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Abstract

Brain disorders have been consistently associated with abnormalities in specific
brain regions or neural circuits. Identifying key brain regional activities and func-
tional connectivity patterns is essential for discovering more precise neurobiological
biomarkers. However, previous studies have primarily emphasized alterations in
functional connectivity while overlooking abnormal neuronal population activity
within brain regions. To bridge this gap, we propose a novel Local-Global Coupling
Spiking Graph Transformer (LGC-SGT) that jointly models both inter-regional
connectivity differences and deviations in neuronal population firing rates within
brain regions, enabling a dual-perspective neuropathological analysis. The global
pathway leverages spike-based computation in LGC-SGT to model biologically
plausible aberrant neural firing dynamics, while the local pathway adaptively cap-
tures abnormal graph-based representations of brain connectivity learned by local
plasticity in the liquid state machine module. Furthermore, we design a shortcut-
enhanced output strategy in LGC-SGT with the hybrid loss function to suppress
outlier interference caused by inter-individual and inter-center variability, enabling
a more robust decision boundary. Extensive experiments on three brain disorder
datasets demonstrate that our model consistently outperforms state-of-the-art graph
methods in brain disorder diagnosis. Moreover, it facilitates the extraction of inter-
pretable neurobiological biomarkers by jointly analyzing regional neural activity
and functional connectivity, offering a more comprehensive framework for brain
disorder understanding and diagnosis.

1 Introduction

Brain disorders are complex, multi-level conditions characterized by alterations at both the neuronal
and network levels [1]. Evidence suggests that excessive neuronal activity in the hippocampus and
amygdala, along with reorganization of functional connections within the prefrontal cortex and
the default mode network, likely contributes to cognitive impairments [2]. Connectivity patterns
within these regions are particularly crucial, as they mediate the integration of neural circuits that
underpin cognitive function [3]. Moreover, stress-related disorders, such as major depressive disorder
(MDD) and schizophrenia, have been shown to be associated with neural activity in the amygdala
[4]. Thus, abnormal activity in specific neuronal populations can disrupt neural oscillations, also
leading to cognitive dysfunction [5]. Spiking neural networks (SNNs), which biologically model
neuronal firing behaviors in a biologically plausible manner, offer a unique opportunity to integrate
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connectivity analysis with population-level neural dynamics. Therefore, this study aims to distinguish
patients from healthy individuals using SNNs, considering both neuronal activity and connectivity
reorganization at the network level.

Recent advances in SNNs have demonstrated their capability to characterize static functional connec-
tivity patterns[6, 7]. Building on this foundation, recent studies have extended SNN frameworks to
model dynamic functional and structural connectivity [8, 9]. However, their analytical paradigms
are limited to functional connectivity changes between brain regions, overlooking the representation
of neuronal dynamics within brain regions. This limits their completeness in modeling brains. For
example, Alzheimer’s pathological changes often begin with micro-disruptions in synaptic plasticity
within the hippocampus, while abnormalities in macro-level functional connectivity may not become
apparent for several years [10]. Therefore, by modeling the dynamic characteristics of neuronal
clusters within brain regions alongside functional connectivity differences, we can capture brain
changes from both microscopic and macroscopic perspectives, providing more accurate biomarkers.
However, existing SNN frameworks seldom integrate these two perspectives, i.e. network topology
and neuronal population responses, within a single computational model, limiting their ability to
disentangle multi-scale biomarkers.

To bridge this gap, we propose a Local-Global Coupling Spiking Graph Transformer (LGC-SGT) that
jointly models inter-regional connectivity discrepancies and neuronal population firing rate deviations
across brain areas, enabling a dual-perspective analysis of neuropathology. Two critical perspectives
are provided by our model: 1) disorder-sensitive alterations in inter-regional connectivity strength and
topology, and 2) abnormal firing rate responses of neuronal populations within specific brain regions.
Therefore, our framework dynamically links macroscale connectivity patterns with microscale-
inspired spiking population dynamics. Our spike-based transformer integrates the local-global
coupling module, the spiking transformer feature extraction block, and the shortcut-enhanced output
strategy with a hybrid loss function. The local-global coupling module captures the spatiotemporal
interactions of both aberrant firing rate and abnormal brain connectivity. The local liquid state machine
(LSM) pathway guided by functional magnetic resonance imaging (fMRI) initializes region-specific
neuronal populations with random connectivity, then updates synaptic weights via spike-timing-
dependent plasticity (STDP) to emulate local plasticity, constructing the functional connection pattern.
The global adaptive spiking graph convolution pathway refines inter-regional connectivity weights
via Backpropagation and integrates global information to capture the neural firing dynamics. Besides,
the shortcut-enhanced output module with the hybrid loss function is designed to obtain a more
robust decision boundary by suppressing the interference caused by the outliers since the differences
between inter-individual and inter-center.

The contributions of our paper could be summarized as follows:

• We propose the local-global coupling spiking graph transformer framework for brain disorder
diagnosis. The spike-based transformer integrates local and global pathways, attending
to spatiotemporal interactions of both aberrant firing rate dynamics and abnormal brain
connectivity.

• The shortcut-enhanced output strategy with the hybrid loss function is designed to obtain a
more robust decision boundary by suppressing the interference caused by the outliers since
the variety of inter-individual and inter-center.

• The experiments on three brain disorder datasets show that the proposed LGC-SGT model
outperforms existing methods and provides the dual-perspective biomarker discovery of
interregional connectivity discrepancies and neuronal population firing rate deviations.

2 Related Work

2.1 Function-based Brain Networks Analysis

With the rapid advancement of neuroimaging technologies, researchers have progressively established
a systematic neuroimaging-based paradigm for investigating brain networks [11], with fMRI emerging
as a crucial data foundation for constructing brain networks through its unique integration of whole-
brain coverage and high spatial resolution [12]. The complexity of modeling the brain’s topological
relationships has sparked researchers’ interest, leading to the development of methods using Graph
Neural Networks (GNN) for brain network analysis [13]. Additionally, approaches such as adaptive
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Figure 1: The overall framework of the proposed LGC-SGT model.

brain region discrimination [14], information-theory-driven connectivity selection [15], and long-
range dependency modeling [16] have been proposed. However, these methods typically focus on
modeling functional connectivity relationships and often overlook the representation of neuronal
population dynamics within the brain.

2.2 SNN-based Brain Networks Analysis

Recent years have seen growing applications of SNNs in diverse fields [17–19], owing to their
biological plausibility and low-power characteristics [20]. In brain cognitive modeling, SNNs enable
biologically-based brain network modeling by simulating the dynamic processes of biological neurons.
Three-dimensional spiking neural network architectures facilitate the analysis of spatiotemporal neural
data through biomimetic topological design [21]. By spatio-temporal associative memories in SNNs,
Kasabov et al. [22] achieved brain disorder classification based on fMRI data. The biologically-
inspired characteristics of SNNs reveal how mindfulness training reorganizes brain networks [23]
and allow for data analysis of the coupling between brain structure and functional connectivity [8, 9].
Additionally, SNNs constrained by fMRI topology uncover auditory coding mechanisms from the
perspective of information transfer efficiency [24]. Anatomically-guided spiking networks leverage
brain anatomical features to guide SNNs in autonomously learning brain network characteristics
[25]. Despite these advancements, current SNN frameworks still have limitations in brain network
modeling, particularly in their lack of collaborative modeling that integrates inter-region network
topology with the responses of neuronal populations within brain regions.

3 Method

3.1 Problem Definition

In brain network analysis, the core objective of our model is to predict the presence of a brain
disorder or to discover new biomarkers. Here, the network is constructed based on graph-structured
data derived from resting-state fMRI data. Formally, we derive a set of graph-structured samples{
G1, · · · ,GN

}
for N participants and n ROIs, where each sample Gi = (Ai, Xi, yi) denotes the

functional architecture of the i-th objects. In each functional graph of Gi, Ai ∈ {0, 1}n×n is the
graph adjacency matrix that represents the functional connection relationship between brain ROIs.
Xi ∈ Rn×n denotes the node feature matrix that captures functional activity intensity of the brain
ROIs, with the corresponding label of yi that distinguishes brain disorders or healthy controls (HCs).
Our following model aims to learn a map f(Ai, Xi) → yi and discover the biomarkers in the process.

3.2 Local-Global Coupling Spiking Graph Transformer

As shown in Fig. 1, our LGC-SGT framework contains the local-global coupling module, the spiking
transformer feature extraction block, and the shortcut-enhanced output module with a hybrid loss
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function. The model begins by constructing a graph embedding that transforms graph-structured brain
ROIs feature matrices and functional connectivity matrices into feature embeddings. Establish a map-
ping of elementary connection patterns to higher-order pathological features. Specifically, we propose
a local-global coupling block that synergistically integrates locally constrained biologically inspired
features with globally optimized graph convolutional representations. This integration facilitates
precise localization of abnormal brain regions and identification of pathology-relevant biomarkers.
Next, we construct the spiking transformer block to effectively capture dependencies among features
while strengthening their interactive relationships through dynamic attention weighting. The features
are processed through a spike layer, after which the model combines the features before the spike layer
with the binarized features from the spike layer to enhance the output used for binary classification
between HCs and patients with brain disorders.

Local-Global Coupling Module. Building upon the multiple level learning plasticity in the human
brain, we propose a local-global coupling (LGC) module designed to simultaneously capture local
and global features of brain networks. Specifically, the LGC module integrates two parallel pathways:
(1) local pathway learned by unsupervised learning via STDP, and (2) global pathway via supervised
learning by backpropagation. This dual-path architecture enables synergistic fusion of neuronal
dynamics and network organization.

Local Pathway. This pathway mainly consists of three components: an input layer, a reservoir
network, and a readout layer. The input layer encodes external signals into spike trains for the
reservoir network. The liquid state machine layer comprises spiking neurons with sparse random
connectivity, maintaining a biologically plausible excitatory-to-inhibitory ratio of 4:1, which mimics
the cortical microcircuit organization [26]. The readout layer, typically implemented as a linear layer,
decodes the states of neurons within the reservoir network. The calculation process of LSM can be
described as follows:

y(t) = fM ((LMx)(t)), (1)

where x is input of LSM, LM is the nonlinear dynamic system (reservoir network), fM is the readout
function (readout layer), and y(t) is the output of the readout layer at time t. The nonlinear dynamic
system LM here is realized with LIF neurons (all spiking neurons in this paper are LIF neurons),
given by

u(t), pre = τu(t) +Wxt, u(t) = u(t), pre ·
(
1− o(t)

)
. (2)

o(t) =

{
1 if u(t), pre > Vth

0 otherwise. , (3)

where u(t), pre is the pre-synaptic input at time step t, τ is the leaky factor, W is the weight parameter,
Vth is the firing threshold, and o(t) is the spike output. The STDP rule is only used in the local
pathway forward propagation, which can be mathematically represented as follows:

∆W =


ALTP · e−

∆t
τLTP , if ∆t > 0

−ALTD · e
∆t

τLTD , if ∆t < 0

(4)

where ∆W represents the change in synaptic weight, ∆t is the time interval between the pre-synaptic
and post-synaptic spikes, ALTP and ALTD are control constants of long-term potentiation and
long-term depression, respectively, and τLTP and τLTD are time constants.

Global Pathway. The local pathways may lead to the loss of original graph structural details. To
mitigate this information loss, we introduce a global pathway designed to preserve holistic network
attributes. This global pathway employs a spiking graph convolutional network with backpropagation
to capture whole-brain dynamics, formally defined by the following equation:

H = D̃− 1
2 ÃD̃− 1

2X. (5)
OGlobal = SN(BN(Linear(H))) +H, (6)

where Ã = A+ I is the adjacent matrix with self-connection, D̃ is the degree matrix of Ã, H is the
new node representation with connected aggregation, and OGlobal is the output of the global pathway.
SN represents the spiking layer and BN represents the Batch Norm layer.
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Spiking Transformer Blocks. We employ a spiking transformer [27] as the backbone network for
learning features. The core of the spiking transformer is spiking self-attention (SSA). Specifically,
given the feature, it first computes the SSA, given by

Q(X) = SN(Linearq(X)),K(X) = SN(Lineark(X)), V (X) = SN(Linearv(X)). (7)

SSA(X) = MLP (Q(X) · SN(KT (X)⊙ V (X))). (8)

After determining the attention, a shortcut message aggregation scheme is applied from the features
to the attention, followed by another SNN-enhanced MLP block with the shortcut. The following
equations can describe the overall calculation process:

Attnl = SSA(X l) +X l, l = 1 · · ·L. (9)

Ol = MLP (SN(Attnl))) +Attnl, l = 1 · · ·L. (10)

Shortcut-enhanced Output Strategy. Due to the discrete spike firing mechanism employed by
SNNs, the step function is non-differentiable. Currently, surrogate gradient methods are widely
adopted to address this challenge. However, as the network depth increases, employing surrogate
gradients inevitably leads to approximation errors and gradient vanishing. Typically, shortcuts can
be introduced to alleviate gradient vanishing and reduce the information loss [28], but this causes
a conflict between the real-valued features in intermediate layers and the binarization of SNNs. To
address this, researchers have proposed placing spiking activation functions at the beginning of
each block to maintain local binarization [29], while enforcing a final spiking layer at the end of
the network to achieve global binarization, thus ensuring the network remains purely event-driven.
However, binary spike outputs result in information loss. To mitigate the information loss caused by
binarization, particularly its impact on classification performance, we propose a shortcut-enhanced
output strategy by mixing the features before the spiking layer with their subsequent binarized features
for the final output:

Ofinal = Ol · SNfinal(O
l), (11)

where Olrepresents the continuous features before the spiking layer, and SNfinal(O
l) converts the

continuous features into spiking features. The final output is obtained by multiplying the two,
where the spiking signals represent important features, and the real-valued coefficients determine the
intensity of the features.

3.3 Minimum Error Entropy Criterion

Significant individual differences exist between patients and HCs, and inter-site variability caused by
differences in equipment and operational procedures further complicates the data. Traditional loss
functions based on cross-entropy (CE) may lack robustness when dealing with such complex data
distributions. To address this limitation, we introduce minimum error entropy (MEE) [30] as the extra
optimization objective of the model. By minimizing the information entropy of the classification
errors, MEE effectively suppresses the interference caused by outliers arising from individual and
site differences while reducing reliance on assumptions about specific data distributions.

In cross-entropy loss, the optimization objective essentially measures the difference between two
probability distributions, with the optimization performed independently on a point-by-point basis.
In contrast, MEE takes into account the statistical dependencies among the error samples. The error
information e can be measured by Rényi’s entropy [31]

Hα(e) =
1

1− α
log Vα(e), (12)

where error e = ŷ − y between target ŷ and model output y, α is the order of entropy, usually α = 2
for the convenience of calculation, and Vα(e) is the information potential, given by

V̂2(e) =

∫
p̂2(e) =

1

N2

N∑
i=1

N∑
j=1

Gσ(ei − ej). (13)

p̂(x) =
1

N

N∑
i=1

Gσ(x− ei), Gσ(e) = exp

(
− e2

2σ2

)
, (14)
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where Gσ is Gaussian kernel with bandwidth σ, and p(:) is the probability density function of error
e. Obviously, minimizing the error entropy criterion H2(e) is the same as maximum information
potential V̂2(e). Hereby, we define the MEE-Loss as:

LMEE = Ĥ2(e) = − log(
1

N2

N∑
i=1

N∑
j=1

Gσ(ei − ej)). (15)

Then the overall loss can be calculated as follows:

LTotal = LCE + λLMEE . (16)

Theoretical Analysis To validate the robustness of MEE-loss, we conducted a theoretical analysis
focusing on gradient perturbations caused by outliers. The CE-loss is defined as follows:

LCE = −
C∑
i=1

pilogqi, qi =
ezi∑C
j=1 e

zj
, zi = f(x; θ). (17)

where pi is the target distribution, qi is the predict distribution, f is the network mapping, zi is the
network output for category i, x is input data, θ is the learnable network parameter. Next, we compute
the gradient:

∇θLCE = −
C∑
i=1

∂LCE

∂zi
· ∇θzi = −

C∑
i=1

(pi − qi) · ∇θzi. (18)

Similarly, the gradient of MEE-loss is given by:

∇θJMEE = −log(
1

N2

N∑
i=1

N∑
j=1

G′
σ (ei − ej) · (∇θei −∇θej)). (19)

If there are outliers in the input, the corresponding network will produce abnormal outputs. The
gradient of CE is linearly related to zi, such that ∇θzi ↑ as |zi| ↑. As outliers increase, their influence
on parameter updates grows linearly, directly affecting the gradient update. In contrast, for MEE, the
Gaussian kernel mapping results in a decrease in the contribution of the kernel function as outliers
increase: G′

σ (ei − ej) ↓ as |ei − ej | ↑. This leads to the contribution of outliers to the gradient
approaching zero.

4 Experiments

In this section, we analyze the following aspects to demonstrate the effectiveness of our proposed
LGC-SGT model and its dual-perspective biomarker discovery capability.
Q1. How does the performance of the model compare to other state-of-the-art baseline models?
Q2. Does the model detect abnormal firing rate responses of specific neuronal populations?
Q3. Does the model identify the functional connectivity changes in disorder-sensitive regions?

4.1 Experimental Settings

Datasets, Data Preprocessing, and Implementation Details. We evaluate the proposed LGC-SGT
model using three brain network analysis-related fMRI datasets. (1) The ABIDE dataset 1, which
contains 528 patients with autism spectrum disorder (ASD) and 571 HCs. (2) The REST-meta-MDD
dataset2, which contains 848 patients with MDD and 794 HCs. (3) The SRPBS dataset3, which
contains 92 patients with schizophrenia and 92 HCs. The details of datasets, data preprocessing, and
experimental implementation can be found in Appendix A.

1http://preprocessed-connectomes-project.org/abide/
2https://rfmri.org/maps
3https://bicr-resource.atr.jp/srpbsfc/
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Baseline Models. The selected baselines correspond to two categories. The first category is ANNs,
including generalized graph networks and specialized brain networks. Specifically, these include
GCN [32], GAT [33], GIN [34], SIB [35], DIR-GNN [36], ProtGNN [37], BrainGNN [13], IBGNN
[38], CI-GNN [39], BrainIB [15], ContrastPool [14], and ALTER [16]. The second category is the
SNNs, including SpikingGCN [40], MSG [41], SiGNN [42], and SpikingGT [27].

4.2 Performance Comparison (Q1)

Tenfold Cross-Validation. Table 1 presents a comparison between the proposed LGC-SGT model
and the baseline models. The LGC-SGT significantly outperforms both categories of baseline
methods across all three datasets. (a) Compared to ANNs. For generalized graph networks, our
model demonstrates notable improvements in the accuracy metric, achieving a 6.2% increase on
the REST-meta-MDD dataset, a 5.1% increase on the ABIDE dataset, and a 9.2% increase on the
SRPBS dataset. For specialized brain networks, we also observe superior performance, with ACC
improvements of 0.9%, 2.5%, and 3.2% on REST-meta-MDD, ABIDE, and SRPBS, respectively. (b)
Compared to SNNs. Our model achieves improvements of 4.9%, 4.3%, and 4.8% on REST-meta-
MDD, ABIDE, and SRPBS datasets, respectively. These experimental results indicate that LGC-SGT
consistently outperforms the existing baseline methods across all evaluated datasets.

Table 1: Tenfold cross-validation performance with ANNs and SNNs on three datasets
(REST-meta-MDD, ABIDE, and SRPBS) (%). The best results are marked in bold.
Category Methods REST-meta-MDD ABIDE SRPBS

ANN

Generalized

GCN [32] 60.8 ± 1.3 64.4 ± 3.8 82.7 ± 8.6
GAT [33] 64.7 ± 1.7 67.9 ± 3.9 84.2 ± 8.1
GIN [34] 65.4 ± 3.2 67.9 ± 3.5 84.3 ± 8.2
SIB [35] 57.7 ± 3.2 62.7 ± 4.4 81.1 ± 9.0

DIR-GNN [36] 64.4 ± 1.8 67.0 ± 2.7 83.9 ± 6.5
ProtGNN [37] 61.0 ± 2.1 65.3 ± 3.1 84.3 ± 5.0

Specialized

BrainGNN [13] 60.2 ± 3.0 62.7 ± 2.1 82.2 ± 8.5
IBGNN [38] 63.0 ± 2.7 64.0 ± 3.1 84.8 ± 8.6
CI-GNN [39] 66.8 ± 4.0 67.5 ± 3.3 87.5 ± 6.8
BrainIB [15] 70.0 ± 2.2 70.2 ± 2.0 90.3 ± 4.6

ContrastPooL [14] 65.1 ± 1.9 68.6 ± 2.7 89.2 ± 3.4
ALTER [16] 65.8 ± 3.3 70.5 ± 1.4 89.5 ± 5.9

SNN Generalized

SpikeGCN [40] 66.0 ± 2.1 68.7 ± 1.6 86.5 ± 2.5
MSG [41] 60.4 ± 2.4 62.9 ± 3.7 81.9 ± 2.7
SiGNN [42] 66.2 ± 2.5 69.1 ± 1.8 87.6 ± 7.2
SpikeGT [27] 61.8 ± 3.5 65.8 ± 1.4 88.7 ± 3.6

Specialized LGC-SGT (Ours) 70.9 ± 1.7 73.0 ± 2.6 93.5 ± 3.0

Table 2: Leave-one-site-out cross-validation performance on
REST-meta-MDD and ABIDE dataset (%).

Dataset Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 Mean

REST-
meta-
MDD

CI-GNN 63.3 83.0 85.2 76.3 70.0 68.8 75.4 73.2 72.2 68.3 81.1 62.3 67.3 63.2 68.3 75.2 64.4 71.6
BrainIB 63.3 73.0 85.4 77.8 71.3 68.8 73.2 75.7 80.6 72.0 82.1 67.1 69.4 63.2 70.1 71.1 68.9 72.5
SpikeGT 55.5 56.7 75.6 62.5 70.1 62.5 70.4 62.2 61.1 65.6 73.1 57.3 63.3 58.1 63.9 68.4 64.4 64.2

LGC-SGT 63.7 70.0 85.4 77.8 74.7 68.4 76.1 78.4 80.6 75.3 82.1 62.2 69.4 60.4 70.8 68.9 78.9 73.1

ABIDE

CI-GNN 83.3 71.1 67.4 67.8 71.7 64.3 67.9 77.8 78.1 69.2 83.3 75.0 64.2 63.4 61.2 66.3 75.1 71.0
BrainIB 83.3 71.1 72.7 73.4 66.7 70.1 67.9 77.8 66.7 83.3 75.0 75.0 65.3 74.7 64.8 73.3 82.1 73.1
SpikeGT 79.2 57.9 72.7 67.2 61.4 69.0 53.6 72.2 56.1 70.0 72.2 70.0 69.4 68.7 63.5 74.3 78.6 68.0

LGC-SGT 87.5 76.3 70.9 73.4 73.7 70.1 64.3 80.6 70.2 73.3 77.8 72.5 73.5 74.8 67.6 75.3 85.7 74.6

Leave-One-Site-Out Cross-Validation. To further assess the performance of our model, we
conduct leave-one-site-out cross-validation. ABIDE and REST-meta-MDD datasets contain 17
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Figure 2: Comparison of brain region activity of HCs and patients on schizophrenia, ASD, and MDD.
The top 5 different regions are shown. The two-sample t-test with Welch’s correction was employed
to evaluate the significance of intergroup differences. Statistical significance was defined as p < 0.05.
(a) Schizophrenia. (b) ASD. (c) MDD.

independent sites. In detail, we divide each dataset into the training set (16 sites out of 17
sites) to train the model and the testing set (remaining site out of 17 sites) for testing the
model. We compared our model with CI-GNN, BrainIB, and SpikeGT. CI-GNN and BrainIB
were chosen due to their performance better in tenfold cross-validation compared to other models,

Table 3: Ablation study for the
modules we design.

Dataset Method Accuracy

REST-
meta-
MDD

Baseline 70.94%
w/o MEE 70.77%
w/o LGC 69.99%
w/o SEO 69.83%

ABIDE

Baseline 73.03%
w/o MEE 72.91%
w/o LGC 72.55%
w/o SEO 71.73%

SRPBS

Baseline 93.51%
w/o MEE 90.50%
w/o LGC 89.77%
w/o SEO 89.74%

while SpikeGT represents a typical transformer-based SNN
model. The experimental results are summarized in Table 2.
Compared to the baselines, our model achieved the highest
site-average accuracy, reaching 73.1% and 74.6% on REST-
meta-MDD and ABIDE datasets, respectively. Moreover, it
demonstrates significant improvements across most sites, in-
dicating that the strength of our model lies in its ability to
generalize well across completely different multi-site datasets
despite site-specific differences.

Ablation Study. To rigorously evaluate the contribution of
each proposed component to our model’s performance, we
conduct comprehensive ablation studies across three bench-
mark datasets. The experimental design systematically isolates
three critical elements: (i) the MEE-loss function, (ii) the LGC
module, and (iii) the shortcut-enhanced output strategy (SEO).
As shown in Table 3, the LGC-SGT achieves the highest clas-
sification accuracy on three brain disorders classification tasks,
demonstrating the effectiveness of the proposed modules.

5 In-depth Analysis of brain neuronal population dynamics (Q2)

To analyze the neuronal population dynamics of our model, we conducted rigorous statistical compar-
isons. The results show that the differences in spiking activity between patients with brain disorders
and HCs are statistically significant. Fig. 2 illustrates the five ROIs exhibiting maximal inter-group
differences for each disorder, accompanied by their neuroanatomical schematics. Schizophrenia:
Patients demonstrated aberrant activity in several brain regions, including the PreCG.L, MFG.L,
PCL.L, CAU.R, and MOG.L. These findings align with prior studies [43–45] that abnormal activity in
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Figure 3: Comparison of brain functional connections of HCs and patients with schizophrenia. In
the anatomical brain map, the thickness of the connections represents the strength of functional
connectivity; in the circular layout chord diagram, blue lines indicate shared functional connections
between the patient and HCs, while red lines represent connections unique to either the patient or
HCs. (a) Patients with schizophrenia. (b) HCs of schizophrenia. (c) Patients with ASD. (d) HCs of
ASD. (e) Patients with MDD. (f) HCs of MDD.

these regions serves as a potential cause of schizophrenia. These regions are primarily involved in the
maintenance of working memory, conflict monitoring, and the regulation of goal-directed behavior.
ASD: significant activity differences emerge in the OLF.L, INS.R, DCG.L, CAU.L, and MTG.R.
Supporting literature [46–48] further suggests that abnormalities in these regions are closely related
to the core symptoms characteristic of ASD. These regions are responsible for detecting internal
sensory signals and coordinating the allocation of attentional resources. MDD: patients showed
significant activity alterations in the PCG.L, CAL.L, PoCG.L, PCUN.L, and CAU.L. Consistent with
these observations, previous studies [49, 50] have confirmed that abnormal activity in these brain
regions may underlie the development of major depressive disorder. Abnormalities in these brain
regions may lead to a bias in the processing of negative information.

Comparative analysis across three brain disorders revealed distinct neural activity patterns of aberrant
brain regions when contrasted with HCs. These results indicate that our model effectively simulates
brain activity and identifies regions exhibiting abnormal neural activity in patients compared to HCs.
Clinical and neuroimaging results also validate the rationale of the biomarkers we discovered. The
detailed experimental setting can be found in Appendix B.1.

6 In-depth Analysis of brain functional connectivity (Q3)

To analyze the functional pattern under different brain disorders, we visualize functional connectivity.
The results show that the functional connectivity between patients with brain disorders and HCs
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is significantly different. As shown in Fig. 3, our model learned distinct connectivity patterns for
schizophrenia patients and HCs, and obtained some functional connections that could distinguish
patients from HCs. Schizophrenia: functional connectivity was significantly increased between the
MFG.R and IFGtriang.R (frontoparietal network). This finding is consistent with previous studies
[51] reporting that the connectivity between the sensorimotor network and the frontoparietal network
is enhanced in schizophrenia. ASD: the increased connectivity pointing to the HIP.L region, which
aligns with prior research indicating functional abnormalities of the hippocampus in ASD [52]. MDD:
connectivity between the THA.R and HIP.L has been increased, consistent with findings from [53]
that connectivity change in these regions is part of the pathophysiology of MDD.

The experimental results demonstrate that our model accurately reproduces the abnormal functional
connectivity patterns observed clinically, effectively simulates the physiological mechanisms un-
derlying brain functional connectivity, and reveals distinct connectivity patterns characteristic of
brain disorders. Clinical and neuroimaging results also validate the rationale of the biomarkers we
discovered. The detail of the experiment is provided in the Appendix B.2.

7 Conclusion and Discussions

Conclusion. In summary, we propose the LGC-SGT model that jointly models inter-regional
connectivity discrepancies and neuronal population firing rate deviations, enabling a dual-perspective
analysis of neuropathology. By integrating a shortcut-enhanced output strategy with a hybrid loss
function, our framework achieves robust decision boundaries for brain disorder diagnosis. Extensive
experiments on three brain disorder datasets demonstrate that the LGC-SGT model consistently
outperforms existing graph learning methods, successfully identifying dual-perspective biomarkers
from both inter-regional connectivity and neuronal firing rate abnormalities. This approach offers
novel insights for clinical research and therapeutic strategies.

Limitations. Although our current work effectively simulates brain functional states using resting-
state fMRI data, incorporating multimodal data, such as diffusion tensor imaging (DTI) for structural
connectivity and electroencephalogram (EEG) for neural oscillations, would provide additional
anatomical constraints and temporal resolution, enabling more accurate brain modeling grounded in
biological and clinical relevance.
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Justification: The detailed experimental settings are provided in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
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the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We provide the dataset citation and the experimental settings.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] ,
Justification: All the training and test details are provided.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We ensure the experimental results are convincing by conducting several runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The citation has been provided in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: The new model is provided in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets and Implementation Details

A.1 Datasets and Data Preprocessing

In the construction of brain connectomes, we first preprocessed the raw resting-state fMRI data using
Statistical Parametric Mapping (SPM) software, including slice timing correction and head motion
correction. Subsequently, the resting-state fMRI images were normalized to a standard space using
deformation parameters that map the fMRI images to the Montreal Neurological Institute (MNI)
template. In addition, a Gaussian filter with a half maximum width of 6 mm is used to smooth the
functional images. The resulting fMRI images are filtered with a bandpass filter (0.01–0.08 Hz).
After preprocessing, the average time series for each participant is extracted from each ROIs using
the AAL atlas, which comprises 90 cerebral regions and 26 cerebellar regions. Then, functional
connectivity was computed between all ROIs pairs using Pearson’s correlation coefficient, followed
by Fisher’s r-to-z transformation, resulting in a 116 × 116 symmetric matrix representing the brain
network. Their demographic information is summarized in Table 4.

Table 4: Description of datasets. Demographic and clinical characteristics.

Characteristic ABIDE Rest-meta-MDD SRPBS

ASD HC MDD HC Schizophrenia HC

Sample Size 528 571 828 776 92 92
Age 17.0 ± 8.4 17.1 ± 7.7 34.3 ± 11.5 34.4 ± 13.0 39.6 ± 10.4 38.0 ± 12.4

Gender(M/F) 464/64 471/100 301/527 318/458 47/45 60/32

A.2 Implementation Details

In the proposed LGC-SGT model, we had the following hyperparameters and the range of them in
Table 5. And all experiments were performed on a single NVIDIA RTX 3090 GPU.

Table 5: Ranges of different hyperparameters.
Parameter Rest-meta-MDD ABIDE SRPBS

number of spiking transformer blocks 3 2 1
timesteps 8 2 4
lambda 0.1 0.2 0.2

MEE kernel 0.5 0.1 0.2
batch size 32

learning rate 1e− 4
weight decay 1e− 4

attention heads 2
embedding dimension 116

B Two Perspective Biomarker Discovery

The differences in the association mechanisms between abnormal activity in brain regions and
abnormal functional connectivity in pathological contexts primarily reflect their impact on different
levels of neural networks: the former focuses more on the activity levels of local brain regions, while
the latter emphasizes the functional connectivity relationships between brain regions.

B.1 Brain Neuronal Population Dynamics

The analysis employs the Automated Anatomical Labeling (AAL) atlas as the criteria for brain region
division, establishing a precise one-to-one mapping between 116 spiking neurons and neuroanatomical
regions (90 cerebral and 26 cerebellar).
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B.2 Brain Functional Connectivity

To analyze brain functional connectivity under different brain disorders, we performed separate STDP
training of the model’s local pathways using samples from each disorder group and the HCs. To
further investigate disorder-specific differences in functional connectivity patterns, we conducted the
following analyses on the trained networks for each group: first, we established a mapping between
the model’s reservoir layer neurons and specific brain regions; second, we constructed functional
connectivity maps based on the synaptic weight matrices obtained after training, quantifying the
interaction strength between different brain regions; finally, by comparing network characteristics
between patient and HCs, we identified abnormal connectivity patterns specific to each disorder, which
may help elucidate the underlying neural circuit mechanisms of brain disorders. For visualization,
we selected the top 100 edges with the highest weights along with their connected nodes.
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