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Abstract

AI alignment seeks to align models with human values, yet humans may be unable1

to evaluate whether a model is aligned on tasks exceeding human capabilities.2

Weak-to-strong generalization (WSG) has been proposed as a proxy for studying3

this problem, where a weaker model stands in for human evaluation of a stronger4

model. While prior work provides evidence of WSG success, it suffers from5

train-test contamination or relies on oversimplified linear models. We introduce a6

clean testbed where transformer model pairs are pretrained on different variants7

of Othello and Tic-Tac-Toe, then the stronger model is finetuned on data from8

the weaker model. Using mechanistic interpretability techniques, we demonstrate9

that the stronger model outperforms the weaker model if and only if it has better10

board representations. Across 111 WSG pairs and 6 game rules, we find a 0.84411

Spearman correlation between WSG success and superior board representations in12

the strong model as measured by linear probes. By open-sourcing our code, models13

and probes, we hope to accelerate research on interpreting WSG.14

15

Figure 1: Overview of our method: Each column is one step in our pipeline. The top row is the
training signal, the middle row the model that gets trained and the bottom row displays how features
change during training (structure represents high-quality features, and color the goal). 1. First we
train a weak transformer to play standard Othello (left, red). It learns basic representations around
the board state. 2. Secondly, we train a stronger transformer to play under a different ruleset (middle,
blue) leading to a better world model of the Othello board. 3. Lastly, we use the weak model to
finetune the strong model (right) and can observe that the strong model performs better in standard
Othello than the weak model originally did. We show that this occurs if and only if the strong model’s
board representations are better than those of the weak model. An interpretation is that the strong
model learns from the weak model how to utilize its superior features to play standard Othello.
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1 Introduction16

Current alignment techniques such as RLHF (Christiano et al. 2023) rely on the ability of humans17

to evaluate AI, i.e. we have a strong teacher (human) that supervises a weaker student (AI). If AI18

performance surpasses human performance on a task, the direction of supervision stays the same,19

but the dynamic inverts: A weak teacher (human) has to convey the intended objective to a stronger20

student (AI). To understand these dynamics, Burns et al. (2023) proposed to study an analogous setup21

where we train a weak model and a strong model on two different tasks (called weak- and strong-task).22

Then the weak model finetunes the strong model. It was shown on a variety of tasks that the strong23

model can surpass the performance of its weaker teacher on the weak task. This phenomenon24

is called Weak-to-Strong Generalization (WSG) (Burns et al. 2023; Y. Guo and Yi Yang 2024;25

J. Guo et al. 2024; Somerstep et al. 2024). The common hypothesis is that the strong model learns26

from the weak model how to utilize its superior capabilities (Burns et al. 2023; Shin et al. 2024).27

If this hypothesis is true, it should be possible to predict whether the strong model can surpass its28

weak-teacher by comparing “useful” features between both models.29

WSG has been studied both empirically and theoretically. Burns et al. (2023) finetuned GPT4-base30

using a human-finetuned GPT2-sized model and recovered roughly GPT-3.5 level performance on31

binary NLP classification tasks. One limitation of this class of experiments is that both the task-32

evaluation and pretraining of the strong model were conducted on human data while future AI won’t33

have examples of superhuman aligned behavior that it can elicit. On specific learning tasks, such as34

linear models over Gaussian features, it has been theoretically shown that WSG works if the strong35

model has features that are useful for the weak task (Wu and Sahai 2024; Shin et al. 2024), but do not36

help with learning errors of the weak model (Xue et al. 2025; Hunter Lang et al. 2024). There has37

been no prior analysis of what these features actually are. Previous mechanistic interpretability work38

(Elhage, Nanda, et al. 2021) has analyzed the internal features of models, but not around WSG. E.g.39

it has been shown that a transformer, which plays Othello through next-token-prediction, internally40

represents and uses the full board state (Nanda, Lee, et al. 2023; K. Li et al. 2024). We use these41

results to shed new light on this.42

We first show that in Othello and Tic-Tac-Toe by training models on different rules WSG can be43

achieved. We then investigate WSG with mechanistic interpretability tools in the context of Othello.44

We train a weak transformer to play legal moves in Othello and a strong transformer to play under a45

modified ruleset. After finetuning the strong model using the output of the weak model, the strong46

model plays legal moves more reliably than the weak model. We demonstrate this for multiple strong47

rules and additionally apply the same idea to Tic-Tac-Toe, resulting in the smallest transformer setup48

with shown WSG. These environments have no pre-train leakage, and we can build on (Nanda, Lee,49

et al. 2023; K. Li et al. 2024) which showed that in Othello transformers represent the board state50

as linear directions in the residual stream. We take the accuracy of linear probes on the weak and51

strong models as a proxy for the strength of board representations. Empirically, the weak-supervision52

succeeds almost if and only if the strong model has better board representations than the weak model.53

For 6 different strong rules, we finetune a total of 111 pairs of weak and strong models. We then54

show that the prediction rule55

“WSG occurs if and only if the strong model has better board representations than the weak model.”56

has a 93% accuracy. We initially established this result using two rules and subsequently confirmed it57

with an additional four. For each pair we compute the Performance-Gap-Recovered (PGR) (Burns58

et al. 2023) which is a score for how well the strong model generalized. We show that linear probes59

trained to predict whether a square is empty, ours, or the opponent’s are the most correlated with60

WSG, as measured by accuracy (93%), Spearman rank-correlation (0.884), and R2 (0.214). As an61

ablation we compare the predictiveness with the difference in the model size, performance before62

finetuning and two different board feature bases (empty/filled), (empty/black/white) and a non-linear63

transform of the board. Note that (Nanda, Lee, et al. 2023; K. Li et al. 2024) showed that transformers64

use the empty/ours/opponents stone bases instead of empty/black/white.65

As this is the first investigation of WSG using tools from mechanistic interpretability, our work serves66

as a proof of concept. Othello and Tic-Tac-Toe serve as new toy-testbeds for this, because they have67

no pretrain leakage and their rules can be easily modified to test the conditions under which WSG is68

effective. Our results strengthen the hypothesis, supported by prior theoretical work, that the superior69

features of the strong model enable WSG.70
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2 Background71

2.1 Weak-to-Strong Generalization72

Set-up. Weak-to-Strong Generalization refers both to the phenomenon of weak supervision working,73

and a setup to experimentally investigate it. First proposed in Burns et al. (2023), a weak model Mw74

gets trained on a weak task Dw and a strong model Ms on a strong task Ds. In the analogy, Mw75

stands for the human and Ms for the superhuman AI with a different objective. To test if humans can76

align superhuman AI, we finetune Ms on the output of Mw to get Ms 7→w. A large enough model Ms77

converges towards Mw, but it was observed that early in the finetuning the strong model Ms7→w can78

surpass its weak teacher Mw (Xu et al. 2025; Burns et al. 2023). Experiments usually early-stop the79

finetuning on the ground truth labels Dw, although this is unrealistic since we won’t have superhuman80

ground truth labels.81

Performance-Gap-Recovered (PGR). In our experiments, we measure performance through the82

Cross-Entropy loss CE(M,D) for a model M and task D. We say WSG occurs when the strong83

model surpasses its weak teacher, i.e. CE(Ms7→w, Dw) < CE(Mw, Dw). We want to know how84

close the weakly finetuned model Ms7→w comes to a strong baseline Msb, which is Ms pretrained on85

ground-truth data (Dw instead of Ds). Burns et al. (2023) proposed the Performance-Gap-Recovered86

(PGR) metric that we adapt for CE-loss. It is 0 if Ms7→w matches Mw, positive if it surpasses Mw87

and 1 if it matches Msb:88

PGR(Mw,Ms7→w,Msb) =
CE(Mw, Dw)− CE(Ms7→w, Dw)

CE(Mw, Dw)− CE(Msb, Dw)
.

2.2 Mechanistic Interpretability of Othello.89

Linear probe. The linear representation hypothesis states that models represent a significant90

fraction of their features as linear directions in their activations (Elhage, Hume, et al. 2022; B. Z. Li91

et al. 2021; Gurnee, Nanda, et al. 2023; Geva et al. 2021). A linear probe is a linear model trained on92

intermediate activations of a transformer. If it can consistently predict the value of a feature correctly,93

it suggests that the feature is linearly represented.94

Othello. We want to analyze whether a superior world understanding of the strong model helps95

to learn from a weak supervisor. We use the board game Othello, because it was previously shown96

that a transformer trained autoregressively on Othello moves internally represents the board state97

and uses it for its output (Nanda, Lee, et al. 2023; K. Li et al. 2024). This is an example of a world98

model, where to solve a task a model has to gain understanding of the task and not just superficial99

correlations (Gurnee and Tegmark 2024; Lovering et al. 2022).100

Othello is a 2-player game that is played on a 8x8 chessboard. Players take turns placing a stone on101

an empty field that flanks opponent pieces in one of the 8 directions between the new stone and an102

existing stone of the same color. After placing, the color of all flanked stones is flipped. Making103

a legal move therefore depends on the stones in other areas of the board. First, (K. Li et al. 2024)104

showed that there are no linear features that represent whether a field on a board is empty/white/black.105

Afterwards, (Nanda, Lee, et al. 2023) showed that the board state is represented as linear directions106

empty/mine/yours for each of the 64 fields. Using these directions to modify the activations to107

represent a different board state changed the predicted legal moves accordingly (Nanda, Lee, et al.108

2023; Belinkov 2021).109

3 Related Work110

Tasks with shown WSG. The most used task is NLP classification, either binary (Burns et al. 2023;111

Ye et al. 2024; Yao et al. 2025; W. Yang et al. 2024; Hao Lang et al. 2025) or multiclass (Y. Guo112

and Yi Yang 2024). Because these tasks are more similar to knowledge elicitation and use complex113

LLMs, evaluating the role that world models play in WSG is difficult.114

Generative tasks have been used for tasks such as answering math questions (Y. Guo and Yi Yang115

2024; Yuqing Yang et al. 2024), answering in a specific style (Somerstep et al. 2024) and solving116

chess puzzles (Burns et al. 2023). These setups have pre-training leakage (Burns et al. 2023), since117
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the strong models dataset Ds contains examples of the weak task Dw. But superhuman AI won’t118

have examples of superhuman aligned behaviour that it can elicit. For example, Burns et al. (2023)119

used as a weak task Dw chess puzzles where a model learns to predict the best move in a chess puzzle.120

But the pretraining dataset Ds of the strong model GPT4 contained not only text data but also chess121

games of players ranked above 1800 Elo. J. Guo et al. (2024) use a task without pretrain leakage122

in which they finetune a vision-autoencoder for image classification. But the used models are not123

transformers and it is not a generative task. Our Othello and Tic-Tac-Toe environments are the first124

generative tasks, where the strong data Ds does not contain examples of the weak task Dw.125

Theoretical analysis of WSG has been mostly focused on linear models over fixed features. These126

findings often got empirically validated on Gaussian distributions (Wu and Sahai 2024; Ildiz et al.127

2025; Shin et al. 2024; Charikar et al. 2025) which do not exhibit characteristics such as superposition128

(Elhage, Hume, et al. 2022). Xue et al. (2025) empirically tests the role of the strong models features129

by finetuning a full transformer, while other work has trained only a linear model as the last layer.130

Games in mech-int. Board games have been successfully used in mechanistic interpretability131

before. For chess (Toshniwal et al. 2022), Othello (Nanda, Lee, et al. 2023; K. Li et al. 2024) and132

Tic-Tac-Toe (Ayyub 2025) parts of the algorithm were reconstructed. Chess has also been used133

as a benchmark for interpretability techniques (Toshniwal et al. 2022). We continue this line of134

work by showing that WSG occurs in Othello and Tic-Tac-Toe and can be investigated using these135

environments.136

Theoretical analysis of WSG. Prior theoretical results for simplified scenarios have shown that137

the features of the weak and strong model influence whether WSG is possible. The strong model138

ideally has features that are helpful for the weak task and unrelated to the errors of the weak model139

(Hunter Lang et al. 2024; Xue et al. 2025; Hunter Lang et al. 2024; Wu and Sahai 2024). Furthermore,140

data points are needed on which the strong model can learn from the weak model how to utilize its141

superior features (Shin et al. 2024). Dong et al. (2025) and Xu et al. (2025) showed theoretically, that142

with enough finetuning the strong model converges to the weak model, but if the strong features are143

good enough it first surpasses the weak model’s performance. Through mechanistic interpretability,144

we add a novel class of evidence for the importance that the features of the strong model play -145

without theoretical assumptions or Gaussian features.146

4 Game Environment to study WSG147

4.1 Method148

Othello Data. We base our Othello environment on the code of (K. Li et al. 2024) and expand it by149

adding new game rules and the WSG-pipeline. Othello has 60 playable fields (the center 4 stones are150

pre-placed) and each field can get placed on exactly once. We define 60 tokens, one for each field.151

We then sample games under 7 different rule sets 1. For example, in standard Othello we choose the152

next move autoregressively with uniform probability over all legal moves. We remove the ≈ 1% of153

games that end early because no player can move. We split the data into four sets. To prevent data154

leakage from a model memorizing sequences, we split over the 12 possible combinations of first two155

moves in Othello and start training on the third move. This split is the same for all rules we train on,156

that is, for non-Othello rules we still sample the first 2 moves from this split. We use 26M games157

for pretraining the weak and strong model and for linear probes (train), 13M for the weak model’s158

finetuning phase (finetune), 4M for early-stopping (val) and 9M for evaluation (test).159

Othello Training. We then train transformers autoregressively using cross-entropy loss. For160

example, if we train on the weak rule of Standard Othello, our model predicts the third move of161

[F4, F5, F6, G4, ...] given the preceding moves [F4, F5]. Since we sampled the data uniformly over162

all legal moves, a perfect model should assign for the 4 legal moves {F6, D2, C3, E5} a uniform163

probability of 1/4 each. We do not explicitly teach the model any rules of Othello, instead it learns164

purely from next-token prediction on randomly sampled games.165

We adopted hyperparameters A.2 from (K. Li et al. 2024) where possible. We train with this procedure166

the weak-rule standard and the strong rules bias_clock, next_to_opponent and no_flipping167

as defined in 1. We create two additional strong models that stay untrained: one with random168
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parameters untrained and one with constant parameters constant_parameters. Lastly, we take169

the Chess-transformer from Toshniwal et al. (2022) and train new embedding and unembedding170

matrices for Othello by keeping all other parameters fixed and training on the bias_clock data to171

obtain chess. This idea was previously applied to vision models in LLaVA Liu et al. (2023). We172

use 7 different sizes nano, micro, mini, small, medium, large, huge A.1 where huge is the same173

architecture as the Othello (K. Li et al. 2024) and Chess (Toshniwal et al. 2022) transformers.174

As a result, we have for all 7 rules (1 weak + 6 strong rules) each 7 transformers pretrained and175

one for chess. Then we finetune for every pair (Mw, Ms), where Mw is smaller than Ms, on the176

softlabels of the weak model Mw through CE-loss the strong model Ms. This results in 5 · (1 +177

2 + 3 + 4 + 5 + 6) + 1 · (6) = 111 datapoints. Finetuning is early-stopped based on ground-truth178

labels, which is the standard way in the literature. However, this is a missing piece in the analogy of179

aligning superhuman models since we might not be able to evaluate the performance or alignment of180

superhuman models.181

Tic-Tac-Toe. Our Tic-Tac-Toe environment and training work in the same way as in Othello. It182

builds on the Tic-Tac-Toe implementation of Ayyub (2025). Instead of focusing on legal moves, the183

model is now required to learn uniform probabilities over the optimal moves (which we determine184

using a min-max algorithm). The Tic-Tac-Toe strong rule no_diagonals is similar to Tic-Tac-Toe,185

but a player that completes a diagonal automatically looses (instead of winning) 1. The train test split186

is again over the first two moves. Since Tic-Tac-Toe is small, it happens that two games from train187

and test that started differently end up at the same state. To minimize this, we modify the reward to188

−1 for a loss, 0 for a draw, 1 for a win and 2 if one of the winning conditions includes a player’s first189

stone (we split over these.). 10% of the training board states are still also part of the test set. The190

reason is that a board states with enclosed first placed stones can also occur in the same way in the191

test set. We run a sweep of n = 10 by independently generating the data, splits and model trainings.192

Table 1: Rule Definitions for Othello and Tic-Tac-Toe
Rule Definition
Othello

standard (weak rule) Only legal Othello moves. Uniform probability.

bias_clock Only legal Othello moves. 80% chance of field closest to
corner move-index % 4. 20% uniform =⇒ strong bias.

next_to_opponent Uniform over fields next/diagonal to an opponent piece. Only
flips all direct neighbors =⇒ no long-range dependencies.

no_flipping 70% chance of uniform over fields next/diagonal to an oppo-
nent piece. 30% chance random field. No stones get flipped.

chess Chess model from Toshniwal et al. (2022) adapted to Othello
vocabulary with LLaVA (Liu et al. 2023).

untrained Strong model is randomly initialized.

constant_parameters Strong model starts with all weights and biases set to their
mean (except embeddings and first attention module).

Tic-Tac-Toe

standard (weak rule) Uniform over min-max optimal moves in Tic-Tac-Toe.

no_diagonals Uniform over min-max optimal moves for Tic-Tac-Toe if
completing a diagonal instantly looses.

4.2 Results193

Othello. In 2 we can see that for rules more similar to standard Othello, the PGR is positive,194

i.e. strong student surpassed its weak teacher. In bias_clock the model is able to unlearn a bias,195

and in next_to_opponent and no_flipping it learned the basics of playing on the board from196
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(a) bias_clock (b) next_to_opponent (c) chess

(d) no_flipping (e) untrained (f) constant_parameters

Figure 2: Othello: Performance-Gap-Recovered for different model sizes and strong rules. Each
plot shows the WSG result of finetuning a large model pretrained on a strong rule through a weak
model pretrained on standard Othello. E.g. in 2a a biased Othello model has to learn to play unbiased.
The x-axis is the strong model size, while the color is the weak model size (as defined in 3). Each
square is one pair (Mw,Ms) where Mw is the weak model trained on Othello and Ms is a bigger
model trained on the strong rule stated in the caption. The y-axis is the Performance-Gap-Recovered
metric (PGR) 2.1. It is 0 if, after finetuning, Ms exactly matches Mw’s performance on the weak
rule. It is positive if Ms surpasses it, which indicates that WSG worked. The circular dots are
the same metric but computed before the finetuning as an ablation to check if the strong model
was already performing well before finetuning. We can roughly see that for rules that are closer to
Othello (bias_clock 2a, next_to_opponent 2b, no_flipping 2d) the strong model surpasses
the weak model in many cases. But if the strong model was not pretrained on a useful task (chess
2c, untrained 2e, constant_parameters 2f) the strong model usually at most matches the weak
supervisor’s performance.

pre-training, but the core dynamics of long-range dependencies and the stone flipping had to be197

learned during finetuning. Note that for the model sizes nano and micro some strong models were198

already better than the weak model before finetuning (dotted lines are also positive in 2). For chess,199

untrained and constant_parameters, the strong model does not or only slightly (PGR=4%)200

surpass its weak teacher. These pairs differ in how well the strong model is able to match the201

performance of its weak teacher. We can see that an intuitive ordering of how similar the rules are to202

Othello also matches roughly how well the generalization happens. Chess did not work, however203

this might be because the model from Toshniwal et al. (2022) was trained on portable game notation,204

where a single token does not necessarily correspond to a single move.205

Tic-Tac-Toe. In 3 its visible that the smaller models nano, small, mini all get surpassed by their206

strong students. The biggest model recovers roughly 60% of the performance compared to getting207

trained from ground-truth data. But the better the supervisor, the more difficult it is for the student to208

surpass them. Except for some outliers, the resulting PGR score is stable across the sweeps.209

5 Predicting WSG through mechanistic interpretability210

5.1 Method211

Training Linear Probe. Nanda, Lee, et al. (2023) and K. Li et al. (2024) showed a transformer212

trained on Othello (linearly) represents the board state and makes use of it. Therefore, we measure213
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Figure 3: Tic-Tac-Toe: Performance-Gap-Recovered for different model sizes. The plot is the
same as 2. We plot for a sweep of n = 10 the mean and its standard errors, i.e. µ ± σ/

√
n. For

smaller weak models PGR is positive, i.e. they are surpassed by their stronger students. If the weak
model is larger, PGR is negative, because they are already playing close to perfect.

the board understanding of a model as the accuracy of linear probes that predict the board state.214

Our goal is to test the hypothesis that the difference in board understanding between the strong215

and weak model is related to the strength of weak-to-strong generalization. We use a similar216

setup to (Nanda, Lee, et al. 2023) and predict with a linear probe the board state in the basis217

empty/mine/yours for each model. Concretely: For a subsequence x1, . . . , xk where the Transformer218

has to predict xk+1 we take the activations after layer l = round_down(4/3 · n_layer), which is a219

vector al ∈ Rd_model. We define as the board state after the first k moves for each of the 64 board fields220

one target y1, . . . , yi, . . . y64 ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} where yi is (1, 0, 0) if the i-th field is221

empty, (0, 1, 0) for having a stone of “my” color, i.e. of the currently moving player and (0, 0, 1) if222

it is the color of the opponent (“yours”). The strong rules no_flipping and next_to_opponent223

have different game dynamics, but we still train probes on standard Othello games. Then, we train 64224

linear models of the form softmax(Wi · al) ≈ yi where Wi ∈ R3×d_model using the hyperparameters225

A.2. The linear probe accuracy is defined as the proportion of board fields averaged over a sample of226

(sub-)games that gets correctly predicted if we take the maximum of the predicted soft-probabilities.227

An untrained model should have 33% accuracy and since fields are more often empty, each probe228

should get at least 46% after training. We calculate this accuracy for every pretrained weak/strong229

model and every finetuned model and obtain a score LP-acc(M) for each.230

Measure of success. To test the hypothesis that better board representations mean that strong231

models can generalize the weak supervision, we define Xi = LP-acc(Ms)− LP-acc(Mw), where232

(Mw,Ms) is the i-th (weak, strong) model pair. Note that the weak model is smaller than the stronger233

one. We want to measure the relation between Yi = PGR(Mw,Ms7→w,Msb) and Xi. Across all234

i, we evaluate a) the sign accuracy E[1sign(Xi)=sign(Yi)] where 1 denotes the indicator function, b)235

Spearman’s rank correlation coefficient ρs(X,Y ) = ρ(Rank(X),Rank(Y )) and c) the coefficient of236

determination R2(X,Y ). Note that since PGR is a non-linear transformation of model performances,237

Spearman’s rank correlation is more informative than Pearson’s, as the former captures non-linear238

monotonic relationships between X and Y (de Winter et al. 2016). We are using the sign accuracy of239

X and Y as the simplest possible classification rule that tests the hypothesis that better representations240

allow the strong student to surpass its weak teacher.241

Ablation. For our ablation study we test this for 3 different definitions of board state yi. We242

use the basis empty/white/black which was shown not to be used by a large Transformer in K. Li243

et al. (2024). The empty/filled basis gets used (Nanda, Lee, et al. 2023), but since it only tracks244

whether a token already occured it is a feature that could also occur in non-Othello models. Further,245

we define a highly non-linear board state feature by creating a vector in {0, 1, 2}64 through the246

empty/mine/yours basis. Then we multiple it with a random matrix in {−1, 0, 1}64×64 and apply a247

modulo 3 operation to the resulting vector to obtain 3 classes again. We expect no model to internally248

represent this feature well, since its non-linearity makes it expensive to compute and it is unrelated to249

the task. Lastly, we also check if in general bigger models generalize over smaller models, i.e. we250

set Xi = log(n_params(Ms))− log(n_params(Mw)). We also investigate if a strong model that is251

already proficient on the weak task generalizes better (this is trivially true if the strong model is better252

than the weak model even before finetuning) by setting Xi = CE(Mw, Dw))− CE(Ms, Dw)).253
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5.2 Results254

Relationship between Features and WSG. Table 2 shows that the difference in strength of linear255

representations of the empty/mine/yours basis is strongly correlated with the strength of WSG. It256

has in 93% of the cases the same sign and a Spearman correlation of 0.844. Its correlation metrics257

are higher than those of all other baselines. We can further see, that the other features also correlate258

with WSG - altough less. In 4a we can see how if WSG occured or not is linearly separable by the259

board representation features. In 4b we plot X vs. Y and see a strong monotonic relationship which260

is reflected in the high Spearman correlation. The cross-entropy loss before finetuning 4d is only261

monotonically related to WSG for the pairs where the strong model is already better before finetuning262

(i.e. right side with X > 0). Neither the model size 4e nor the highly non-linear feature 4c has a clear263

relation with the success of WSG.264

Name Definition Xi Same Sign Spearman ρ (p-val) R2

Linear Probes

Empty/Mine/Yours LP-Acc(Ms)− LP-Acc(Mw) 0.937% 0.844 (3.4e-31) 0.214
Empty/Filled LP-Acc(Ms)− LP-Acc(Mw) 0.838% 0.771 (4.7e-23) 0.107
Empty/Black/White LP-Acc(Ms)− LP-Acc(Mw) 0.829% 0.781 (5.5e-24) 0.096
Linear×board%3 LP-Acc(Ms)− LP-Acc(Mw) 0.532% 0.009 (9.2e-01) 0.136

Non interpretability based methods

Cross-Entropy CE(Mw, Dw))− CE(Ms, Dw)) 0.604% 0.729 (1.1e-19) 0.167
N_params (n_p) log(n_p(Ms))− log(n_p(Mw)) 0.640% -0.041 (6.7e-01) 0.036

Table 2: Metrics to predict PGR vs. actual PGR 5.1 5.1. N=111, 71 positive, 40 negative PGR.
Each row defines for each pair (Mw,Ms) a value Xi, e.g. the first row is for the difference in
accuracy for linear probes trained on Mw and Ms. The correlation metrics on the right are computed
between Xi and Yi = PGR 2.1 over all 111 pairs. The difference in accuracy of a linear probe,
which predicts if a board field is empty or has the color of the current player or the other players color,
is the most correlated with the success of WSG. The p-values for having at least as strong Spearman
correlation as observed are for everything except the non-linear board state and number of parameters
significant/very low - but we have to account for hierarchical dependence which inflates the number
of independent datapoints (Bogdan 2025). The full datapoints are visualized in 4.

Training dynamics. In 5a we see that if the strong model surpasses its weak teacher, it happens265

early during the first 1000 finetuning steps. While if the strong model only matched or did not reach266

the weak model’s performance, the strong model reached its best validation score late in training.267

This suggests that if WSG occurs, it occurs through small changes to the model’s parameters, while if268

it does not surpass, it converges towards the weak model’s output. Plot 5b supports this. Here we can269

see that in examples where WSG occured the strong model after finetuning has roughly the same270

level of board representations as before finetuning. But in the examples of no WSG, its Othello board271

representations improved. One loose interpretation is that WSG works if the strong model only has to272

learn small rule changes, while if it also has to learn a world model it starts to copy the weak model273

and converge against it instead of surpassing it.274

6 Limitations275

We base our analysis on a toy language derived from the game of Othello, which may not transfer to276

frontier LLMs. Our 111 Othello-finetuning runs differ in model size and rule pairs, but since they are277

based on seven different rules played on an Othello board they are hierarchically dependent (Bogdan278

2025). Since we only use linear probes, we show that high-quality board representations correlate279

highly with WSG. However, we do not show that the strong model actually uses these features to fit280

the weak-finetuning signal. But, prior work (Nanda, Lee, et al. 2023; K. Li et al. 2024) has shown281

that board representations are used to play Othello. Our work provides insights into when WSG282

works, but it does not offer practical future-proof techniques, since probing for useful features in283

superhuman models might be equally difficult as evaluations.284
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(a) Linear probe accuracy in basis
[empty/mine/yours]. X-axis: strong model,
y-axis: weak model. Dotted line is y=x.

(b) LP[empty/mine/yours] (c) LP[linear×board%3]

(d) CE-loss (e) log(n_params)

Figure 4: Relation between PGR and different metrics. Our goal is to find a metric Xi(Mw,Ms)
that given a pair of weak and strong model can predict if WSG works, as measured by Performance-
Gap-Recovered Yi = PGR 2.1. In all plots, the color represents the PGR: Green means the strong
model surpassed the weak model’s performance on the weak task, i.e. it plays legal moves in
Othello more reliably. Black signifies that the strong model matched the performance, and red that it
performed worse. The shapes represent the strong rule of the model. The x- and y-axis are different
metrics based on Mw and Ms. On the left 4a we have on the x-axis the strong models and on the
y-axis the weak models board representation. The decision boundary that splits green vs. red points
is naturally on the line LP-Acc(Ms) > LP-Acc(Mw). On the right, we plot Xi on the x-axis vs.
Yi = PGR on the y-axis (same as in 2). In 4b, we can see how the difference in board representations
in the basis [empty/mine/yours] monotonically relates to the PGR metric. The other metrics 4c, 4d,
4e are less related because there is no point on the x-axis that splits the green and red points and the
relation between Xi and Yi is weaker.

(a) PGR vs. optimization step at which the ground truth
validation loss is minimized.

(b) PGR vs. the change in accuracy of board represen-
tations during finetuning. Positive means it got better.

Figure 5: Finetuning dynamics of PGR and board representations. The plot is similar to 4. We
want to understand the board representations during finetuning. The left plot 5a has green points on
the left and red points on the right. It indicates that if the strong model surpasses its weak teacher,
this happens early in the finetuning. On the right 5b the green points are around 0 and the red ones
are positive. If WSG occurred, the board representations remain mostly unchanged. But if the strong
model had worse representations and had to learn them during finetuning, WSG does not work.

7 Conclusion285

While previous environments often either didn’t use transformers, or leaked examples of the weak286

model task into the pretraining of the strong model, board games with different rules provide a clean287

environment. We show an example of interpretable features that are related to the success of WSG.288

A further idea that we did not yet finish was to use a Crosscoder (Minder et al. 2025; Lindsey et al.289

2024) to determine if the similarity between a model and a very strong Othello model serves as a290

better measure since it also includes less interpretable features.291
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A Technical Appendices and Supplementary Material376

A.1 Model Hyperparameters377

Table 3: Model hyperparameters. We use GPT-2 style transformers (Radford et al. 2019) with
dmlp = 4 × dmodel and dmodel = nhead × dhead through the TransformerLens library (Nanda and
Bloom 2022) and MinGPT (Karpathy 2020) as used in (K. Li et al. 2024). The huge transformer
hyperparameters are identical to those of the model investigated in (Nanda, Lee, et al. 2023; K. Li
et al. 2024).

Othello Tic-Tac-Toe
Model Size nlayer nhead dmodel nparameters nlayer nhead dmodel nparameters

nano 1 1 7 ≈ 2.0K 1 1 1 68
micro 1 2 20 ≈ 8.7K 1 2 4 390
mini 2 2 38 ≈ 43K 2 4 8 ≈ 2K
small 3 3 72 ≈ 200K 3 4 16 ≈ 10K
medium 4 5 140 ≈ 970K 4 8 32 ≈ 52K
large 6 6 264 ≈ 5.1M 5 8 64 ≈ 250K
huge 8 8 512 ≈ 25M 6 16 512 ≈ 1.2M

A.2 Training Hyperparameters378

We do shorter pretraining (roughly 12h A100 vs. estimated 900h) than (K. Li et al. 2024). As a379

worst-case comparison, on the largest standard Othello model, our approach results in an illegal move380

probability of 2.97% vs. 0.07% and a out of sample linear probe accuracy of 95.99% vs. 95.93%.381

However, all models we used in the paper appear fully converged since we only use smaller models382

for standard Othello and the other rules are simpler with even smaller models playing close to perfect383

on them.384

Table 4: Othello: Hyperparameters for Pretraining, Finetuning, and Linear Probing.
Hyperparameter Pretrain Finetune Linear Probe
Max epochs 2 2 1
Early stop patience — 100 2
Early stop val every n steps — 100 100
Batch size 512 512 32
Weight decay 0.1 0.1 0.01
Learning rate 5× 10−4 1× 10−5 1× 10−4

Adam betas (β1, β2) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Grad norm clip 1.0 1.0 —
LR decay schedule Cosine — —
LR warmup First 5% (linear) First 5% (linear) First 5% (linear)

Table 5: Tic-Tac-Toe: Hyperparameters for Pretraining, Finetuning.
Hyperparameter Pretrain Finetune

Learning Rate 1× 10−3 1× 10−5

Weight Decay 1× 10−4 1× 10−2

Max Epochs 1000 1000
Batch Size 64 64
Early Stopping Patience over epochs 3 —
Early Stopping Patience over optimization steps — 100
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