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ABSTRACT Recent years have experienced phenomenal growth in computer-aided diagnosis systems
based on machine learning algorithms for anomaly detection tasks in the medical image domain. However,
the performance of these algorithms greatly depends on the quality of labels since the subjectivity of a
single annotator might decline the certainty of medical image datasets. In order to alleviate this problem,
aggregating labels from multiple radiologists with different levels of expertise has been established. In
particular, under the reliance on their own biases and proficiency levels, different qualified experts provide
their estimations of the "true" bounding boxes representing the anomaly observations. Learning from these
nonstandard labels exerts negative effects on the performance of machine learning networks. In this paper,
we propose a simple yet effective approach for the enhancement of neural networks’ efficiency in abnormal
detection tasks by estimating the actually hidden labels from multiple ones. A re-weighted loss function
is also used to improve the detection capacity of the networks. We conduct an extensive experimental
evaluation of our proposed approach on both simulated and real-world medical imaging datasets, MED-
MNIST and VinDr-CXR. The experimental results show that our approach is able to capture the reliability
of different annotators and outperform relevant baselines that do not consider the disagreements among
annotators. Our code is available at https://github.com/huyhieupham/learning-from-multiple-annotators.

I. INTRODUCTION
The recent success of computer-aided diagnosis (CAD)

systems can be attributed to the emergence of supervised
learning algorithms [1, 2, 3, 4, 5, 6] and the availability of
large-scale human-labeled datasets [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21]. These systems have been playing
a significant role as clinicians’ assistants in their decision-
making process when analyzing medical images or making an
assessment of the patient’s condition [22, 23, 24]. One of the
indispensable factors contributing to this accomplishment
is the need for high-quality labeled datasets. In fact, in
order to possess these datasets with gold standard labels for
training, there are various costs associated with the collecting
procedures, including costs of cleaning data, diversifying
data, obtaining expert labeling of data, and so on, which
seems to be infeasible and economically unjustified to apply

†Equal contribution.

those in many healthcare-related tasks. Additionally, if only
one expert makes annotations for medical datasets, this is
more susceptible to subjectivity, which might increase the
uncertainty of those datasets. Instead, in order to alleviate
the subjective criteria in the medical-imaging labeling
process, we may have multiple labels provided by different
clinicians or professional annotators, and this is considered
repeated labeling [25, 8, 26]. In practice, there might exist
a substantial amount of disagreement among the clinicians
since each of them visually examines the medical images
and provides a subjective version of the gold standard labels.
This problem causes high inter-reader variability [27, 28, 29],
which could come at the significant expense of machine-
learning-based models’ performance if those annotations are
used as ground truths blindly.
Many previous approaches have been done to mitigate the
effects of inter-observer variations on annotation procedures,
which can be divided into two main groups: (i) simultaneous
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approach and (ii) two-stage approach. In the first category,
models aim to curate labels and learn a supervised network
jointly in an end-to-end fashion. In contrast, in the second
category, the actual estimated labels are first curated from
multiple ones [30], which is known as truth inference,
and subsequently, a supervised model is trained on these
labels. All of those approaches have achieved impressive
results on both classification and segmentation tasks [31, 32].
However, to the best of our knowledge, very little attention
has been drawn to the same problem in detection tasks. In
this paper, the key consideration of our work is to propose
the two-stage approach to addressing such a problem in
supervised abnormal detection tasks, where we have multiple
annotators providing a set of possibly nonstandard labels,
but no absolute gold standard. In particular, the key to our
proposed method is to allow deep learning-based detectors
to give an estimate of the actual hidden labels with the aim
of improving their detection capacity of abnormalities from
chest X-ray scans.

As outlined in Figure 1, the proposed detection method
encompasses two stages that estimate the reliability of
multiple annotators and allows a deep learning network
to learn from these curated labels. In the first stage (on
the left-handed side), given a medical image and a set
of expert annotations, a Weighted Boxes Fusion (WBF)
algorithm [33] is leveraged to estimate the true labels and
their confidence scores, which is generally regarded as the
Truth Inference step. The second stage, as shown in the
right-handed side of Figure 1, is to train an object detector
on estimated labels with a re-weighted loss function using
implicit annotators’ agreement, which is represented by the
estimated confidence scores. For evaluation, we first simulate
and test the proposed approach on a multiple-experts-
detection dataset from MNIST [34], called MED-MNIST.
After that, we demonstrate the potential of a real-world chest
X-ray (CXR) dataset with radiologists’ annotations, namely
VinDr-CXR. In comparison to two baselines: (i) treating all
of the nonstandard labels blindly as the ground truth, and
(ii) ensembling the models supervised by individual expert
annotations, our proposed method provides better detection
performance in terms of mAP scores.

To summarize, the main contributions of the article are
as follows:
• We introduce a simple yet effective method that allows a

deep-learning network to learn from multiple annotators.
Specifically, the proposed approach aims at estimating the
true annotations with confidence scores from multiple ones
and then using those to train a deep learning-based detector
with a re-weighted loss function. This helps eliminate
uncertainty in the learning process and provides higher
label quality to train predictive models.

• We evaluate the proposed approach on both simulated
and real medical imaging datasets and find significant
performance improvements compared to the baseline

approaches. We also release the used CXR dataset, which
is available at https://vindr.ai/datasets/cxr.

The rest of this paper is organized as follows. Related works
on learning from multiple annotators and weighted training
techniques are reviewed in Section II. Section III presents
the details of the proposed method with a focus on how to
estimate the ground truth annotations. Section IV provides
extensive experiments on a simulated object detection dataset
and a real-world chest X-ray dataset. Finally, section V
discusses the experimental results, some key findings, and
limitations of this work, and concludes the paper.

II. RELATED WORKS
In this section, we investigate and discuss some research

directions and existing works that are highly related to
our work, including learning from multiple annotators and
weighted training techniques.

Learning from multiple annotators. In classification and
segmentation problems, a plethora of different works has
shown the potential in reducing the degree of annotator dis-
agreement by estimating the actual labels. Such approaches
can be categorized into two groups: two-stage approaches
[35, 30, 36] and one-stage approaches [32, 37, 38]. Two-
stage approaches first infer the true labels from various ones,
then train a model using the curated ones. The most basic
solution for integrating the information from multiple labels
is based on majority voting (MV) [39], in which the majority
annotations are treated as the ground truth. However, such
approaches have a potentially serious drawback: MV natively
eliminates the uncertainty of the majority labels, and as a
consequence, the generated single label would be suboptimal
because of its bias. Other approaches incorporate additional
information into the truth inference procedure, such as the
annotators’ proficiency [40], the annotators’ confusion matrix
[41, 42], or the difficulty of each sample [43]. Two-stage
approaches have the advantage of simplicity due to the
single-task manner of each stage, but they might not fully
exploit the raw annotations. One-stage approaches or jointly
learning approaches simultaneously estimate the hidden true
labels and learn the desired model from possibly noisy
labels of multiple annotators by formulating a multi-task
problem. Earlier approaches [44, 45] explore the Expectation
Maximization (EM) algorithm for jointly modeling the
annotators’ ability and the latent ground truth. Several recent
approaches employ end-to-end frameworks which enable
the neural networks to learn directly from the noisy labels
by using a [46], and further developed by incorporating
annotators’ confusion matrix [31, 32], or instance features
[37]. However, to the best of our knowledge, our proposed
method is the first one that aims to handle the detection task.
Weighted training examples. Previous works on the use
of weighted training examples can be divided into two
groups: (i) emphasize hard examples and (ii) emphasize
easy examples. Methods in group (i) include hard-example
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FIGURE 1: Illustration of the proposed approach that aims to build a deep learning system for abnormal detection on medical
scans from multiple expert annotators. The training process contains two stages. The first stage focuses on truth inference, in
which it estimates the true labels using the WBF algorithm [33] with the implicit annotator’s agreement as confidence scores.
The second uses the estimated confidence scores to train a deep learning-based detector using a re-weighted object detection
loss function. To provide abnormality analysis during the testing phase, only the fully trained image detector is required.

mining [47, 48], which is a bootstrapping technique over
the difficult examples; boosting algorithms [49], where
the misclassified examples in preceding weak classifiers
are assigned with higher weights; and focal loss [50] that
addresses class imbalance problems by adding a regulator to
the cross-entropy loss for focusing on hard negative examples.
Approaches in group (ii) are instances of broader topics such
as curriculum learning [51], which is biologically inspired
by gradual human learning, with easier examples preferred
in early training stages; learning with noisy labels [52, 53],
which prefers examples with smaller training losses as they
are more likely to be clean.

Unlike any approaches above, we propose in this paper
a re-weighted loss function that assigns more weights to
more confident examples that determine by the consensus
of multiple annotators. Our experimental results validate the
correctness of this hypothesis.

III. PROPOSED METHOD
We describe in this section our main contribution which

is a framework to enhance anomaly detection from medical
images via multiple annotators. After estimating the hidden
actual labels, the framework allows the object detector to
supervisely learn from these estimated labels.

A. PROBLEM FORMULATION
Given a set of N training images X = {xi}Ni=1 with

corresponding bounding box annotations y =
{
ỹ
(r)
i

}N

i=1
,

where ỹ
(r)
i representing the bounding box label for the

example xi provided by rth annotator in a set of R multiple

annotators. In this work, we use labels
{
ỹ
(r)
i

}N

i=1
to estimate

a single set of actual labels with corresponding confidence
scores {yi; ci}Ni=1, then a supervised object detector is
trained with these estimated labels by using the proposed re-
weighted loss function. In order to evaluate the effectiveness

of the proposed method, we use a gold-standard test set
containing M examples T =

{(
x(j),y(j)

)}M

j=1
. In medical

imaging scenarios, where the true labels are not available, we
obtain the gold-standard test labels y(j) from the consensus
of a group of competent radiologists. Figure 1 shows an
overview of our method.

B. ESTIMATING THE ACTUAL LABELS
We estimate the actual labels using Weighted Boxes Fusion
(WBF) algorithm [33]. This technique is originally used for
combining predictions from multiple sources, e.g., predic-
tions from different detection models. We modify the WBF
algorithm and describe it in Algorithm 1, where the bounding
box labels of different annotators are combined into a single
set of bounding boxes with corresponding confidence scores.
They are then used to train the image detectors with a re-
weighted loss function. The qualitative results of Algorithm
1 on the VinDr-CXR dataset are illustrated in Figure 2.
The greater agreement between annotators (two or three
annotators have the same diagnosis for a finding on the
image) reach, the more correct the fused bounding box is.

C. TRAINING METHODOLOGY
Object detection is a multi-task problem where two loss
functions are used: (1) the localization loss Lloc for predicting
bounding box offsets and (2) the classification loss Lcls for
predicting conditional class probabilities. In this work, we
focus on one-stage anchor-based detectors. A general form
of the loss function for those detectors can be written as

L (p, p∗, t, t∗) = Lcls (p, p
∗) + βI(t)Lloc (t, t

∗)

I(t) =

{
1 if IoU {a, a∗} > η
0 otherwise.

(1)

where t and t∗ are the predicted and ground truth box
coordinates, p and p∗ are the class category probabilities,
respectively; IoU {a, a∗} denotes the Intersection over Union
(IoU) between the anchor a and its ground truth a∗; η is
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(a) The original annotations provided by multiple radiology experts.
The same abnormal finding is represented by the sample color.

(b) Fused boxes with corresponding confidence scores after applied
the WBF algorithm.

FIGURE 2: (a) Visualization of multiple expert annotations on a chest X-ray example from the VinDr-CXR dataset [26] and
(b) the fused boxes with confidence scores obtained by the WBF algorithm.

Algorithm 1: The WBF algorithm applied for multiple expert annotations
Input: An image x with a list of annotations ỹ given by a set S(R) of R experts. The expert r ∈ S(R) with proficiency pr provides the

annotations including rx boxes, Ar = [box1, . . . , boxrx ]. All of the experts’ annotations being merged into a list A.
Output: A list of k fused boxes F = [box1, . . . , boxk].

1 Declare empty lists L and F for boxes clusters and fused boxes, respectively. Each position in the list L can have a cluster of boxes or a single
box. Each position in F has only one box, which is the fused box from the corresponding cluster in L.

2 Iterate through all boxes in A in a cycle and attempt to find a matching box in the list F . Two boxes are defined matched if they have a high
degree of overlap (e.g. IoU > 0.4). If there are more than one matching boxes in F , the one with the highest IoU will be chosen.

3 If the matching box is not found in step 1, add the current box to L and F as new entry for the new cluster before moving on to the next box in
the list A.

4 If the match is found in step 1, add this box to the list L at the position pos which corresponds to the matching box in the list F

5 Set the fused box’s coordinates F [pos] to be the weighted average of T boxes accumulated in cluster L[pos] with the following formulas:

x1,2 :=

∑T
i=1 pix1,2∑T

i=1 pi

y1,2 :=

∑T
i=1 piy1,2∑T

i=1 pi

6 Set the the fused boxes’ confidence scores in F to the number of boxes in the corresponding cluster in L once all boxes in A have been processed.

c := cmin (T,N)

The fused boxes with confidence scores now represent the annotators’ level of agreement.

an IoU threshold for objectness, i.e. the confidence score
of whether there is an object or not; β is a constant for
balancing two loss terms Lcls and Lloc [54].
We use fused boxes confidence scores cik obtained from
Algorithm 1 to get a re-weighted loss function that empha-
sizes boxes with high annotators agreement. The new loss
function, which we name Experts Agreement Re-weighted

Loss (EARL) can now be written as

L (p, p∗, t, t∗) = cLcls (p, p
∗) + cβI(t)Lloc (t, t

∗) , (2)

IV. EXPERIMENTS
We validate the proposed method in both synthetic

and real-world scenarios: (1) the MED-MNIST, an object
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detection dataset, which was simulated from MNIST [34]
with multiple annotations; (2) VinDr-CXR [26], a chest X-
ray dataset with labels provided by multiple radiologists. In
the following sections, we describe those two datasets and
our experiment setup, as well as experimental results.

A. DATASETS

1) MED-MNIST Dataset

Based on MNIST [34] – a database of handwritten digits, we
synthesize a multiple-experts-detection dataset, called MED-
MNIST, in two steps: (1) in order to generate a dataset for
the detection task, we randomly merge various digits into
black-background images, where each digit regarded as an
object with a corresponding bounding box (as visualized in
Figure 3a), (2) multiple annotations are assigned to each
object representing the different opinions of experts. In the
case of this simulation dataset, we make an assumption that
those experts have the same proficiency p. These annotations
are generated with two values: (i) class labels and (ii) object
coordinates. In order to synthesize the expert annotations on
class labels, a unique transition matrix Ak(k ∈ {1, . . . , R})
is generated for each expert Ek to represent the expert
misclassification through probability distributions. We further
use an additional class, namely no_obj, for simulating
the false negative mistakes. The exemplars of a transition
matrix are visualized in Figure 4. Regarding the object
coordinate perturbations, we replicate the bounding box
annotations by randomizing the bounding boxes that are
highly overlapping with the given true bounding box. Both
factors (i) and (ii) are controlled by proficiency p. Specifically,
Ak are diagonally dominant (aii > aij for all i ̸= j), and
aii = min(max(ζ, α), 1) with α ∼ N (p, σ) , ζ and σ are
hyperparameters and set to 0.05 and 0.5, respectively. The
simulated bounding boxes are subject to IoU with the true
bounding box being larger than p. In particular, the number
of expert annotations per sample R is 3, and the proficiency
p is 0.8. The simulated MED-MNIST dataset consists of
5,000 samples for training, 1,000 for hold-out validation,
and 1,000 for testing.

2) VinDr-CXR Dataset

VinDr-CXR [26] is the largest public chest X-ray database
with radiologist-generated annotations. It consists of 18,000
chest X-ray scans, with 15,000 for training and 3,000
for testing sets, all of which have labels of both the
localization of abnormal areas and the classification of
common thoracic diseases. In practice, the annotations were
obtained by a group of 17 radiologists who have at least
eight years of experience. Each image in the training group
was independently labeled by three radiologists, while that
in the testing set were meticulously treated and obtained by
the consensus of 5 radiologists. Several samples from the
VinDr-CXR dataset are shown in Figure 5.

3) Rads-VinDr-CXR Dataset
One idiosyncratic characteristic of the VinDr-CXR
dataset [26] is that 94.28% of the abnormal scans in the
training set (3,315 out of 3,516) were annotated by a group
of three radiologists with their correspondence IDs being
R8, R9 and R10. As a result, we generate Rads-VinDr-CXR,
a sub-dataset that includes only samples annotated by those
three radiologists. The Rads-VinDr-CXR is appropriate to
validate the proposed approach.

B. EXPERIMENTAL SETTINGS
1) Evaluation metric
For all experiments, we validate the detection performance
using the standard mean average precision metric at a
threshold of 0.4 (mAP@0.4) [55]. Specifically, a predicted
object is a true positive if it has an IoU of at least 0.4 with
a ground truth bounding box. The average precision (AP) is
the mean of 101 precision values, corresponding to recall
values ranging from 0 to 1 with a step size of 0.01. The
final metric is the mean of AP overall lesion categories. We
also employ mAP@[0.5:0.95:0.05] as an additional metric to
assess the model’s performance on different IoU thresholds,
ranging from 0.5 to 0.95 with a step size of 0.05.

2) Implementation Details
The main detector used in our experiments is YOLOv5-
S [56]. The network is built with PyTorch 1.7.1 and trained
on two NVIDIA RTX 2080 Ti GPUs. All training and testing
images are resized to the dimension of 640 × 640 pixels.
The detector is trained for 50 epochs with 1 cycle learning
rate decay [57] using the SGD optimizer [58]. The initial
learning rate is set to 1e-3. To validate the robustness of the
proposed approach across different deep learning detectors,
we further train and evaluate EfficientDet [59] with sizes D3
and D4. Specifically, all images are resized to 640 × 640
pixels, and the model is trained for 30 epochs with a constant
learning rate 3e-4 using the AdamW optimizer [60].

3) Comparison with state-of-the-art methods
To the best of our knowledge, there is no existing multiple-
annotators model for object detection tasks in the literature.
We compare the performance of our proposed method
against two baselines: a) assuming all of the annotators’
opinions as the ground truth; b) an ensemble of independent
models trained on separate radiologists’ annotation sets [61].
On the Rads-VinDr-CXR dataset, we further compare our
method with the Rads-ensemble, which is the ensemble
of independent models trained on separate radiologists’
annotation sets. In this case, the WBF algorithm is used
to combine the predictions of those models.

C. EXPERIMENTAL RESULTS
Table 1 and Table 2 report the experimental results of
the YOLOv5-S detector on MED-MNIST and VinDr-CXR
datasets, respectively. On both synthetic and real-world
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(a) MNIST Detection (b) Simulated expert annotations

FIGURE 3: The MED-MNIST dataset with multiple expert annotations, obtained by perturbing boxes and classes from the
MNIST dataset [34].

(a) Original transition matrix (b) Simulated expert transition matrix

FIGURE 4: Visualization of the original and synthesized transition matrices. To simulate the false negative scenario, we use
an additional class called no_obj.

datasets, the proposed approach outperforms the baselines,
even with the ensemble of individual experts’ models.
Specifically, on the test set of the MED-MNIST dataset, our
method reports an overall mAP@0.4 of 0.980 and an overall
mAP@[0.5:0.95:0.05] of 0.849. These results are much
higher than the performance of the baseline with mAP@0.4
= 0.975 and mAP@[0.5:0.95:0.05] = 0.815, boosting the
mAP scores of the baseline by 0.51% and 4.2%, respectively.

Experimental results on the VinDr-CXR and Rads-VinDr-
CXR datasets also validate the effectiveness of the proposed
method. We achieve an overall mAP@0.4 of 0.200 on the
VinDr-CXR dataset and an overall mAP@0.4 of 0.158 on the
Rads-VinDr-CXR dataset. We emphasize that these results
outperform both the baseline model, the individual model
trained on the label provided by the individual annotator (i.e.
R8, R9, R10), as well as the ensemble model.
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FIGURE 5: Visualization of abnormal findings (different bounding box colors represent different findings) from the VinDr-
CXR dataset: (top) Each scan in the training set was annotated by three different radiologists; (bottom) Test set annotations
were obtained from the consensus of five radiologists.

The experimental results with the EfficientDet detector
are provided in Table 3. We found that better detection
performances compared to the baseline have been reported.
This evidence confirms the robustness of the proposed
approach across deep learning detectors.

TABLE 1: Experimental results on the MED-MNIST dataset.
The highest scores are highlighted in red.

Method mAP@0.4 mAP@[0.5:0.95:0.05]
Baseline 0.975 0.815
WBF+EARL (ours) 0.980 0.849

TABLE 2: Experimental results on the VinDr-CXR and
Rads-VinDr-CXR datasets with the YOLOv5-S detector. The
highest scores are highlighted in red.

Dataset Method mAP@0.4

VinDr-CXR Baseline 0.190
WBF+EARL (ours) 0.200

Rads-VinDr-CXR

Baseline 0.148
R8 0.121
R9 0.132
R10 0.124
Rads-ensemble [61] 0.154
WBF+EARL (ours) 0.158

TABLE 3: Experimental results on the VinDr-CXR dataset
while EfficientDet is used as the detector. The scores are
measured in mAP@[0.5:0.95:0.05], with highest values
highlighted in red.

Baseline WBF+EARL
EfficientDet-D3 0.1142 0.1353
EfficientDet-D4 0.1223 0.1431

V. DISCUSSIONS
To the best of our knowledge, the proposed method is the

first effort to train an image detector from labels provided
by multiple annotators, which is crucial in constructing
high-quality CAD systems for medical imaging analysis. In
particular, we empirically showed a notable improvement in
terms of mAP scores by estimating the true labels and then
integrating the implicit annotators’ agreement into the loss
function to emphasize the accurate bounding boxes over the
imprecise ones. The idea is simple but effective, allowing the
overall framework can be applied in training any machine
learning-based detectors.

Despite the fact that the proposed method has a higher
predictive performance than the relevant baselines, we
acknowledge that the proposed method has some limitations.
First, the overall architecture is not end-to-end. It may not
fully exploit the benefits of combining truth inference and
training the desired image detector. Second, applying the
WBF algorithm to annotation sets with a high level of noise
may produce low-quality training data. This case is quite
impractical in the medical imaging field when the annotators
are competent clinical experts, but it frequently occurs in
the general learning from crowds problems.

We have planned to advance the current research by exploring
several potential directions. Firstly, the two stages of the
proposed method can be made interactive by replacing the
averaging operator in the WBF algorithm with the weighted
average, where the weights can be learned under supervision.
In this way, the first stage can directly receive feedback
signals from the second stage. Furthermore, the proposed
method’s robustness to noisy annotations and generalization
to out-of-sample distributions will be thoroughly examined.

VOLUME x, 20xx 7



Khiem H. Le et al.: Learning from Multiple Expert Annotators for Enhancing Anomaly Detection in Medical Image Analysis

VI. CONCLUSION
We introduced a framework for supervised object detec-

tion models to learn from multiple annotators by estimating
the actual labels beforehand. We leveraged the Weighted
Boxes Fusion (WBF) algorithm to obtain the aggregated
annotations with the implicit annotators’ agreement as
confidence scores. The estimated annotations are then used
to train a deep learning detector with a re-weighted loss
function that incorporates the confidence scores for localizing
abnormal findings more accurately. We demonstrated that
the proposed approach outperforms current state-of-the-art
baselines in both synthetic and real-world scenarios.
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