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Al alignment seeks to align models with human values such as helpfulness and hon-
esty, yet humans may be unable to supervise on tasks exceeding human capabilities.
Weak-to-strong generalization (WSG) has been proposed as a proxy for studying
this problem, where a weaker model stands in for human supervision and alignment
of a stronger model. While prior work provides evidence of WSG success, i.e. the
strong model outperforming the weak supervision signal, prior tasks suffer from
train-test contamination or rely on oversimplified linear models. We introduce a
clean toy-testbed where transformer model pairs are pretrained on different rule
variants of Othello and Tic-Tac-Toe, then the stronger model is finetuned on output
from the weaker model. It has been hypothesized that WSG works when the strong
model learns how to leverage its superior features. While there has been prior
theoretical support, we provide the first empirical evidence for this on transformers.
In Othello, the strong student model surpasses the weaker teacher if and only
if it has better board representations. Across 111 WSG pairs and 6 game rules,
we find a 0.85 Spearman correlation between WSG success and superior board
representations in the strong model as measured by linear probes. Our work is a
proof-of-concept by analyzing a toy task. By open-sourcing our experiments, we
hope to accelerate research on understanding when WSG succeeds.
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Figure 1: Overview of our method: Each column is one step in our pipeline. The top row is the
training signal, the middle row the model that gets trained and the bottom row displays how features
change during training (structure represents high-quality features, and color the goal). 1. We train
a weak transformer on standard Othello, which develops basic board representations (left, red). 2.
We train a stronger transformer on modified Othello rules, resulting in superior world modeling
capabilities (middle, blue). 3. We fine-tune the strong model using weak supervision, demonstrating
that it can exceed the weak teacher’s performance when it possesses better initial representations
(right). We show that this occurs (almost) if and only if the strong model’s board representations are
better than those of the weak model. An interpretation is that the strong model learns from the weak

model how to utilize its superior features to play standard Othello.
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1 Introduction

Current alignment techniques such as RLHF (Christiano et al.|[2023)) rely on the ability of humans
to evaluate Al i.e. we have a strong teacher (human) that supervises a weaker student (Al). If Al
performance surpasses human performance on a task, the direction of supervision stays the same,
but the dynamic inverts: A weak teacher (human) has to convey the intended objective to a stronger
student (AI). To understand these dynamics, Burns et al. (2023)) proposed to study an analogous setup
where we train a weak model and a strong model on two different tasks (called weak- and strong-task).
Then the weak model finetunes the strong model. It was shown on a variety of tasks that the strong
model can surpass the performance of its weaker teacher on the weak task. This phenomenon
is called Weak-to-Strong Generalization (WSG) (Burns et al. 2023; Y. Guo and Yi Yang[2024;
J. Guo et al. 2024; Somerstep et al. [2024). Burns et al. (2023)) proposed the hypothesis that the
strong model learns from the weak model how to utilize its superior capabilities (Burns et al. 2023}
Shin et al.[2024]). If this hypothesis is correct, we should be able to predict when WSG will occur
by analyzing how well the strong model’s internal representations align with the underlying task
structure, compared to its weak supervisor. While there have been theoretical results supporting this
hypothesis, no previous evidence on transformers exists. We show that this is true for transformers
trained to play variations of the board game Othello. We analyse the toy task of Othello, because it is
the first truly pretrain leakage free transformer environment for WSG.

WSG has been studied empirically and theoretically. Burns et al. (2023)) using supervision from
a human-aligned GPT-2 sized model and achieved performance comparable to GPT-3.5 on NLP
classification tasks. One limitation of this class of experiments is that both the task-evaluation and
pretraining of the strong model were conducted on human data while future AI won’t have examples
of superhuman aligned behavior that it can elicit. Theoretical analysis of WSG in simplified settings
(e.g., linear models over Gaussian features) has shown that WSG succeeds when the strong model
possesses features useful for the weak task (Wu and Sahai[2024; Shin et al. 2024]), that do not support
replicating the weak model’s errors (Xue et al.|[2025; Hunter Lang et al. 2024)). There has been no
prior analysis of what these features actually are. Prior mechanistic interpretability work has analyzed
the internal features of models (Elhage, Nanda, et al.[2021])), but not around WSG.

We make two main contributions. First, we demonstrate WSG in clean game environments (Othello
and Tic-Tac-Toe) by training models on rule variations. Secondly, we investigate WSG with mecha-
nistic interpretability tools in Othello. Specifically, we train a weak transformer to play legal moves
in Othello and a strong transformer to play under a modified rule set. After finetuning the strong
model using the output of the weak model, the strong model plays legal moves more reliably than the
weak model. A similar idea in Tic-Tac-Toe results in the smallest transformer setup with shown WSG.
These environments have no pre-train leakage, and we can build on (Nanda, Lee, et al.[2023} K. Li
et al.[2024) which showed that in Othello transformers represent the board state as linear directions
in the residual stream. We take the accuracy of linear probes on the weak and strong models as a
proxy for the strength of board representations. Empirically, the weak-supervision succeeds (almost)
if and only if the strong model has better board representations than the weak model.

For 6 different strong rules, we finetune 111 pairs of weak and strong models. We then show that the
prediction rule “WSG occurs if and only if the strong model has better board representations than the
weak model.” has a 89% accuracy. We initially established this result using two rules and subsequently
confirmed it with an additional four. For each pair we compute the Performance-Gap-Recovered
(PGR) (Burns et al. 2023)) which is a score for how well the strong model generalized. We show
that linear probes trained to predict whether a square is empty, has a stone of the currently moving
player or one of the opponent are the most correlated with WSG, as measured by accuracy (88.7%),
Spearman rank-correlation (0.850), and R? (0.298). As an ablation we compare the predictiveness
with the difference in model size, loss before finetuning and three different board feature bases
(empty/filled), (empty/black/white) and a non-linear transform of the board. Note that (Nanda, Lee,
et al. 2023} K. Li et al. 2024)) showed that transformers use the empty/ours/opponents stone bases.

As this is the first investigation of WSG using tools from mechanistic interpretability, our work serves
as a proof of concept. Othello and Tic-Tac-Toe are new toy-testbeds for this, because they have no
pretrain leakage and their rules can be easily modified to test the conditions under which WSG is
effective. Our results strengthen the hypothesis, supported by prior theoretical work, that the superior
features of the strong model enable WSG.



2 Background

2.1 Weak-to-Strong Generalization

Set-up. Weak-to-Strong Generalization refers both to the phenomenon of weak supervision working,
and a setup to experimentally investigate it. First proposed in Burns et al. (2023)), a weak model M,
gets trained on a weak task D,, and a strong model M, on a strong task D. In the analogy, M,,
stands for the human and M for the superhuman AI with a different objective. To test if humans can
align superhuman Al, we finetune M on the output of M,, to get M, ,,,. A large enough model M,
converges towards M, but it was observed that early in the finetuning the strong model M, ,,, can
surpass its weak teacher M, (Xu et al. 2025} Burns et al.|2023)). Experiments usually early-stop the
finetuning on the ground truth labels D,,, although this is unrealistic since we won’t have superhuman
ground truth labels.

Performance-Gap-Recovered (PGR). In our experiments, we measure performance through the
Cross-Entropy loss CE(M, D) for a model M and task D. We say WSG occurs when the strong
model surpasses its weak teacher, i.e. CE(Mj sy, Dy) < CE(M,,, D,,). We want to know how
close the weakly finetuned model Mg, ,, comes to a strong baseline Mg, which is the strong
model directly pretrained on the weak task D,,. Burns et al. (2023)) proposed the Performance-Gap-
Recovered (PGR) metric that we adapt for CE-loss. It is 0 if M, ,,, matches M,,, positive if it
surpasses M, and 1 if it matches Mgy:

CE(va D'w) - CE(M5>—>1uv Dw)
CE(My,Dy) — CE(Mg, Dy)

PGR(Mw7Ms>—>waMs ) =

2.2 Mechanistic Interpretability of Othello.

Linear probe. The linear representation hypothesis states that models encode many concepts as
linear directions in their activation spaces (Elhage, Hume, et al.|[2022; B. Z. Li et al. 2021} Gurnee,
Nanda, et al.|[2023; Geva et al.|2021)). A linear probe is a linear classifier trained to predict specific
properties from a model’s intermediate activations. High probe accuracy indicates that the target
information is linearly accessible in those representations.

Othello. We want to analyze whether a superior world understanding of the strong model helps to
learn from a weak supervisor. We use the board game Othello, because it was previously shown that a
transformer trained autoregressively on Othello moves internally represents the board state and uses it
for its output (Nanda, Lee, et al. 2023} K. Li et al. 2024). This is an example of a world model, where
to solve a task a model has to gain understanding of the task and not just superficial correlations
(Gurnee and Tegmark 2024; Lovering et al. 2022). Othello is a 2-player game that is played on a
8 x 8 chessboard. Players take turns placing a stone on an empty field that flanks opponent pieces in
a straight line (horizontally, vertically, or diagonally) between the new stone and an existing friendly
stone. After placing, the color of all flanked stones is flipped. Making a legal move therefore depends
on the stones in other areas of the board. First, (K. Li et al.[2024) showed that there are no linear
features that represent whether a field on a board is empty/white/black. Afterwards, (Nanda, Lee,
et al. 2023) showed that the board state is represented as linear directions empty/mine/yours for each
of the 64 fields. Using these directions to modify the activations to represent a different board state
changed the predicted legal moves accordingly (Nanda, Lee, et al.[2023; Belinkov 2021).

3 Related Work

Tasks with shown WSG. The most used task is NLP classification, either binary (Burns et al.
2023; Ye et al. [2024; Yao et al. [2025; W. Yang et al. 2024; Hao Lang et al. 2025) or multiclass
(Y. Guo and Yi Yang|2024). Because these tasks are more similar to knowledge elicitation and use
complex LLMs, evaluating the role that world models play in WSG is difficult. Generative tasks
have been used for tasks such as answering math questions (Y. Guo and Yi Yang 2024; Yuqing Yang
et al.[2024), answering in a specific style (Somerstep et al.|[2024) and solving chess puzzles (Burns
et al. 2023). These setups have pre-training leakage (Burns et al. 2023)), since the strong models
dataset D, contains examples of the weak task D,,. But superhuman AI won’t have examples of
superhuman aligned behaviour that it can elicit. For example, Burns et al. (2023) used as a weak



task D,, chess puzzles where a model learns to predict the best move in a chess puzzle. But the
pretraining dataset D, of the strong model GPT4 contained not only text data but also chess games
of players ranked above 1800 Elo. J. Guo et al. (2024) use a task without pretrain leakage in which
they finetune a vision autoencoder for image classification. But the used models are not transformers
and it is not a generative task. Our Othello and Tic-Tac-Toe environments are the first generative
tasks, where the strong data D does not contain examples of the weak task D,,. Theoretical analysis
of WSG has been mostly focused on linear models over fixed features. These findings often have
been empirically validated on Gaussian distributions (Wu and Sahai [2024; Ildiz et al.|[2025} Shin et al.
2024} Charikar et al.|[2025) which do not exhibit characteristics such as superposition (Elhage, Hume,
et al. 2022). Xue et al. (2025) empirically tests the role of the strong models features by finetuning a
full transformer, while other work has trained only a linear model as the last layer.

Games in mech-int. Board games have been successfully used in mechanistic interpretability
before. For chess (Toshniwal et al. 2022), Othello (Nanda, Lee, et al.|[2023; K. Li et al. [2024) and
Tic-Tac-Toe (Ayyub 2025) parts of the algorithm were reconstructed. Chess has also been used
as a benchmark for interpretability techniques (Toshniwal et al. |2022). We continue this line of
work by showing that WSG occurs in Othello and Tic-Tac-Toe and can be investigated using these
environments.

Theoretical analysis of WSG. Prior theoretical results for simplified scenarios have shown that the
features of the weak and strong model influence whether WSG is possible. The strong model ideally
has internal representations that are useful for the weak task but do not help replicate the weak model’s
systematic errors (Xue et al.|2025; Hunter Lang et al. 2024; Wu and Sahai[2024). Data points are
needed on which the strong model can learn from the weak model how to utilize its superior features
(Shin et al.|2024). Theoretical analysis shows that while extensive fine-tuning eventually causes strong
models to converge to weak teacher behavior, models with sufficiently powerful representations can
surpass their teachers during intermediate training phases Dong et al. (2025) and Xu et al. (2025)) Our
mechanistic interpretability approach provides the first direct empirical validation of these theoretical
predictions using realistic transformer architectures.

4 Game Environment to study WSG

4.1 Method

Othello Data. We base our Othello environment on the code of (K. Li et al. 2024) and expand it by
adding new game rules and the WSG-pipeline. We represent games as token sequences where each
of the 60 playable squares corresponds to a token. Games are sampled using 7 different rule variants
with moves chosen uniformly at random from all legal moves under that rule. We remove the ~ 1%
of games that end early because no player can move. We split the data into four sets. To prevent data
leakage from a model memorizing sequences, we split over the 12 possible combinations of first two
moves in Othello and start training on the third move. This split is the same for all rules we train on:
for non-Othello rules we sample the first 2 moves from it. We use 26M games for pretraining the
weak and strong model and for linear probes (train), 13M for the weak model’s finetuning phase
(finetune), 4M for early-stopping (val) and 9M for evaluation (test).

Othello Training. We then train transformers autoregressively using cross-entropy loss. For
example, if we train on the rule standard (regular Othello[I)), our model predicts the third move
F6 of the sequence [F4, F5, F6, G4, ...] given the preceding moves [F4, F5]. Since we sampled
the data uniformly over all legal moves, a perfect model should assign for the 4 legal moves {F6,
D2, C3, E5} a uniform probability of 1/4 each. We do not explicitly teach the model any rules of
Othello, instead it learns purely from next-token prediction on randomly sampled games. We adopted
hyperparameters [A.2) from (K. Li et al.[2024) where possible. We pretrain with this procedure GPT-2
style transformers of different sizes on the rules standard, bias_clock, next_to_opponent and
no_flipping as defined in|l} We create two additional models that stay untrained: one with random
parameters untrained and one with constant parameters constant_parameters. Lastly, we take
the Chess-transformer from Toshniwal et al. (2022) and train new embedding and unembedding
matrices for Othello by keeping all other parameters fixed and training on the bias_clock data to
obtain chess. This idea was previously applied to vision models in LLaVA Liu et al. (2023). We



use 7 different sizes nano, micro, mini, small, medium, large, huge @]where huge is the same
architecture as the Othello (K. Li et al.|[2024) and Chess (Toshniwal et al.[2022) transformers. As a
result, we have for all 7 rules each 7 transformers pretrained (only one for chess). We define the
weak task as standard, which stands in the WSG analogy for aligned behaviour. Models trained
under one of the other 6 rules (strong task) represent misaligned Al. We create pairs of weak models
M., trained on standard and strong models M trained on a different rule. Then we finetune through
CE-loss the strong model M on the soft labels of M,,, which stands for humans supervising the
misaligned AL Thisresultsin5-(1+2+3+4+5+46)+ 1-(6) = 111 datapoints. Finetuning
is early-stopped based on ground-truth labels, which is the standard way in the literature. However,
this is a missing piece in the real-world alignment analogy since we might not be able to evaluate
superhuman models.

Tic-Tac-Toe. Our Tic-Tac-Toe environment and training work similar to Othello. It builds on the
Tic-Tac-Toe implementation of Ayyub (2025). The transformer input are game sequences sampled
uniformly over all legal moves. Both rules E] standard (the weak task) and no_diagonals (the
strong task) have different target soft probabilities. Instead of predicting the next token, the model
is now required to learn uniform probabilities over the optimal moves under that rule (which we
computed using a min-max algorithm). While standard is regular Tic-Tac-Toe, in no_diagonals
a player that completes a diagonal automatically loses|1| The train-test split is again over the first
two moves. Since Tic-Tac-Toe is small, it happens that two games from train and test that started
differently end up at the same state. To minimize this, we modify the min-max reward to —1 for a
loss, O for a draw, 1 for a win and 2 if one of the winning conditions includes a player’s first stone
(we splitted over these.). Still, 10% of the training board states are also part of the test set. The reason
is that board states with enclosed first placed stones can also occur in the same way in the test set. We
run a sweep of n = 10 by independently generating the data, splits and model trainings.

Table 1: Rule Definitions for Othello and Tic-Tac-Toe

Rule

Definition

Othello

standard (weak rule)

bias_clock

next_to_opponent

no_flipping

chess

untrained

constant_parameters

Only legal Othello moves. Uniform probability.

Only legal Othello moves. 80% chance of field closest to
corner move-index%4. 20% uniform = strong bias.

Uniform over fields next/diagonal to an opponent piece. Only
flips neighbors = no long-range dependencies.

70% chance of uniform over fields next/diagonal to an oppo-
nent piece. 30% chance random field. No stones get flipped.

Chess model from Toshniwal et al. (2022) adapted to Othello
vocabulary with LLaVA (Liu et al.|[2023).

Strong model is randomly initialized.

Strong model starts with all weights and biases set to their
mean (except embeddings and first attention module).

Tic-Tac-Toe

standard (weak rule)

no_diagonals

Uniform over min-max optimal moves in Tic-Tac-Toe.

Uniform over min-max optimal moves for Tic-Tac-Toe if
completing a diagonal instantly looses.

4.2 Results

Othello. In We can see that for rules more similar to standard Othello, the PGR is positive, i.e.
the strong student surpassed its weak teacher. An intuitive ordering of how similar the rules are to
Othello also matches roughly how well the generalization happens. Chess did not work, however
this might be because the model from Toshniwal et al. (2022)) was trained on portable game notation,
where a single token does not correspond to a single move.
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Figure 2: Othello: Performance-Gap-Recovered for different model sizes and strong rules.
Each subplot shows the WSG result for one rule variant [I] E.g. in[2a] a biased Othello model
has to learn to play unbiased. Each square represents a (M,,, M) pair where the weak model
M, was trained on standard Othello and the strong model M on the modified rule indicated in
the subplot title. The x-axis is the strong model size n_params(My), and the color is the weak
model size (as defined in . Finetuning M, through M,, results in M, ,,,. The y-axis shows
Performance-Gap-Recovered (PGR) [2.1] which is a score that measures the success of WSG. 0
indicates the fine-tuned strong model Mg, ,,, matches the weak teacher’s M., performance, positive
values indicate successful WSG where Mj, ,,, surpassed M,,. The circular dots are the same metric
but computed before finetuning as an ablation to check if the strong model was already performing
well on standard Othello before finetuning. WSG success correlates with rule similarity to standard
Othello. Rules with minor modifications (bias_clock[2a] next_to_opponent [2b] no_flipping
[2d) frequently achieve positive PGR, while more unrelated strong models (chess [2c] untrained
[2¢| constant_parameters 2f)) rarely exceed weak teacher performance. For a sweep of n = 3 the
mean and its standard errors, i.e. u £ o /+/n get displayed.

Tic-Tac-Toe. In figure 3] WSG success in Tic-Tac-Toe depends on weak model capability. Smaller
weak models (nano, small, mini) are consistently surpassed by their strong students, while larger
weak models perform too well to leave room for improvement. Except for some outliers, the PGR
score is stable across the sweeps.

5 Predicting WSG through mechanistic interpretability

5.1 Method

Training Linear Probe. Nanda, Lee, et al. (2023) and K. Li et al. (2024) showed a transformer
trained on Othello (linearly) represents the board state and uses it. We use linear probe accuracy as a
proxy for how well board state information is encoded in the model’s representations. Our goal is
to test the hypothesis that a difference in the quality of board features between the strong and weak
model is related to the strength of WSG.

We use a similar setup to Nanda, Lee, et al. (2023) and predict for games of the rule standard with
a linear probe the board state in the basis empty/mine/yours. Concretely: For an input subsequence
x1,...,x we take the latent activations at the k-th token of layer [ = round_down(4/3 - n_layer),
which is a vector a; € R%-m°%! For the board state we define for each of the 64 board squares one
target y1, ..., i, - - yoa € {(1,0,0),(0,1,0),(0,0,1)} where y; is (1,0, 0) if the i-th field is empty,
(0,1,0) for having a stone of “my” color, i.e. of the currently moving player and (0, 0, 1) if it is the
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Figure 3: Tic-Tac-Toe: Performance-Gap-Recovered for different model sizes. The plot is the
same as 2| We plot for a sweep of n = 10 the mean and its standard errors, i.e. =+ o/+/n. For
small weak models PGR is positive, i.e. they are surpassed by their stronger students. For large weak
models (medium, huge), PGR is negative, because they are already playing close to perfect.

color of the opponent (“yours”). Then, we train 64 linear models of the form softmax(W; - a;) =~ y;
where TW; € R3*d-model yging the hyperparameters The linear probe prediction is the argmax of
the softmax probabilities. The reported accuracy score is defined as the mean over all 64 fields ¢ and
all subgames of 1k games. An untrained model should have 33% accuracy and since fields are more
often empty, each trained probe should get at least 46%. We therefore obtain for every pretrained and
finetuned model M a score LP-acc(M).

Measure of success. We want to test the hypothesis that strong models with better board representa-
tions than their weak teachers are more likely to exceed the teacher’s performance through finetuning.
We define X; = LP-acc(M;) — LP-acc(M,,), where (M,,, M;) is the i-th (weak, strong) model
pair. Note that the weak model is smaller than the stronger one. We want to measure the relation
between Y; = PGR(M,,, Mg, Mg,) and X;. Across all i, we evaluate a) the sign accuracy
]E[lsign( Xi):Sign(yi)] where 1 denotes the indicator function, b) Spearman’s rank correlation coeffi-
cient p4(X,Y) = p(Rank(X),Rank(Y")) and c) the coefficient of determination R?(X,Y"). Note
that since PGR is a non-linear transformation of model performances, Spearman’s rank correlation is
more informative than Pearson’s, as the former captures non-linear monotonic relationships between
X and Y (de Winter et al. 2016). We are using the sign accuracy of X and Y as the simplest possible
classification rule that tests the hypothesis that better representations allow the strong student to
surpass its weak teacher.

Ablation. As an ablation, we repeat the analysis with different definitions of X; to compare how
well WSG success gets predicted by other attributes. First, we test three alternative board state
representations. Prior work showed that transformers naturally use an empty/mine/yours basis rather
than empty/white/black Nanda, Lee, et al. (2023) and K. Li et al. (2024). We also test an empty/filled
basis, which captures less strategic information since it only tracks square occupancy. As a negative
control, we create a deliberately uninformative feature by applying a random linear transformation
{—1,0,1}%4x64 followed by a modulo 3 operation to the empty/mine/yours labels in {0, 1,2}54,
expecting this to show no correlation with WSG success. Finally, we test two potential confounds:
whether model size differences X; = log(n_params(M;)) —log(n_params(M,,)) alone predict WSG
success, and whether strong models that already outperform weak models on the target task (before
fine-tuning) simply achieve higher PGR scores by default: X; = CE(M,,, D,,)) — CE(Mj, D,,)).

5.2 Results

Relationship between Features and WSG. Table 2] shows that the difference in strength of linear
representations of the empty/mine/yours basis is strongly correlated with the strength of WSG. It has
in 89% of the cases the same sign and a Spearman correlation of 0.850. Its correlation metrics are
higher than those of all other baselines. We can further see, that the other features also correlate with
WSG - although less. Inflal we can see how WSG success is linearly separable by the quality of board
representations. In[db|we plot X vs. Y and see a strong monotonic relationship which is reflected in
the high Spearman correlation. The cross-entropy loss before finetuning dd]is only monotonically
related to WSG for the pairs where the strong model is already better before finetuning (i.e. right side



with X' > 0). Neither the model size ¢| nor the highly non-linear feature [dcjhas a clear relation with
the success of WSG.

X-Variable . Max p-val 9
Definition Sign Accuracy Spearman p (Spearman p) R
Linear Probes
Empty/Mine/Yours
LP-Acc(M,) — LP-Acc(Ma,) 0.887 + 0.057 0.850 = 0.011 6.53e-29  0.298 + 0.094
Empty/Black/White
LP-Acc(M,) — LP-Acc(M) 0.821 £0.015 0.771 £ 0.023 1.13e-20  0.164 + 0.061
Empty/Filled

LP-Acc(M,) — LP-Acc(M.,) 0.806 £0.045 0.770 £ 0.014 1.91e-21  0.180 +£ 0.067

Linear x board % 3

LP-Acc(M,) — LP-Acc(M,) 0.458 £0.066 -0.170 +0.121  7.52e-01  0.041 £+ 0.059

Non interpretability based methods

Cross-Entropy
CE(Ma, Do) — CE(M,, D) 0.629 £0.036 0.674 £ 0.041 3.84e-14  0.188 £ 0.036

N_parameters (n_p)

0.569 + 0.085 0.067 £ 0.060 9.57e-01 0.023 4+ 0.010
log(n_p(M.)) — log(n_p(M.)) ¢

Table 2: Metrics to predict PGR vs. actual PGR|5.1]5.1} N=111. Each row defines for each pair
(My,, M) a value X;, e.g. the first row is for the difference in accuracy for linear probes trained on
M, and M. The correlation metrics on the right are computed between X; and Y; = PGR@] over
all 111 pairs. The difference in accuracy of a linear probe, which predicts if a board field is empty or
has the color of the current player or the other players color, is the most correlated with the success of
WSG. The p-values for having at least as strong Spearman correlation as observed are for everything
except the non-linear board state and number of parameters significant/very low - but we have to
account for hierarchical dependence which inflates the number of independent datapoints (Bogdan
2025)). The full datapoints are visualized in[d] We display the mean and standard deviation over a
sample of 3 independent runs. The p-values are the maximum across each run.

Training dynamics. In[5awe see that if the strong model surpasses its weak teacher, it happens
early during the first 1000 finetuning steps. If the strong model only matched or did not reach the
weak model’s performance, the strong model reached its best validation score late in training. This
suggests that if WSG occurs, it occurs through small changes to the model’s parameters. But if small
changes are not enough, it converges towards the weak model’s output. Plot [5b|supports this. In
examples where WSG occurred the strong model at early-stopped-finetuning has roughly the same
level of board representations as before finetuning. But in the examples of no WSG, its Othello board
representations improved. These dynamics suggest that WSG succeeds when strong models already
possess adequate world models and only need to adapt their output behavior, rather than learning
fundamental representations during fine-tuning.

6 Limitations

We base our analysis on a toy language derived from the game of Othello, which may not transfer
to frontier LLMs. Our 111 Othello-finetuning runs differ in model size and rule pairs, but they are
based on seven different rules played on an Othello board. This hierarchical structure may inflate our
correlation estimates, as model pairs from the same rule variants are not truly independent samples
(Bogdan [2025)). Since we only use linear probes, we show that high-quality board representations
correlate highly with WSG. However, we do not show that the strong model uses these features to fit
the weak-finetuning signal. But, prior work (Nanda, Lee, et al.[2023} K. Li et al.|2024) has shown
that board representations are used to play Othello. Our work provides insights into when WSG
works, but it does not offer future-proof practical techniques, since probing for useful features in
superhuman models might become very difficult.
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Figure 4: Relation between PGR and different metrics. Our goal is to find a metric X;(M,,, M)
that given a pair of weak model M,, and strong model M can predict if WSG works. Finetuning
My through M, results in M, ,,,. In all plots, the color represents the Performance-Gap-Recovered
Y; = PG R[2.]which measures how much WSG succeeded: Green means the strong model surpassed
the weak model’s performance on the weak task, i.e. M, ,,, plays legal moves in Othello more
reliably than M,,. Black signifies that the strong model matched the performance, and red that it
performed worse. The shapes represent the strong rule of the model. The x- and y-axis are different
metrics based on M,, and M. On the left[da] we plot strong model probe accuracy (x-axis) versus
weak model probe accuracy (y-axis). The decision boundary that splits green vs. red points is naturally
on the line LP-Acc(M,) > LP-Acc(M,, ). On the right, we plot X; on the x-axis vs. Y; = PGR on
the y-axis (same data as in[2). In[4b] we can see how the difference in board representations in the
basis [empty/mine/yours] shows a monotonic relationship with the PGR metric. The other metrics
He]are less related because there is no X; threshold on the x-axis that splits the green and red
points and the relation between X; and Y; is weaker. We plot for a sweep of n = 3 the first sweep
regularly and the second and third sweep at a high transparency.
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(a) PGR vs. optimization step at which the ground truth (b) PGR vs. the change in accuracy of board represen-
validation loss is minimized. tations during finetuning. Positive means it got better.

Figure 5: Finetuning dynamics of PGR and board representations. The plot is similar to4} We
want to understand the board representations during finetuning. The left plot[5a has green points on
the left and red points on the right. It indicates that if the strong model surpasses its weak teacher,
this happens early in the finetuning. On the right[5b|the green points are around 0 and the red ones
are positive. If WSG occurred, the board representations remain mostly unchanged. But if the strong
model had worse representations and had to learn them during finetuning, WSG does not work.

7 Conclusion

While previous environments didn’t use transformers, or leaked examples of the weak model task into
the pretraining of the strong model, board games with different rules provide a clean environment.
We show the first example of interpretable features that are related to the success of WSG.



8 Reproducibility statement

Full information of our experiments can be found in the chapters.T]and [5.1]and the appendix [§] Our
code is reachable at https://anonymous. 4open.science/r/WSG_games-D22F.
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A Technical Appendices and Supplementary Material

A.1 Model Hyperparameters

Table 3: Model hyperparameters. We use GPT-2 style transformers (Radford et al. [2019) with
dmip = 4 X dmodel and dmodel = Thead X dhead through the TransformerLens library (Nanda and
Bloom [2022)) and MinGPT (Karpathy 2020) as used in (K. Li et al.[2024). The huge transformer
hyperparameters are identical to those of the model investigated in (Nanda, Lee, et al.[2023}; K. Li
et al. [2024).

Othello Tic-Tac-Toe

Model Size TNlayer  Tlhead dmndel Nparameters ~ Tlayer  Tlhead dmndel Nparameters
nano 1 1 7 ~ 2.0K 1 1 1 68
micro 1 2 20 ~ 8.7K 1 2 4 390
mini 2 2 38 ~ 43K 2 4 8 ~ 2K
small 3 3 72 ~ 200K 3 4 16 ~ 10K
medium 4 5 140 ~ 970K 4 8 32 =~ 52K
large 6 6 264 ~ 5.1M 5 8 64 ~ 250K
huge 8 8 512 ~ 20M 6 16 512 ~ 1.2M

A.2 Training Hyperparameters

We do shorter pretraining (roughly 12h A100 vs. estimated 900h) than (K. Li et al. 2024). As a
worst-case comparison, on the largest standard Othello model, our approach results in an illegal move
probability of 2.97% vs. 0.07% and a out of sample linear probe accuracy of 95.99% vs. 95.93%.
However, all models we used in the paper appear fully converged since we only use smaller models
for standard Othello and the other rules are simpler with even smaller models playing close to perfect
on them.

Table 4: Othello: Hyperparameters for Pretraining, Finetuning, and Linear Probing.

Hyperparameter Pretrain Finetune Linear Probe
Max epochs 2 2 1

Early stop patience — 100 2

Early stop val every n steps — 100 100
Batch size 512 512 32
Weight decay 0.1 0.1 0.01
Learning rate 5x 1074 1x107° 1x1074
Adam betas (81, 52) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Grad norm clip 1.0 1.0 —

LR decay schedule Cosine — —

LR warmup First 5% (linear) First 5% (linear) First 5% (linear)

Table 5: Tic-Tac-Toe: Hyperparameters for Pretraining, Finetuning.

Hyperparameter Pretrain  Finetune
Learning Rate 1x107% 1x107°
Weight Decay 1x107% 1x1072
Max Epochs 1000 1000
Batch Size 64 64
Early Stopping Patience over epochs 3 —
Early Stopping Patience over optimization steps — 100
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