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ABSTRACT

We introduce Model-guidance (MG), a novel training objective for diffusion mod-
els that addresses the limitations of the widely used Classifier-free Guidance
(CFG). Our approach directly incorporates the posterior probability of conditions
into training, allowing the model itself to act as an implicit classifier. MG is
conceptually inspired by CFG yet remains simple and effective, serving as a plug-
and-play module compatible with existing architectures. Our method significantly
accelerates training and doubles inference speed by requiring only a single for-
ward pass per denoising step. MG achieves generation quality on par with, or
surpassing, state-of-the-art CFG-based diffusion models. Extensive experiments
across multiple models and datasets demonstrate both the efficiency and scalabil-
ity of our approach. Notably, MG achieves a state-of-the-art FID of 1.34 on the
ImageNet 256 benchmark.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021a;b) have become the cornerstone of many successful generative models, e.g. , image genera-
tion (Dhariwal & Nichol, 2021; Nichol et al., 2022; Rombach et al., 2022; Podell et al., 2024; Chen
et al., 2024) and video generation (Ho et al., 2022; Blattmann et al., 2023; Gupta et al., 2025; Polyak
et al., 2024; Wang et al., 2024) tasks. However, diffusion models also struggle to generate “low
temperature” samples (Ho & Salimans, 2021; Karras et al., 2024a) due to the nature of training ob-
jectives, and techniques such as Classifier guidance (Dhariwal & Nichol, 2021) and Classifier-free
Guidance (CFG) (Ho & Salimans, 2021) are proposed to improve performances.

Despite its advantage and ubiquity, CFG has several drawbacks (Karras et al., 2024a) and poses
challenges to effective implementations (Kynkäänniemi et al., 2024) of diffusion models. One crit-
ical limitation is the simultaneous modeling of unconditional task apart from the conditional task
during inference. The unconditional model is typically implemented by randomly dropping the con-
dition of training pairs and replacing with an manually defined empty label. The introduction of
additional tasks may reduce network capabilities and lead to skewed sampling distributions (Kar-
ras et al., 2024a; Kynkäänniemi et al., 2024). Furthermore, CFG requires two forward passes per
denoising step during inference, one for the conditioned and another for the unconditioned model,
thereby significantly escalating the computational costs.

In this work, we propose Model-guidance (MG), an innovative method for diffusion models to ef-
fectively circumvent CFG and boost performances, thereby eliminating the limitations above. We
propose a novel objective that transcends from simply modeling the data distribution to incorporat-
ing the posterior probability of conditions. Specifically, we leverage the model itself as an implicit
classifier and directly learn the score of calibrated distribution during training.

As depicted in fig. 1, our proposed method confers multiple substantial breakthroughs. It signifi-
cantly refines generation quality and accelerates both training and inference processes, with exper-
iments showcasing significant improvements over both vanilla and CFG diffusion models. Specifi-
cally, the inference speed is doubled with our method, as each denoising step needs only one network
forward in contrast to two in CFG. Besides, it is easy to implement and requires only one line of
code modification, making it a plug-and-play module of existing diffusion models with instant im-
provements. Finally, it is an end-to-end method that excels traditional two-stage distillation-based
approaches and even outperforms other models that use CFG.
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Figure 1: We propose Model-guidance (MG), remove Classifier-free Guidance (CFG) for dif-
fusion models and achieve state-of-the-art on ImageNet 256 generation with FID of 1.34.
(a) While CFG needs two forwards (green and red), MG directly produces the final output (blue).
(b) MG requires few line of code modification while providing significant quality improvements.
(c) Comparing to concurrent methods, whether or not using CFG, MG yields the lowest FID results.
(d) In addition to superior quality, the sampling cost of MG is also much lower than other methods.

We conduct comprehensive experiments on the prevalent Imagenet (Deng et al., 2009; Russakovsky
et al., 2015) benchmarks with 256× 256 and 512× 512 resolution, compare with a wide variates of
concurrent methods, and scale up to text-to-image models to attest the effectiveness of our proposed
method. The evaluation results demonstrate that our method not only parallels and even outper-
forms other approaches that uses CFG, but also scales to different models and datasets, making it a
promising enhancement for diffusion models. In conclusion, we make the following contribution:

• We proposed a novel method, Model-guidance (MG), to effectively train diffusion models.
• MG removes CFG for diffusion models and greatly accelerates both training and inference.
• Extensive experiments with SOTA results on ImageNet demonstrate the advantages of MG.

2 BACKGROUND

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are a class of
generative models that utilize forward and reverse stochastic processes to model complex data dis-
tributions. The forward process adds noise and transforms data samples into Gaussian distributions

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (1)

where xt represents the noised data at timestep t and ᾱt =
∏t

s=1 αs is the noise schedule. Con-
versely, the reverse process learns to denoise and finally recover the original data, which aims to
reconstruct score (Sohl-Dickstein et al., 2015; Song et al., 2021b) from the noisy samples xt by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (2)

where µθ and Σθ are mean and variance and predicted by neural networks. In common implemen-
tations, the training of diffusion models leverages a re-parameterized objective (Ho et al., 2020)

Lsimple = Et,x0,ϵ∥ϵθ(xt, t)− ϵ∥2. (3)

Flow Models (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023; Tong et al., 2024), an
emerging type of generative models, utilize the concept of Ordinary Differential Equations (ODEs)
and a forward process of Optimal Transport (OT) interpolant (McCann, 1997). They learn the di-
rections from noise pointing to ground-truth data by optimize

LFM = Et,x0,ϵ ∥uθ(xt)− ut(xt|x0)∥2 , where xt = (1− t)x0 + tϵ and ut(xt|x0) = x0 − ϵ. (4)
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Figure 2: We use a grid 2D distribution
with two classes, orange and gray, as an
example and train diffusion models.
(a) In the first row, CFG improves qual-
ity by eliminating the outliers, while the
samples concentrate in the center and
thus lost diversity. In contrast, MG
yields less outliers, better coverage of
data, and higher diversity than CFG.
(b) In the second row, the trajectories of
CFG turn sharply at the beginning, e.g.
the samples inside the red box, while
our method directly drives them to the
closest data distributions.

2.2 CLASSIFIER-FREE GUIDANCE

Due to the complex nature of visual datasets, diffusion models often struggle whether to recover real
image distribution or engage in the alignment to conditions. Classifier-free Guidance (CFG) (Ho &
Salimans, 2021) is proposed and has become indispensable for modern diffusion models (Nichol &
Dhariwal, 2021; Karras et al., 2022; Saharia et al., 2022; Hoogeboom et al., 2023).

The key design of CFG is to combine the posterior probability and utilize Bayes’ rule during in-
ference time. To facilitate this, it is required to train both conditional and unconditional diffusion
models. In particular, CFG trains the models to predict

ϵθ(xt, t, c) = −σt∇xt
log pθ(xt|c) and ϵθ(xt, t,∅) = −σt∇xt

log pθ(xt), (5)

where an additional empty class ∅ introduced in common practices. During training, the model
switches between the two modes with a ratio λ. For inference, the model combines the conditional
and unconditional scores on-the-fly and guides the denoising process as

ϵ̃θ(xt, t, c) = ϵθ(xt, t, c) + w · (ϵθ(xt, t, c)− ϵθ(xt, t,∅)) , (6)

where w is the guidance scale that controls the focus on conditional scores and the trade-off between
generation quality and sampling diversity.

However, CFG has with several disadvantages (Karras et al., 2024a; Kynkäänniemi et al., 2024),
such as the multitask learning of both conditional and unconditional generation, and the doubled
inference cost due to the doubled number of function evaluations (NFEs). Moreover, the tempt-
ing property that solving the denoising process according to eq. (6) eventually recovers data dis-
tribution does not hold, as the joint distribution does not represent a valid heat diffusion of the
ground-truth (Zheng & Lan, 2024). This results in exaggerated truncation and mode dropping simi-
lar to (Karras et al., 2018; Brock et al., 2019; Sauer et al., 2022), since the samples are blindly pushed
towards the regions with higher posterior probability. As fig. 2 shows, CFG improves sample quality
as the cost of diversity lost and distort trajectories (Karras et al., 2024a).

2.3 DISTILLATION-BASED METHODS

Besides acceleration (Song et al., 2023; Liu et al., 2023), researchers also adopt distillation on dif-
fusion models with CFG to improve sampling quality. GD (Meng et al., 2023) learns a smaller
one-step model to match the performance of larger multi-step models, while ADD (Sauer et al.,
2024) additionally introduces an adversarial approach. Pioneering diffusion models (Black-Forest-
Labs, 2024; Stability-AI, 2024) are released with distilled versions. However, these approaches
involve two-stage learning and require extra computation and storage for offline teacher models.

3 METHOD

3.1 MODEL-GUIDANCE LOSS

Instead of direct sampling from the learned conditional distribution, the core idea of CFG originates
from the classifier-guidance (Dhariwal & Nichol, 2021) and samples from the joint distribution

p̃θ(xt|c) ∝ pθ(xt|c)pθ(c|xt)
w, (7)
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Figure 3: Illustration of CFG and proposed MG.
(a) The conditional and unconditional scores
point towards the centroids of data distribution,
as the training pairs (x0, ϵ) are randomly sam-
pled.
(b) While CFG provides better update directions
by interpolating the two vectors during infer-
ence, MG aims to directly learn the joint score,
∇ log p̃θ(xt|c), during training and thereby re-
duces inference costs.

where w is the weighting factor of posterior probability. Since the classifier pθ(c|xt) of noisy sam-
ples is not practically available, CFG propose to estimate with Bayes’ rule on-the-fly in inference

pθ(c|xt) =
pθ(xt|c)pθ(c)

pθ(xt)
, (8)

where pθ(xt|c) and pθ(xt) are conditional and unconditional distributions. However, we argue that
do we really need to separately learn pθ(xt|c) and pθ(xt)? Can we fuse the joint distribution and
turn the diffusion model itself as an implicit classifier in a more efficient and elegant way?

As fig. 3 illustrates, we propose Model-guidance (MG) to directly learn the joint distribution
p̃θ(xt|c), of which the score is decomposed as

∇xt log p̃θ(xt|c)︸ ︷︷ ︸
joint score

= ∇xt log pθ(xt|c)︸ ︷︷ ︸
conditional score

+w · ∇xt log pθ(c|xt)︸ ︷︷ ︸
posterior score

(9)

During training, the ground-truth of the conditional score (Song & Ermon, 2019) in eq. (9) is

∇xt
log pθ(xt|c) = − 1

σt
ϵ, (10)

where ϵ is the noise added to samples. However, the ground-truth of the posterior score, e.g. the score
of posterior probability pθ(c|xt), cannot be directly obtained. Inspired by eq. (8), we transform the
diffusion model itself into an implicit classifier. Specifically, we employ Bayes’ rule during training
to estimate the posterior probability

log pθ(c|xt) = log pθ(xt|c)− log pθ(xt) + log pθ(c)

∝ log pθ(xt|c)− log pθ(xt) (11)

Next, we use the diffusion model itself to approximate the scores

∇xt log pt(xt|c) = − 1

σt
ϵθ(xt, t, c) and ∇xt log pt(xt) = − 1

σt
ϵθ(xt, t,∅), (12)

where σt is the variance of the noise added to xt at timestep t, ∅ is the empty class, and ϵθ(·) is the
diffusion model. Substituting eq. (12) into eq. (11) yields

∇xt
log pθ(c|xt) ∝ − 1

σt
(ϵθ(xt, t, c)− ϵθ(xt, t,∅)) . (13)

Combining eqs. (10) and (13) leads to a valid training target for eq. (9)

∇xt log p̃θ(xt|c) = − 1

σt
(ϵ+ w (ϵθ(xt, t, c)− ϵθ(xt, t,∅))). (14)

Then, our method applies the Bayes’ estimation in eq. (11) online and trains a conditional diffusion
model to directly predict the score in eq. (9) according to eq. (14), instead of separately learning
eq. (12) in the form of vanilla CFG. Consequently, our MG loss is

LMG = Et,(x0,c),ϵ∥ϵθ(xt, t, c)− ϵ′∥2, (15)

ϵ′ = ϵ+ w · sg(ϵθ(xt, t, c)− ϵθ(xt, t,∅)), (16)

where we apply the stop gradient operation, sg(·), as a common practice of avoiding model col-
lapse (Grill et al., 2020). We come across with the surprising observation that our MG loss behaves
similar to form of self-supervise learning (Grill et al., 2020) that the diffusion model ϵθ provides
a calibrated prediction target in eq. (16), while itself is also being trained with the same target in
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Algorithm 1 Training with Model-guidance loss

Input: Dataset {Xi,Ci}, noise schedule ᾱ, learning rate η
Output: Model ϵθ
repeat

Sample data (x0, c) ∼ {Xi,Ci}
Sample noise ϵ ∼ N (0, 1) and time t ∼ U(0, 1)
Add noise with xt =

√
ᾱtx0 +

√
1− ᾱtϵ

Modify target ϵ′ = ϵ+ w · sg(ϵθ(xt, c, t)− ϵθ(xt,∅, t))
Compute loss LMG = ∥ϵθ(xt, c, t)− ϵ′∥2
Back propagation θ = θ − η∇θLMG

until converged

eq. (15), producing a cycle of self improvement. Therefore, MG accelerates the training and con-
vergence of diffusion models, comparing to the vanilla forms in eq. (3). For flow-based models, we
also have the similar objective

LMG = Et,(x0,c),ϵ∥uθ(xt, t, c)− u′∥2, (17)

u′ = u+ w · sg(uθ(xt, t, c)− uθ(xt, t,∅)). (18)

where u is the ground-truth flow in eq. (4). During training, we randomly drop and replace the
condition c in eqs. (15) and (17) with an additional empty class ∅ by a certain ratio λ to enable the
estimation in eq. (12), similar to the common implementations of CFG. MG transforms the model
itself into an online classifier during training, jointly optimizes generation quality and condition
alignment, and is compatible with existing pipelines with minimum modifications.

3.2 COMPARE MG WITH DISTILLATION

The questions arise that what is the essential difference between MG and distillation? Specifically,
we compare MG with guidance distillation (GD) (Meng et al., 2023), and investigate the advantages
of MG in depth. Given a pre-trained diffusion model ϵθ(xt, t, c) as teacher, GD introduces another
student model ϵη(xt, t, c, w), which takes the guidance scale w as input, and optimize with

LGD = Ew,t,(x0,c),ϵ ∥ϵη(xt, t, c, w)− ϵwθ (xt, t, c)∥2 , (19)

ϵwθ (xt, t, c) = ϵθ(xt, t, c) + w(ϵθ(xt, t, c)− ϵθ(xt, t,∅)), (20)

where w ∼ U[wmin, wmax] is sampled from a range of guidance scales we are interested in. With
LGD, the teacher model ϵθ(xt, t, c) is offline and fixed during the training process, and only the
student model ϵη(xt, t, c, w) benefits from CFG. The distilled model ϵη is upperbounded and cannot
surpass its teacher ϵθ. In contrast, our MG uses the model itself as an online teacher in eqs. (15)
and (16). The model benefits from the guidance and continues to produce better guidance for itself.

3.3 IMPLEMENTATION VARIANTS

Scale-aware networks. Similar to other distillation-based methods (Frans et al., 2024; Meng et al.,
2023), the guidance scale w can be fed into the network as an additional condition. In particular, we
sample guidance scale from an specified interval, and the loss objective is modified as the following

LMG = Ew,t,(x0,c),ϵ∥ϵθ(xt, t, c, w)− ϵ′∥2, (21)

ϵ′ = ϵ+ w · sg(ϵθ(xt, t, c, 0)− ϵθ(xt, t,∅,−1)). (22)

When augmented with w-input, our models offer flexible choices of the balance between image
quality and sample diversity during inference, and still require only one forward per denoising step.

Automatic adjustment of the hyper-parameter w. While the scale w in eqs. (16) and (18) plays
an important role as the balance of posterior probability, it is tedious and costly to perform manual
search during training. Therefore, we introduce an automatic adjustment scheme of w. We begin
with w = 0 that corresponds to vanilla diffusion models in eq. (3), then update w according to
intermediate evaluations. The value is raised when quality decreases and suppressed otherwise,
leading to an optimums when converged. We also provide the details and pseudo-code in Appedix.
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Table 1: Experiments on ImageNet 256 conditional generation without CFG. By employing
MG, the performances of both DiT and SiT are greatly boosted, achieving state-of-the-art.

Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑ Tflops↓ #Params↓
ADM (Dhariwal & Nichol, 2021) 10.9 - 101.0 0.69 0.63 1120 554M
VDM++ (Kingma & Gao, 2023) 2.40 - 225.3 0.78 0.66 - 2.0B

LDM (Rombach et al., 2022) 10.5 - 103.5 0.71 0.62 103.6 400M
U-ViT (Bao et al., 2023) 8.97 - 136.7 0.69 0.63 - 501M
MDTv2 (Gao et al., 2023) 5.06 - 155.6 0.72 0.66 - 676M
REPA (Yu et al., 2024b) 5.90 6.33 162.1 0.71 0.56 29.65 675M
LightningDiT (Yao & Wang, 2025) 2.17 4.36 205.6 0.77 0.65 131.2 675M

VAR (Tian et al., 2024) 2.16 - 288.7 0.81 0.61 - 2.0B
RAR (Yu et al., 2024a) 3.83 - 274.5 0.79 0.61 - 1.5B
MAR (Li et al., 2024) 2.35 - 227.8 0.79 0.62 - 943M

DiT-XL/2 (Peebles & Xie, 2023) 9.62 6.85 121.5 0.67 0.67 29.65 675M
+MG(ours) 1.78 4.46 298.5 0.80 0.66 29.65 675M
Improvement 81.5% 34.9% 146% 19.4% −0.1% 0.0% 0.0%

SiT-XL/2 (Ma et al., 2024) 8.61 6.32 131.7 0.68 0.67 29.65 675M
+MG(ours) 1.34 4.58 321.5 0.81 0.65 29.65 675M
Improvement 84.4% 27.5% 144% −19.1% −3.0% 0.0% 0.0%

Table 2: Experiments on ImageNet 256 conditional generation with CFG. Comparing to models
using CFG, our method still obtains excellent results and surpasses others with lower Tflops.

Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑ Tflops↓ #Params↓
ADM (Dhariwal & Nichol, 2021) 4.59 5.25 186.7 0.82 0.52 2240 544M
VDM++ (Kingma & Gao, 2023) 2.12 - 267.7 0.81 0.65 - 2.0B

LDM (Rombach et al., 2022) 3.60 - 247.7 0.87 0.48 207.2 400M
U-ViT (Bao et al., 2023) 2.29 5.68 263.9 0.82 0.57 - 501M
MDTv2 (Gao et al., 2023) 1.58 4.52 314.7 0.79 0.65 - 676M
REPA (Yu et al., 2024b) 1.42 4.70 305.7 0.80 0.65 59.30 675M
LightningDiT (Yao & Wang, 2025) 1.35 4.15 295.3 0.79 0.65 262.3 675M

VAR (Tian et al., 2024) 1.73 - 350.2 0.82 0.60 - 2.0B
RAR (Yu et al., 2024a) 1.48 - 326.0 0.80 0.63 - 1.5B
MAR (Li et al., 2024) 1.55 - 303.7 0.81 0.62 - 943M

DiT-XL/2 (Peebles & Xie, 2023) 2.27 4.60 278.2 0.83 0.57 59.30 675M
+MG(ours) 1.78 4.46 298.5 0.80 0.66 29.65 675M
Improvement 21.6% 3.04% 7.30% −3.6% 15.8% 100% 0.0%

SiT-XL/2 (Ma et al., 2024) 2.06 4.49 277.5 0.83 0.59 59.30 675M
+MG(ours) 1.34 4.58 321.5 0.81 0.65 29.65 675M
Improvement 35.0% −2.0% 15.9% −2.4% 10.2% 100% 0.0%

4 EXPERIMENT

We first present a system-level comparison with state-of-the-art models on ImageNet 256 × 256
conditional generation. Then we conduct ablation experiments to investigate the detained designs of
our method. Especially, we emphasize on the following questions:

• How far can MG push the generation quality of existing diffusion models? (tables 1 and 2,
section 4.2)

• Can MG scales to larger models, more datasets, and different image generation tasks?
(tables 3 to 5, section 4.3)

• What is the details about implementation, flexibility, and efficiency of MG? (tables 6 to 8,
figs. 4 and 5, section 4.4)

4.1 SETUP

Implementation and dataset. We follow the experiment pipelines in DiT (Peebles & Xie, 2023)
and SiT (Ma et al., 2024). We use ImageNet (Deng et al., 2009; Russakovsky et al., 2015) dataset
and the Stable Diffusion (Rombach et al., 2022) VAE to encode 256 × 256 images into the latent
space of R32×32×4. We conduct ablation experiments with the B/2 variant of DiT and SiT models

6
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Table 3: Experiments on model size.

Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-B/2 43.5 36.7 39.23 0.62 0.34
+CFG 9.67 9.14 160.6 0.79 0.36
+MG(ours) 7.24 5.56 189.2 0.84 0.38

DiT-L/2 23.3 18.4 132.7 0.73 0.40
+CFG 6.76 7.10 203.4 0.78 0.38
+MG(ours) 5.43 4.66 236.3 0.83 0.44

DiT-XL/2 19.5 15.6 163.5 0.79 0.46
+CFG 4.16 5.23 233.0 0.82 0.49
+MG(ours) 3.37 4.73 257.2 0.84 0.51

SiT-B/2 33.0 27.8 65.24 0.68 0.35
+CFG 8.35 8.63 173.0 0.78 0.37
+MG(ours) 6.49 5.69 212.3 0.86 0.38

SiT-L/2 18.9 16.3 173.2 0.71 0.42
+CFG 5.77 6.46 223.8 0.79 0.44
+MG(ours) 4.50 4.03 243.9 0.85 0.46

SiT-XL/2 17.3 13.9 192.1 0.78 0.50
+CFG 3.47 4.21 247.9 0.83 0.53
+MG(ours) 2.89 3.12 261.0 0.85 0.54

Table 4: Experiments on ImageNet 512.
Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-XL/2 12.0 7.12 105.3 0.75 0.64
+CFG 3.04 5.02 240.8 0.84 0.54
+MG(ours) 2.78 4.86 257.2 0.83 0.58

SiT-XL/2 9.64 6.03 124.4 0.77 0.65
+CFG 2.62 4.18 252.2 0.84 0.57
+MG(ours) 2.24 4.03 276.9 0.86 0.60

EDM2XXL 1.91 4.65 226.7 0.80 0.68
+CFG 1.81 4.24 273.2 0.85 0.63
+MG(ours) 1.43 4.03 299.1 0.84 0.64

Table 5: Experiments on text-to-image models.
Model FID↓ (w/o CFG) FID↓ (w/ CFG)

GLIDE (Nichol et al., 2022) - 12.32
LDM (Rombach et al., 2022) - 12.58
DALL·E 2 (Ramesh et al., 2022) - 10.46

SD 1.5 (Rombach et al., 2022) 23.11 8.32
+MG(ours) 7.86 -

Table 6: Experiments on scale w.

Model w FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-B/2 0.00 43.5 36.7 39.23 0.62 0.34
+CFG 2.00 9.67 9.14 160.6 0.79 0.36
+MG(ours) 0.25 9.86 8.87 176.1 0.81 0.37
+MG(ours) 0.50 7.24 5.56 189.2 0.84 0.38
+MG(ours) 0.75 8.21 6.63 197.2 0.86 0.38
+MG(ours) 1.00 9.66 7.90 224.7 0.85 0.39
+MG(ours) Auto 7.60 6.29 192.4 0.85 0.38

SiT-B/2 0.00 33.0 27.8 65.24 0.68 0.35
+CFG 2.00 8.35 8.63 173.0 0.78 0.37
+MG(ours) 0.25 8.94 7.87 194.3 0.83 0.38
+MG(ours) 0.50 6.49 5.69 212.3 0.86 0.38
+MG(ours) 0.75 8.03 6.91 221.0 0.86 0.39
+MG(ours) 1.00 9.14 7.99 236.7 0.88 0.40
+MG(ours) Auto 6.86 5.88 219.1 0.87 0.38

Table 7: Experiments on scale-aware networks.
Model w-in FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-B/2 ✗ 43.5 36.7 39.23 0.62 0.34
+CFG ✗ 9.67 9.14 160.6 0.79 0.36
+MG(ours) ✗ 7.24 5.56 189.2 0.84 0.38
+MG(ours) ✓ 8.13 6.03 175.1 0.84 0.39

SiT-B/2 ✗ 33.0 27.8 65.24 0.68 0.35
+CFG ✗ 8.35 8.63 173.0 0.78 0.37
+MG(ours) ✗ 6.49 5.69 212.3 0.86 0.38
+MG(ours) ✓ 7.33 5.96 207.4 0.85 0.38

Table 8: Experiments on drop ratio λ.
Model λ FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-B/2 0.10 43.5 36.7 39.23 0.62 0.34
+CFG 0.10 9.67 9.14 160.6 0.79 0.36
+MG(ours) 0.05 11.7 9.90 156.7 0.78 0.33
+MG(ours) 0.10 7.24 5.56 189.2 0.84 0.38
+MG(ours) 0.15 7.62 5.99 183.4 0.83 0.38
+MG(ours) 0.20 9.01 7.04 171.7 0.81 0.36

SiT-B/2 0.10 33.0 27.8 65.24 0.68 0.35
+CFG 0.10 8.35 8.63 173.0 0.78 0.37
+MG(ours) 0.05 10.8 9.25 168.8 0.80 0.34
+MG(ours) 0.10 6.49 5.69 212.3 0.86 0.38
+MG(ours) 0.15 6.77 5.89 207.4 0.85 0.37
+MG(ours) 0.20 8.87 8.06 199.6 0.84 0.37

and train for 400K iterations. During training, we use AdamW (Kingma, 2014; Loshchilov, 2019)
optimizer and a batch size of 256 in consistent with DiT (Peebles & Xie, 2023) and SiT (Ma et al.,
2024) for fair comparisons. For inference, we use 250 sampling steps for both DiT and SiT models
and Euler-Maruyama sampler for SiT.

Baseline Models. We compare with several state-of-the-art image generation models, including both
diffusion-based and AR-based methods, which can be classified into the following three classes:
(a) Pixel-space diffusion: ADM (Dhariwal & Nichol, 2021), VDM++ (Kingma & Gao, 2023); (b)
Latent-space diffusion: LDM (Rombach et al., 2022), U-ViT (Bao et al., 2023), MDTv2 (Gao et al.,
2023), REPA (Yu et al., 2024b), LightningDiT (Yao & Wang, 2025), DiT (Peebles & Xie, 2023),
SiT (Ma et al., 2024); (c) Auto-regressive models: VAR (Tian et al., 2024), RAR (Yu et al., 2024a),
MAR (Li et al., 2024). These models consist of strong baselines for experiment evaluations.

Evaluation metrics. We report the commonly used Frechet inception distance (FID) (Heusel et al.,
2017). In addition, we report sFID (Nash et al., 2021), Inception Score (IS) (Salimans et al., 2016),
Precision (Pre.), and Recall (Rec.) (Kynkäänniemi et al., 2019) as supplementary metrics. We also
report the computation costs to generate one sample with each model in terms of FLOPS to measure
the trade-off between generation quality and inference speed.

4.2 OVERALL EVALUATION

System-level performance. We present a thorough comparison with recent state-of-the-art image
generation approaches on ImageNet 256× 256 dataset in tables 1 and 2. As shown in table 1, both
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Figure 4: FID-50K and Inception Score with different scales
during inference. MG also offers inference-time flexibility
to control the tradeoff of quality and diversity.
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Figure 5: FID-5K results dur-
ing training. MG is faster than
both vanilla and CFG models.

DiT-XL/2 and SiT-XL/2 models greatly benefit from our method, achieving the outstanding per-
formance gain of 81.5% and 84.4%. It is worth mentioning that our models do not apply modern
techniques in the inference process, including rejection sampling (Tian et al., 2024), Classifier-free
Guidance (Ho et al., 2020) and guidance interval (Kynkäänniemi et al., 2024). Compared to ad-
vanced methods, our models are light-weight, e.g. 675M in contrast to RAR-XXL with 1.5B and
MAR-H with 943M parameters, and consume less computational resources, for example, Light-
ningDiT uses DiT-XL/1 to reduce patch size to 1 × 1 and needs 16× computation in attention
operations. We visualize our results in fig. 6.

Compare with CFG. To facilitate a fair evaluation, we also compare with other methods that uses
Classifier-free Guidance. While other methods significantly benefit and are indispensable from CFG,
it introduces an additional forward without condition and doubles the sampling costs. Also, it usually
requires a careful search over the hyper-parameter of guidance scale to achieve the best trade-off
between quality and diversity. In contrast, our models still surpass other methods with CFG.

Sampling cost. We report the computation consumption for each model to generate one sample
in terms of Tflops. Other methods uses Classifier-free Guidance to boost quality and require to
run models twice during inference, one with condition and one without condition. Meanwhile, our
models run significantly faster and do not sacrifice inference speed for sampling quality.

4.3 SCALING UP

Model sizes. We study MG with different sizes of models in table 3. We train the B/2, L/2, and XL/2
variants of DiT and SiT models, and compare with both vanilla and CFG results. It demonstrates
that our method is capable to boost the performance of models with different sizes and designs.

High-resolution images. Next, we apply MG on ImageNet 512× 512 dataset in table 4 to validate
our method in handling high resolution images and difficult distributions. In addition to DiT and
SiT, we also conduct experiments with EDM2-XXL (Karras et al., 2024b). The results confirm that
the generation quality is also significantly improved with MG and exceeds CFG by a remarkable
margin in all cases.

Text-to-image models. Furthermore, scaling up our method to text-to-image models is of imparable
significance. In table 5, we finetune Stable Diffusion (SD) 1.5 (Rombach et al., 2022) model with
MG on LAION-400M (Schuhmann et al., 2021) dataset, and report FID of zero-shot text-to-image
generation on COCO 2014 (Lin et al., 2014) dataset. As shown, MG improves the FID of SD 1.5
from 23.11 to 7.86 and even surpasses the 8.32 of CFG. It reveals the promising capability of MG
across various conditioning modalities as shown in fig. 7.
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Figure 6: Uncurated samples of SiT-XL/2+MG.

Elegant crystal vase holding 
pink peonies, soft raindrops 

tracing paths down the
window behind it.

Burning building in the 
middle of a desert, a car 
parked outside at sunset,

old movie still.

Photo of an astronaut riding 
a horse in the forest. There 
is a river in front of them

with water lilies.

Under a sunny sky one 
puppy run freely in the 

park, surrounded by green
grass and tall trees.

A cozy cottage rests in a 
snowy winter scene under a 

starry sky, emanating
peaceful warm light.

Figure 7: Text-to-image samples of SD1.5+MG.

4.4 ABLATION STUDY

Hyper-parameter w. In eqs. (16) and (18), the hyper-parameter w controls the scale of posterior
probability and serves an important role akin to the guidance scale in CFG. We conduct ablation
experiments with different choices of w in table 6, where w = 0 refers to vanilla diffusion models.
It shows that w also acts as a crucial role and balances the trade-off between quality and diversity.
Nevertheless, MG is still better than CFG even if w is not optimized, e.g. w = 0.75.

Auto-tuning w. To overcome the tedious manual search of w, we propose to automatically adjust
w, and obtain comparable performances with manual search in the highlighted rows in table 6.

Scale-aware networks. It is optional for MG whether to take the scale w as an additional input.
In table 7, the models with w-input (orange) slightly lag behind the counterparts without w-input
(blue), but still exceeds the quality of CFG, demonstrating the superiority of our method.

Hyper-parameter λ. The dropping ratio λ is important to our method. To enable the estimation in
eq. (12), we randomly drop the condition c of part of data, and replace it with an additional empty
label ∅. In table 8, we find that λ ∈ {0.10, 0.15} offers satisfactory performances.

Flexibility. In fig. 4, MG is also capable of sampling with different balances between quality and
diversity. For MG with our proposed scale-aware networks, we can simply feed different guidance
scales w as input. Otherwise, we can also wrap MG models with standard CFG, exactly as vanilla
diffusion models. More details are provided in Appendix.

Efficiency. One key advantage of MG is that it not only improves inference speed, but also acceler-
ates the training process and convergence. In fig. 5, MG obtains significantly faster training speed
and better performance comparing to both vanilla and CFG models. In terms of sampling efficiency,
MG requires less FLOPS than other methods in tables 1 and 2 with performances in parallel with
LightningDiT (Yao & Wang, 2025), which consumes ≈ 9× computation resources than MG.

5 CONCLUSION

This work addresses the limitations of the commonly used Classifier-free Guidance (CFG) of diffu-
sion models, and proposes Model-guidance (MG) as an efficient and advantageous replacement. We
first investigate the mechanism of CFG and locate the source of performance gain as a joint optimiza-
tion of posterior probability. Then, we transcend the idea into the training process of diffusion mod-
els and directly learn the score of the joint distribution, ∇ log p̃θ(xt|c) = ∇ log pθ(xt|c)pθ(c|xt)

w.
Comprehensive experiments demonstrate that our method significantly boosts the generation perfor-
mance without efficiency loss, scales to different models and datasets, and achieves state-of-the-art
results on ImageNet 256× 256 dataset. We believe this work contributes to future diffusion models.
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A REPRODUCTION CODE

We provide the code to reproduce the SiT-XL/2+MG results with FID of 1.34 in tables 1 and 2.
Please kindly refer to our anonymous supplementary materials for further information.

B LIMITATIONS AND BROADER IMPACTS

Limitations While this work aims to improve the generation quality and sampling speed of current
diffusion models, it is still relied on existing encoders and decoders (Rombach et al., 2022). Since
concurrent works (Yao & Wang, 2025) that propose to train encoders and decoders in an end-to-end
manner have achieved great success, a natural and encouraging next step is to take both encoders
and decoders into accounts.

Broader Impacts While this work is mainly conducted on image generation diffusion models, au-
toregressive (AR) models and generative models on other modalities also employ CFG to improve
performance. Extending this work to AR models and other modalities is also promising. On the
negative side, our method learns from its training data and could therefore mirror any biases present.
The image generation capabilities in this work might also be misused to spread false information,
and we will limit the release of our model weights.

C COMPARE MG WITH DISTILLATION

C.1 OFFLINE DISTILLATION

Table 9: Comparison between MG and Guided-Distillation.

Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-XL/2 9.62 6.85 121.5 0.67 0.67
+CFG 2.27 4.60 278.2 0.83 0.57
+GD 2.31 4.59 282.3 0.82 0.59
+MG(ours) 1.78 4.46 298.5 0.80 0.66

SiT-XL/2 8.61 6.32 131.7 0.68 0.67
+CFG 2.06 4.49 277.5 0.83 0.59
+GD 2.09 4.67 275.4 0.81 0.56
+MG(ours) 1.34 4.58 321.5 0.81 0.65

To thoroughly investigate the advantages of our method, we also conduct experiments in section C.1
to compare with the commonly used two-stage Guided-Distillation (GD) (Meng et al., 2023). As
shown, the performances of GD are slightly worse than the original models, while MG exhibits
significant improvements over the original models. In addition, the training costs of GD are higher
than MG since its two-stage nature.

C.2 ONLINE DISTILLATION

Although GD is designed as an offline method to distill pre-trained models, the idea of incorporat-
ing the form of GD in eqs. (23) and (24) into the pre-training stage as online distillation naturally
emerges.

LGD = Ew,t,(x0,c),ϵ ∥ϵη(xt, t, c, w)− ϵwθ (xt, t, c)∥2 , (23)

ϵwθ (xt, t, c) = ϵθ(xt, t, c) + w(ϵθ(xt, t, c)− ϵθ(xt, t,∅)), (24)

However, the student model ϵη(xt, t, c, w) additionally consumes w as input, which is different from
the teacher model ϵθ(xt, t, c). Here, we thoroughly discuss both options.
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Case 1: We abandon the additional input w and train ϵθ(xt, t, c). In this case, the training loss is

L1 =Ew,t,(x0,c),ϵ

∥ϵθ(xt, t, c)− ϵ∥2︸ ︷︷ ︸
first term

+ ∥ϵθ(xt, t, c)− sg(ϵθ(xt, t, c) + w(ϵθ(xt, t, c)− ϵθ(xt, t,∅)))∥2︸ ︷︷ ︸
second term

 .

(25)

With L1, the model is confused by multiple update directions. The first term in eq. (25) directs the
model to predict the ground-truth noise ϵ, while the second term in eq. (25) instructs the model to
match the prediction modified by CFG. On the other hand, MG in eqs. (15) and (16) has the unified
prediction target and update direction, leading to faster convergence and better performance.

Case 2: We adopt the form ϵθ(xt, t, c, w) and feed with the scale w. In this case, the training loss is

L2 =Ew,t,(x0,c),ϵ

∥ϵθ(xt, t, c, 0)− ϵ∥2︸ ︷︷ ︸
first term

+ ∥ϵθ(xt, t, c, w)− sg(ϵθ(xt, t, c, 0) + w(ϵθ(xt, t, c, 0)− ϵθ(xt, t,∅,−1)))∥2︸ ︷︷ ︸
second term

 .

(26)

With L2, the model is pretrained in the first term in eq. (26) and distilled in the second term in eq. (26)
separately. The distilled model ϵθ(xt, t, c, w) is supervised by another teacher model ϵθ(xt, t, c, 0),
resulting the same issue as two-staged approaches.

Table 10: Comparison between MG and online distillation.

Model FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
DiT-B/2 43.5 36.7 39.23 0.62 0.34
+CFG 9.67 9.14 160.6 0.79 0.36
+L1 11.3 12.4 147.9 0.74 0.34
+L2 10.1 10.9 157.1 0.78 0.36
+MG(ours) 7.24 5.56 189.2 0.84 0.38

SiT-B/2 33.0 27.8 65.24 0.68 0.35
+CFG 8.35 8.63 173.0 0.78 0.37
+L1 9.76 10.7 154.3 0.72 0.35
+L2 8.38 8.94 169.6 0.76 0.36
+MG(ours) 6.49 5.69 212.3 0.86 0.38

Experimental comparison. We additionally conduct experiments with the loss functions in
eqs. (25) and (26) and compare with MG in section C.2. As depicted, eq. (25) obtains the worst
results, while MG outperforms both eqs. (25) and (26).

D HYPERPARAMETER AND IMPLEMENTATION DETAILS

Implementations. We implement our method based on the code of DiT (Peebles & Xie, 2023)
and SiT (Ma et al., 2024; Yu et al., 2024b). Throughout the experiments, we use the exact same
structure as DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), and add an embedding for scale-
aware networks that sums to the condition and timestep embedding. We use AdamW (Kingma,
2014; Loshchilov, 2019) with constant learning rate of 1e-4, (β1, β2) = (0.9, 0.999) without weight
decay. We also pre-compute and save the latent vectors of images and use these latent vectors for
training. As consequences, we only apply simple random horizontal flip as data augmentation. We
use stabilityai/sd-vae-ft-ema for encoding and decoding images. The detailed hyper-
parameter setup are provided in table 11.
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Table 11: Setup for tables 1 and 2.

DiT-XL/2 SiT-XL/2

Architecture
Input dim. 32×32×4 32×32×4
Num. layers 28 28
Hidden dim. 1,152 1,152
Num. heads 16 16

Hyperparameters
w 1.3 1.45
λ 0.1 0.1
Scale-aware ✗ ✗

Optimization
Prediction ϵ v
Batch size 256 256
Optimizer AdamW AdamW
lr 0.0001 0.0001
(β1, β2) (0.9, 0.999) (0.9, 0.999)

Inference
Sampler ADM (Dhariwal & Nichol, 2021) Euler-Maruyama
Steps 250 250

Algorithm 2 Training with Model-guidance Loss: PyTorch-like Pseudo-code
def train(scale=1.0, beta_1=0.05, beta_2=0.05, auto_adjust_scale=False):

for step, (x, c) in enumerate(dataloader):
# sample random noise and timestep
noise = torch.randn(x.shape)
timestep = torch.randint(0, diffusion.num_timesteps, x.size(0))

# sample x_t from x
x_t = diffusion.q_sample(x, timestep, noise)

# randomly drop labels
z[torch.perm(len(z))[:len(z) // 10]] = 0

# predict noise from x_t
noise_pred = net(x_t, timestep, z)

# compute learning target
with torch.no_grad():

pred_w_cond = noise_pred.detach()
# one additional forward
pred_wo_cond = net(x_t, timestep, torch.zeros_like(z))
target = noise + (scale - 1) * (pred_w_cond - pred_wo_cond)

# compute loss and optimize
loss = ((noise_pred - target) ** 2).mean()
loss.backward()
opt.step()
opt.zero_grad()

# to automatically adjust scale
if auto_adjust_scale and step % freq_eval == 0:

fid_eval = evaluate(net)
# raise scale if fid is lower than history record
if fid_eval < history_fid:

scale *= (1 + beta_1)
else:

scale *= (1 - beta_1)
history_fid = history_fid * (1 - beta_2) + fid_eval * beta_2

Sampler. For DiT, we use the ADM (Dhariwal & Nichol, 2021) sampler with 250 steps the same
as the original DiT paper (Peebles & Xie, 2023). For SiT, we use the Euler-Maruyama sampler with
250 steps the same as the original SiT paper (Ma et al., 2024).
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Computing resources. We use 16x NVIDIA A100 40GB GPUs for experiments. We use a batch
size of 256 and remain unchanged for all experiments.

Pseudo-code. We provide a torch-like pseudo-code of training models with MG in algorithm 2.

E TRAINING WALL-TIME

Table 12: Training speed-up comparison on DiT-B/2.

MG vs. vanilla DiT MG vs. DiT+CFG

Training speedup (iterations to same FID) 6.50× 2.07×
Training speedup (wall-time to same FID) 5.71× 1.77×
Performance gain (same iterations) 62% 34%
Performance gain (same wall time) 57% 24%

Table 13: Training speed-up comparison on SiT-B/2.

MG vs. vanilla SiT MG vs. SiT+CFG

Training speedup (iterations to same FID) 7.04× 2.11×
Training speedup (wall-time to same FID) 6.18× 1.94×
Performance gain (same iterations) 57% 23%
Performance gain (same wall time) 53% 20%

In addition to fig. 5, we also report the training speed-up in terms of both iterations and wall-time
in tables 12 and 13. When comparing with vanilla diffusion models, MG achieves ≥ 5.7× training
speed-up and ≥ 50% performance gains. When comparing diffusion models using CFG sampling,
MG still yields ≥ 1.7× training speed-up and ≥ 20% performance gains, whether in terms of
training iterations or wall-time.

Wall-time
per training iteration

GPU memory usage Total
inference wall-time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x1.00 x1.00 x1.00
x1.14

x1.00

x0.50

CFG
MG

Figure 8: Comparing the computational efficiency of CFG and MG.

We also compare the wall-time per training iteration, GPU memory usage during training, and the
total inference time to generate one image in fig. 8. Since MG requires only one additional forward
of the online model during training (see algorithm 1), it significantly boosts convergence speed,
improves performance, and reduce inference time by half at the cost of a mere overhead of 0.14×.

Note that while modern implementations of CFG concatenate conditional and unconditional predic-
tions in the batch dimension and run one network forward with doubled batch size during inference,
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Table 14: Comparison of total inference time in seconds to generate one sample. CFG (separate)
means separately predicting conditional and unconditional scores during inference, and CFG (paral-
lel) refers to concatenate conditional and unconditional predictions in batch dimension and forward
once.

Batch size vanilla SiT SiT+CFG (separate) SiT+CFG (parallel) SiT+MG

32 1.42 2.86 2.86 1.42
64 1.37 2.76 2.75 1.37
128 1.33 2.67 2.64 1.33
256 1.30 2.61 Out of Memory 1.30

their inference time is still proportional to Tflops in tables 1 and 2 and thereby doubled than MG.
In table 14, we also test and compare different implementations of CFG to MG on SiT-B/2 and
one A100 80GB GPU with varying batch sizes. MG is twice faster than CFG even with parallel
implementation and sufficient GPU memory.

Finally, we report the computational overhead of the proposed automatic adjustment algorithm for
the hyper-parameter w. As in algorithm 2, we evaluate FID-1K as an intermediate evaluation metric
to adjust scale, which introduces an inference process of 1 minutes per evaluation on DiT-B/2 and
SiT-B/2 models. We evaluate and adjust every 20K iterations, which corresponds to an overhead of
20 minutes and ≈ 1.4% of total training time.

F INFERENCE-TIME FLEXIBILITY

F.1 SCALE-AWARE NETWORKS

MG is also capable of sampling with different balances between quality and diversity. When im-
plemented with the proposed scale-aware networks, we can simply change the input scale w. MG
obtains better quality and diversity than CFG, as shown by the lower FID and higher IS scores across
all guidance scale than CFG in fig. 4.

F.2 APPLYING CFG ON MG MODELS

While MG itself achieves better results in most cases, MG still offers inference-time flexibility even
without the proposed scale-aware networks by applying the standard CFG. Specifically, MG models
ϵθ are fully compatible with the original CFG framework. We can query the network twice to get
ϵθ(xt, t, c) with condition and ϵθ(xt, t,∅) with empty label, then compute the final prediction with
ϵ̃θ(xt, t, c) = ϵθ(xt, t, c) + w(ϵθ(xt, t, c)− ϵθ(xt, t,∅)). Here, w < 0 is also a valid option.

F.3 UNBIASED PREDICTION

The compatibility of MG and CFG leads to an important property. We can reformulate the MG loss
in eqs. (15) and (16) as

LMG = Et,(x0,c),ϵ ∥ϵθ(xt, t, c)− [ϵ+ w · sg(ϵθ(xt, t, c)− ϵθ(xt, t,∅))]∥2

= Et,(x0,c),ϵ ∥[ϵθ(xt, t, c)− w · sg(ϵθ(xt, t, c)− ϵθ(xt, t,∅))]− ϵ∥2 ,
(27)

which means that [(1− w)ϵθ(xt, t, c) + wϵθ(xt, t,∅)] as a whole is trained by the standard dif-
fusion loss in eq. (3) and learns the true distribution, i.e. [(1− w)ϵ∗θ(xt, t, c) + wϵ∗θ(xt, t,∅)] =
−σt∇xt

log pt(xt|c) when optimal. Then we can apply CFG with w′ = −w at inference time to get

ϵ̃θ∗(xt, t, c) = ϵθ∗(xt, t, c) + w′(ϵθ∗(xt, t, c)− ϵθ∗(xt, t,∅))

= (1− w)ϵθ∗(xt, t, c) + wϵθ∗(xt, t,∅)

= −σt∇xt
log pt(xt|c),

(28)

and sample with the unbiased prediction ϵ̃θ∗(xt, t, c) to recover the true data distribution p(x|c).
This indicates that while MG drives the model to directly learn the joint distribution p̃θ(xt|c) in
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eq. (7), the true data distribution p(x|c) is implicitly learned and MG does not introduce diversity
loss.

F.4 COMPATIBILITY WITH OTHER METHODS

Table 15: Compatibility of MG and CADS (Sadat et al., 2024). CADS is also applicable on MG
models.

FID↓
DiT (Peebles & Xie, 2023) 9.62
DiT+CFG (Peebles & Xie, 2023) 2.27
DiT+CADS (Sadat et al., 2024) 1.70
DiT+MG+CADS 1.57

Besides the original CFG, MG is also orthogonal to and compatible with other techniques that im-
prove DiT and SiT. As an example, we conduct ablation experiments in table 15 and show that MG
is also orthogonal to and compatible with CADS (Sadat et al., 2024) and CADS also enjoys benefits
from MG.

G MORE RESULTS

G.1 ADDITIONAL METRICS

Table 16: FDDINOv2, KID, and CLIP-T evaluation results.

FDDINOv2↓ KID↓ CLIP-T↑
REPA (Yu et al., 2024b) 58.71 0.052 0.334
LightningDiT (Yao & Wang, 2025) 55.04 0.050 0.325
DiT+CFG (Peebles & Xie, 2023) 78.93 0.064 0.317
SiT+CFG (Ma et al., 2024) 70.52 0.053 0.326
DiT+MG (ours) 71.66 0.051 0.323
SiT+MG (ours) 53.49 0.043 0.342

Table 17: CLIP-T and HPSv2 evaluation results.

CLIP-T↑ HPSv2↑
Stable Diffusion (Rombach et al., 2022) 1.5 0.346 27.03
Stable Diffusion 1.5 +MG (ours) 0.352 27.18

In addition to the commonly used FID and IS, we also report more evaluation metrics and results,
including FDDINOv2 (Stein et al., 2023) in and Kernel Inception Distance (KID) (Bińkowski et al.,
2018) in table 16. To assess the alignment of the generated images of MG and given conditions, we
report CLIP-T (Radford et al., 2021) score in tables 16 and 17 by computing the CLIP similarity
between images and the corresponding text prompts. The text prompt is ”a photo of [CLASS]”
for class-conditional image generation task on ImageNet in table 16, where [CLASS] is replaced
by the label name. For text-to-image models, we additionally report the HPSv2 (Wu et al., 2023)
results in table 17.

G.2 2D EXAMPLES

We use a custom version of the visualization script in (Karras et al., 2024a) to train models and plot
figs. 2 and 9 to 12. Beside the 2D example in fig. 2, we also provide more detailed examples in
figs. 9, 11 and 12. The default scale of CFG is w = 2 in figs. 2, 9, 11 and 12, and we also provide
illustrations with different scales in fig. 10.
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G.3 GENERATED SAMPLES

We present more visualization of generated samples with our SiT-XL/2+MG model in figs. 13 to 20.
We also present more text-to-image samples of our SD1.5+MG model in fig. 21.

Figure 9: Diffusion models trained on a grid 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our
approach.
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Figure 10: The generated samples, trajectories, and PDF at different guidance scales, where w = 2
corresponds to the CFG results in figs. 2 and 9.

Figure 11: Diffusion models trained on a dots 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our
approach.
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Figure 12: Diffusion models trained on a tree 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our
approach.
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Figure 13: Generated samples of SiT-XL/2+MG
on the class American eagle (22).

Figure 14: Generated samples of SiT-XL/2+MG
on the class macaw (88).

Figure 15: Generated samples of SiT-XL/2+MG
on the class golden retriever (207).

Figure 16: Generated samples of SiT-XL/2+MG
on the class lesser panda (387).
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Figure 17: Generated samples of SiT-XL/2+MG
on the class coral reef (973).

Figure 18: Generated samples of SiT-XL/2+MG
on the class valley (979).

Figure 19: Generated samples of SiT-XL/2+MG
on the class geyser (974).

Figure 20: Generated samples of SiT-XL/2+MG
on the class volcano (980).
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A tranquil Japanese garden 

in springtime, featuring a 

koi pond, cherry blossom 

trees, and traditional stone 

lanterns.

A tabby cat with yellow 

eyes sits behind a plate 

piled with fresh potatoes, 

beside a lady wearing a hat.

An abandoned spaceship, 

overgrown with alien flora, 

rests silently on the crimson 

plains of an unexplored, 

distant planet.

A surreal desert oasis 

appears with palm trees and 

shimmering water under a 

sky filled with impossibly 

large moons.

An old-fashioned steam 

train chugs through a 

picturesque snowy 

mountain landscape, smoke 

billowing from its chimney.

An ancient, moss-covered 

stone archway opens to a 

mystical forest bathed in the 

soft glow of a full moon.

A cozy, sun-drenched 

kitchen with a freshly baked 

pie on the windowsill, and a 

cat peacefully napping 

nearby.

A vast, windswept desert 

landscape with ancient, 

crumbling statues partially 

buried in the shifting golden 

sands under a blazing sun.

A dramatic volcanic 

eruption, with molten lava 

flowing down the 

mountainside under a 

stormy, ash-filled sky.

An old, weathered wooden 

ship sails courageously 

through a tumultuous, 

storm-tossed sea towards 

the horizon.

A surreal dreamscape 

depicts floating islands 

connected by shimmering, 

ethereal bridges under a sky 

of swirling pastel colors.

A cozy, book-filled library 

with a crackling fireplace 

offers a warm and inviting 

atmosphere on a snowy 

winter day.

A hyperrealistic close-up 

shows a dew-covered 

dragonfly resting delicately 

on a vibrant, freshly 

bloomed lotus flower.

An impressionistic painting 

captures a bustling Parisian 

street cafe scene on a rainy 

evening with glowing 

reflections.

A lone astronaut stands on a 

desolate alien planet, gazing 

at a swirling nebula in the 

distant, star-filled sky.

A serene mountain 

monastery perches 

precariously on a cliffside, 

overlooking a vast valley 

shrouded in morning mist.

A whimsical candy land 

constructed entirely of 

lollipops, chocolate rivers, 

and gingerbread houses 

under a cotton candy sky.

A tranquil scene shows a 

wooden rowboat gently 

drifting on a still lake, 

reflecting the vibrant 

autumn foliage perfectly.

A dramatic scene shows a 

lone lighthouse bravely 

standing against a raging, 

stormy sea with crashing 

waves.

A detailed miniature world 

exists inside a discarded 

glass bottle, with tiny 

houses, trees, and a flowing 

river.

A hidden waterfall 

cascades into a crystal-clear 

pool within a lush, emerald 

grotto, sunlight filtering 

through leaves.

A surreal underwater library 

has bookshelves made of 

coral and fish swimming 

gracefully among floating, 

open books.

A nomadic desert caravan 

travels across vast, sun-

drenched sand dunes under 

a sky painted with hues of 

orange and purple.

An enchanting fairy tale 

cottage with a thatched roof 

is nestled beside a sparkling 

stream in a sun-dappled 

forest.

A highly detailed macro 

photograph captures the 

intricate patterns and 

iridescent colors of a 

butterfly's delicate wings.

Figure 21: Text-to-image samples of SD1.5+MG.
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