
Under review as a conference paper at ICLR 2022

PROTECTING PROPRIETARY DATA: POISONING FOR
SECURE DATASET RELEASE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large organizations such as social media companies continually release data, for
example user images. At the same time, these organizations leverage their massive
corpora of released data to train proprietary models that give them an edge over
their competitors. These two behaviors can be in conflict as an organization wants
to prevent competitors from using their own data to replicate the performance of
their proprietary models. We solve this problem by developing a data poisoning
method by which publicly released data can be minimally modified to prevent
others from training models on it. Moreover, our method can be used in an online
fashion so that companies can protect their data in real time as they release it. We
demonstrate the success of our approach on ImageNet classification and on facial
recognition.

1 INTRODUCTION

Social media companies and other web platforms allow users to post their own data in a space that
is openly accessible to scraping (Taigman et al., 2014; Cherepanova et al., 2021). This data can be
incredibly valuable, both to the organization hosting it and to others who leverage scraped data to
train their own models. Breakthroughs in both image classification (Russakovsky et al., 2015) and
language models (Brown et al., 2020) have been enabled by large volumes of scraped data. Given
that organizations value their exclusive access to the data they host for training competitive machine
learning systems, they need a method for safely releasing their data on their web platform while
preventing competitors from replicating the performance of their own models trained on this data.

We introduce a method, motivated by new techniques in targeted data poisoning, to modify data prior
to its release so that the generalization of a deep learning model trained on this data is significantly
degraded, rendering the data effectively worthless to competitors.

1.1 RELATED WORK

The topic of data manipulation for the purposes of performance degradation has been investigated in
the data poisoning literature. Specifically, this work is closely related to indiscriminate (availability)
poisoning attacks wherein an attacker wishes to degrade performance on a large number of samples
(Barreno et al., 2010). Early works on this type of attack show that data can be maliciously modified
to degrade test-time performance of simple classical algorithms, such as support vector machines,
principle component analysis, clustering, logistic regression, etc., or in the setting of binary classifica-
tion (Muñoz-González et al., 2017; Xiao et al., 2015; Biggio et al., 2012; Koh et al., 2018; Steinhardt
et al., 2017b).

In scenarios involving simple learning models, the optimal perturbation to training data can often
be explicitly calculated via the implicit function theorem. However, this becomes computationally
intractable for modern deep networks. As a consequence, heuristics must be used. Recently, Shen
et al. (2019) proposed a method, TensorClog, which crafts perturbations to cause gradient vanishing
with the aim of preventing a deep network from training on the perturbed data, thus degrading test
time performance of the network. However, this work only performs their method in the setting of
transfer learning where a known feature extractor is used, limiting the viability of this attack. In
the setting of from-scratch training, Feng et al. (2019) proposes the use of an autoencoder trained
to generate adversarial noise for training data. However, this becomes intractible for industrial

1

Under review as a conference paper at ICLR 2022

applications as training such an autoencoder not only requires access to the entire clean dataset, but
also takes 5 − 7 GPU days on simple datasets. Also in this setting, Huang et al. (2021) proposes
crafting perturbations to minimize loss, and make poisoned data “unlearnable". However, this work
also does not scale well to industrial sized datasets as it requires alternating updates of the poisons
and model - necessitating access to all the data to be poisoned at the beginning of crafting.

In contrast to indiscriminate attacks, targeted (integrity) poisoning attacks aim to cause a network
trained on modified data to mis-classify a few pre-selected target samples. Unlike the indiscriminate
attack setting, recent work on targeted poisoning has successfully attacked modern deep networks
trained from scratch on poisoned data (Geiping et al., 2020; Huang et al., 2020). These attacks do
not noticeably degrade validation accuracy, despite the victim network mis-classifying the selected
target example(s). Moreover, simply performing a large number of targeted attacks to degrade overall
validation accuracy is not feasible. In some cases, these attacks perturb up to 10% of the training
data in order to mis-classify a single target image, and they often fail to attack more than a handful
of targets (Geiping et al., 2020). These attacks rely upon the expressiveness of deep networks to
“gerrymander" the decision boundary of the victim network around the selected target examples - a
strategy that will not work in the general indiscriminate setting.

We develop an indiscriminate data poisoning attack which works on deep networks trained from
scratch in a black-box setting. Our method allows practitioners to minimally modify data which,
when released, causes models trained on this data to generalize poorly. Our method allows companies
to release data, either for transparency purposes, or via user upload, which does not compromise the
competitive advantage the company gains from asymmetric access to the clean data. For a general
overview of data poisoning attacks, defenses, and terminology, see Goldblum et al. (2020).

Also parallel to the goals of this work are defenses to model stealing attacks. Model stealing attacks
often aim duplicate a machine learning model or its functionality (Tramèr et al., 2016). Defenses
vary depending upon the attack scenario. For example, a defense proposed in Orekondy et al. (2019)
perturbs the prediction outputs of a network to prevent a model stealing attack which aims to mimic
the performance of a service like a cloud prediction API. Other defenses aim to prove theft of a
model has occurred after the fact by “watermarking" a network (Uchida et al., 2017). However, these
defenses do little to stop malicious actors from using scraped data to train their own models (Hill,
2020).

2 OUR METHOD

2.1 PROBLEM SETUP

Formally, we seek to compute perturbations ∆ = {∆i} to elements xi of a dataset S in order to
make a network, F , trained on the dataset generalize poorly to the distribution D from which S was
sampled. Achieving this goal entails solving the following bi-level objective,

max
∆∈C

E(x,y)∼D

[
L (F (x; θ(∆)), y)

]
(1)

s.t. θ(∆) ∈ arg min
θ

∑
(xi,yi)∈S

L(F (xi + ∆i; θ), yi), (2)

where C denotes the constraint set which bounds the perturbations so that the perturbed data is
perceptually similar to the clean data. In our work, we employ the `∞ constraint ‖∆‖∞ < ε as
is standard in the adversarial literature (Madry et al., 2017; Zhu et al., 2019; Geiping et al., 2020).
Constraining the perturbations in this fashion allows practitioners like social media companies
to employ our method in order to release minimally changed user data while still protecting the
performance of their proprietary models.

Directly solving for ∆ which minimizes this objective is intractable as this would require backprop-
agating through the entire training procedure found in the inner objective (2) for each iteration of
gradient descent on the outer objective. Thus, the bilevel objective must be approximated.

2

Under review as a conference paper at ICLR 2022

2.2 CRAFTING PERTURBATIONS

It has been demonstrated in Witches’ Brew (Geiping et al., 2020) that bounded perturbations to
training data can be crafted to manipulate the gradient of a network trained on this data. We adapt
gradient manipulation to the problem of general performance degradation. We estimate the outer
objective (1) by training a network F on a clean dataset S and then crafting perturbations to minimize
the following objective:

A(∆, θ) = 1−
〈
∇θL′(S; θ),∇θL(S + ∆; θ)

〉
‖∇θL′(S; θ)‖2 · ‖∇θL(S + ∆; θ)‖2

(3)

where L′(F (xi; θ), yi) is the “reverse" cross entropy loss (Huang et al., 2019) which discourages the
network F from classifying xi with label yi. Specifically, the reverse cross entropy loss for a sample
(x, y) with one-hot label y is given by:

L′(F (x; θ), y) = − log[1− pθ(x)y 6=0]

where pθ(x)y 6=0 denotes the entry of the softmax of F (x; θ) corresponding to the class specified by
the one-hot label y. For notational simplicity, we denote the target gradient

∇θL′(S; θ) = ∇θ
∑

(xi,yi)∈S

L′(F (xi; θ), yi) (4)

and the crafting gradient

∇θL(S + ∆; θ) = ∇θ

 ∑
(xi,yi)∈S

L(F (xi + ∆i; θ), yi)

 .

Put simply, we seek to align the training gradient of the perturbed data with the gradient of the
reverse cross-entropy loss on the clean data, S . Ideally, when a network trains on the perturbed data,
the perturbations cause the training gradient of this network at each parameter vector to be aligned
with the gradient of the reverse cross entropy loss on the clean data. This in turn would decrease
the reverse cross entropy loss on the clean data, causing a network trained on the perturbed data to
converge to a minimum with poor generalization on the distribution from which S was sampled.

In order to enforce the constraints in C, we employ projected gradient descent (PGD) as in Madry et al.
(2017) on the perturbations, alternately minimizing Eq. 3 and projecting onto an l∞ ball. Appendix
Algorithm 1 details this procedure.

Additionally, we employ techniques found in previous poisoning work such as restarts and differen-
tiable data augmentation in the crafting procedure in order to improve the success of our perturbations
(Huang et al., 2020; Geiping et al., 2020).

We pre-train a model in order to estimate the target gradient, and the crafting gradients as already
trained models have been shown to provide the most stable perturbations in Geiping et al. (2020);
Huang et al. (2020). Additional details about the training procedure and the crafting procedure can
be found in the appendix A.1.

3 EXPERIMENTAL RESULTS

3.1 SETUP

We establish baselines for our method on both the ILSVRC2012 dataset (ImageNet) (Russakovsky
et al., 2015) and the CIFAR-10 dataset (Krizhevsky et al., 2009). ImageNet consists of over 1 million
images coming from 1000 classes. For these experiments, to save time crafting, we use a pre-trained
model from torchvision (see https://pytorch.org/docs/stable/torchvision/
models.html). For memory constraints, we then craft poisons in batches of 25, 000, replacing the
target gradient estimate each split. We train ImageNet models for 40 epochs.

CIFAR-10 consists of 50, 000 images coming from 10 classes. For the baseline experiments, we
calculate the target gradient on the entire training set. We train CIFAR-10 models for 50 epochs.

3

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

Under review as a conference paper at ICLR 2022

Figure 1: Randomly selected example perturbations to ImageNet datapoint (class “schooner"). Left:
unaltered base image. Middle: ε = 8/255 perturbation. Right: ε = 16/255 perturbation.

Unless otherwise stated, we craft our poisons by choosing ResNet-18 (He et al., 2015) as the
architecture for F using 8 restarts and 240 optimization steps using signed Adam as in Witches’
Brew.

For evaluation, we train a new, randomly initialized network from scratch. We test our method both
on the network which was used for crafting, and in a black-box setting where the network architecture
is unknown to the practitioner. See subsection 3.4 for more details on evaluation.

3.2 IMAGENET

To test our method on an industrial-scale dataset, we first craft perturbations to ImageNet. In this
setting, we deploy a full crafting procedure which mimics the scenario where a company already has
a large corpus of data they wish to release. In this case, the company can train the clean model F on
this data, and estimate the average target gradient over this training set.

We find that we are able to significantly degrade the validation accuracy, and in the case of the largest
perturbation, decrease it by more than 58% (see Table 1). To the best of our knowledge, we are the
first availability poisoning method to successfully poison full ImageNet. We compare our method to
the objective found in Huang et al. (2021), but with a fixed parameter vector (same setting as ours).
Comparison to their full poisoning method is intractible on large datasets like ImageNet otherwise.
Visualizations for these perturbations can be found in Figure 1.

Table 1: Comparison of validation accuracies of a ResNet-18 (He et al., 2015) trained on perturbed
data crafted with different ε-bounds (using ResNet-18) on ImageNet. We compare to the loss
minimization objective found (Huang et al., 2021). We employ their objective/crafting routine, except
we fix the parameter vector for comparison to our method - a realistic crafting assumption.

ε-BOUND VALIDATION ACC. (%) ↓
0/255 (CLEAN) 65.70
OURS (8/255) 37.58
OURS (16/255) 27.49
UNLEARNABLE* (8/255) 41.57

3.3 BASELINE COMPARISON

Additionally, we establish baseline comparisons for our method on CIFAR-10 by comparing our
method to other poisoning methods, data manipulations, and to performance on clean non-poisoned
data. We find that our method achieves competitive results on CIFAR-10, while offering the most
flexible and scalable poisoning approach.

Comparisons are made with the same ε-bound and the same training procedure from a randomly
initialized ResNet-18 model.

4

Under review as a conference paper at ICLR 2022

Table 2: Comparison of different poisoning methods. All methods were employed with ε-bound
8/255 using the same ResNet-18 architecture and training procedure on CIFAR-10. Confidence
intervals are of radius one standard error.

METHOD VALIDATION ACC. (%) ↓
NONE 93.16 ± 0.08

TENSORCLOG 84.24 ± 0.17
RANDOM NOISE 90.52 ± 0.08

ALIGNMENT (OURS) 36.83 ± 1.94

3.4 RESULTS IN THE BLACK-BOX SETTING

The results in Tables 1 and 2 are in a grey-box setting where we do not know the victim’s model
initialization or any information about batching, but we do know their architecture training details
like optimizer choice. In order to more strenuously test our method in a realistic setting, we also test
our poisons on architectures and training procedures completely unknown during poison crafting.
This mimics the black-box setting wherein the practitioner does not know how a victim plans to train
on their scraped data. Specifically, we train networks on our crafted poisons using the setup from an
independent, well known repository for training CIFAR-10 models 1.

We validate our method on commonly used architectures including VGG19 (Simonyan & Zisserman,
2014), ResNet-18 (He et al., 2015), GoogLeNet (Szegedy et al., 2015), DenseNet121 (Huang et al.,
2016), and MobileNetV2 (Sandler et al., 2018). These results are presented in Table 3. We see that
even at very small epsilon constraints, the proposed method is able to nearly halve the clean validation
accuracy of many of these popular models. Additionally, we compare to two recent works in this
black-box setting. We find that both DeepConfuse (Feng et al., 2019) and Unlearnable Examples
(Huang et al., 2021) outperform our method on CIFAR-10 (see Table 4). However, we stress that
these existing methods have aspects that make them unrealistic for secure dataset release. Feng et al.
(2019) requires training an autoencoder which is very computationally expensive on any industrial
scale dataset, and also requires access to a large amount of clean data to do so. Whereas Huang
et al. (2021) requires access to all the data that will be perturbed at the beginning of crafting - an
unrealistic scenario for social media companies that have a continuous stream of user data being
uploaded. Moreover, when we control for this unrealistic crafting assumption, we find that our
objective produces more potent poisons - see Table 1.

Table 3: Comparison of CIFAR-10 validation accuracies (%) for different ε-bounds and victim
networks. All poisons crafted using a ResNet-18 architecture.

NETWORK 0/255 (CLEAN) 4/255 8/255 16/255

VGG19 90.76 ± 0.14 66.58 ± 0.58 48.27 ± 0.92 31.86 ± 1.47
RESNET-18 93.16 ± 0.08 68.15 ± 0.55 53.67 ± 0.52 43.14 ± 1.60

GOOGLENET 93.87 ± 0.07 71.02 ± 0.15 55.49 ± 0.58 45.37 ± 0.94
DENSENET121 93.80 ± 0.05 70.12 ± 0.12 49.23 ± 1.58 38.51 ± 1.07
MOBILENETV2 91.10 ± 0.10 66.71 ± 0.60 51.03 ± 0.86 39.19 ± 1.76

3.5 STABILITY

While our method is able to degrade validation accuracy under normal training conditions, a question
remains whether the method is stable to poisoning defenses and modifications in training procedures.
Would this improve the validation accuracy of a model trained on the perturbed data? To this end, we
investigate several avenues.

First, we investigate whether existing poisoning defenses lessen the effects of our perturbations. Many
existing defenses are designed for settings which are significantly different than our proposed attack.

1Training routine taken from widely used repository: https://github.com/kuangliu/pytorch-cifar.

5

Under review as a conference paper at ICLR 2022

Table 4: Comparison of different poisoning methods. All methods were employed with ε-bound
8/255 using the same ResNet-18 victim architecture and training procedure on CIFAR-10. Confidence
intervals are of radius one standard error.

METHOD VALIDATION ACC. (%) ↓
NONE 93.16 ± 0.08

UNLEARNABLE 19.85 ± 0.09
DEEPCONFUSE 31.10 ± 0.76

ALIGNMENT (OURS) 53.67 ± 0.52

Table 5: Comparison of CIFAR-10 validation accuracies (%) for different ε-bounds and victim
networks. All poisons crafted using a ResNet-18 architecture with estimated target grad.

NETWORK 4/255 8/255 16/255

VGG19 74.6 56.57 30.02
RESNET-18 74.11 56.65 29.62

GOOGLENET 76.41 62.44 33.68
DENSENET121 75.61 57.29 31.51
MOBILENETV2 71.54 49.14 24.45

For example, many defenses assume that there is a small amount of poisoned data, and that this will
be anomalous in feature space (Steinhardt et al., 2017a; Tran et al., 2018; Peri et al., 2020; Chen
et al., 2018). These types of defenses are best suited for scenarios in which the same perturbations are
applied identically to each data point, as in patch based attacks, or when the defender has access to a
large corpus of trustworthy data on which to train a feature extractor to filter out poisoned images
based on their similarity to clean reference samples. Moreover, these anomaly detection defenses
work under the assumption that the majority of data will not be poisoned. It was demonstrated in
(Geiping et al., 2020) that modifications meant to alter gradients of a network trained from scratch do
not produce data which is anomalous in feature space of the poisoned model. Furthermore, since we
poison the entire dataset, the trained model’s feature space can no longer be thought of as containing
clean and perturbed elements. Thus, the heuristic that poisoned data will somehow be outliers in
feature space does not apply.

However, another family of defenses leverages differential privacy (DPSGD) as a defense against
poisoning (Ma et al., 2019; Hong et al., 2020). Since differentially private models are, by construction,
insensitive to minor changes in the training set, they may be resistant to different poisoning methods.
By clipping and noising gradients, these defenses aim to limit the effect of perturbations placed on
data. In theory, this defense is applicable to our perturbations. However, we test the defense proposed
in Hong et al. (2020) against our method and find that the drop in validation accuracy we saw in
previous experiments remains even when training with DPSGD.

In addition to methods designed for defending against data poisoning, we also test the potency of our
poisons under both Gaussian smoothing and random additive noise (of the same magnitude as our
perturbations) during training. These modifications test how brittle our crafted perturbations are to
modification. For Gaussian smoothing, we use a radius r = 2. We find that our attack is stable under
all the discussed training modifications, with none of the proposed defenses substantially improving
results. These results can be found in Table 6.

4 FACIAL RECOGNITION

While standard classification tasks like ImageNet and CIFAR allow us to establish baselines for
our method, many settings where a company may wish to implement our method involve social
media user data, often in the form of personal photos. Such data is may be scraped from large
social media platforms by competing companies and nefarious actors (Cherepanova et al., 2021).
For example, companies like Clearview AI scrape photos from social media sites to train their own
facial recognition systems for mass surveillance (Hill, 2020). A social media company could even

6

Under review as a conference paper at ICLR 2022

Table 6: Comparison of validation accuracies of a ResNet-18 with different defenses. All runs use
ε = 8/255.

DEFENSE VALIDATION ACC. (%) ↓
NONE 44.82

DPSGD 44.18
RANDOM `∞ NOISE 48.36

GAUSSIAN SMOOTHING 24.26

Table 7: Identification and verification accuracy of ResNet-18 trained on clean data and poisoned
data of varying epsilon radius. Note that in all cases, both identification and verification accuracy
drop substantially when the model is trained on poisoned data.

IDENTIFICATION VERIFICATION
ε CELEBA TOP1 CELEBA TOP5 LFW CFP AGEDB VGG2_FP

CLEAN 91.02% 94.65% 97.93% 83.84% 85.40% 84.96%
8/255 85.54% 91.67% 95.20% 76.40% 76.88% 81.88%

16/255 61.53% 73.67% 76.03% 62.81% 59.45% 61.78%
32/255 39.77% 54.37% 70.55% 62.94% 59.87% 59.32%

deploy our method simply on thumbnail profile images, which are publicly available to scraping. To
determine the utility of our method in preventing unauthorized use in this manner, we deploy our
algorithm on facial recognition benchmarks.

By and large, facial recognition works in the regime of transfer learning. Facial recognition models
are often pre-trained on a many-way classification problem using images unrelated to the testing
identities. Then, during testing, the classification head is removed, and the pre-trained model is
used only for calculating the test image embeddings. The identity of test images is then inferred
by k-nearest neighbors in the embedding space. This setup is known to make attacks against facial
recognition systems more difficult than attacks against standard classification tasks, such as the
Fawkes attack found in Shan et al. (2020). More powerful evasion attacks like the one found in
Cherepanova et al. (2021) modify images at test-time. We deploy our method on the complementary
task of degrading the quality of the feature extractor. This adds a layer of difficulty to our attack,
as the we are only able to affect the quality of the embedding, but we are not able to perturb the
“anchor" images used to classify new test samples.

4.1 SETUP

The CelebA dataset contains 10177 identities (Liu et al.). Following standard procedure as in (Cheng
et al., 2017), we remove 371 identities with too few images, use 8806 identities for pre-training and
1000 identities for testing. We use ResNet-18 and Resnet-50 as backbone architectures. During
pre-training, we use the popular Cosface classification head (Wang et al., 2018). During poison
dataset generation, we take 50 gradient steps with signAdam and a single random restart. In additional
to the CelebA dataset, we also test the attacked model’s verification accuracy on four other face
datasets: Labeled Faces in the Wild (LFW) (Huang et al., 2008), Celebrities in Frontal-Profile data
set (CPF) (Sengupta et al., 2016), AgeDB (Moschoglou et al., 2017), VGGFace2 (Cao et al., 2018).
We use the face.evoLVe repository (ZhaoJ9014) to run all of our facial recognition experiments.

4.2 RESULTS

In Table 7, we see that both identification and verification accuracy drop materially when a model
is trained on our crafted dataset. When trained on poisoned data with ε = 16/255, CelebA top 1
accuracy drops by 36% to 61%, . Similarly, verification accuracy also drops by as much as 35%. Note
that in many commercial applications, even a few percentage drop can tip the scales for a company to
maintain a competitive advantage. Visualizations of the perturbations can be found in Appendix A.6

7

Under review as a conference paper at ICLR 2022

Poisons crafted on a more powerful model also transfer better in our experiments. Specifically,
poisons generated with ResNet-50 always reduce both identification and verification accuracy more
than poisons generated with ResNet-18 (see Appendix Table 10). This experiment suggests that if
one wants to make the poisoned dataset more potent, one could simply use a larger capacity model to
generate poisons.

5 ONLINE MODIFICATION

The procedure outlined in Algorithm 1 works well when a practitioner already has access to a large
corpus of data they intend to release. In this case, they can train a network to estimate the target
gradient in Eq. 4, and optimize all poisons jointly to align with this target gradient. However, for
many applications, like social media release, this may not be possible. First, the initial dataset may
not be big enough to allow one to train a well performing model to estimate the target gradient
accurately. Second, the poisoned dataset may have to be optimized sequentially as new data continue
to be released or independently at the user level.

To understand the severity of the mentioned problems, we perform several ablations and modifications
to our method. First, we test whether the effective perturbations can be made with an approximated
target gradient. We already estimate the target gradient on the distribution D by calculating the
empirical target gradient on S, but if a practitioner has access to only a small amount of data, this
could degrade the quality of the target gradient to the point where perturbations become ineffective.

To test this, we first re-run experiments outlined in Table 3, but with a target gradient approximated
from a random subset of 10% of the data. We find that perturbations remain effective when using
this approximated target gradient. In some cases, the approximated target gradient even produces
better results than the full target gradient. In theory, as long as the estimated empirical target gradient
“well" approximates the full empirical target gradient (i.e. the cosine similarity between the two is
high), then perturbations crafted using the former will produce similar performance to those crafted
on the latter since the target gradient is not differentiated through when crafting the perturbations.
These results give confidence to practitioners who wish to poison a stream of data without having
access to a large amount at the start of the process.

Additionally, we test the poisons effectiveness when the surrogate model is trained with only a small
subset of the data and the target gradient is estimated only with the same small subset. This is
equivalent to splitting the dataset into different subsets {Si}Mi=1 where Si ⊂ S and poisoning each of
these subsets as if it were its own standalone dataset. In theory, this could harm performance since
the model trained on a small subset of the data will usually perform poorly compared to a model
trained on the entire dataset. This could lead to a bad target gradient estimate, and in turn, poorly
performing poisons. However, even though the surrogate model’s performance is indeed poorer, we
find that the poisons generated with such a model are still effective in practice at decreasing validation
accuracy. More specifically, in Table 8, we see that when using only 10% of data for estimating the
target gradient, we can decrease the attacked model’s accuracy to a comparable level as using 100%
of the data.

Finally, we test the effectiveness of the perturbations when the poisons are optimized independently
as opposed to jointly. This is a practical consideration for many companies since user data could be
uploaded at any given moment in time, and the practitioner might not be able to wait for a batch of
data to calculate perturbations. Thus, it is necessary to be able to calculate perturbations one at a
time.

To mimic this scenario in our implementation, we simply detach the denominator in Eq. 3 from
the network’s computation graph. Note that this change modifies the objective problem in Eq. 3
to optimize the inner product of the target gradient and each individual crafting gradient versus the
cosine similarity between the target gradient and the full crafting gradient.

We find that poisons can be just as effective, sometimes more so, when optimized independently (see
Table 8). Mathematically speaking, as long as the norm of the crafting gradient in Eq. 3 is stable
to small changes in any individual perturbation, then detaching the denominator will not affect the
perturbations as we optimize with a signed gradient method (signed Adam) in Alg. 1.

To further demonstrate this idea formally, we present the following straightforward result:

8

Under review as a conference paper at ICLR 2022

Table 8: % of data used indicates the percentage of data used for both training the surrogate
model and target gradient estimation. The denominators of Eq. 3 is detached when the poisons are
independently crafted. We note that we can still double the validation error of the attacked model
when only 5% of data is used.

% OF DATA USED
INDEPENDENTLY
CRAFTED

POISONED
VALIDATION
ACCURACY (%)

100% NO 46.66
10% NO 44.09

5% NO 74.64
10% YES 36.42

5% YES 59.59

Proposition 1. Fix a pixel position denoted by ∗. If ∃ε > 0 so that ∀xj ∈ S , in the `∞-ball about xj
of radius ε, the following inequality holds:∣∣∣∣ ∂

∂∆∗j

(
‖∇θL(S + ∆; θ)‖2

)∣∣∣∣
<

∣∣∣∣ ∂

∂∆∗j

(〈
T ,∇θL(xj + ∆j ; θ)

〉)∣∣∣∣
i.e. - The derivative w.r.t. ∆∗j of the norm of the full crafting gradient is bounded in magnitude by the
derivative w.r.t ∆∗j of the inner product between the individual crafting gradient and target gradient,
T , then, our online crafting mechanism produces the same perturbation to pixel ∆∗ (in the ε-ball) as
the full non-online version.

Proof. See appendix A.2.

This adjustment makes the algorithm practical for real world use as the poisons can be generated at
the user level in a distributed setting without a centralize poison generation process.

6 CONCLUSIONS

We develop an indiscriminate poisoning attack which allows machine learning practitioners to release
data without the concern of losing the competitive advantage they gain over rival organizations by
possessing access to their proprietary data. We achieve state-of-the-art results for availability attacks
on modern deep networks trained on ImageNet, and we adapt our method to online modification for
use by social media companies. Future areas of investigation include improving results on facial
recognition tasks, possibly by attacking anchor images in addition to degrading the feature extractor.
Another direction of future work further eliminating the need for a subset of clean data on which to
train a surrogate model.

ETHICS STATEMENT

We do not see any immediate ethical concerns with this work. While we do propose a data poisoning
method for user data, a method like ours would be implemented on the company side, and does not
preclude user initiated protection of data. Furthermore, our method would discourage malicious
actors from scraping user data.

REPRODUCIBILITY

We include code to reproduce our method in the supplemental material.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D. The security of machine learning. Mach.
Learn., 81(2):121–148, November 2010. ISSN 0885-6125. doi: 10.1007/s10994-010-5188-5.

Biggio, B., Nelson, B., and Laskov, P. Poisoning Attacks against Support Vector Machines.
ArXiv12066389 Cs Stat, June 2012.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. Vggface2: A dataset for recognising
faces across pose and age. In 2018 13th IEEE international conference on automatic face &
gesture recognition (FG 2018), pp. 67–74. IEEE, 2018.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I., and Srivastava,
B. Detecting backdoor attacks on deep neural networks by activation clustering. arXiv preprint
arXiv:1811.03728, 2018.

Cheng, Y., Zhao, J., Wang, Z., Xu, Y., Jayashree, K., Shen, S., and Feng, J. Know you at one glance:
A compact vector representation for low-shot learning. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 1924–1932, 2017.

Cherepanova, V., Goldblum, M., Foley, H., Duan, S., Dickerson, J., Taylor, G., and Goldstein, T.
Lowkey: Leveraging adversarial attacks to protect social media users from facial recognition.
arXiv preprint arXiv:2101.07922, 2021.

Feng, J., Cai, Q.-Z., and Zhou, Z.-H. Learning to Confuse: Generating Training Time Adversarial
Data with Auto-Encoder. In Advances in Neural Information Processing Systems 32, pp. 11994–
12004. Curran Associates, Inc., 2019.

Geiping, J., Fowl, L., Huang, W. R., Czaja, W., Taylor, G., Moeller, M., and Goldstein, T. Witches’
brew: Industrial scale data poisoning via gradient matching. arXiv preprint arXiv:2009.02276,
2020.

Goldblum, M., Tsipras, D., Xie, C., Chen, X., Schwarzschild, A., Song, D., Madry, A., Li, B., and
Goldstein, T. Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and
Defenses. arXiv:2012.10544 [cs], December 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition.
ArXiv151203385 Cs, December 2015.

Hill, K. The secretive company that might end privacy as we know it, Jan
2020. URL https://www.nytimes.com/2020/01/18/technology/
clearview-privacy-facial-recognition.html.

Hong, S., Chandrasekaran, V., Kaya, Y., Dumitraş, T., and Papernot, N. On the Effectiveness of
Mitigating Data Poisoning Attacks with Gradient Shaping. ArXiv200211497 Cs, February 2020.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely Connected Convolutional
Networks. August 2016.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. Labeled faces in the wild: A database
forstudying face recognition in unconstrained environments. In Workshop on faces in’Real-
Life’Images: detection, alignment, and recognition, 2008.

Huang, H., Ma, X., Erfani, S. M., Bailey, J., and Wang, Y. Unlearnable examples: Making personal
data unexploitable. arXiv preprint arXiv:2101.04898, 2021.

Huang, W. R., Emam, Z., Goldblum, M., Fowl, L., Terry, J. K., Huang, F., and Goldstein, T.
Understanding generalization through visualizations. arXiv preprint arXiv:1906.03291, 2019.

Huang, W. R., Geiping, J., Fowl, L., Taylor, G., and Goldstein, T. MetaPoison: Practical General-
purpose Clean-label Data Poisoning. ArXiv200400225 Cs Stat, April 2020.

10

https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html
https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html

Under review as a conference paper at ICLR 2022

Koh, P. W., Steinhardt, J., and Liang, P. Stronger Data Poisoning Attacks Break Data Sanitization
Defenses. ArXiv181100741 Cs Stat, November 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Liu, Z., Luo, P., Wang, X., and Tang, X. Large-scale celebfaces attributes (celeba) dataset.

Ma, Y., Zhu, X., and Hsu, J. Data Poisoning against Differentially-Private Learners: Attacks and
Defenses. ArXiv190309860 Cs, July 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards Deep Learning Models
Resistant to Adversarial Attacks. ArXiv170606083 Cs Stat, June 2017.

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., and Zafeiriou, S. Agedb: the first
manually collected, in-the-wild age database. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 51–59, 2017.

Muñoz-González, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V., Lupu, E. C., and
Roli, F. Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17, pp. 27–
38, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5202-4. doi: 10.1145/3128572.3140451.

Orekondy, T., Schiele, B., and Fritz, M. Prediction poisoning: Towards defenses against dnn model
stealing attacks. arXiv preprint arXiv:1906.10908, 2019.

Peri, N., Gupta, N., Huang, W. R., Fowl, L., Zhu, C., Feizi, S., Goldstein, T., and Dickerson, J. P.
Deep k-NN Defense against Clean-label Data Poisoning Attacks. ArXiv190913374 Cs, March
2020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition
Challenge. Int J Comput Vis, 115(3):211–252, December 2015. ISSN 1573-1405. doi: 10.1007/
s11263-015-0816-y.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. MobileNetV2: Inverted Residuals
and Linear Bottlenecks. ArXiv180104381 Cs, January 2018.

Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chellappa, R., and Jacobs, D. W. Frontal to
profile face verification in the wild. In 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1–9. IEEE, 2016.

Shan, S., Wenger, E., Zhang, J., Li, H., Zheng, H., and Zhao, B. Y. Fawkes: Protecting Personal
Privacy against Unauthorized Deep Learning Models. ArXiv200208327 Cs Stat, February 2020.

Shen, J., Zhu, X., and Ma, D. TensorClog: An Imperceptible Poisoning Attack on Deep Neural
Network Applications. IEEE Access, 7:41498–41506, 2019. ISSN 2169-3536. doi: 10.1109/
ACCESS.2019.2905915.

Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. ArXiv14091556 Cs, September 2014.

Steinhardt, J., Koh, P. W., and Liang, P. Certified Defenses for Data Poisoning Attacks. June 2017a.

Steinhardt, J., Koh, P. W. W., and Liang, P. S. Certified Defenses for Data Poisoning Attacks. In
Advances in Neural Information Processing Systems 30, pp. 3517–3529. Curran Associates, Inc.,
2017b.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–9, June 2015. doi: 10.1109/CVPR.2015.7298594.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. DeepFace: Closing the Gap to Human-Level
Performance in Face Verification. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708, Columbus, OH, USA, June 2014. IEEE. ISBN 978-1-4799-5118-5.
doi: 10.1109/CVPR.2014.220.

11

Under review as a conference paper at ICLR 2022

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. Stealing machine learning models
via prediction apis. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pp. 601–618,
2016.

Tran, B., Li, J., and Madry, A. Spectral Signatures in Backdoor Attacks. In Advances in Neural
Information Processing Systems 31, pp. 8000–8010. Curran Associates, Inc., 2018.

Uchida, Y., Nagai, Y., Sakazawa, S., and Satoh, S. Embedding watermarks into deep neural networks.
In Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 269–
277, 2017.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. Cosface: Large margin
cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5265–5274, 2018.

Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., and Roli, F. Is Feature Selection Secure
against Training Data Poisoning? In International Conference on Machine Learning, pp. 1689–
1698, June 2015.

ZhaoJ9014. Zhaoj9014/face.evolve.pytorch. URL https://github.com/ZhaoJ9014/face.
evoLVe.PyTorch.

Zhu, C., Huang, W. R., Shafahi, A., Li, H., Taylor, G., Studer, C., and Goldstein, T. Transferable
Clean-Label Poisoning Attacks on Deep Neural Nets. ArXiv190505897 Cs Stat, May 2019.

12

https://github.com/ZhaoJ9014/face.evoLVe.PyTorch
https://github.com/ZhaoJ9014/face.evoLVe.PyTorch

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 TRAINING DETAILS

CIFAR-10 For our CIFAR-10 experiments, we train a ResNet18 model for 40 epochs in order to
craft the perturbations. The model is trained with SGD and multi-step learning rate drops. However,
for the experiments in Table 8, since fewer data points are used for training the surrogate model, we
increase the number of epochs, so the number of iteration is similar to regular training. For example,
if we use only 10% of the data, then we would increase the number of epochs by 10 times, so that the
model is trained for a similar number of iterations.

Tables 2, 6, 9 all train a randomly initialized network using this same framework (grey-box).

However, in Tables 3, 5 8, we use the black-box repository referenced in the main body to train
models. We train for 50 epochs using this repository’s setup (cosine learning rate decay, etc.).

ImageNet For our ImageNet experiments, we use a pretrained ResNet18 model to craft poisons, and
then train a new, randomly initialized ResNet18 model on these crafted poisons for 40 epochs with
multi-step learning rate drops.

Facial Recogntion For our Celeb-A experiments, we train a ResNet18 and a ResNet50 for 125
epochs as surrogate models, which are used to craft poisons. We then train a new randomly initialized
ResNet18 model on these crafted poisons for 125 epochs with multi-step learning rate drops.

DPSGD Defense For the DPSGD defense, we first clip employ clipping of 0.1 and then add noise to
the gradients with parameter σ = clip ∗ 0.01.

A.2 PROOF OF PROPOSITION

Proof. Recall the alignment loss:

A(∆, θ) = 1−
〈
∇θL′(S; θ),∇θL(S + ∆; θ)

〉
‖∇θL′(S; θ)‖ · ‖∇θL(S + ∆; θ)‖

(5)

As the left hand term in the inner product, the target gradient, does not depend on the perturbations ∆,
it may be treated as a constant, and denoted simply as T . As in our algorithm, we denote ‖ · ‖ = ‖ · ‖2.
Also, WLOG, we need only look at the sign of the following derivative for some arbitrary perturbation
∆∗j :

∂

∂∆∗j

[α︷ ︸︸ ︷〈
T ,∇θL(S + ∆; θ)

〉
‖T ‖ · ‖∇θL(S + ∆; θ)‖

]

On the one hand, if we detach the denominator from the computation graph, the following derivative
is used to update the perturbation ∆j :

∂
∂∆∗

j

(〈
T ,∇θL(xj + ∆j ; θ)

〉)
‖T ‖ · ‖∇θL(S + ∆; θ)‖

On the other hand, the gradient of the full objective is:

13

Under review as a conference paper at ICLR 2022

β︷ ︸︸ ︷
∂

∂∆∗
j

(〈
T ,∇θL(xj + ∆j ; θ)

〉)
‖T ‖ · ‖∇θL(S + ∆; θ)‖

−

〈
T ,∇θL(xj + ∆j ; θ)

〉
‖T ‖ · ∂

∂∆∗
j

(
‖∇θL(S + ∆; θ)‖

)
(
‖T ‖ · ‖∇θL(S + ∆; θ)‖

)2

︸ ︷︷ ︸
γ

Note that β is simply the derivative of the detached objective, so the perturbations will be the same if
|γ| < |β|

Simplifying,

|γ| = |α| ·

∣∣∣∣ ∂
∂∆∗

j

(
‖∇θL(S + ∆; θ)‖

)∣∣∣∣
‖T ‖ · ‖∇θL(S + ∆; θ)‖

≤

∣∣∣∣ ∂
∂∆∗

j

(
‖∇θL(S + ∆; θ)‖

)∣∣∣∣
‖T ‖ · ‖∇θL(S + ∆; θ)‖

<

∣∣∣∣ ∂
∂∆∗

j

(〈
T ,∇θL(xj + ∆j ; θ)

〉)∣∣∣∣
‖T ‖ · ‖∇θL(S + ∆; θ)‖

= |β|

Where the last inequality uses the assumption of the proposition, and holds in the ε-ball around
xj . Then, because our crafting algorithm uses signed gradient descent (either Adam or SGD), the
perturbations crafted using the online vs. non-online method will be identical.

Note that for an alternate presentation of the proposition, we may write the bound on the magnitude
of the derivative of the full crafting gradient in the following manner:

∣∣∣∣ ∂

∂∆∗j

(
‖∇θL(S + ∆; θ)‖

)∣∣∣∣
< c0

∣∣∣∣ ∂

∂∆∗j

(
‖∇θL(xj + ∆j ; θ)‖ · cosφ

)∣∣∣∣
Where φ is the angle between the individual crafting gradient and the fixed target gradient, and
c0 = ‖T ‖ is the norm of the target gradient.

A.3 ALGORITHM

A.4 HARDWARE AND TIME CONSIDERATIONS

We primarily use an array of GeForce RTX 2080 Ti graphics cards. On 4 GPUs, pre-training the
crafting model on CIFAR-10 typicaly takes 12.5 minutes. Crafting the perturbations typically takes
140 minutes per restart for the entirety of CIFAR-10 (50, 000 images). We typically run 240 iterations
of projected gradient descent. On ImageNet, a batch of 25, 000 Images typically takes just under 17
hours to craft in a similar manner.

14

Under review as a conference paper at ICLR 2022

Algorithm 1 Crafting perturbations
1: Require pre-trained clean network {F (·, θ)}, a dataset S = {(xi, yi)}Ni=1, perturbation bound ε,

restarts R, optimization steps M
2: Begin Compute ∇θL′(S; θ) i.e. the target gradient.
3: For r = 1, . . . , R restarts:
4: Randomly initialize perturbations ∆r ∈ C
5: For j = 1, . . . ,M optimization steps:
6: Apply data augmentation to samples (xi + ∆r

i)
N
i=1

7: Compute alignment loss, A(∆r, θ) as in Eq. 3
8: Update ∆r with a step of signed Adam
9: Project onto ||∆r||∞ ≤ ε

10: Choose ∆∗ as ∆r with minimal value in A(∆r, θ)
11: Return perturbations ∆∗

A.5 REGULARIZATION

While projecting onto an small `∞ ball enforces that the perturbations are not overly conspicuous,
for some applications, like user uploaded images, further regularization to impose visual similarity
may be desirable. Thus, we test a variety of regularization terms to the alignment loss in Eq. 3.
Specifically, we test a straightforward `2 penalty on the norm of the perturbation, a total variation
penalty (TV), and a structural similarity (SSIM) regularizer which has been shown to increase visible
quality of perturbed data (Cherepanova et al., 2021). We find that the regularizers decrease the
visibility of the perturbations in exchange for an increase in validation accuracy. Thus, a practitioner
can choose the strength of the regularizer to control the tradeoff between visibility of the perturbation
and success of the poisons. Effects of the regularizers compared to an unregularized validation run
can be found in Table 9. Additionally, visualizations of images produced using the regularization
terms can be found in Figure 2.

Table 9: Comparison of validation accuracy of ResNet-18 trained on poisons generated using various
regularization terms. All runs use ε = 8/255.

REGULARIZER VALIDATION ACC. (%) ↓
NONE 44.82
`2 69.8

SSIM 51.09
TV 53.39

Figure 2: Example CIFAR-10 Image crafted with different regularizers. From left to right: clean
image, no regularizer, `2 regularization, SSIM regularization, TV regularization. All crafted with
perturbation bound ε = 8/255.

A.6 FACIAL RECOGNITION

Here we include visualizations of the facial recognition perturbations.

We also include results for poisoning facial recognition with a more powerful model in Table 10.

15

Under review as a conference paper at ICLR 2022

Figure 3: Samples of poisoned CelebA images. Top: unaltered images. Middle: ε = 8/255. Bottom:
ε = 16/255.

Table 10: Poisons generated from a more powerful model also result in a stronger attack. Here, we
attack a ResNet-18 model with poisons generated with two different surrogate models at ε = 8/255

IDENTIFICATION VERIFICATION
SURROGATE MODEL CELEBA TOP1 CELEBA TOP5 LFW CFP AGEDB VGG2_FP

NO POISONS 91.02% 94.65% 97.93% 83.84% 85.40% 84.96%
RESNET-18 85.54% 91.67% 95.20% 76.40% 76.88% 81.88%
RESNET-50 79.53% 86.88% 86.75% 74.64% 63.78% 70.52%

16

	Introduction
	Related Work

	Our Method
	Problem Setup
	Crafting Perturbations

	Experimental Results
	Setup
	ImageNet
	Baseline Comparison
	Results in the Black-box Setting
	Stability

	Facial Recognition
	Setup
	Results

	Online Modification
	Conclusions
	Appendix
	Training Details
	Proof of Proposition
	Algorithm
	Hardware and time considerations
	Regularization
	Facial Recognition

