Subspace Networks: Scaling Decentralized Training
with Communication-Efficient Model Parallelism

Sameera Ramasinghe Ajanthan Thalaiyasingam Gil Avraham Yan Zuo

Alexander Long

Pluralis Research

Abstract

Scaling models has led to significant advancements in deep learning, but training
these models in decentralized settings remains challenging due to communication
bottlenecks. While existing compression techniques are effective in data-parallel,
they do not extend to model parallelism. Unlike data-parallel training, where weight
gradients are exchanged, model-parallel requires compressing activations and
activation gradients as they propagate through layers, accumulating compression
errors. We propose a novel compression algorithm that compresses both forward
and backward passes, enabling up to 99% compression with no convergence
degradation with negligible memory/compute overhead. By leveraging a recursive
structure in transformer networks, we predefine a low-dimensional subspace to
confine the activations and gradients, allowing full reconstruction in subsequent
layers. Our method achieves up to 100x improvement in communication efficiency
and enables training billion-parameter-scale models over low-end GPUs connected
via consumer-grade internet speeds as low as 80Mbps, matching the convergence
of centralized datacenter systems with 100Gbps connections with model parallel.

1 Introduction

Scaling models and datasets has been pivotal in driving deep learning advancements, with model sizes
expanding from millions of parameters [24] to billions [21}|14] and even trillions [38]. These larger
models exceed the memory capacity of a single device, requiring distributed training approaches to
manage computation across multiple devices.

A common solution is distributed data parallelism (DDP) [27] or its more advanced variant, fully
sharded data parallelism (FSDP) [62]], which distributes data across nodes while replicating the model
on each device. This enables larger batch sizes and higher throughput, but constrains the model size
to the memory of a single device. Model parallelism (MP) addresses this limitation by distributing
parameters across devices [24} 18], enabling the training of models that surpass single-node memory
constraints. MP includes tensor parallelism, which splits individual layers, and pipeline parallelism,
which distributes layers across devices; the latter is the focus of this work. Modern large-scale
training combines DDP and MP to achieve scalability. Despite these strategies, all approaches require
the transfer of large amounts of data between devices [34], limiting training to high-performance
computing clusters with fast interconnects. These infrastructures are costly and accessible only
to resource-rich organizations [46} [36]], creating disparities that restrict broader research and risk
centralizing innovation.

Decentralized training provides an alternative by leveraging consumer-grade devices, enabling
individuals with small devices to participate in large-scale model training, reducing reliance on
major corporations. This approach democratizes access to large-scale model training by leveraging

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

underutilized GPUs in personal computers and volunteer networks 58} 40]. However, decentralized
training faces significant challenges due to limited bandwidth and high latency in heterogeneous
networks [58], necessitating communication-efficient compression algorithms to minimize data
transfer while preserving training performance.

Most existing communication-efficient techniques focus on DDP [28| 41}, [13] [35]], where weight
gradients are computed independently on each node (for each model replica) and then compressed
before peer-to-peer communication. To this end, techniques such as sparsification [54, |52} 30],
quantization [53} 12, 4]], and low-rank approximations [61] exploit the redundancy in weight gradients
to reduce communication. However, in MP, information must be passed between layers, requiring
the communication of activations and activation gradients. Unlike weight gradients, activations
lack inherent redundancy and approximation errors accumulate across layers, leading to degraded
convergence [6l39]. These challenges prevent the straightforward application of DDP compression
techniques to MP, and hence to date, MP decentralized training remains infeasible, resulting in
massive slowdowns over centralized training.

To bridge this gap, we propose a novel compression algorithm tailored for MP. We show that as
training progresses, weight matrices exhibit rank collapse, converging to low-rank subspaces. Thus, by
explicitly constraining specific weight matrices to such low-rank subspaces and leveraging a recursive
structure inherent in transformer networks, we demonstrate that transformer layer activations—despite
their high rank—can be decomposed into a dynamic low-rank component and a static high-rank
component. This decomposition enables efficient compression of information passed between layers
during both the forward and backward passes, ensuring lossless reconstruction in subsequent layers.

We validate the practical effectiveness of our approach through extensive evaluations on billion-
parameter-scale models. Our compression method enables the distribution of large-scale models
across consumer-grade GPUs with internet-grade connections (80Mbps) while matching the con-
vergence performance of centralized setups with 100 Gbps interconnects. We achieve up to 100x
improvement in communication efficiency without any degradation in convergence. Further, we
successfully train an 8B-parameter LLaMA model [14] with layers split across four different geo-
graphical regions, connected via the internet, and achieve convergence on par with baselines utilizing
datacenter-grade connections. By addressing critical limitations in decentralized training, our method
intend to remove significant barriers to scaling large models in resource-constrained environments,
democratizing access to large-scale deep learning.

2 Related works

Decentralized training involves a group of autonomous devices (i.e., no central orchestrator)
collaborating to train a large-scale model by leveraging MP/DDP methods. These devices, often
geographically distributed and heterogeneous, are connected via networks with varying delays and
bandwidth constraints. Key advancements in this area encompass both theoretical insights [28], 23] [22]
as well as practical approaches [42, [11]]. Despite the progress, current efforts predominantly focus
on DDP [28, 23] 22, [11]], which hinders scaling models beyond the memory capacity of local nodes.
SWARM parallelism [40] and Tasklets [S8]], treat the problem as a scheduling challenge, with the
former addressing the stochasticity inherent in decentralized cluster settings. However, all methods to
date still face significant scalability challenges due to communication bottlenecks inherent in MP. Our
method overcomes this limitation by introducing an effective communication compression technique
for MP (specifically pipeline parallel), mitigating a major barrier in scaling decentralized training.

Communication compression accelerates distributed training over bandwidth-limited networks
by reducing data transfers. Key strategies include sparsification, which transmits only significant
parameter updates 54,152, [30]]; quantization, which lowers communication by reducing parameter
precision [10} |53} [2, 4} [19] 1451 I55]]; and low-rank projection, which compresses gradients via
projection onto lower-dimensional subspaces [61, [47]]. While successful in data-parallel settings
(DDP), these techniques face difficulties in model-parallel (MP) setups, including error accumulation
across layers and unstructured activations [6, 39]], causing degraded convergence. Recent work by [50]
proposed low-rank MP communication, but required significant architectural changes, preventing
training from scratch. In contrast, our approach involves minimal initialization changes without
architectural modifications, enabling efficient MP training from scratch with improved scalability.

3 Transformer block

We provide a brief exposition of the transformer block and proceed to describe the proposed com-
pression method. Let the input to the I layer be X! € R**"*4 where b, n, and d are the batch
size, sequence length, and embedding dimension, respectively. Given the weight matrices of each
attention head h as WlQ’h, WlKh, Wi/’h € R4 with dyy = d/H where H is the number of at-

tention heads, the following computations are performed for each attention head: XIQ , = X! WlQ o
X, =XWt Xt = X!'W!,, . The rest of the computations are as follows:

Xl hX}h
X}llead,h = fsoftmax <Q\/d7H7 XlV,h (1)

Xioncat = [Xllwad, | EIURIRI) X}lwad, H]
Xfmn = Xioncalwél + Xl
Xll1idden - frelu (X;lmnwll)
XZ+1 = aniddcnwé)z + Xittn

@

where W, € R4 W € R and W! € R We omit the layer norms for brevity, which
does not affect any of our derivations. dg is usually an integer multiple of d. We will refer to Wé ,
and Wzlg1 as projection matrices from here onward.

4 Subspace networks

4.1 Rank collapse of projection matrices

We leverage the observation that weight gradi-
ents of projection matrices inherently reside in
a low-dimensional subspace, as widely reported
across various architectures [26} 47, 151,159, 160, 1700 P
7.156,16] (see Appendix [E.I|for empirical val-

1800 — W

i) 1600 —w
idation). Together with AdamW’s decoupled % "
weight decay—which suppresses negligible gra- %1500
dient components—this drives projection matri- g 1400

wn

ces to converge toward a subspace spanned by
dominant gradients, resulting in effectively low-
rank structures. Formal treatment is provided in 1200
Statements [5.2} [5.3] and their associated theo- 1100
rems.

1300

0 2000 4091"0 . 60?0 8000 10000
raining steps

To validate this phenomenoln,_ we train an 8-layer, Figure 1: Rank collapse in projection matrices.
2B-parameter model on WikiText [33] and track o), it with Statements [5.2]and 5.3 (and Theo-
the stable rank of its projection layers during . ¢ [E:2][G.1]- Appendix), we empirically observe
training (hidden dimension of 4.096 and a con- a natural rank collapse in the projection matrices
text le2ngth Of 2Oj 8. S}tlable fagk IStCOItrll]p u.ttgd - (of non-compressed models). Shown is an 8-layer,
ZIZ i/ fn ax}‘(ait)l, W e?relgl en?hes ¢ IilZ s11;(— 2B-parameter model, with the stable (effective)
gular value. As shown in Fig.[1} the stable ran ranks of the projection matrices for the 4" (middle)

of projection matrices sharply declines, consis- th ; .
. . e and 7" (penultimate) layers plotted over trainin
tent with our theory. This structure, combined steps (P) layers p &

with the recursive nature of transformers, allows
us to design a nearly-lossless low-rank compres-
sion scheme. While prior works observe similar rank collapse in self-attention matrices [[12, |1} 43]],
we focus specifically on projection matrices as the basis for compression. We also validate this using
official checkpoints of fully-trained large scale models (Appendix [J).

4.2 Investigating the activation structure

We utilize the natural rank collapse we discussed thus far for compression. Observing the transformer
block in Eq. [l|and [2} we identify that a recursive structure emerges for layer outputs due to the skip
connections:

X = Xéiddenwé)g + Xf:oncatw;i)l + X' 3)
which can be expanded as:
l
Xl+1 = Z(Xﬁiddenwéz + Xzoncalwél) + XO (4)
i=1
Here,
X" = PE + TE, 5)

where PE,TE € R’*"*? represent the positional and token embeddings, respectively. Let
[p1, P2, --.,pn] be the sequence of positional indices, and [t1,¢s,...,t,] be the corresponding
token indices. We denote embedding matrices P € R™*¢ for positional embeddings and T € RV*¢
for token embeddings, where v is the vocabulary length. Thus the tokens and positional indices are
embedded via a lookup: PE = P[p;.,,,:] and TE = T[t1.p, :].

Observing Eq. |4} we note that X° = PE + TE contributes as a common additive term to all layer
outputs. Therefore, we consider the rank of the residual activations when PE and TE are subtracted:

l
X = X PE-TE =Y (Xiigaen Wi, + Xignea W) (6)

i=1

Recall that Row(AB) C Row(B), for any two matrices A, B where Row(+) denotes the row space.

Thus, it is clear that if the rows of the projection weights (W,,,, W,) up to layer [span a common
low-dimensional subspace, then the rows of X'+ is also restricted to the same subspace, since vector

spaces are closed under addition.

4.3 Compressing the forward pass

Recall that our analysis so far indicates that the projection matrices naturally confine themselves
to a smaller subspace as training progresses. Consequently, the residual activations X1 are also
restricted to a smaller subspace, if the union of those subspaces is low-dimensional. Based on this
insight, it is intriguing to explore the feasibility of explicitly forcing the rows of projection matrices
to vary within a common low-dimensional subspace &, throughout training, to facilitate activation
compression. As discussed in Section this forces the rows of activation outputs XM to span
the same subspace S. Surprisingly, we find that even with extreme low-dimensional S, the networks
can achieve almost the same convergence rates as in the unaltered ones. This allows us to significantly
reduce the communication between blocks, which we show next.

Let Row(W.,), Row(W!) C S. Further, Let U;, € R*** be a matrix with orthonormal columns
and Col(Uy) = S. Then, the following holds:

X+ = Xy, u) @)

In other words, X'*! remains unaltered by the projection, since it is already in S. The above
formulation introduces a property that can be leveraged for compression during the forward pass.

Specifically, the dimensionality of X!*1U;, € RP*"** is substantially smaller than that of X'+1 &
Rb*nxd gince k < d. If each node in a distributed system is initialized with a shared copy of Uy,

this matrix does not need to be transmitted repeatedly. Instead, X!*1U}, can be transmitted to the
next node, and the original X'+ is reconstructed as:

X!*t = XU + PE 4 TE.

This approach ensures exact recovery of X/*! without approximation.

4.3.1 Decomposition of high-rank components

For practical utilization of above approach, we still need to subtract PE and TE from X'*! to compute

X!*1 (and add them back in the next layer). While PE is deterministic and can be computed locally
within each node, TE varies depending on the batch, making it impossible to do so.

One potential solution is restricting the embedding table T also to S. However, we observed that
this degrades network performance due to severely limiting the representation capacity of the token
embeddings. Instead, we propose modeling TE as a composition of a fixed high-rank component and
a trainable low-rank component:

TE = Tﬁxed[tlzna :] + TS [tlz'ru :]7

where we obtain a trainable low rank embedding table Ts = TﬁxedUkU,}l;. At the beginning of
training, Tfyeq 1S transmitted to all nodes and stored. During the forward pass, we compress the
activations as:

Xl+1 _(Xl+1 _|_ TS [tl:ny])Uk

compressed

:(Xl+1 —PE — Tﬁxed[tl:na :])Uk’ ®)

Note that in Eq. both PE and Tfieq[t1.n, :]—Which are generally high-rank—are subtracted from
X1 50 the remaining (X'*! — PE — Tfyea[t1:n, :]) is already in S and is low-rank. Further, since
Row(Ts[t1.n,:]) € Col(Uy), it is implicitly captured in the compressed activations Xijnllpressed.
Reconstruction at the next node is then performed as:

x!+1 _ xl+l U] + PE + Txealtion,]) = X1

recovered compressed

ensuring a lossless recovery of X!*! while not compromising its high ranked-ness.

A natural question arises: would explicitly restricting the projection matrices to a fixed S, instead of
allowing this property to emerge organically, adversely affect convergence? Note that this is a form
of constraint optimization and there are well known convergence guarantees. However, in Sec. 5] we
provide a convergence proof (to at least a first-order stationary point) for completeness for the above
partial projection case. Furthermore, we conduct extensive experiments across a variety of settings to
empirically validate the convergence. Further, since the fixed embeddings are ephemeral, they have a
negligible effect on the peak GPU memory (Appendix [K)

4.4 Compression in backpropagation

In the previous section, we showed that constraining the rows of projection matrices to a shared
low-dimensional subspace S, coupled with decomposing the embedding table into low-rank and
high-rank components, facilitates compression of activations in the forward pass. This same constraint
naturally facilitates lossless gradient compression in the backward pass. Specifically, let V1, (X!*1)
denote the gradient of X', with respect to the loss, that needs to be propagated to the previous
layer. This gradient can be compressed as:

(VL(XlJrl)) _ VL(XlJrl)Uk c benxk’ 9)

compressed

and subsequently fully recovered in the previous layer [as:

(vL(XlJrl)) _ (VL(XlJrl)) Ul = VL(XlJrl). (10)

recovered compressed 7
Remarkably, this formulation ensures that the gradient flow to the computational graph prior to X!*1
remains lossless, with no approximation error. Intuitively, after backpropagation through the parame-
ter matrix W,,,, the gradient has the form V L(XZ‘H)VV;2 . Because Row(W,) C Col(Uy) = S,

the projection V1 (X'*1)U, U] W, does not alter the resulting gradient flow. Full derivation is
provided in Appendix

4.5 Subspace updates using Grassmann manifold

We observe that restricting the column spaces of projection layers to a fixed subspace, even at high-
ratios, is able to maintain surprisingly adequate convergence. To further improve the convergence, we
allow the subspaces to slowly drift. To align the subspace with the gradient directions, we minimize
the norm of the gradient components that lie outside the subspace, as measured at the last Transformer
layer. Let V,(Xfnal) ¢ REXn*d denote the activation gradients at the last compressed transformer

layer. The leftover gradient, which lies outside the subspace, is X! = v (Xfin)(I — U, U]),

where I — UkU;r is the projection operator onto S. We accumulate X?“al over K iterations to

. . ket K
obtain the metric Lgrassmann = 7= R

minimize L£gGrassmann OVer all possible Uy.

| Xfinal |12 where || - || is the Frobenius norm. We aim to

A straightforward way to minimize £Grassmann 1S by performing SVD on it and updating the subspace
using the left singular vectors. However, abrupt changes to the subspace can disrupt convergence.
Thus, we perform smooth updates by taking steps on the Grassmann manifold. The Grassmann
manifold G(k,n) is the set of all k-dimensional subspaces of R™. A point on G(k,n) is represented
by an orthonormal matrix U, € R™**, where the columns of U}, form a basis for the subspace.
Thus, defining S as a point on the Grassmann manifold enables taking smooth steps on the manifold.
To minimize LGrssmann, W€ employ gradient descent on G(k, n). First, the Euclidean gradient of
LGrassmann With respect to Uy, denoted V.. . (Uy), is projected onto the tangent space to obtain
the Riemannian gradient:

(VeUk)angent = V Lommm (Uk) = UkUL Vg (Uk).- (1

Then, we perform a gradient descent step U} = U, — n(V LUk)tangem where 7 is the step size.
Then, to map U™ back to the manifold, we apply a retraction by orthonormalizing the columns of
USY using QR decomposition U, R = QR(U}Y), where QR(-) denotes the QR decomposition.
In practice, we perform this subspace update on U, very infrequently (per every 500 iterations), and
transmit to all the layers.

5 Theoretical insights

This section provides several theoretical insights for the proposed method. We structure our analysis
into four key statements (and put the corresponding formal theorems in the Appendix). The first
statement indicates that if there is a lossy compression between the layers, as the model depth
increases, the approximation error of compression can grow exponentially. The second and third
statements demonstrate that, even in an uncompressed network, if the weight gradients are confined
to a particular subspace, the weight matrices also naturally converge to a low-dimensional subspace
with AdamW. The fourth observation establishes that explicitly enforcing a subset of weights onto a
low-dimensional subspace does not harm convergence.

If the compression of activations and activation gradients between layers in a model-parallel
setting introduces approximation errors, these errors can accumulate exponentially with
increasing depth, provided the weight and activation norms are sufficiently large. Refer to
Theorem for a formal proof.

The above result suggests that extending compression techniques from DDP (which are lossy) to MP
(which requires compressing information passed between adjacent layers) leads to the accumulation of
approximation errors. This occurs because the compression at one layer directly impacts downstream
layers, a phenomenon not present in DDP. Additionally, the lack of exploitable structure in activations
and activation gradients [6, 39] typically results in larger approximation errors compared to the
gradients of weights. This limitation makes such compression methods unsuitable for MP in large-
scale models.

If the gradients of a particular weight matrix in a network are constrained to a fixed subspace,
then under AdamW, the weight updates asymptotically converge to that subspace over a
sufficiently large number of training steps. For a formal proof, see Theorem [E.2

This provides a critical insight: if the gradients of an unconstrained network predominantly lie within
a specific low-dimensional subspace S—a property we empirically validate (see Appendix [C)—then
the AdamW optimizer asymptotically restricts updates outside of S. While this behavior is straight-
forward for vanilla stochastic gradient descent (SGD), it is non-trivial for AdamW due to its adaptive
learning rate mechanism.

It Statement@holds, then the corresponding weight matrices asymptotically converge to
the same subspace, irrespective of their initialization. For a formal proof, see Theorem|[G.1]

Intuitively, this result indicates that the decoupled weight decay mechanism in AdamW systematically
suppresses components of the weight matrix that receive negligible gradient updates. Consequently,
the learned weights converge to a low-dimensional subspace defined by the gradient updates.

A network in which a subset of weights is constrained to a low-dimensional subspace
converges to a first-order stationary point with a convergence rate of O(1/T"). For a formal
proof, see Proposition [H.1]

This result is a straightforward extension of the the convergence rate guarantees for constrained
optimization using proximal gradient descent on non-convex functions. It shows that even when a
subset of parameters is restricted to a lower-dimensional subspace, the standard convergence rate of
O(1/T) in terms of stationarity remains intact.

1 ~—— Decentralized 100x compressed (Ours) - 80Mbps —— Decentralized 100x compressed (Ours) - 80Mbps ~—— Decentralized 100x compressed (Ours) - 80Mbps
—— Decentralized - 80Mbps —— Decentralized - 80Mbps —— Decentralized - 80Mbps
—— Centralized - 100Gbps

10 —— Centralized - 100Gbps 10 —— Centralized - 100Gbps

Training Loss

A o » N @ ©

Training Loss
Training Loss

0 25 50

75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Training time (hours) Training time (hours) Training time (hours)

Figure 2: Convergence in low-bandwidth settings. From left to right: OpenWebText, WikiText, and
BookCorpus. In each plot, the training curves are presented against wall-clock time for an 8-layer (2B)
model. Decentralized models utilize 80Mbps connections while the centralized model has datacenter-
grade 100Gbps links. Our compressed model achieves on-par convergence to the centralized model,
even under a 80Mbps bandwidth budget. In contrast, the non-compressed decentralized model with
80Mbps links suffers from significantly slower convergence due to the communication bottleneck.

6 Experiments

6.1 Experimental Setup

We evaluate decoder-only models (based on Llama 3 [14]]) across four large-scale datasets: WikiText
(WT) [33], BookCorpus (BC) [63], OpenWebText (OWT) [13]], and C4 [37]. For WT, we use the
standard splits; for BC and OWT, we randomly select 10% of training data as validation; for C4, due
to computational constraints, we report training loss only. The base model has a context length of
1024, embedding dimension 4096, 24 heads, and 8 layers (~2B parameters); larger models (up to
8B parameters) are noted explicitly in ablation sections. We use a base learning rate = 3e-4 (with
warmup and linear decay), weight decay 0.01, and batch size 32, unless otherwise specified. We

use GPipe [18] via torch.distributed.pipelining, integrating our compression into all but the
final transformer layer.

We initialize Uy, with isotropic Gaussian noise and set £k = 40, achieving 100X compression.
Bandwidth simulations sample from A/ (B, 0.2B8) per pass, defining ‘centralized’ as 100Gbps or
16Gbps setups, with all others as ‘decentralized’. Experiments (except the 8B Llama run on L4 GPUs
with internet-based decentralized connections) use A10g GPUs (24GB VRAM) with one layer per
GPU. Our method’s effectiveness increases with faster accelerators, as slower GPUs allow more
computation-communication overlap.

Inference Training

T}
@
e

16 layers

8 Dec. Comp. (Ours) - 80Mbps
— Dec. - 80Mbps 0
nt. - 100Ghps

ressed (Ours)
ompresse

=2

s 3

TPS - compr
TSI
N
5]
TPS - compr
TS

£200

mul
o

100Gbps 1Gbps 800Mbps 80Mbps
Bandwidth o

1806bps 1Gbps 800Mbps 80Mbps
Bandwidth

1020 30 40 50
Training time (hours)

Figure 3: Throughput gain. Compressed mod-
els significantly improve throughput under band-
width constraints for inference (left) and training
(right). Results shown for 8-layer (2B) models.

Figure 4: Performance vs. depth. Our compres-
sion matches or surpasses centralized baselines
as depth increases (left: 8 layers; right: 16 lay-
ers). With two layers per GPU, computational

load rises, slightly narrowing the gap between
centralized and decentralized models.

Square-Cube Law. Square-cube law [40] states that in distributed training, computation scales
cubically with model size per node, while communication grows only quadratically. This partially
offsets communication bottlenecks with computational overhead. Thus, c-times slower communica-
tion does not lead to a c-times slower convergence. Hence, by improving communication efficiency
by 100x, we achieve convergence speeds comparable to 100Gbps setups, even with 80Mbps links.

== No Compression

Our compression (x100)
~=— Quantization (x16)
—— SVD (x100)
~— Top-K (x100)

-y TPS training TPS inference

100000
100 80000 9

300 50000

@ @
£ £
& E

Train Loss
oo

200 10000

100 20000

2500 5000 7500 1000012500150001750020000

1 0 o 0
o 10 0 70 1
Training Steps

20 30 40 50
Wall Clock Time (Hours)

Figure 5: Training convergence and throughput
on an 8B LLaMA model. All runs use 64 L4

Figure 6: Comparison against lossy compres-
sion methods. Top-k, low-rank (SVD), and quan-

GPUs distributed over 8 instances. Centralized
instances reside within one region (min bandwidth
16 Gbps), while decentralized instances span 4
regions (min bandwidth 60 Mbps), highlighting

tization fail to converge at 100x compression,
with quantization additionally limited by numer-
ical precision. Our method matches the conver-
gence rate of the uncompressed baseline.

pipeline parallel bottlenecks due to reduced inter-
node bandwidth.

6.2 Convergence in low-bandwidth settings

Our method enables training models over extremely low-bandwidth connections. We trained networks
on both 80 Mbps and datacenter-grade 100 Gbps connections. Fig. P]illustrates the train curves of
an 8-layer (2B) model against wall-clock time. As expected, training over 80 Mbps links in the
decentralized setting significantly degrades convergence. In contrast, with our compression, the
decentralized model achieves on par convergence to the network trained over 100 Gbps connections.
To demonstrate the generalization, the perplexity scores of each model over validation sets is shown in
Table.[T] As evident, the decentralized model with our compression even surpasses the performance
of the centralized model for the same training time. To further validate test-time performance, we

train models to convergence using the compute-optimal 1:20 model-to-token ratio from the Chinchilla
scaling law [[17], reaching compute-optimality at 12B training tokens with superior performance

(Appendix [F).
6.3 Throughput gain

Our compression also significantly ac-

celerates inference. As inference re- Taple 1: Perplexity scores. Models trained for 12 hours
quires less computation than train- on OpenWebText (OWT), BookCorpus (BC), and WikiText
ing, bandwidth becomes the domin;mt (WT). Bandwidth (B/W) and tokens per second (TPS) are re-
bottleneck; hence, our compression ported. Our method outperforms even the centralized model,
yields substantial gains. Fig. ﬂh_ls' achieving significantly higher TPS compared to the non-
trates gains in both training and in- compressed decentralized baseline.

ference: at inference, we achieve al-

most a 100x speedup at 80 Mbps. Al- Model | B/W |OWT, BC| WT|| TPSt

though this advantage diminishes at 1 - 80Mbps | 925.19 108.85 601.84| 36.12

higher bandwidths (e.g., 100Gbps), pec comp. |80Mbps | 46.75 17.63 23.01|592.41
we still observe about a 3 improve-
ment. This indicates that even cen- Cen- | 100Gbps| 47.22 18.35 23.08|602.57

tralized systems benefit from re-
duced inference latency using our approach, which can translate into considerable cost savings
with the recent trend of inference time scaling of large language models [44, /5] A similar trend
holds for training throughput as well.

6.4 Scaling across globally distributed GPUs

To further explore the scalability, we trained a LLaMA 8B parameter variant [[14] with 2048 context
length, using TorchTitan [29] on the C4 dataset across 64 L4 GPUs distributed across 8 instances. We
use a pipeline parallel setup with 32 stages running in 2 FSDP dimensions, where the 32 transformer
layers are distributed one layer per stage. We evaluated two environment configurations: Centralized
and Decentralized. In the Centralized setting all instances were located in the same cloud region
and the bandwidth spans between 16Gbps-27Gbps. For the Decentralized case the 8 instances
were distributed across 4 distinct regions (North America, Europe, and Asia). Additionally, no two
consecutive stages were placed in the same region for the decentralized setup, hence, bandwidth
spans from 60Mbps-350Mbps. As shown in Fig. 5] our compression method in the decentralized
configuration matches the wall-clock time (even slightly improving) and TPS with the centralized
setting. In contrast, the decentralized setting w/o compression was 13x slower.

6.5 On other communication efficient distributed training methods

Our method is tailored for model parallel compression and therefore is orthogonal and complementary
to data parallel communication-reduction techniques. This enables layering our compression on top
of them. To illustrate this, we present an experiment: we applied top-k and low-rank compression
(powerSGD [47])) to the weight gradients (replicating a DP scenario) while simultaneously using our
scheme to compress activations and activation gradients. Under an 80Mbps link between devices, we
achieved a substantial increase in TPS with no loss of convergence (see Table[2).

6.6 Ablations

We conduct ablations on the C4 dataset to eval-
uate the robustness of our method. Fig.ffcom- Taple 2: Our compression can be overlayed on
pares performance across model depths. If our DpP compression methods.

compression were lossy, deeper models would
accumulate errors, degrading performance rela- Method | TPS | Perplexity |
tive to the centralized baseline [|6] (see also The-

Top-K (10%) 32 ‘ 52.98
orem [D.T). However, our results show that even
as depth increases from 8§ (2B) to 16 (3.5B) lay- Top-K (10%) + Ours|599 |52.45
ers, convergence remains on par with centralized PowerSGD 29 |31.18
baselines. Further, our large-scale experiment PowerSGD + Ours |532 |30.26

(Fig.[5) confirms that 32-layer models scale ef-

fectively, demonstrating decentralized training of large models with MP for the first time. Fig. dalso
highlights that in the 16-layer model, assigning two layers per GPU (A100, 40GB VRAM) increases
per-GPU computation, reducing bandwidth bottlenecks and narrowing the gap between decentralized
and centralized models. This validates the square-cube law [40], showing how computation-to-
communication balance impacts decentralized training. However, note that decentralized training
primarily targets low-end GPUs rather than high-end hardware. Ablations over other design choices
and the negligible memory overhead are discussed in Appendix [K]

6.7 Comparison against lossy compressions

As per Statement [5.1} standard compression methods used in DDP do not effectively extend to
MP. We train an 8-layer model on the WikiText, comparing our compression method with TopK,
quantization, and low-rank projection. As shown in Fig.[6] with an aggressive compression rate of
%100, such compression schemes fail to converge. In contrast, our method achieves convergence on
par with the non-compressed model. Note that for quantization, the best compression rate we can
achieve is 16 x for 16bit precision.

7 Conclusion

We propose a novel compression technique that, for the first time, enables aggressive compression in
model parallel. By leveraging structured subspace constraints, we achieve up to 100x communication
efficiency while preserving convergence. Our compression enhances both inference and training
efficiency, reducing latency even in centralized settings. Extensive experiments across varying model
depths, bandwidth conditions, and large-scale deployments validate the effectiveness and scalability
of our approach. Notably, we demonstrate its real-world applicability by successfully training an
8B-parameter Llama model on low-end GPUs distributed across multiple global regions, connected
solely via internet-grade (60 Mbps) links, while achieving convergence comparable to a centralized
setup. Our results open a practical pathway towards decentralized training of large-scale models
using model parallelism.

8 Limitations

While we provide foundational theoretical analysis, deeper insights into our method would be
beneficial. Notably, our compressed models sometimes outperform uncompressed baselines at
equal training iterations, potentially due to implicit regularization effects. A rigorous exploration of
this phenomenon remains open. Additionally, extending our analysis to advanced optimizers (e.g.,
AdamW) and deriving tighter convergence bounds would strengthen the theoretical grounding; we
leave these directions for future work.

References

[1] Emmanuel Abbe, Samy Bengio, Enric Boix-Adsera, Etai Littwin, and Joshua Susskind. Transformers
learn through gradual rank increase. Advances in Neural Information Processing Systems, 36, 2024.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing systems,
30, 2017.

[3] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pages 404-413. PMLR, 2018.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560-569. PMLR, 2018.

[5] Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-time
compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

[6] Song Bian, Dacheng Li, Hongyi Wang, Eric Xing, and Shivaram Venkataraman. Does compressing
activations help model parallel training? Proceedings of Machine Learning and Systems, 6:239-252, 2024.

10

(7]

(8]
(9]

(10]

(1]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]
[21]

(22]

(23]

[24]

[25]

(26]

Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah. Low-rank
gradient descent. IEEE Open Journal of Control Systems, 2023.

DeepSeek Al Team. DeepSeek LLMs, 2023.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of
adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise quantiza-
tion. arXiv preprint arXiv:2110.02861, 2021.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Anton Sinitsin, Dmitry Popov,
Dmitry V Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, et al. Distributed
deep learning in open collaborations. Advances in Neural Information Processing Systems, 34:7879-7897,
2021.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure attention
loses rank doubly exponentially with depth. In International Conference on Machine Learning, pages
2793-2803. PMLR, 2021.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kuncoro,
Marc’ Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication training
of language models. arXiv preprint arXiv:2311.08105, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http://
Skylion007.github.io/OpenWebTextCorpus, 2019.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
signsgd and other gradient compression schemes. In International Conference on Machine Learning, pages
3252-3261. PMLR, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
Neil Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16, pages 491-507.
Springer, 2020.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory
of decentralized sgd with changing topology and local updates. In International Conference on Machine
Learning, pages 5381-5393. PMLR, 2020.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip
algorithms with compressed communication. In International Conference on Machine Learning, pages
3478-3487. PMLR, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
Advances in Neural Information Processing Systems, 36, 2024.

Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, and Pin-Yu Chen. Learning on transformers is provable
low-rank and sparse: A one-layer analysis. In 2024 IEEE 13rd Sensor Array and Multichannel Signal
Processing Workshop (SAM), pages 1-5. IEEE, 2024.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating data parallel
training. arXiv preprint arXiv:2006.15704, 2020.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent.
Advances in neural information processing systems, 30, 2017.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris Zhang,
Wei Feng, Howard Huang, Junjie Wang, et al. Torchtitan: One-stop pytorch native solution for production
ready 1lm pre-training. arXiv preprint arXiv:2410.06511,2024.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam©}: A stochastic method with
adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient
large-scale language model training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-15, 2021.

Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Decoupled momentum optimization. arXiv
preprint arXiv:2411.19870, 2024.

How Much Longer Can Computing Power and Drive Artificial Intelligence Progress. Ai and compute.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints, 2019.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu-{\Sigma}: Towards trillion parameter
language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845, 2023.

Mikhail I Rudakov, Aleksandr Nikolaevich Beznosikov, Ya A Kholodov, and Alexander Vladimirovich
Gasnikov. Activations and gradients compression for model-parallel training. In Doklady Mathematics,
volume 108, pages S272-S281. Springer, 2023.

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training
large models can be surprisingly communication-efficient. In International Conference on Machine
Learning, pages 29416-29440. PMLR, 2023.

Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Moshpit sgd:
Communication-efficient decentralized training on heterogeneous unreliable devices. Advances in Neural
Information Processing Systems, 34:18195-18211, 2021.

Max Ryabinin and Anton Gusev. Towards crowdsourced training of large neural networks using de-
centralized mixture-of-experts. Advances in Neural Information Processing Systems, 33:3659-3672,
2020.

Sunny Sanyal, Ravid Shwartz-Ziv, Alexandros G Dimakis, and Sujay Sanghavi. Inheritune: Training
smaller yet more attentive language models, 2024. URL https://arxiv. org/abs/2404.08634.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,

Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with adam’s
convergence speed. In International Conference on Machine Learning, pages 10118-10129. PMLR, 2021.

12

[46]

[47]

(48]

[49]

(501

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

(60]

[61]

[62]

[63]

Verénica G Vergara Larrea, Wayne Joubert, Michael J Brim, Reuben D Budiardja, Don Maxwell, Matt
Ezell, Christopher Zimmer, Swen Boehm, Wael Elwasif, Sarp Oral, et al. Scaling the summit: deploying the
world’s fastest supercomputer. In High Performance Computing: 1SC High Performance 2019 International
Workshops, Frankfurt, Germany, June 16-20, 2019, Revised Selected Papers 34, pages 330-351. Springer,
2019.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems, 32, 2019.

James Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic optimization. arXiv
preprint arXiv:1810.12273, 2018.

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for stochastic gradient
optimization. Advances in neural information processing systems, 26, 2013.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient models
at no extra cost. Proceedings of Machine Learning and Systems, 3:365-386, 2021.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen Wright.
Atomo: Communication-efficient learning via atomic sparsification. Advances in neural information
processing systems, 31, 2018.

Jialei Wang, Mladen Kolar, Nathan Srebro, and Tong Zhang. Efficient distributed learning with sparsity. In
International conference on machine learning, pages 3636-3645. PMLR, 2017.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher Re,
and Ce Zhang. Cocktailsgd: Fine-tuning foundation models over 500mbps networks. In International
Conference on Machine Learning, pages 36058-36076. PMLR, 2023.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized sgd and
its applications to large-scale distributed optimization. In International conference on machine learning,
pages 5325-5333. PMLR, 2018.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv preprint
arXiv:2310.17813,2023.

Xingyi Yang. Stochastic gradient variance reduction by solving a filtering problem. arXiv preprint
arXiv:2012.12418, 2020.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang, Christopher
Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous environments. Advances
in Neural Information Processing Systems, 35:25464-25477, 2022.

Qi Zhang, Yi Zhou, and Shaofeng Zou. Convergence guarantees for rmsprop and adam in generalized-
smooth non-convex optimization with affine noise variance. arXiv preprint arXiv:2404.01436, 2024.

Jiawei Zhao, Florian Schifer, and Anima Anandkumar. Zero initialization: Initializing neural networks
with only zeros and ones. arXiv preprint arXiv:2110.12661, 2021.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian.
Galore: Memory-efficient 1lm training by gradient low-rank projection. arXiv preprint arXiv:2403.03507,
2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277, 2023.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja

Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading
books. In The IEEE International Conference on Computer Vision (ICCV), December 2015.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section[I]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[8]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: see Appendix

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section[6]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: Provided with supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section[6]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiments are too expensice and therefore it is computationally expensive to
report error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[6]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Section[I]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

18

paperswithcode.com/datasets

14.

15.

16.

Justification: No assets provided.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human participants were used in the study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No study participants were used in the study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Guidelines:

19

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related works
	Transformer block
	Subspace networks
	Rank collapse of projection matrices
	Investigating the activation structure
	Compressing the forward pass
	Decomposition of high-rank components

	Compression in backpropagation
	Subspace updates using Grassmann manifold

	Theoretical insights
	Experiments
	Experimental Setup
	Convergence in low-bandwidth settings
	Throughput gain
	Scaling across globally distributed GPUs
	On other communication efficient distributed training methods
	Ablations
	Comparison against lossy compressions

	Conclusion
	Limitations

