human-understandable interpretations due to the human cognitive limitations in pro-
cessing a large amount of concepts (Ramaswamy et al., 2023). A concept library typically involves
a large number of concepts to encompass task-related semantics comprehensively (Oikarinen et al.,
2023; Yang et al., 2023). Therefore, incorporating the contribution of each dimension in RM for
interpretation would entail an overwhelming inclusion of concepts, which in turn becomes incom-
prehensible for humans. To address this problem, we utilize a sparsification mechanism to control
the number of concepts that contribute to the interpretations.

Given a sparsity ratio s ∈ [0, 1], the sparsification objective is to zero out s× 100% elements in the
projection result xC ∈ RM . Based on Equation 3, the larger absolute values in xC indicate greater
contribution of the concepts and their stronger correlations with image semantics. Therefore, we
zero out elements and sparsify the concepts based on the element values in xC . Let xC

s̃ denote
the element with ⌈s × M⌉-th smallest absolute value of xC . For the i-th element xC

i in xC , the
sparsification can be formulated as,

xC,s
i = gs(x

C)i = xC
i max

(
|xC

i | − |xC
s̃ |, 0

)
, (4)

where xC,s ∈ RM denotes the interpretation of representation x. This sparsification function re-
moves concepts in ascending order based on their similarity to the image representations and ensures
that only ⌈(1− s)×M⌉ concepts serve the interpretation.

2.3 INHERENT INTERPRETABILITY SCORE

The semantics of the pre-trained representations are decoded with various concepts during inter-
pretation, where more interpretable representations empower less semantic information loss (Sarkar
et al., 2022; Yüksekgönül et al., 2023). Only the interpretable semantics are captured by the in-
terpretations. As a result, interpretations with certain information loss become less discriminative
and classifiable on downstream tasks compared to the original representations. In light of this, we
formulate the evaluation of the representation interpretability as the accuracy comparison between
predictions based on the original representations and their corresponding interpretations.

To evaluate the accuracy of predictions based on the interpretations, we further train a linear classifier
gcls that takes interpretations as inputs for prediction,

gcls(x
C,s) = W⊤xC,s + b, (5)

where W = [w1,w2, ...,wN ] ∈ RM×N and b ∈ RN are trainable parameters.

In comparison between the prediction accuracy of the original representations and their correspond-
ing interpretations, we propose Accuracy Retention Rate (ARR), i.e., the ratio of prediction accuracy
based on interpretations to that on representations,

ARR(f, gcls ◦ gs ◦ gC , h,D) =
Acc(f, gcls ◦ gs ◦ gC ,D)

Acc(f, h,D)
, (6)
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where h denotes a linear classification head. Acc(f, h,D) means the accuracy on dataset D, pre-
dicting in successive with a pre-trained backbone f : RI → RD that outputs representations and a
linear classification head h : RD → RN .

Note that ARR is still not sufficient for the quantification of the representation interpretability. Dur-
ing the interpretation, we control the sparsity ratio s through the proposed sparsity mechanism to
ensure the amount of concepts human-comprehensible. However, determining the value of the spar-
sity ratio s poses a challenge, where the optimal value depends on both the downstream task and
subjective human judgment. To minimize these dependencies and ensure the broad applicability of
the evaluation, we consider the values of s ∈ [0, 1] and measure the total ARR across these values
as the interpretability measurement. Formally, the interpretability metric IIS is the area under the
curve of sparsity ratio s and ARR,

IIS(f, C,D) =

∫
s

ARR(f, gcls ◦ gs ◦ gC , h,D)ds. (7)

In practice, given a pre-trained model f , a dataset D and a concept library C, we select multiple
sparsity ratios and train the corresponding gcls for each ratio to estimate IIS.

Figure 3: The relationship between IIS and the prediction accuracy of pre-trained representations on
ImageNet. We provide experiments with four types of concept libraries.

3 INTERPRETABILITY-CLASSIFIABILITY RELATIONSHIP INVESTIGATION

First, we provide the experiment settings in Section 3.1. Then, we investigate the interpretability-
classifiability relationship by comparing the IIS and prediction accuracy of pre-trained representa-
tions (Section 3.2). Finally, we analyze the relationships between classifiability and key factors of
interpretability, namely, sparsity and ARR (Section 3.3).

3.1 EXPERIMENT SETTINGS

Pre-trained Representations. We quantify the representation interpretability of well-known pre-
trained models including ResNet-18/34/50/101/152 (He et al., 2016), ViT-B/L-16 (Dosovitskiy et al.,
2021), ConvNeXt-T/S/B/L (Liu et al., 2022), and Swin-T/S/B (Liu et al., 2021). The weights of
these pre-trained models are provided by Torchvision (Paszke et al., 2019). In addition to image
representations, we also conduct experiments on video representations (Carreira & Zisserman, 2017;
Feichtenhofer et al., 2019; Tong et al., 2022; Wang et al., 2023; Li et al., 2023b;a) in Appendix A.4.

Datasets. We compute the IIS of representations on ImageNet1K (Russakovsky et al., 2015), CUB-
200 (Wah et al., 2011), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al.,
2009). These datasets cover diverse tasks. CIFAR-10/100 and ImageNet1K are widely used for
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Figure 4: The relationship between the accuracy and IIS on three datasets (CUB-200, CIFAR-10,
and CIFAR-100). The IIS is computed based on the textual concept library.

general image classification tasks. CUB-200 is specifically designed for fine-grained bird-species
classification. Their sizes vary greatly, with CUB-200 having 5900 training samples, CIFAR datasets
50,000 each, and ImageNet1K having 1-2 million training images.

Concept Library Construction. For visual concepts, we aggregate image patches or segments into
200 concepts using three strategies illustrated in Section 2.1 on ImageNet1K. For textual concepts,
we follow previous work (Oikarinen et al., 2023) that uses GPT-3 (Brown et al., 2020) to extract
concepts with prompts. The number of concepts is as follows: 143 for CIFAR-10, 892 for CIFAR-
100, 370 for CUB-200, and 4751 for ImageNet1K. We use CLIP (ViT-B-16) (Radford et al., 2021)
to generate soft concept labels for all datasets.

More implementation details are presented in Appendix A.1

3.2 INTERPRETABILITY AND CLASSIFIABILITY ARE POSITIVELY CORRELATED

In this section, we explore the interpretability-classifiability relationship of pre-trained representa-
tions. Empirical analysis across representations from different models is first conducted, followed
by concentrating on representations from the same model with different training iterations.

Analysis across Representations from Different Pre-trained Models. With representations of
different pre-trained models, we investigate the interpretability-classifiability relationship of these
representations with different concept libraries (Figure 3) and datasets (Figure 4). A positive corre-
lation between classifiability and interpretability can be observed for all types of concept libraries
and datasets, especially when comparing representations from models sharing the same architecture
but different numbers of parameters (points linked by dotted lines, such as ViT-B and ViT-L). These
results indicate that the interpretability of pre-trained representations increases along with their
classifiability improvement. We observe the presence of this phenomenon in pre-trained video rep-
resentations as well (Appendix A.4). Additionally, we notice that the representation interpretability
is also influenced by the model architecture, as evidenced by the non-strictly positive relationship be-
tween IIS and accuracy across representations from different architectures (e.g., ViT-B and Swin-T).
This observation reveals the potential of IIS in evaluating the interpretability of model architectures.

Analysis along the Pre-training Process. To further investigate this positive correlation between
interpretability and classifiability, we analyze the IIS evolution during the pre-training process of
representations. Figure 5 depicts the changes in the IIS on different prediction accuracy and training
epochs. In the initial phases of training, the representations achieve high IIS because both inter-
pretations and representations have similarly low accuracy. This phenomenon does not affect the
application of IIS in measuring the interpretability of pre-trained representations. However, as the
number of training iterations keeps increasing, the IIS gradually increases with improved accuracy.
Therefore, the representation interpretability is enhanced in the later stage of the training process.

3.3 FACTOR ANALYSIS FOR INTERPRETABILITY

To provide an in-depth analysis of the interpretability, we decouple IIS into two key factors, i.e.,
sparsity and ARR, investigating their mutual relationship and the relationship with classifiability.

First, we present the sparsity-ARR curve of pre-trained representations from different models on
ImageNet in Figure 6, using four types of concept libraries. When concentrating on the represen-
tations from the same model, with the sparsity ratio s increasing from 0 to 1, the interpretations
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(a) (b) (c)

Figure 5: The evolution of the IIS with varying accuracy (a) and epochs during the pre-training
process of representations from ResNet-50 (b) and ViT-B (c) on ImageNet.

rely on sparser concepts and the corresponding values of ARR decrease. This indicates that sparser
concepts lead to more information loss in the interpretations of the same representation. When
comparing different models, representations show different abilities to support interpretations given
different sparsity ratios. Representations that can better retain classifiablity (higher ARR) in inter-
pretations under different sparsity ratios gain larger areas under the curve. This further validates IIS
as the quantification metric of representation interpretability.

We further analyze the factor-level interpretability-classifiability relationship in Figure 7. ARR in-
creases simultaneously with the improvement of representation classifiability across different spar-
sity ratios. This indicates that as the representation classifiability improves, it can be interpreted by
sparser concepts with less task-relevant semantic loss (higher ARR). Based on these relationships,
we can derive completely interpretable predictions using concepts, with higher accuracy compared
to interpretability-oriented methods. This can be further verified in Section 4.2.

Figure 6: The sparsity-ARR curve of representations from multiple models with four types of con-
cept libraries. All representations are evaluated on ImageNet.

CUB-200 CIFAR-10 CIFAR-100ImageNet

Figure 7: Relationship of the sparsity, accuracy, and ARR on different datasets. Larger point sizes
indicate larger sparsity (i.e., interpreting representations with sparser concepts). Experiments are
conducted with text concept libraries specific to the downstream dataset.

4 APPLICATIONS OF INVESTIGATION RESULTS

The investigation results of Section 3 guide the further application studies in two aspects. First,
inspired by the positive correlation between interpretability and classifiability in Section 3.2, we can
in turn improve the classifiability of representations through interpretability maximization. Second,
we offer interpretable predictions with higher accuracy based on the observation in Section 3.3 that
improving representation classifiablity results in improved ARR across different sparsity ratios.
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Table 1: The classification accuracy of widely-used
pre-trained models and their accuracy after fine-
tuning with IIS maximization.

Model Type Acc@1 Acc@5
origin 75.66 92.67ResNet-50 ours 77.36 93.53

origin 81.46 95.78Swin-T ours 81.80 95.86

origin 82.42 96.18ConvNext-T ours 82.63 96.35

origin 80.58 95.15ViT-B ours 81.07 95.33

Figure 8: Prediction accuracy with repre-
sentations in the original space (Ori) and a
sparse subspace (IIS) during the fine-tuning
of ResNet-50. The ARR is also provided.

Table 2: IIS maximization on ImageNet for 50
epochs. The sparsity ratio s is set to 0.1.

M 100 200 300 600

Acc@1 76.25 76.72 76.62 76.53
Acc@5 93.08 93.20 93.12 93.16

Table 3: IIS maximization on ImageNet for 100
epochs. The dimension M is set to 200.

Sparsity Ratio (s) 0 0.1 0.5 0.9

Acc@1 76.62 77.07 76.95 76.67
Acc@5 92.98 93.43 93.28 93.13

4.1 IMPROVING CLASSIFIABILITY BY INTERPRETABILITY MAXIMIZATION

Based on the interpretability (IIS) enhancement brought by classifiability improvement, this section,
on the other hand, investigates whether enhancing IIS for representations would result in improved
classifiability. Since the pre-trained model f changes for every optimization step, computing IIS at
each step can be time-consuming. To expedite the optimization process, we employ a simplified ver-
sion of IIS, i.e., replacing the concatenated concept vectors C with a learnable matrix Cl ∈ RD×M

and fixed sparsity ratio s. Maximizing the simplified IIS can improve the original IIS (Table A18),
indicating that the simplified IIS can serve as a viable alternative to the original IIS during the opti-
mization. With the simplified IIS, we fine-tune the model f with the following objective:

L(y, (h ◦ f)(x)) + L(y, (gcls ◦ gs)(C⊤
l f(x))), (8)

where L denotes the cross-entropy loss function. The first term corresponds to the original predic-
tion head, and the second term corresponds to the one with simplified IIS constraints. The simplified
IIS is enhanced by maximizing accuracy with sparsity constraints in a learnable subspace. Table 1
presents the results on ImageNet. By incorporating the IIS maximization objective into the optimiza-
tion, we observe a classifiability improvement for multiple widely used pre-trained representations.
This underscores the mutual promoting relationship between interpretability and classifiability.

To better understand the classifiability improvement with IIS maximization, Figure 8 depicts the
accuracy evolution for classification heads corresponding to the first and second terms in Equation 8
during the fine-tuning process. The evolution of ARR is also presented to analyze the interrelation
between the original prediction head and the head with IIS constraints. With an increase in the num-
ber of training iterations, we observe a consistent improvement in the accuracy of both classification
heads and their resulting ARR. This phenomenon can be explained by the regularization effect in-
duced by the second terms in Equation 8, which encourages task-relevant semantics within RD to
be less complex and fit the low-dimension sparsified space in RM .

We further investigate the effect of hyperparameters in the simplified IIS. Ablation studies on the
concept space dimension M for Cl and the sparsity ratio s are provided in Table 2 and Table 3,
respectively. For the concept space dimension M , we observe that the model achieves optimal
performance when M is set to 200. For the sparsity ratio s, the optimal performance corresponds to
a slight ratio (s = 0.1), while any higher ratios would result in performance degradation.
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Table 4: Comparisons between interpretability-
oriented methods and our methods on CUB-200.
∗We re-implement ECBM on our concept library

Method #Concept Acc@1

Ante-Hoc 312 64.17
CBM 112 75.90
CEM 112 79.60
Proto2proto 2000 79.89
ProtopNet 2000 80.80
ECBM 112 81.20
ECBM∗ 247 83.21

Ours (ViT-L) 123 81.30±0.08
Ours (ViT-L) 247 83.50±0.15

Table 5: Accuracy of interpretable predic-
tions (Acc Inte), accuracy of pre-trained rep-
resentations (Acc Ori) and ARR on ImageNet.

Method Acc Inte Acc Ori ARR

SENN 58.55 - -
Ante-Hoc 65.09 - -
LaBo 83.97 - -

Ours (Swin-T) 78.72 81.46 96.63
Ours (Swin-S) 81.09 83.14 97.53
Ours (Swin-B) 81.88 83.61 97.93

Ours (ViT-B) 78.50 80.58 97.42
Ours (ViT-L) 86.85 87.99 98.70

4.2 PROVIDING INTERPRETABLE PREDICTIONS WITH HIGH ACCURACY

Section 3.3 shows that representations with higher accuracy can be interpreted by sparser concepts
with less semantic loss. In light of this, we can offer interpretable predictions based on gcls in
Equation 5 with higher accuracy that is close to the original representations. Table 4 presents com-
parisons between predictions based on the interpretations of classifiability-oriented representations
and the interpretability-oriented methods that train representations with interpretability constraints.
Our interpretations achieve comparable or even better accuracy to interpretability-oriented meth-
ods (81.29% vs. 81.20%) with a similar number of concepts M (123 vs. 112). As M increases from
123 to 247, we observe a significant accuracy improvement over the existing best result (83.50%
vs. 83.21%). Note that we only take the classification head as the trainable module, in contrast to
interpretability-oriented methods training the entire model. This demonstrates the benefit of utilizing
classificability-oriented representations to yield interpretable predictions regarding training costs.

Furthermore, we report the accuracy comparison on ImageNet in Table 5. Compared with exist-
ing interpretability-oriented methods, the interpretations of classifiability-oriented representations
surpass them by 2.88% (86.85% vs. 83.97%). Moreover, we compare the accuracy of interpre-
tations (Acc Inte) and their original representations (Acc Ori). Taking ViT-B and ViT-L for ex-
amples, representations with higher accuracy (87.99% vs. 80.58%) can derive interpretations with
higher ARR (98.70% vs. 97.42%), thereby yielding interpretable predictions with significantly im-
proved accuracy (86.85% vs. 78.50%). This observation is consistent with our conclusions in Sec-
tion 3.3. Compared with interpretability-oriented methods that train interpretable representations
from scratch, employing interpretations of pre-trained representations for predictions is a preferable
choice as it achieves enhanced performance with highly reduced training costs.

Figure 9: Visualizations of two correct samples of interpretable predictions

Visualization examples for interpretable predictions are shown in Figure 9, and more visualizations
are available in Appendix A.3. These visualizations show the most important concepts with high
absolute contribution value. For the image in Figure 9, recognizing this image as a “dowitcher”
involves identifying “a sandpiper” as the most important concept.

Additionally, we show the impact of sparsity on the interpretations in Figure 10 by providing an
overview of the significant concept-class relationships. Given low sparsity ratios, a single class is
correlated to the concepts with close contribution values while a concept correlates to classes with
similar contributions. As a result, the concepts are indistinguishable to classes, and vice versa, failing
to provide clear knowledge for humans about the crucial concept in predictions and classification

9
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Top 10 Concepts of Class Baseball Top-10 Classes of Concept a changing table

Sparsity Ratio = 0 Sparsity Ratio = 0.999 Sparsity Ratio = 0.999Sparsity Ratio = 0

Figure 10: Visualization of the average contribution of concepts to classes. Showcasing how the
sparsity ratio affects the human-understandability of interpretations.

rules learned by the models. By increasing the sparsity ratio, the model tends to correlate a class to
less key concepts and provide clearer insights into its decision-making process.

5 RELATED WORK

Post-hoc Interpretation Methods. Post-hoc methods have been widely studied for interpreting
model predictions by mapping the model’s representation to human-understandable domains (e.g.,
image pixels, words, etc.). To interpret representations, previous work attempts to decouple rep-
resentations into human-understandable elements such as concept vectors (Ghorbani et al., 2019;
Oikarinen et al., 2023), explanation graph (Zhang et al., 2017; 2018) or decision tree (Zhang et al.,
2019; Bai et al., 2019). Inspired by methods that correlate representations with concepts, we extract
interpretable semantics embedded within representations for their interpretability measurement.

Interpretability Quantification. Interpretability describes the extent to which humans are capable
of understanding (Longo et al., 2020). As a subjective metric, interpretability can be impacted by
many factors, including causality (Holzinger et al., 2019), faithfulness (Khakzar et al., 2022), and
sparsity (Oikarinen et al., 2023). Existing metrics are based on heuristic approaches that compare the
relevance attributed to the different features with the expectation of an observer (Bau et al., 2017), a
domain expert (Neves et al., 2021), or calculate the homogeneity score between interpretations and
ground-truth labels (Zarlenga et al., 2022). Different from the above metrics designed for model
interpretations, we focus on pre-trained representations and quantify their interpretability by their
accuracy retention ability when predicting solely based on interpretable semantics.

Interpretability-Classifiability Relation. The conflicting relationship between interpretability and
classifiability has been observed in interpretability-oriented methods and studied for years (Baryan-
nis et al., 2019; Rudin et al., 2022). It says that models imposed with stronger interpretability
constraints or inductive bias demonstrate weaker classification accuracy (Mori & Uchihira, 2019;
Mahinpei et al., 2021; Zarlenga et al., 2022; Dombrowski et al., 2023). Existing work tries to
overcome this issue by the design of interpretable architectures (Zarlenga et al., 2022) or feature
engineering (Gosiewska et al., 2021) and make slow progress. In contrast to previous investigations
regarding interpretability-oriented methods, we focus on classifiability-oriented representations and
indicate that classifiability and interpretability are not conflicting but positively correlated.

6 CONCLUSION

In this paper, we explored the possibility of achieving high interpretability and classifiability si-
multaneously by identifying interpretable semantics within pre-trained representations. First, we
proposed the IIS to measure the representation interpretability by the maintenance of task-relevant
semantics in interpretations. Then, we investigated the interpretability-classifiability relationship of
pre-trained representations. Extensive experiments on multiple datasets indicate that classifiability
and interpretability are positively correlated. Finally, we apply the investigation results in two per-
spectives. By enhancing representation interpretability, we improve the classifiability of pre-trained
representations. By improving representation classifiability, we offer interpretable predictions based
on interpretations with more comparable accuracy to the original representations. For future work,
we will provide a theoretical analysis of the interpretability-classifiability relationship and take more
factors (e.g., trustworthiness, structural entropy of representations) into consideration to refine IIS.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details on datasets, pre-trained
models, and concept library construction in Section 3.1. Details of training strategies and IIS com-
puting can be found in Appendix A.1. Source code has been submitted as supplementary materials.
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Table A6: Configurations of Selected Black-Box Models.

Model Interpolation Resize Input Size Pretrain

ResNet-18 Bilinear 256×256 224×224 ImageNet1K V1
ResNet-34 Bilinear 256×256 224×224 ImageNet1K V1
ResNet-50 Bilinear 256×256 224×224 ImageNet1K V1
ResNet-101 Bilinear 256×256 224×224 ImageNet1K V1
ResNet-152 Bilinear 256×256 224×224 ImageNet1K V1
ViT-B-16 Bilinear 256×256 224×224 ImageNet1K V1
ViT-L-16 Bilinear 512×512 512×512 ImageNet1K SWAG E2E V1
Swin-T Bicubic 246×246 224×224 ImageNet1K V1
Swin-S Bicubic 246×246 224×224 ImageNet1K V1
Swin-B Bicubic 238×238 224×224 ImageNet1K V1

ConvNeXt-T Bilinear 236×236 224×224 ImageNet1K V1
ConvNeXt-S Bilinear 230×230 224×224 ImageNet1K V1
ConvNeXt-B Bilinear 232×232 224×224 ImageNet1K V1
ConvNeXt-L Bilinear 232×232 224×224 ImageNet1K V1

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 CONCEPT LIBRARY CONSTRUCTION

Visual Concepts. Given an image classification dataset with N classes, we randomly sample 10
images for each class. For these images, we extract segments or patches from them to build visual
concepts. For patches, we resize each image to dimensions of 224 × 224. Then, we split each re-
sized image into 56×56 patches. For segments, we apply the SLIC (Achanta et al., 2012) algorithm
to extract segments unsupervisedly. We perform the segmentation process three times, resulting in
10, 20, and 30 segments respectively, to capture segments at different scales. To avoid redundancy,
we eliminate segments with significant overlap at the same scale. During the experiment, we ob-
served high redundancy among these segments/patches. Therefore, we randomly select H = 20
segments/patches for each class. These selected patches or segments are then aggregated to form M
visual concepts. Here we take the patch as an example for simplicity.

For Prototype concept library, we randomly select ⌈M
N ⌉ patches for each class.

For Cluster concept library, we aggregate all patches into M visual concepts by clustering based on
their latent vectors using the K-Means algorithm.

The End2End concept library is specific to a pre-trained model f . We design a learnable method
to aggregate the patches into concepts based on their latent vectors generated by f . The learning
objective is to obtain concepts that maximize the classification accuracy built upon f . Specifically,
for the concatenation of latent vectors of all patches Cp ∈ RD×HN , we assign these patches to M
visual concepts by

min
Q,gcls

E(x,y)[L(y, gcls(f(x)⊤CpQ))], (A9)

where gcls : RM → RN depicts a linear classification layer, L means the cross-entropy loss func-
tion, Q = [q1,q2, ...,qN ] ∈ {0, 1}HN×M is a learnable transportation matrix responsible for
assigning patches to visual concepts. Each column qn ∈ {0, 1}M is a one-hot vector that assigns
the n-th patch to one of the M concepts. In practice, the discrete constraints of Q are enforced
through Gumbel-Softmax with Straight Estimator (Jang et al., 2017).

Textual Concepts. Following previous work (Oikarinen et al., 2023), the textual concepts are auto-
matically extracted for each class. The prompts are as follows:

• List the most important features for recognizing something as a {class}:
• List the things most commonly seen around a {class}:
• Give superclasses for the word {class}:
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Table A7: Sparsity Selection Strategies for different concept libraries.

Dataset Concept Library Concept Num. Selected Sparsity Ratios

ImageNet

Prototype 200 {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.98}
Cluster 200 {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.98}

End2End 200 {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.98}
Text 4751 {0, 0.9, 0.99, 0.995, 0.997, 0.999}

CUB-200 Text 370 {0, 0.5, 0.7, 0.9, 0.99, 0.995}
CIFAR-10 Text 143 {0, 0.5, 0.7, 0.9, 0.95, 0.97}

CIFAR-100 Text 892 {0, 0.5, 0.7, 0.9, 0.95, 0.97}

Moreover, the extracted concepts are filtered. First, concepts with a lot of words are removed to
make them easy to visualize and understand. Second, concepts with large similarities with target
classes are removed to prevent trivial explanations. Third, the retention of duplicate concepts (cosine
similarity greater than 0.9) is limited to only one instance. Finally, concepts not presented in the
training images (cosine similarity less than 0.4) are removed.

The number of concepts for different datasets is as follows: 143 for CIFAR-10, 892 for CIFAR-100,
370 for CUB-200, and 4751 for ImageNet1K. We use CLIP (ViT-B-16) (Radford et al., 2021) to
generate soft concept labels for all datasets.

Specifically, we use the same configurations as Torchvision for the selected pre-trained models pre-
sented in Table A6. All models are pre-trained on ImageNet, except for ViT-L, which is pre-trained
using SWAG (Singh et al., 2022) and fine-tuned on ImageNet.

A.1.2 SPARSITY RATIO SELECTION

Practically, we compute IIS by selecting a series of sparsity ratios s. The selection strategy of s corre-
sponds to the concept library. It should be noted that we avoid selecting an excessively high sparsity
ratio resulting in extremely sparse interpretations that turn out to be confusing to humans (e.g., a
single concept). The specific selection strategies are shown in Table A7.

A.1.3 TRAINING STRATEGIES

During the training process in Section 2.2, the pre-trained model f is frozen. For Prototype and
Cluster concept libraries, only the classifier gcls is trainable. For End2End concept library, the
projection from representation space to concept space gC and classifier gcls are trainable. For Text
concept library, the training process is divided into two stages. In the first stage, the concept vectors
C are obtained through Equation 2. In the second stage, only the classifier gcls is trainable.

We present the hyperparameters during training in Table A8. For each model, we train three times
using multiple learning rates of {0.1, 0.01, 0.001} and select the result with the highest accuracy, as
different models may perform better with different learning rates. For visual concepts (Prototype,
Cluster, and End2End), we utilize the Adam optimizer and the exponential scheduler with a decay
rate of 0.99. For textual concepts (Text), we utilize the SGD optimizer without schedulers.

A.1.4 IIS MAXIMIZATION

For the fine-tuning process with IIS maximization as the objective, we utilize the sparsity ratio
s = 0.1 and vector number M = 200 to compute the simplified IIS. The pre-trained models undergo
fine-tuning for 200 epochs (with the first 20 epochs to warmup), utilizing a batch size of 128. The
finetuning process incorporates the AdamW optimizer with betas set to (0.9, 0.999), a momentum
of 0.9, a cosine decay learning rate scheduler, an initial learning rate of 3e− 4, and a weight decay
of 0.3. Additional techniques such as label smoothing (0.1) and cutmix (0.2) are also employed.
Beyond these, no further techniques are applied.

A.2 ADDITIONAL EXPERIMENTAL RESULTS
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Table A8: Hyperparameters for CBM Training

Dataset Concept Libraries Learning Rate Epoch Optimizer Scheduler Batch Size

ImageNet

Prototype {0.1, 0.01, 0.001} 30 Adam EXP 1024
Cluster {0.1, 0.01, 0.001} 30 Adam EXP 1024

End2End {0.1, 0.01, 0.001} 30 Adam EXP 1024
Text {0.1, 0.01, 0.001} 30 SGD NAN 256

CUB-200 Text {0.1, 0.01, 0.001} 100 SGD NAN 256
CIFAR-10 Text {0.1, 0.01, 0.001} 100 SGD NAN 256
CIFAR-100 Text {0.1, 0.01, 0.001} 100 SGD NAN 256

Table A9: IIS-accuracy relationship on CUB-200 dataset with different sparsification mechanisms.

Model Acc. Origin Descending Clustering HardThres

ResNet-18 63.39 0.695 0.284 0.664 0.769
RseNet-34 64.22 0.719 0.298 0.675 0.774
RseNet-50 67.01 0.766 0.340 0.721 0.809
ResNet-101 67.13 0.776 0.352 0.732 0.816
RseNet-152 68.00 0.780 0.354 0.742 0.828

A.2.1 INFLUENCE OF SPARSIFICATION MECHANISMS

In this section, we investigate the impact of different concept sparsification mechanisms on IIS. In
addition to the strategy in Equation 4, we implemented three alternative approaches to investigate
the relationship between interpretability and classifiability.

(i) Descending. We remove concepts in descending order based on their similarity to image repre-
sentations. Specifically, given the similarity between image representations and concepts xC ∈ RM

in Equation 3, we first invert it and then apply Equation 4 for sparsification. (ii) Clustering. We
reduce the number of concepts by clustering rather than directly eliminating concepts. Specifically,
given a sparsity ratio s, we cluster M concepts to ⌈(1 − s) × M⌉ clusters with KMeans. Image
representations are projected into these clusters for IIS computation. (iii) HardThres. We replace
the soft threshold in Equation 4 with the hard threshold (i.e., directly masking concepts with smaller
value than the threshold).

As Table A9 shows, representations with higher classifiability still demonstrate higher IIS under
different sparsification mechanisms. This phenomenon further demonstrates that the positive cor-
relation between interpretability and classifiability is an inherent characteristic of pre-trained repre-
sentations, rather than a consequence of specific sparsification methods.

A.2.2 INFLUENCE OF TEXTUAL CONCEPT VECTOR ACQUISITION

Besides our methods to acquire textual concept vectors in Equation 2, LF-CBM (Oikarinen et al.,
2023) has proposed the cos-cubed loss to learn concept vectors. For the similarities, the ob-
jective of both loss functions is to map a set of concept vectors [c1, c2, ..., cM ] in the repre-
sentation space to textual concepts [c1, c2, ..., cM ]. For the dissimilarities, given the soft-label
yx = [yc1x , yc2x , ..., ycMx ] of image x and the inner products between concept vectors and image
representations qx = [f(x)⊤c1, f(x)

⊤c2, ..., f(x)
⊤cM ]. The cos-cubed loss normalizes vectors

yx,qx and utilizes the inner product of their cubic powers as a similarity measure. In contrast, we
directly employ the mean square error based on the normalized vectors.

Additionally, we conduct experiments with cos-cubed loss as Table A10 shown. Replacing Equa-
tion 2 with cos-cubed loss does not impact the positive correlation between IIS and classifiability,
which verifies the generality of our conclusion.

A.2.3 EXPERIMENTS ON ADDITIONAL DATASETS & MORE COMPARISONS
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Table A10: IIS-accuracy relationship on CUB with the cos-cubed loss for concept vector acquisition.

Metric ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

IIS 0.756 0.774 0.789 0.802 0.805
Acc@1 63.39 64.22 67.01 67.13 68.00

Table A11: IIS of ResNet-
18/50/152 on different
datasets. Experiments are
conducted with textual con-
cept libraries from LaBo.

Model UCF101 DTD HAM

ResNet-18 0.949 0.934 0.912
ResNet-50 0.967 0.940 0.914
ResNet-152 0.976 0.957 0.915

Table A12: Performance
comparisons on different
datasets. Experiments are
conducted with textual
concept libraries from LaBo.

Model UCF101 DTD HAM

LaBo 97.68 76.86 81.40
Ours 97.79 77.22 81.90

Table A13: Performance
comparisons with LF-CBM
on different representations.

Model ImageNet CUB

LF-CBM (ViT-B) 77.94 68.97
LF-CBM (ViT-L) 85.52 82.83

Ours (ViT-B) 78.50 69.14
Ours (ViT-L) 86.85 83.51

Interpretability-Classifiability Relationship on Additional Datasets. To further illustrate the gen-
erality of our conclusions in Section 3.2, we conduct experimental results on addition datasets in-
cluding UCF-101 (Soomro, 2012), DTD (Cimpoi et al., 2014) and HAM10000 (Tschandl et al.,
2018). In Table A11, we further verify the positive relationship between interpretability and classi-
fiability on three datasets, indicating the strong generality of our conclusions.

More Performance Comparisons. Performance comparisons with LaBo (Yang et al., 2023) on
3 additional datasets (Soomro, 2012; Cimpoi et al., 2014; Tschandl et al., 2018) are provided in
Table A12. Our interpretable predictions demonstrate superior performance compared to LaBo.
Furthermore, Table A13 presents the comparisons with LF-CBM (Oikarinen et al., 2023), a frame-
work for providing interpretable predictions based on arbitrary vision representations. Our method
outperforms LF-CBM using different pre-trained representations.

Effects of Vision-Language Pre-training on Classifiability and Interpretability. In Table A15,
we compute the IIS of ViT-B and CLIP-ViT-B on the CUB-200 dataset. The experimental results
remain consistent with our investigations in Section 3.2, i.e., representations with higher classifiabil-
ity exhibit enhanced interpretability. Representations pre-trained with large-scale vision-language
datasets have stronger generalization ability than representations of the standard ViT, thereby re-
sulting in improved classifiability on this dataset and subsequently enhancing their interpretability.

A.2.4 RELATIONSHIP BETWEEN IIS AND SEGMENTATION PERFORMANCE

The classification task serves as a fundamental component of vision pre-training. Enhanced clas-
sifiability in representations often leads to improved performance on downstream vision tasks (Liu
et al., 2021). For example, therefore, we can derive a positive correlation between IIS and seg-
mentation performance. Given the pre-trained representations of ResNet50, we perform two sets
of comparative experiments. (i) We directly fine-tune the representations on segmentation tasks
(Origin). (ii) We first adjust the representations through IIS maximization in Equation 8 and then
fine-tune them on segmentation tasks (Ours). As Table A14 shows, compared to original represen-
tations, enhancing the IIS of representations leads to an improvement in their classifiability (Acc.).
The improvement leads to an increase in the segmentation performance (mIoU).

A.2.5 SPARSITY-ARR CURVES

In this section, we show the sparsity-ARR curves of more pre-trained representations in Figure A12,
to better support our conclusions in Section 3.3. We observe a similar phenomenon to Figure 6,
demonstrating that for representations with fixed accuracy, the information loss increases when pro-
jecting pre-trained representations into more human-understandable patterns.
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Table A14: Relationship be-
tween IIS, accuracy and mIoU.

Model IIS Acc. mIoU

Origin 0.953 75.66 40.60
Ours 0.958 77.36 42.35

Table A15: Performance
comparisons on CUB dataset.

Model IIS Acc@1

ViT-B 0.764 75.9
CLIP-ViT-B 0.808 80.6

Table A16: Performance com-
parisons on ImageNet-1k.

Model CLIP-RN50 CLIP-ViT-B/32

DEAL 70.0 70.8
Ours 70.8 73.0

Figure A11: More experiments about the sparsity-ARR curve of different pre-trained representations
on ImageNet with four types of concept libraries.

A.2.6 ABLATION STUDIES OF VISUAL CONCEPTS

We conducted verification experiments to confirm the consistency of our findings from Figure 4 in
the main text. These experiments encompassed different types of visual elements, including patches
and segments. In Table A17, we present the relationship between representation accuracy and IIS
computed using the End2End concept library aggregated from patches and segments respectively.
The experimental results show the same phenomenon as Figure 4 in the main text. Moreover, we
observe that segments achieve a higher IIS than patches.

Table A17: Ablation studies of different visual elements (Patches and Segments)

Visual Elements ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

Patches 0.6833 0.7021 0.7210 0.7231 0.7654
Segments 0.6879 0.7043 0.7311 0.7386 0.7694
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Table A18: The accuracy (Acc.), simplified IIS, and original IIS of ResNet-50 finetuned on Ima-
geNet with the IIS (Simplified) maximization as training objective.

Epoch 0 40 200

Acc. 0.7566 0.7644 0.7736
IIS (Simplified) 0.9654 0.9776 0.9805
IIS (Original) 0.9533 0.9573 0.9583

A.2.7 RELATIONSHIP BETWEEN SIMPLIFIED IIS AND ORIGINAL IIS

In Equation 8, we maximize a simplified version of IIS to improve pre-trained representations. Ex-
perimental results in Table A18 show that during the IIS maximization process, the representation
accuracy and original IIS increase with the simplified version of IIS. This indicates that the maxi-
mization of the simplified IIS can improve the original IIS.

A.3 ADDITIONAL VISUALIZATION OF INTERPRETABLE PREDICTIONS

We provide more visualizations of interpretable predictions based on textual (Figure A13) and vi-
sual (Figure A14) concepts on ImageNet. These were created using the same procedure as Figure 9.
The concepts that have large contributions are relevant to the class. Additionally, Figure A15 show-
cases the model editing with human guidance by zeroing out the contribution of incorrect concepts
such as concept bottleneck models (Zarlenga et al., 2022; Oikarinen et al., 2023).

A.4 ADDITIONAL RESULTS ON VIDEO PRE-TRAINED MODELS

Building upon the observed positive correlation between interpretability and classifiability of im-
age representations, we investigate whether this phenomenon extends to video representations
on the Kinetics-400 dataset (Carreira & Zisserman, 2017). For video concept, we utilize the
YOLOv5 (Jocher, 2020) pre-trained on COCO (Lin et al., 2014) to extract visual-grounding ob-
jects. These objects are aggregated as concepts with the strategy of the End2End concept library. By
computing the IIS and prediction accuracy of representations from video pre-trained models (Car-
reira & Zisserman, 2017; Feichtenhofer et al., 2019; Bertasius et al., 2021; Fan et al., 2021; Tong
et al., 2022; Wang et al., 2023; Li et al., 2023b; 2022b), we observe a similar phenomenon to that
observed in image representations (i.e., the positive correlation between IIS and accuracy).

Figure A12: The relationship between accuracy and IIS for video pre-trained representations on the
Kinetics-400 dataset. The IIS is computed based on the End2End concept library.

A.5 DISCUSSION

A.5.1 RELATIONSHIP BETWEEN IIS AND INTERPRETATION QUALITY METRICS.

IIS measures the representation interpretability through the accuracy comparison between represen-
tations and their corresponding interpretations. The formulation of IIS is similar to the faithfulness
metric. This metric measures the predictive capacity of interpretations to evaluate how interpreta-
tions can meaningful and faithfully explain the model’s predictions (Sarkar et al., 2022). However,
the IIS and faithfulness metric are essentially different as follows:
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Figure A13: More visualizations of our interpretable predictions based on textual concepts.

GT: 
Entlebucher
Sennenhund

Prototype

1.8516

0.6958

Cluster End2End

2.6715

0.7819

2.9798

1.5526

Figure A14: Visualizations of our interpretable predictions based on visual concepts.

• Different purposes: IIS is proposed to quantify the interpretability of pre-trained represen-
tations (comparing different representations), while the faithfulness metric is designed to
measure the quality of interpretations (comparing different interpretation methods).

• Different definitions: the definition of IIS encompasses interpretation accuracy, representa-
tion accuracy, and interpretation sparsity, whereas the faithfulness metric solely focuses on
interpretation accuracy.

A.5.2 RELATIONSHIP BETWEEN IIS AND CONCEPT BOTTLENECK MODELS.

The prediction based on interpretations of IIS shares the same formulation as concept bottleneck
models (CBMs) (Koh et al., 2020; Zarlenga et al., 2022; Oikarinen et al., 2023; Yan et al., 2023),
which first identify fine-grained concepts for an input image and then make predictions based on
identified concepts. We draw inspiration from concept bottleneck models in constructing concept
libraries and the emphasis on interpretation sparsity. However, IIS primarily focuses on the inter-

label: washing machine prediction: dishwasher

zero out 
wrong concepts

prediction: washing machine

Figure A15: An example for model editing with human guidance. By zeroing out the contribution of
incorrect concepts (e.g., “a oven”), the prediction changes from “dishwasher” to “washing machine”.
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pretability measurement of pre-trained representations, while CBMs concentrate on improving the
performance of concept-based predictions by designing new architecture (Zarlenga et al., 2022) and
loss functions (Xu et al., 2023). Despite different focuses, our investigation contributes to the CBM
community by revealing their strong compatibility with the development of pre-trained representa-
tions. This is because higher accuracy representations possess more interpretable semantics, which
can be effectively captured by CBMs built upon them.

A.5.3 COMPARISONS BETWEEN IIS AND VLG-CBM

VLG-CBM (Srivastava et al., 2024) also obtains accuracies of concept-based predictions with dif-
ferent sparsity levels. These accuracies are averaged to evaluate the ability of CBMs to provide
accurate predictions with different numbers of concepts.

The sole similarity between IIS and this metric is assessing the accuracies of varying sparsity levels.
The dissimilarities include three aspects. (i) Objective. The objective of IIS is to quantify the
interpretability of arbitrary vision pre-trained representations. The average accuracy in VLG-CBM
serves as a metric for evaluating the performance of CBMs, a specific type of interpretable model.
(ii) Sparsification. Our sparsification mechanism can accurately control the number of concepts for
prediction during forward propagation. VLG-CBM adjusts the number of concepts by manipulating
the sparsity regularization strengths in the loss function, which requires complex strategies including
gradually reducing the regularization strengths during training and post-training weight pruning. (iii)
Metric Definition. IIS is defined as the area under the curve formed by the sparsity and accuracy.
The metric in VLG-CBM is solely defined based on the average accuracy at different sparsity levels.

A.5.4 COMPARISONS BETWEEN IIS AND DEAL

Recently, DEAL (Li et al., 2025) has observed that improving interpretability can have a positive
impact on classification performance. For the performance, as Table A16 shows, our method out-
performs DEAL on ImageNet with the same pre-trained representations. Moreover, our methods are
different from DEAL in three aspects.

(i) Training strategy. DEAL is specifically designed for the CLIP architecture and employs con-
trastive learning methods to fine-tune the entire model. Our method can be applied to arbitrary
architectures and only fine-tune the visual encoder. (ii) Prediction mechanism. DEAL predicts
based on the average embedding similarity between the image and concepts within the category.
Our method inputs the image representations to a prediction head without the text encoder. (iii)
Interpretability-classifiability relationship. DEAL solely observed a qualitative impact of inter-
pretability on classifiability in CLIP. In comparison, we find the mutually promoting relationship
between both factors on a wide range of models in a quantitative manner.

A.5.5 LIMITATION

Despite revealing the mutual-promoting relationship between representation interpretability and ac-
curacy, investigations of the underlying mechanism leading to this relationship have not been con-
ducted. In addition, we fine-tune pre-trained representations by maximizing just a simplified version
of IIS to improve their accuracy. For a deeper understanding of the consistency between inter-
pretability and accuracy, we anticipate future work to investigate the underlying mechanisms of our
observations, and better integrate IIS into the training process of pre-trained models.
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