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Abstract

Al alignment seeks to align models with human values, yet humans may be unable
to evaluate whether a model is aligned on tasks exceeding human capabilities.
Weak-to-strong generalization (WSG) has been proposed as a proxy for studying
this problem, where a weaker model stands in for human evaluation of a stronger
model. While prior work provides evidence of WSG success, it suffers from
train-test contamination or relies on oversimplified linear models. We introduce a
clean testbed where transformer model pairs are pretrained on different variants
of Othello and Tic-Tac-Toe, then the stronger model is finetuned on data from
the weaker model. Using mechanistic interpretability techniques, we demonstrate
that the stronger model outperforms the weaker model if and only if it has better
board representations. Across 111 WSG pairs and 6 game rules, we find a 0.844
Spearman correlation between WSG success and superior board representations in
the strong model as measured by linear probes. By open-sourcing our code, models
and probes, we hope to accelerate research on interpreting WSG.
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Figure 1: Overview of our method: Each column is one step in our pipeline. The top row is the
training signal, the middle row the model that gets trained and the bottom row displays how features
change during training (structure represents high-quality features, and color the goal). 1. First we
train a weak transformer to play standard Othello (left, red). It learns basic representations around
the board state. 2. Secondly, we train a stronger transformer to play under a different ruleset (middle,
blue) leading to a better world model of the Othello board. 3. Lastly, we use the weak model to
finetune the strong model (right) and can observe that the strong model performs better in standard
Othello than the weak model originally did. We show that this occurs if and only if the strong model’s
board representations are better than those of the weak model. An interpretation is that the strong
model learns from the weak model how to utilize its superior features to play standard Othello.
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1 Introduction

Current alignment techniques such as RLHF (Christiano et al.[2023)) rely on the ability of humans
to evaluate Al i.e. we have a strong teacher (human) that supervises a weaker student (Al). If Al
performance surpasses human performance on a task, the direction of supervision stays the same,
but the dynamic inverts: A weak teacher (human) has to convey the intended objective to a stronger
student (AI). To understand these dynamics, Burns et al. (2023)) proposed to study an analogous setup
where we train a weak model and a strong model on two different tasks (called weak- and strong-task).
Then the weak model finetunes the strong model. It was shown on a variety of tasks that the strong
model can surpass the performance of its weaker teacher on the weak task. This phenomenon
is called Weak-to-Strong Generalization (WSG) (Burns et al.[2023; Y. Guo and Yi Yang [2024;
J. Guo et al. 2024}, Somerstep et al.|2024)). The common hypothesis is that the strong model learns
from the weak model how to utilize its superior capabilities (Burns et al.|2023; Shin et al. [2024)).
If this hypothesis is true, it should be possible to predict whether the strong model can surpass its
weak-teacher by comparing “useful” features between both models.

WSG has been studied both empirically and theoretically. Burns et al. (2023) finetuned GPT4-base
using a human-finetuned GPT2-sized model and recovered roughly GPT-3.5 level performance on
binary NLP classification tasks. One limitation of this class of experiments is that both the task-
evaluation and pretraining of the strong model were conducted on human data while future AT won’t
have examples of superhuman aligned behavior that it can elicit. On specific learning tasks, such as
linear models over Gaussian features, it has been theoretically shown that WSG works if the strong
model has features that are useful for the weak task (Wu and Sahai [2024; Shin et al.|[2024])), but do not
help with learning errors of the weak model (Xue et al.2025; Hunter Lang et al.|2024). There has
been no prior analysis of what these features actually are. Previous mechanistic interpretability work
(Elhage, Nanda, et al.[2021) has analyzed the internal features of models, but not around WSG. E.g.
it has been shown that a transformer, which plays Othello through next-token-prediction, internally
represents and uses the full board state (Nanda, Lee, et al.|[2023; K. Li et al.|[2024). We use these
results to shed new light on this.

We first show that in Othello and Tic-Tac-Toe by training models on different rules WSG can be
achieved. We then investigate WSG with mechanistic interpretability tools in the context of Othello.
We train a weak transformer to play legal moves in Othello and a strong transformer to play under a
modified ruleset. After finetuning the strong model using the output of the weak model, the strong
model plays legal moves more reliably than the weak model. We demonstrate this for multiple strong
rules and additionally apply the same idea to Tic-Tac-Toe, resulting in the smallest transformer setup
with shown WSG. These environments have no pre-train leakage, and we can build on (Nanda, Lee,
et al. 2023}, K. Li et al.|2024) which showed that in Othello transformers represent the board state
as linear directions in the residual stream. We take the accuracy of linear probes on the weak and
strong models as a proxy for the strength of board representations. Empirically, the weak-supervision
succeeds almost if and only if the strong model has better board representations than the weak model.

For 6 different strong rules, we finetune a total of 111 pairs of weak and strong models. We then
show that the prediction rule

“WSG occurs if and only if the strong model has better board representations than the weak model.”

has a 93% accuracy. We initially established this result using two rules and subsequently confirmed it
with an additional four. For each pair we compute the Performance-Gap-Recovered (PGR) (Burns
et al.[2023)) which is a score for how well the strong model generalized. We show that linear probes
trained to predict whether a square is empty, ours, or the opponent’s are the most correlated with
WSG, as measured by accuracy (93%), Spearman rank-correlation (0.884), and R2 (0.214). As an
ablation we compare the predictiveness with the difference in the model size, performance before
finetuning and two different board feature bases (empty/filled), (empty/black/white) and a non-linear
transform of the board. Note that (Nanda, Lee, et al.[2023}; K. Li et al.|2024)) showed that transformers
use the empty/ours/opponents stone bases instead of empty/black/white.

As this is the first investigation of WSG using tools from mechanistic interpretability, our work serves
as a proof of concept. Othello and Tic-Tac-Toe serve as new toy-testbeds for this, because they have
no pretrain leakage and their rules can be easily modified to test the conditions under which WSG is
effective. Our results strengthen the hypothesis, supported by prior theoretical work, that the superior
features of the strong model enable WSG.
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2 Background

2.1 Weak-to-Strong Generalization

Set-up. Weak-to-Strong Generalization refers both to the phenomenon of weak supervision working,
and a setup to experimentally investigate it. First proposed in Burns et al. (2023)), a weak model M,
gets trained on a weak task D,, and a strong model M on a strong task Dy. In the analogy, M,,
stands for the human and M for the superhuman Al with a different objective. To test if humans can
align superhuman Al, we finetune M on the output of M,, to get My, ,,. A large enough model M
converges towards M, but it was observed that early in the finetuning the strong model M, ,,, can
surpass its weak teacher M, (Xu et al. 2025} Burns et al.|2023)). Experiments usually early-stop the
finetuning on the ground truth labels D,,, although this is unrealistic since we won’t have superhuman
ground truth labels.

Performance-Gap-Recovered (PGR). In our experiments, we measure performance through the
Cross-Entropy loss C E(M, D) for a model M and task D. We say WSG occurs when the strong
model surpasses its weak teacher, i.e. CE(Mg sy, D) < CE(M,,, D.,,). We want to know how
close the weakly finetuned model M, ,,, comes to a strong baseline M, which is M pretrained on
ground-truth data (D,, instead of Dy). Burns et al. (2023) proposed the Performance-Gap-Recovered
(PGR) metric that we adapt for CE-loss. It is 0 if My, ,,, matches M,,, positive if it surpasses M,
and 1 if it matches Mp:

CE(MUMDU)) - CE(M@—)HHDUJ)
CE(My,Dy) — CE(Mgy, Dy)

PGR(MUH Ms»—)wa Msb) =

2.2 Mechanistic Interpretability of Othello.

Linear probe. The linear representation hypothesis states that models represent a significant
fraction of their features as linear directions in their activations (Elhage, Hume, et al. 2022} B. Z. Li
et al.2021; Gurnee, Nanda, et al.|2023; Geva et al.[2021). A linear probe is a linear model trained on
intermediate activations of a transformer. If it can consistently predict the value of a feature correctly,
it suggests that the feature is linearly represented.

Othello. We want to analyze whether a superior world understanding of the strong model helps
to learn from a weak supervisor. We use the board game Othello, because it was previously shown
that a transformer trained autoregressively on Othello moves internally represents the board state
and uses it for its output (Nanda, Lee, et al. 2023; K. Li et al.[2024])). This is an example of a world
model, where to solve a task a model has to gain understanding of the task and not just superficial
correlations (Gurnee and Tegmark |2024; Lovering et al.[2022).

Othello is a 2-player game that is played on a 8x8 chessboard. Players take turns placing a stone on
an empty field that flanks opponent pieces in one of the 8 directions between the new stone and an
existing stone of the same color. After placing, the color of all flanked stones is flipped. Making
a legal move therefore depends on the stones in other areas of the board. First, (K. Li et al. [2024))
showed that there are no linear features that represent whether a field on a board is empty/white/black.
Afterwards, (Nanda, Lee, et al.[2023)) showed that the board state is represented as linear directions
empty/mine/yours for each of the 64 fields. Using these directions to modify the activations to
represent a different board state changed the predicted legal moves accordingly (Nanda, Lee, et al.
2023 Belinkov [2021)).

3 Related Work

Tasks with shown WSG. The most used task is NLP classification, either binary (Burns et al.[2023]
Ye et al. |2024; Yao et al.|[2025; W. Yang et al. 2024; Hao Lang et al. [2025)) or multiclass (Y. Guo
and Yi Yang|2024). Because these tasks are more similar to knowledge elicitation and use complex
LLMs, evaluating the role that world models play in WSG is difficult.

Generative tasks have been used for tasks such as answering math questions (Y. Guo and Yi Yang
2024} Yuqing Yang et al.[2024)), answering in a specific style (Somerstep et al. 2024) and solving
chess puzzles (Burns et al.|2023)). These setups have pre-training leakage (Burns et al.[2023), since
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the strong models dataset Dy contains examples of the weak task D,,. But superhuman Al won’t
have examples of superhuman aligned behaviour that it can elicit. For example, Burns et al. (2023)
used as a weak task D,, chess puzzles where a model learns to predict the best move in a chess puzzle.
But the pretraining dataset D, of the strong model GPT4 contained not only text data but also chess
games of players ranked above 1800 Elo. J. Guo et al. (2024) use a task without pretrain leakage
in which they finetune a vision-autoencoder for image classification. But the used models are not
transformers and it is not a generative task. Our Othello and Tic-Tac-Toe environments are the first
generative tasks, where the strong data D, does not contain examples of the weak task D,,,.

Theoretical analysis of WSG has been mostly focused on linear models over fixed features. These
findings often got empirically validated on Gaussian distributions (Wu and Sahai [2024; Ildiz et al.
2025} Shin et al.|2024; Charikar et al.[2025) which do not exhibit characteristics such as superposition
(Elhage, Hume, et al.[2022). Xue et al. (2025) empirically tests the role of the strong models features
by finetuning a full transformer, while other work has trained only a linear model as the last layer.

Games in mech-int. Board games have been successfully used in mechanistic interpretability
before. For chess (Toshniwal et al.|2022)), Othello (Nanda, Lee, et al.[2023; K. Li et al.[2024) and
Tic-Tac-Toe (Ayyub [2025) parts of the algorithm were reconstructed. Chess has also been used
as a benchmark for interpretability techniques (Toshniwal et al. [2022)). We continue this line of
work by showing that WSG occurs in Othello and Tic-Tac-Toe and can be investigated using these
environments.

Theoretical analysis of WSG. Prior theoretical results for simplified scenarios have shown that
the features of the weak and strong model influence whether WSG is possible. The strong model
ideally has features that are helpful for the weak task and unrelated to the errors of the weak model
(Hunter Lang et al.|[2024} Xue et al. 2025} Hunter Lang et al. 2024; Wu and Sahai|2024). Furthermore,
data points are needed on which the strong model can learn from the weak model how to utilize its
superior features (Shin et al.|[2024). Dong et al. (2025)) and Xu et al. (2025) showed theoretically, that
with enough finetuning the strong model converges to the weak model, but if the strong features are
good enough it first surpasses the weak model’s performance. Through mechanistic interpretability,
we add a novel class of evidence for the importance that the features of the strong model play -
without theoretical assumptions or Gaussian features.

4 Game Environment to study WSG

4.1 Method

Othello Data. We base our Othello environment on the code of (K. Li et al.[2024)) and expand it by
adding new game rules and the WSG-pipeline. Othello has 60 playable fields (the center 4 stones are
pre-placed) and each field can get placed on exactly once. We define 60 tokens, one for each field.
We then sample games under 7 different rule sets[I] For example, in standard Othello we choose the
next move autoregressively with uniform probability over all legal moves. We remove the ~ 1% of
games that end early because no player can move. We split the data into four sets. To prevent data
leakage from a model memorizing sequences, we split over the 12 possible combinations of first two
moves in Othello and start training on the third move. This split is the same for all rules we train on,
that is, for non-Othello rules we still sample the first 2 moves from this split. We use 26M games
for pretraining the weak and strong model and for linear probes (train), 13M for the weak model’s
finetuning phase (finetune), 4M for early-stopping (val) and 9M for evaluation (test).

Othello Training. We then train transformers autoregressively using cross-entropy loss. For
example, if we train on the weak rule of Standard Othello, our model predicts the third move of
[F4, F5, F6, G4, ...] given the preceding moves [F4, F5]. Since we sampled the data uniformly over
all legal moves, a perfect model should assign for the 4 legal moves {F6, D2, C3, E5} a uniform
probability of 1/4 each. We do not explicitly teach the model any rules of Othello, instead it learns
purely from next-token prediction on randomly sampled games.

We adopted hyperparameters[A.2]from (K. Li et al. 2024) where possible. We train with this procedure
the weak-rule standard and the strong rules bias_clock, next_to_opponent and no_flipping
as defined in |1 We create two additional strong models that stay untrained: one with random
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parameters untrained and one with constant parameters constant_parameters. Lastly, we take
the Chess-transformer from Toshniwal et al. (2022) and train new embedding and unembedding
matrices for Othello by keeping all other parameters fixed and training on the bias_clock data to
obtain chess. This idea was previously applied to vision models in LLaVA Liu et al. (2023). We
use 7 different sizes nano, micro, mini, small, medium, large, huge E]where huge is the same
architecture as the Othello (K. Li et al.|[2024) and Chess (Toshniwal et al.|[2022)) transformers.

As a result, we have for all 7 rules (1 weak + 6 strong rules) each 7 transformers pretrained and
one for chess. Then we finetune for every pair (M,,, M), where M,, is smaller than My, on the
softlabels of the weak model M, through CE-loss the strong model M. This results in 5 - (1 +
24+344+5+6)+1-(6) =111 datapoints. Finetuning is early-stopped based on ground-truth
labels, which is the standard way in the literature. However, this is a missing piece in the analogy of
aligning superhuman models since we might not be able to evaluate the performance or alignment of
superhuman models.

Tic-Tac-Toe. Our Tic-Tac-Toe environment and training work in the same way as in Othello. It
builds on the Tic-Tac-Toe implementation of Ayyub (2025)). Instead of focusing on legal moves, the
model is now required to learn uniform probabilities over the optimal moves (which we determine
using a min-max algorithm). The Tic-Tac-Toe strong rule no_diagonals is similar to Tic-Tac-Toe,
but a player that completes a diagonal automatically looses (instead of winning)[I} The train test split
is again over the first two moves. Since Tic-Tac-Toe is small, it happens that two games from train
and test that started differently end up at the same state. To minimize this, we modify the reward to
—1 for a loss, 0 for a draw, 1 for a win and 2 if one of the winning conditions includes a player’s first
stone (we split over these.). 10% of the training board states are still also part of the test set. The
reason is that a board states with enclosed first placed stones can also occur in the same way in the
test set. We run a sweep of n = 10 by independently generating the data, splits and model trainings.

Table 1: Rule Definitions for Othello and Tic-Tac-Toe

Rule

Definition

Othello

standard (weak rule)

bias_clock

next_to_opponent

no_flipping

chess

untrained

constant_parameters

Only legal Othello moves. Uniform probability.

Only legal Othello moves. 80% chance of field closest to
corner move-index % 4. 20% uniform = strong bias.

Uniform over fields next/diagonal to an opponent piece. Only
flips all direct neighbors = no long-range dependencies.

70% chance of uniform over fields next/diagonal to an oppo-
nent piece. 30% chance random field. No stones get flipped.

Chess model from Toshniwal et al. (2022) adapted to Othello
vocabulary with LLaVA (Liu et al.|[2023).

Strong model is randomly initialized.

Strong model starts with all weights and biases set to their
mean (except embeddings and first attention module).

Tic-Tac-Toe

standard (weak rule)

no_diagonals

Uniform over min-max optimal moves in Tic-Tac-Toe.

Uniform over min-max optimal moves for Tic-Tac-Toe if
completing a diagonal instantly looses.

4.2 Results

Othello. In[2| we can see that for rules more similar to standard Othello, the PGR is positive,
i.e. strong student surpassed its weak teacher. In bias_clock the model is able to unlearn a bias,
and in next_to_opponent and no_flipping it learned the basics of playing on the board from
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Figure 2: Othello: Performance-Gap-Recovered for different model sizes and strong rules. Each
plot shows the WSG result of finetuning a large model pretrained on a strong rule through a weak
model pretrained on standard Othello. E.g. in[2aa biased Othello model has to learn to play unbiased.
The x-axis is the strong model size, while the color is the weak model size (as defined in E]) Each
square is one pair (M,,, M) where M,, is the weak model trained on Othello and M is a bigger
model trained on the strong rule stated in the caption. The y-axis is the Performance-Gap-Recovered
metric (PGR)[2.1] It is 0 if, after finetuning, M exactly matches M,,’s performance on the weak
rule. It is positive if M, surpasses it, which indicates that WSG worked. The circular dots are
the same metric but computed before the finetuning as an ablation to check if the strong model
was already performing well before finetuning. We can roughly see that for rules that are closer to
Othello (bias_clock[2a] next_to_opponent [2b] no_f1lipping [2d) the strong model surpasses
the weak model in many cases. But if the strong model was not pretrained on a useful task (chess
untrained[Je] constant_parameters [2f)) the strong model usually at most matches the weak
supervisor’s performance.

pre-training, but the core dynamics of long-range dependencies and the stone flipping had to be
learned during finetuning. Note that for the model sizes nano and micro some strong models were
already better than the weak model before finetuning (dotted lines are also positive in[2). For chess,
untrained and constant_parameters, the strong model does not or only slightly (PGR=4%)
surpass its weak teacher. These pairs differ in how well the strong model is able to match the
performance of its weak teacher. We can see that an intuitive ordering of how similar the rules are to
Othello also matches roughly how well the generalization happens. Chess did not work, however
this might be because the model from Toshniwal et al. (2022) was trained on portable game notation,
where a single token does not necessarily correspond to a single move.

Tic-Tac-Toe. In[J]its visible that the smaller models nano, small, mini all get surpassed by their
strong students. The biggest model recovers roughly 60% of the performance compared to getting
trained from ground-truth data. But the better the supervisor, the more difficult it is for the student to
surpass them. Except for some outliers, the resulting PGR score is stable across the sweeps.

S Predicting WSG through mechanistic interpretability

5.1 Method

Training Linear Probe. Nanda, Lee, et al. (2023) and K. Li et al. (2024) showed a transformer
trained on Othello (linearly) represents the board state and makes use of it. Therefore, we measure
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Figure 3: Tic-Tac-Toe: Performance-Gap-Recovered for different model sizes. The plot is the
same as 2| We plot for a sweep of n = 10 the mean and its standard errors, i.e. u + o/+/n. For
smaller weak models PGR is positive, i.e. they are surpassed by their stronger students. If the weak
model is larger, PGR is negative, because they are already playing close to perfect.

the board understanding of a model as the accuracy of linear probes that predict the board state.
Our goal is to test the hypothesis that the difference in board understanding between the strong
and weak model is related to the strength of weak-to-strong generalization. We use a similar
setup to (Nanda, Lee, et al. [2023) and predict with a linear probe the board state in the basis
empty/mine/yours for each model. Concretely: For a subsequence z1, .. ., z; where the Transformer
has to predict 1 we take the activations after layer [ = round_down(4/3 - n_layer), which is a
vector a; € RI-m0del We define as the board state after the first £ moves for each of the 64 board fields
one target y1,...,%i,-.-ysa € {(1,0,0),(0,1,0),(0,0,1)} where y; is (1,0, 0) if the i-th field is
empty, (0, 1, 0) for having a stone of “my” color, i.e. of the currently moving player and (0,0, 1) if
it is the color of the opponent (“yours”). The strong rules no_flipping and next_to_opponent
have different game dynamics, but we still train probes on standard Othello games. Then, we train 64
linear models of the form softmax(W; - a;) ~ y; where W; € R3*d-model yi5ino the hyperparameters
The linear probe accuracy is defined as the proportion of board fields averaged over a sample of
(sub-)games that gets correctly predicted if we take the maximum of the predicted soft-probabilities.
An untrained model should have 33% accuracy and since fields are more often empty, each probe
should get at least 46% after training. We calculate this accuracy for every pretrained weak/strong
model and every finetuned model and obtain a score LP-acc(M ) for each.

Measure of success. To test the hypothesis that better board representations mean that strong
models can generalize the weak supervision, we define X; = LP-acc(M;) — LP-acc(M,,), where
(My,, My) is the i-th (weak, strong) model pair. Note that the weak model is smaller than the stronger
one. We want to measure the relation between Y; = PGR(M,,, Mg .,, Msp) and X;. Across all
i, we evaluate a) the sign accuracy E[lsign( X;)=sign(Y; )] where 1 denotes the indicator function, b)
Spearman’s rank correlation coefficient ps(X,Y) = p(Rank(X), Rank(Y")) and c) the coefficient of
determination R?(X,Y’). Note that since PGR is a non-linear transformation of model performances,
Spearman’s rank correlation is more informative than Pearson’s, as the former captures non-linear
monotonic relationships between X and Y (de Winter et al. 2016). We are using the sign accuracy of
X and Y as the simplest possible classification rule that tests the hypothesis that better representations
allow the strong student to surpass its weak teacher.

Ablation. For our ablation study we test this for 3 different definitions of board state y;. We
use the basis empty/white/black which was shown not to be used by a large Transformer in K. Li
et al. (2024)). The empty/filled basis gets used (Nanda, Lee, et al. |2023)), but since it only tracks
whether a token already occured it is a feature that could also occur in non-Othello models. Further,
we define a highly non-linear board state feature by creating a vector in {0, 1,2}5* through the
empty/mine/yours basis. Then we multiple it with a random matrix in {—1,0, 1}54*%4 and apply a
modulo 3 operation to the resulting vector to obtain 3 classes again. We expect no model to internally
represent this feature well, since its non-linearity makes it expensive to compute and it is unrelated to
the task. Lastly, we also check if in general bigger models generalize over smaller models, i.e. we
set X; = log(n_params(M)) — log(n_params(M,,)). We also investigate if a strong model that is
already proficient on the weak task generalizes better (this is trivially true if the strong model is better
than the weak model even before finetuning) by setting X; = CE(M,,, D,,)) — CE(Mj, D,,)).
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5.2 Results

Relationship between Features and WSG. Table [2]shows that the difference in strength of linear
representations of the empty/mine/yours basis is strongly correlated with the strength of WSG. It
has in 93% of the cases the same sign and a Spearman correlation of 0.844. Its correlation metrics
are higher than those of all other baselines. We can further see, that the other features also correlate
with WSG - altough less. In[da] we can see how if WSG occured or not is linearly separable by the
board representation features. In#b]we plot X vs. Y and see a strong monotonic relationship which
is reflected in the high Spearman correlation. The cross-entropy loss before finetuning [4d|is only
monotonically related to WSG for the pairs where the strong model is already better before finetuning
(i.e. right side with X > 0). Neither the model size fe|nor the highly non-linear feature fficjhas a clear
relation with the success of WSG.

Name Definition X; Same Sign Spearman p (p-val) R?

Linear Probes

Empty/Mine/Yours LP-Acc(M;) — LP-Acc(M,,) 0.937 % 0.844 (3.4e-31) 0.214

Empty/Filled LP-Acc(M,) — LP-Acc(M,,) 0.838% 0.771 (4.7e-23) 0.107

Empty/Black/White LP-Acc(M;) — LP-Acc(M,,) 0.829% 0.781 (5.5e-24) 0.096
) (My)

Linearxboard%3  LP-Acc(M;,
Non interpretability based methods

Cross-Entropy CE(M,, D,)) — CE(M,,D,))  0.604% 0.729 (1.1e-19)  0.167
N_params (n_p) log(n_p(My)) — log(n_p(M,,))  0.640% -0.041 (6.7¢-01)  0.036

Table 2: Metrics to predict PGR vs. actual PGR|5.1[5.1] N=111, 71 positive, 40 negative PGR.
Each row defines for each pair (M,,, M) a value X;, e.g. the first row is for the difference in
accuracy for linear probes trained on M, and M. The correlation metrics on the right are computed
between X; and Y; = PGR[2.I|over all 111 pairs. The difference in accuracy of a linear probe,
which predicts if a board field is empty or has the color of the current player or the other players color,
is the most correlated with the success of WSG. The p-values for having at least as strong Spearman
correlation as observed are for everything except the non-linear board state and number of parameters
significant/very low - but we have to account for hierarchical dependence which inflates the number
of independent datapoints (Bogdan |[2025)). The full datapoints are visualized in E}

— LP-Acc(M,, 0.532% 0.009 (9.2e-01) 0.136

Training dynamics. In[5awe see that if the strong model surpasses its weak teacher, it happens
early during the first 1000 finetuning steps. While if the strong model only matched or did not reach
the weak model’s performance, the strong model reached its best validation score late in training.
This suggests that if WSG occurs, it occurs through small changes to the model’s parameters, while if
it does not surpass, it converges towards the weak model’s output. Plot[5b|supports this. Here we can
see that in examples where WSG occured the strong model after finetuning has roughly the same
level of board representations as before finetuning. But in the examples of no WSG, its Othello board
representations improved. One loose interpretation is that WSG works if the strong model only has to
learn small rule changes, while if it also has to learn a world model it starts to copy the weak model
and converge against it instead of surpassing it.

6 Limitations

We base our analysis on a toy language derived from the game of Othello, which may not transfer to
frontier LLMs. Our 111 Othello-finetuning runs differ in model size and rule pairs, but since they are
based on seven different rules played on an Othello board they are hierarchically dependent (Bogdan
2025). Since we only use linear probes, we show that high-quality board representations correlate
highly with WSG. However, we do not show that the strong model actually uses these features to fit
the weak-finetuning signal. But, prior work (Nanda, Lee, et al.[2023} K. Li et al.|2024) has shown
that board representations are used to play Othello. Our work provides insights into when WSG
works, but it does not offer practical future-proof techniques, since probing for useful features in
superhuman models might be equally difficult as evaluations.



285

286
287
288

290
291

WSG by Linear Probe Accuracy

] * < + o A
0507 L L 4 + oto A FR :‘-A" a4t
. A . ed ‘.!oi’,":’vt”""’
0.85 - ’ N ° "
= e
0.80 - ¢
B
£
0.75 4 . o
Em ¢ *« e + @0 A A

(c) LP[linear xboard%?3]

PGR vs. log-ratio of para

.ll]’&‘%“ ¢ o wHalo A A

Weak models: LP-Acc(My) [empty/mine/yours]

HOD AN 64 04t & O H@O A A « v
0.55 4 o 0 o - n '3
¢ TORHEOHOA 04+ & O Heie Aa | n o 4 5 ¢
05 06 07 08 09 “ . « = .
Strong model board-representations: LP-Acc(Ms) [empty/mine/yours] %
(a) Linear probe accuracy in basis !;
[empty/mine/yours]. X-axis: strong model, o s
y-axis: weak model. Dotted line is y=x. (d) CE-loss (e) log(n_params)

Figure 4: Relation between PGR and different metrics. Our goal is to find a metric X;(M,,, M;)
that given a pair of weak and strong model can predict if WSG works, as measured by Performance-
Gap-Recovered Y; = PGR[21] In all plots, the color represents the PGR: Green means the strong
model surpassed the weak model’s performance on the weak task, i.e. it plays legal moves in
Othello more reliably. Black signifies that the strong model matched the performance, and red that it
performed worse. The shapes represent the strong rule of the model. The x- and y-axis are different
metrics based on M, and M. On the left@ we have on the x-axis the strong models and on the
y-axis the weak models board representation. The decision boundary that splits green vs. red points
is naturally on the line LP-Acc(M;) > LP-Acc(M,,). On the right, we plot X; on the x-axis vs.
Y; = PGR on the y-axis (same as in[2). In[4b] we can see how the difference in board representations
in the basis [empty/mine/yours] monotonically relates to the PGR metric. The other metrics [c| [4d]
are less related because there is no point on the x-axis that splits the green and red points and the
relation between X; and Y; is weaker.
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(a) PGR vs. optimization step at which the ground truth (b) PGR vs. the change in accuracy of board represen-
validation loss is minimized. tations during finetuning. Positive means it got better.

Figure 5: Finetuning dynamics of PGR and board representations. The plot is similar to4} We
want to understand the board representations during finetuning. The left plot[5a has green points on
the left and red points on the right. It indicates that if the strong model surpasses its weak teacher,
this happens early in the finetuning. On the right[5b|the green points are around 0 and the red ones
are positive. If WSG occurred, the board representations remain mostly unchanged. But if the strong
model had worse representations and had to learn them during finetuning, WSG does not work.

7 Conclusion

While previous environments often either didn’t use transformers, or leaked examples of the weak
model task into the pretraining of the strong model, board games with different rules provide a clean
environment. We show an example of interpretable features that are related to the success of WSG.
A further idea that we did not yet finish was to use a Crosscoder (Minder et al. 2025; Lindsey et al.
2024) to determine if the similarity between a model and a very strong Othello model serves as a
better measure since it also includes less interpretable features.
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A Technical Appendices and Supplementary Material

A.1 Model Hyperparameters

Table 3: Model hyperparameters. We use GPT-2 style transformers (Radford et al. [2019) with
dmip = 4 X dmodet and dmodel = Thead X dhead through the TransformerLens library (Nanda and
Bloom [2022)) and MinGPT (Karpathy 2020) as used in (K. Li et al.[2024). The huge transformer
hyperparameters are identical to those of the model investigated in (Nanda, Lee, et al.[2023}; K. Li
et al. [2024).

Othello Tic-Tac-Toe

Model Size Nlayer  Tlhead dmndel Nparameters ~ Tlayer  Tlhead dmndel Nparameters
nano 1 1 7 ~ 2.0K 1 1 1 68
micro 1 2 20 ~ 8.7K 1 2 4 390
mini 2 2 38 ~ 43K 2 4 8 ~ 2K
small 3 3 72 ~ 200K 3 4 16 ~ 10K
medium 4 5 140 ~ 970K 4 8 32 =~ 52K
large 6 6 264 ~ 5.1M 5 8 64 ~ 250K
huge 8 8 512 ~ 20M 6 16 512 ~ 1.2M

A.2 Training Hyperparameters

We do shorter pretraining (roughly 12h A100 vs. estimated 900h) than (K. Li et al. 2024). As a
worst-case comparison, on the largest standard Othello model, our approach results in an illegal move
probability of 2.97% vs. 0.07% and a out of sample linear probe accuracy of 95.99% vs. 95.93%.
However, all models we used in the paper appear fully converged since we only use smaller models
for standard Othello and the other rules are simpler with even smaller models playing close to perfect
on them.

Table 4: Othello: Hyperparameters for Pretraining, Finetuning, and Linear Probing.

Hyperparameter Pretrain Finetune Linear Probe
Max epochs 2 2 1

Early stop patience — 100 2

Early stop val every n steps — 100 100
Batch size 512 512 32
Weight decay 0.1 0.1 0.01
Learning rate 5x 1074 1x107° 1x1074
Adam betas (81, 52) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Grad norm clip 1.0 1.0 —

LR decay schedule Cosine — —

LR warmup First 5% (linear) First 5% (linear) First 5% (linear)

Table 5: Tic-Tac-Toe: Hyperparameters for Pretraining, Finetuning.

Hyperparameter Pretrain  Finetune
Learning Rate 1x107% 1x107°
Weight Decay 1x107% 1x1072
Max Epochs 1000 1000
Batch Size 64 64
Early Stopping Patience over epochs 3 —
Early Stopping Patience over optimization steps — 100
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