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ABSTRACT

We introduce Model-guidance (MG), a novel training objective for diffusion mod-
els that addresses the limitations of the widely used Classifier-free Guidance
(CFQG). Our approach directly incorporates the posterior probability of conditions
into training, allowing the model itself to act as an implicit classifier. MG is
conceptually inspired by CFG yet remains simple and effective, serving as a plug-
and-play module compatible with existing architectures. Our method significantly
accelerates training and doubles inference speed by requiring only a single for-
ward pass per denoising step. MG achieves generation quality on par with, or
surpassing, state-of-the-art CFG-based diffusion models. Extensive experiments
across multiple models and datasets demonstrate both the efficiency and scalabil-
ity of our approach. Notably, MG achieves a state-of-the-art FID of 1.34 on the
ImageNet 256 benchmark.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015} |Song & Ermon, 2019} Ho et al., [2020; Song et al.,
2021aib) have become the cornerstone of many successful generative models, e.g. , image genera-
tion (Dhariwal & Nichol, 2021} Nichol et al.| 2022; Rombach et al., [2022; |[Podell et al., [2024; |Chen
et al.,|2024) and video generation (Ho et al.,|2022; |[Blattmann et al.,[2023} /Gupta et al.,2025; |Polyak
et al.l 2024} Wang et al., [2024) tasks. However, diffusion models also struggle to generate “low
temperature” samples (Ho & Salimans|, [2021; [Karras et al., [2024a)) due to the nature of training ob-
jectives, and techniques such as Classifier guidance (Dhariwal & Nichol, [2021)) and Classifier-free
Guidance (CFG) (Ho & Salimans|, |2021)) are proposed to improve performances.

Despite its advantage and ubiquity, CFG has several drawbacks (Karras et al., 2024a) and poses
challenges to effective implementations (Kynk&ddnniemi et al.l 2024) of diffusion models. One crit-
ical limitation is the simultaneous modeling of unconditional task apart from the conditional task
during inference. The unconditional model is typically implemented by randomly dropping the con-
dition of training pairs and replacing with an manually defined empty label. The introduction of
additional tasks may reduce network capabilities and lead to skewed sampling distributions (Kar-
ras et al., [2024a; Kynkaanniemi et al., 2024). Furthermore, CFG requires two forward passes per
denoising step during inference, one for the conditioned and another for the unconditioned model,
thereby significantly escalating the computational costs.

In this work, we propose Model-guidance (MG), an innovative method for diffusion models to ef-
fectively circumvent CFG and boost performances, thereby eliminating the limitations above. We
propose a novel objective that transcends from simply modeling the data distribution to incorporat-
ing the posterior probability of conditions. Specifically, we leverage the model itself as an implicit
classifier and directly learn the score of calibrated distribution during training.

As depicted in fig. [T} our proposed method confers multiple substantial breakthroughs. It signifi-
cantly refines generation quality and accelerates both training and inference processes, with exper-
iments showcasing significant improvements over both vanilla and CFG diffusion models. Specifi-
cally, the inference speed is doubled with our method, as each denoising step needs only one network
forward in contrast to two in CFG. Besides, it is easy to implement and requires only one line of
code modification, making it a plug-and-play module of existing diffusion models with instant im-
provements. Finally, it is an end-to-end method that excels traditional two-stage distillation-based
approaches and even outperforms other models that use CFG.
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Figure 1: We propose Model-guidance (MG), remove Classifier-free Guidance (CFG) for dif-
fusion models and achieve state-of-the-art on ImageNet 256 generation with FID of 1.34.

(a) While CFG needs two forwards (green and red), MG directly produces the final output (blue).
(b) MG requires few line of code modification while providing significant quality improvements.
(¢) Comparing to concurrent methods, whether or not using CFG, MG yields the lowest FID results.
(d) In addition to superior quality, the sampling cost of MG is also much lower than other methods.

We conduct comprehensive experiments on the prevalent Imagenet (Deng et al., | 2009; Russakovsky’
et al.| [2015) benchmarks with 256 x 256 and 512 x 512 resolution, compare with a wide variates of
concurrent methods, and scale up to text-to-image models to attest the effectiveness of our proposed
method. The evaluation results demonstrate that our method not only parallels and even outper-
forms other approaches that uses CFG, but also scales to different models and datasets, making it a
promising enhancement for diffusion models. In conclusion, we make the following contribution:

* We proposed a novel method, Model-guidance (MG), to effectively train diffusion models.
* MG removes CFG for diffusion models and greatly accelerates both training and inference.
» Extensive experiments with SOTA results on ImageNet demonstrate the advantages of MG.

2 BACKGROUND

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Sohl-Dickstein et al.,[2015; Song & Ermonl, 2019} Ho et al.,[2020) are a class of
generative models that utilize forward and reverse stochastic processes to model complex data dis-
tributions. The forward process adds noise and transforms data samples into Gaussian distributions

q(zi|zo) = N (245 Vo, (1 — a)I), (1)

where x; represents the noised data at timestep ¢ and &y = Hi:1 « is the noise schedule. Con-
versely, the reverse process learns to denoise and finally recover the original data, which aims to
reconstruct score (Sohl-Dickstein et al., 20155 |Song et al., 2021b)) from the noisy samples x; by

po(e-1lze) =N (e-1; o (@, 1), Bo(e, 1)) 2)

where 1 and Xy are mean and variance and predicted by neural networks. In common implemen-
tations, the training of diffusion models leverages a re-parameterized objective (Ho et al., 2020)

Csimple = Et,wo,euea(xt’ t) - 6”2' &)
Flow Models (Lipman et al.l 2023} [Liu et al., [2023; |Albergo et al.l 2023} [Tong et al., [2024), an
emerging type of generative models, utilize the concept of Ordinary Differential Equations (ODEs)
and a forward process of Optimal Transport (OT) interpolant (McCann, |1997). They learn the di-
rections from noise pointing to ground-truth data by optimize

I”

Lem =Ky o¢ |uo(ze) — we(x|zo)||”, where zp = (1 —t)zo+te and wi(xi|zo) = 9 —€. (4)
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2.2 CLASSIFIER-FREE GUIDANCE

Due to the complex nature of visual datasets, diffusion models often struggle whether to recover real
image distribution or engage in the alignment to conditions. Classifier-free Guidance (CFG) (Ho &
Salimans|, [2021)) is proposed and has become indispensable for modern diffusion models (Nichol &
Dhariwall 2021}; [Karras et al., 2022} [Saharia et al.,|2022} [Hoogeboom et al.| 2023)).

The key design of CFG is to combine the posterior probability and utilize Bayes’ rule during in-
ference time. To facilitate this, it is required to train both conditional and unconditional diffusion
models. In particular, CFG trains the models to predict

Eﬂ(xta t, C) = _Utvxt 1ng9($t‘0) and 60(.’Et7 t, Q) = _Utvzt Ingg(fEt), (5)

where an additional empty class @ introduced in common practices. During training, the model
switches between the two modes with a ratio A. For inference, the model combines the conditional
and unconditional scores on-the-fly and guides the denoising process as

gG(xtvta C) = 69(Itatv C) +w- (69(5Etatvc) - EG(Itat7 @)) ) (6)

where w is the guidance scale that controls the focus on conditional scores and the trade-off between
generation quality and sampling diversity.

However, CFG has with several disadvantages (Karras et al. 2024a; Kynkadnniemi et al.| [2024),
such as the multitask learning of both conditional and unconditional generation, and the doubled
inference cost due to the doubled number of function evaluations (NFEs). Moreover, the tempt-
ing property that solving the denoising process according to eq. (6) eventually recovers data dis-
tribution does not hold, as the joint distribution does not represent a valid heat diffusion of the
ground-truth (Zheng & Lan| [2024)). This results in exaggerated truncation and mode dropping simi-
lar to (Karras et al.,[2018; [Brock et al.,|2019; [Sauer et al.,|2022), since the samples are blindly pushed
towards the regions with higher posterior probability. As fig.[2|shows, CFG improves sample quality
as the cost of diversity lost and distort trajectories (Karras et al., [ 2024a).

2.3 DISTILLATION-BASED METHODS

Besides acceleration (Song et al) [2023; [Liu et al., [2023)), researchers also adopt distillation on dif-
fusion models with CFG to improve sampling quality. GD (Meng et al., [2023) learns a smaller
one-step model to match the performance of larger multi-step models, while ADD (Sauer et al.,
2024) additionally introduces an adversarial approach. Pioneering diffusion models (Black-Forest-
Labs|, [2024; |Stability-All 2024) are released with distilled versions. However, these approaches
involve two-stage learning and require extra computation and storage for offline teacher models.

3 METHOD

3.1 MODEL-GUIDANCE LOSS

Instead of direct sampling from the learned conditional distribution, the core idea of CFG originates
from the classifier-guidance (Dhariwal & Nichol, 2021)) and samples from the joint distribution

Po(xilc) o< po(xi|c)po(cle)”, M
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Figure 3: Illustration of CFG and proposed MG.
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where w is the weighting factor of posterior probability. Since the classifier pg(c|z;) of noisy sam-

ples is not practically available, CFG propose to estimate with Bayes’ rule on-the-fly in inference

_ po(xelc)po(c)
Po(¢)

where pg(z¢|c) and pg(x+) are conditional and unconditional distributions. However, we argue that
do we really need to separately learn pg(x:|c) and pg(x:)? Can we fuse the joint distribution and
turn the diffusion model itself as an implicit classifier in a more efficient and elegant way?

po(clwe) ®)

As fig. [3] illustrates, we propose Model-guidance (MG) to directly learn the joint distribution
po(x¢|c), of which the score is decomposed as

Vz, log po(2t|c) = Va, log po(w¢|c) +w - Vy, log po(c|zt) )
joint score conditional score posterior score
During training, the ground-truth of the conditional score (Song & Ermonl, 2019) in eq. (9) is
1
Y, logpo(iele) = ——e, (10)
t

where e is the noise added to samples. However, the ground-truth of the posterior score, e.g. the score
of posterior probability py(c|z;), cannot be directly obtained. Inspired by eq. , we transform the
diffusion model itself into an implicit classifier. Specifically, we employ Bayes’ rule during training
to estimate the posterior probability

log po(clzy) = log pe(w¢|c) — log pe(w¢) + log pe(c)

o log py(w¢|c) — log pe(x+) (1D
Next, we use the diffusion model itself to approximate the scores
1 1
Va, log pi(xele) = _;60(%&7@ ¢) and Vg, logpy(z) = —;Ge(ft,ta @), (12)
t t

where o; is the variance of the noise added to x; at timestep ¢, & is the empty class, and €y(-) is the
diffusion model. Substituting eq. (12) into eq. (IT)) yields

1
va, 10gp9(c‘xt) ES 70_7 (Eg(l’t,t,C) - EG(Ztat, @)) . (13)
t
Combining eqgs. (I0) and (T3) leads to a valid training target for eq. (9)
N 1
Vi, log po(xe|c) = —— (e + w (ea (4, T, ¢) — €g(y, t, D))). (14)

gt

Then, our method applies the Bayes’ estimation in eq. (TI)) online and trains a conditional diffusion
model to directly predict the score in eq. (9) according to eq. (I4), instead of separately learning
eq. (I2) in the form of vanilla CFG. Consequently, our MG loss is

|€9(1‘t,t, C) - 61”2’

15)
(16)
where we apply the stop gradient operation, sg(-), as a common practice of avoiding model col-
lapse (Grill et al.| |2020). We come across with the surprising observation that our MG loss behaves

similar to form of self-supervise learning (Grill et al.l |2020) that the diffusion model €y provides
a calibrated prediction target in eq. (I6), while itself is also being trained with the same target in

L:MG = ]Et7(:v0q,c),e
€ =e+w-sgleg(xy,t,c) — eo(xs,t, D)),
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Algorithm 1 Training with Model-guidance loss

Input: Dataset {X;, C;}, noise schedule @, learning rate n
Output: Model ¢y
repeat
Sample data (zg, c) ~ {Xj, Ci}
Sample noise € ~ A(0, 1) and time ¢ ~ U(0,1)
Add noise with x; = /oo + 1 — aye
Modify target ¢’ = € + w - sg(eg (¢, ¢, t) — €p(x4, D, 1))
Compute loss Ly = ||ea (2, ¢, t) — €[|2
Back propagation § = 0 — nVoLmc
until converged

eq. (I3), producing a cycle of self improvement. Therefore, MG accelerates the training and con-
vergence of diffusion models, comparing to the vanilla forms in eq. (3). For flow-based models, we
also have the similar objective

ACMG = Et,(azo,c),e”ue(xhta C) - ul||2a (17)
'U/:U+1U'Sg(U9(It,t,C)—u‘g(l‘t,t7®)). (18)

where v is the ground-truth flow in eq. (@). During training, we randomly drop and replace the
condition c in egs. and with an additional empty class @ by a certain ratio A to enable the
estimation in eq. (I2), similar to the common implementations of CFG. MG transforms the model
itself into an online classifier during training, jointly optimizes generation quality and condition
alignment, and is compatible with existing pipelines with minimum modifications.

3.2 COMPARE MG WITH DISTILLATION

The questions arise that what is the essential difference between MG and distillation? Specifically,
we compare MG with guidance distillation (GD) (Meng et al., 2023)), and investigate the advantages
of MG in depth. Given a pre-trained diffusion model ey (x¢, ¢, ¢) as teacher, GD introduces another
student model €, (¢, t, ¢, w), which takes the guidance scale w as input, and optimize with

Lep = Euw t,(z0,c),¢ len(ze,t, c,w) — € (w4, 2, C)”2 ) (19)
e (x4, t,¢) = €p(xy, t, ) + wleg(xe, t,c) — €g(t, t, F)), (20)

where w ~ Ul[wmpin, Wmax] is sampled from a range of guidance scales we are interested in. With
Lgp, the teacher model ey(x4,t,¢) is offline and fixed during the training process, and only the
student model €, (x4, t, ¢, w) benefits from CFG. The distilled model ¢,, is upperbounded and cannot
surpass its teacher €g. In contrast, our MG uses the model itself as an online teacher in eqs. (I5)
and (I6). The model benefits from the guidance and continues to produce better guidance for itself.

3.3 IMPLEMENTATION VARIANTS

Scale-aware networks. Similar to other distillation-based methods (Frans et al.| [2024; Meng et al.,
2023), the guidance scale w can be fed into the network as an additional condition. In particular, we
sample guidance scale from an specified interval, and the loss objective is modified as the following

Lyvc = Ew,t,(ro,c),e”@(xh te,w) — 6/||27 2n
6/:€+W'Sg(€9(]}t,t7c,0)_69($t,t,®,—1)). (22)

When augmented with w-input, our models offer flexible choices of the balance between image
quality and sample diversity during inference, and still require only one forward per denoising step.

Automatic adjustment of the hyper-parameter w. While the scale w in egs. (I6) and (I8) plays
an important role as the balance of posterior probability, it is tedious and costly to perform manual
search during training. Therefore, we introduce an automatic adjustment scheme of w. We begin
with w = 0 that corresponds to vanilla diffusion models in eq. (3), then update w according to
intermediate evaluations. The value is raised when quality decreases and suppressed otherwise,
leading to an optimums when converged. We also provide the details and pseudo-code in Appedix.
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Table 1: Experiments on ImageNet 256 conditional generation without CFG. By employing
MG, the performances of both DiT and SiT are greatly boosted, achieving state-of-the-art.

Model | FID, sFID| ISt Pre.t Rec.t | Tflops| #Params|
ADM (Dhariwal & Nichol][2021) 10.9 - 101.0 0.69 0.63 1120 554M
VDM++ (Kingma & Gaol|2023) 2.40 - 225.3 0.78 0.66 - 2.0B
LDM (Rombach et al.|[2022) 10.5 - 103.5 0.71 0.62 103.6 400M
U-ViT (Bao et al.|[2023) 8.97 - 136.7 0.69 0.63 - 501M
MDTV2 (Gao et al.[[2023) 5.06 - 155.6 0.72 0.66 - 676M
REPA (Yu et al.||2024b) 5.90 6.33 162.1 0.71 0.56 29.65 675M
LightningDiT (Yao & Wang|2025) 2.17 436  205.6 0.77 0.65 131.2 675M
VAR (Tian et al.|[2024) 2.16 - 288.7 0.81 0.61 - 2.0B
RAR (Yu et al.[[2024a) 3.83 - 274.5 0.79 0.61 - 1.5B
MAR (Li et al.|[2024) 2.35 - 227.8 0.79 0.62 - 943M
DiT-XL/2 (Peebles & Xie![2023) 9.62 6.85 121.5 0.67 0.67 29.65 675M
+MG ours) 1.78 446 2985 0.80 0.66 29.65 675M
Improvement 81.5% 34.9% 146%  19.4% 0.1% | 0.0% 0.0%
SiT-XL/2 (Ma et al.|[2024) 8.61 6.32 131.7 0.68 0.67 29.65 675M
+MGours) 1.34 4.58 321.5 0.81 0.65 29.65 675M
Improvement 84.4% 27.5% 144% -19.1% —3.0% | 0.0% 0.0%

Table 2: Experiments on ImageNet 256 conditional generation with CFG. Comparing to models
using CFG, our method still obtains excellent results and surpasses others with lower Tflops.

Model | FID| sFID| ISt Pref  Rec.t | Tflops| #Params|
ADM (Dhariwal & Nichol|[2021) 4.59 5.25 186.7 0.82 0.52 2240 544M
VDM++ (Kingma & Gao|[2023) 2.12 - 267.7 0.81 0.65 - 2.0B
LDM (Rombach et al.|[2022) 3.60 - 247.7 0.87 0.48 207.2 400M
U-ViT (Bao et al.||2023) 2.29 5.68 263.9 0.82 0.57 - 501M
MDTVv2 (Gao et al.|[2023) 1.58 4.52 314.7 0.79 0.65 - 676M
REPA (Yu et al.[|2024b) 1.42 4.70 305.7 0.80 0.65 59.30 675M
LightningDiT (Yao & Wang/[2025) 1.35 4.15 295.3 0.79 0.65 262.3 675M
VAR (Tian et al.||2024) 1.73 - 350.2 0.82 0.60 - 2.0B
RAR (Yu et al.|[2024a) 1.48 - 326.0 0.80 0.63 - 1.5B
MAR (Li et al..|[2024) 1.55 - 303.7 0.81 0.62 - 943M
DiT-XL/2 (Peebles & Xie|[2023) 2.27 4.60 278.2 0.83 0.57 59.30 675M
+MGours) 1.78 4.46 298.5 0.80 0.66 29.65 675M
Improvement 21.6% 3.04% 7.30% —3.6% 15.8% | 100% 0.0%
SiT-XL/2 (Ma et al.|[2024) 2.06 4.49 271.5 0.83 0.59 59.30 675M
+MG (ours) 1.34 4.58 321.5 0.81 0.65 29.65 675M
Improvement 35.0% 2.0% 15.9% 24%  10.2% | 100% 0.0%

4 EXPERIMENT

We first present a system-level comparison with state-of-the-art models on ImageNet 256 x 256
conditional generation. Then we conduct ablation experiments to investigate the detained designs of
our method. Especially, we emphasize on the following questions:

* How far can MG push the generation quality of existing diffusion models? (tables[T]and[2]

section[4.2))

* Can MG scales to larger models, more datasets, and different image generation tasks?

(tables[3|to[5] section [F.3)

* What is the details about implementation, flexibility, and efficiency of MG? (tables [6] to[8]

figs. fland 5] section 4.4)
4.1 SETUP

Implementation and dataset. We follow the experiment pipelines in DiT (Peebles & Xiel [2023)
and SiT (Ma et al.| 2024). We use ImageNet (Deng et al., 2009; Russakovsky et al.| 2015)) dataset
and the Stable Diffusion (Rombach et al., 2022)) VAE to encode 256 x 256 images into the latent
space of R32%32X4 We conduct ablation experiments with the B/2 variant of DiT and SiT models
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Table 3: Experiments on model size. Table 6: Experiments on scale w.

Model . | FID] sFID| ISt Pref Rec.
Model | FID| sFID| ISt Prel Rect _Ode w_|FID| sFID] ISt Pret Rect
STEE s 367 92 06 04 DIT-B2 000 | 43.5 367 3923 062 034
+CFG 200 | 967 9.14 1606 079  0.36

+CFG 967 914 1606 079 036
o o I e +MGeusy 025 | 986 887 1761 081 037
G | Z28 S5O U2 O : +MGrousy 050 | 7.24 556 1892 084 038
DITL2 | 233 184 1327 073 040 +MGeusy 075 | 821 663 1972 086 038
+CFG 676 7.0 2034 078 038 +MGusy 100 | 9.66 790 2247 085 039
+MGuous) | 543 466 2363 083 044 +MGus) Auto | 7.60 629 1924 085 038
DITXL2 | 195 156 1635 079 046 SITB/2 000 | 330 278 6524 068 035
+CFG 416 523 2330 082 049 +CFG 200 | 835 863 1730 078 037
MGy | 337 473 2572 084 051 +MGeyy 025 | 894 787 1943 083 038
SITB2 | 330 278 6524 068 035 MGuy 050 ) 649 569 2123 086 0.38
+MGus) 075 | 803 691 2210 086 039

+CFG 835 863 1730 078 037
— S +MGeusy 100 | 9.14 799 2367 088 0.40
oI == : 2 2 2 +MGousy Auto | 6.86 588 219.1 087 038

SiT-L/2 18.9 163 1732 071 042

+CFG 577 646 2238 079 044 .
MGy | 450 403 2439 085 046 Table 7: Experiments on scale-aware networks.
SILXL/2 | 17.3 139 1921 078  0.50 Model w-in | FID} sFID) ISt Pret Rec.t
+CFG 347 421 2479 083  0.53 DiT-B/2 X | 435 367 3923 062 034
+MGoury) | 289 312 261.0 085  0.54 +CFG X | 967 914 1606 079 036
MGy X | 724 556 1892 084 038

Table 4: Experiments on ImageNet 512. Wil o | B 600 Wi o 0

- SiT-B/2 X 330 278 6524 068 035
Model | FID] sFID] ISt Pref Rect +CFG X | 835 863 1730 078 037
DIT-XL/2 | 120 712 1053 075 0.64 +MGiousy X | 649 569 2123 086 038
+CFG 3.04 502 2408 084 054 +MGeuwsy ¢ | 733 596 2074 085 038
+MGousy | 278 486 2572 083 0.58
SIT-XL/2 | 9.64 603 1244 077 065 Table 8: Experiments on drop ratio \.
+CFG 262 418 2522 084 057
MGus) | 224 403 2769 086 0.60 Model A | FID| SsFID| ISt Pref Rect
EDM2xx. | 1.91 465 2267 0.80 0.68 DiT-B/2  0.10 | 435 367 3923 0.62 0.34
+CFG 1.81 424 2732 085 063 +CFG 0.10 | 9.67 9.14 1606 0.79 0.36
+MGousy | 143 403 2991 084 0.64 +MGusy 005 | 11.7 990 156.7 0.78  0.33

+MGusy 0.10 | 724 556 1892 084 038
. . +MGoursy 0.15 | 7.62 599 1834 0.83 0.38
Table 5: Experiments on text-to-image models.  +MGgu, 020 | 901 7.04 1717 081 036

Model | FID| (w/o CFG) _FID] (w/ CFG) SiT-B/2 0.10 | 33.0 278 6524 0.68 035
GLIDE (Nichol et al.|[2022} - 12.32 +CFG 0.10 | 8.35 8.63 173.0 0.78 0.37
LDM (Rombach et al.|3072) _ 12.58 +MGeusy 0.05 | 108 925 1688 080 0.34
DALL-EZ (Ramesh et al.[[2022} 10.46 +MGousy 0.10 | 6.49 569 2123 086 0.38
SD 1.5 (Rombach et al.}|2022) ‘ 23.11 8.32 +MG((\urs) 0.15 6.77 5.89 207.4 0.85 0.37

+MGours) 7.86 =

+MGousy 0.20 | 8.87 8.06 1996 084 0.37

and train for 400K iterations. During training, we use AdamW (Kingma, 2014; |Loshchilov, 2019)
optimizer and a batch size of 256 in consistent with DiT (Peebles & Xie, |2023)) and SiT (Ma et al.,
2024) for fair comparisons. For inference, we use 250 sampling steps for both DiT and SiT models
and Euler-Maruyama sampler for SiT.

Baseline Models. We compare with several state-of-the-art image generation models, including both
diffusion-based and AR-based methods, which can be classified into the following three classes:
(a) Pixel-space diffusion: ADM (Dhariwal & Nichol, 2021), VDM++ (Kingma & Gaol [2023)); (b)
Latent-space diffusion: LDM (Rombach et al.,2022), U-ViT (Bao et al.,[2023), MDTVv2 (Gao et al.,
2023)), REPA (Yu et al., 2024b), LightningDiT (Yao & Wang] [2025), DiT (Peebles & Xiel [2023),
SiT (Ma et al., |2024); (c) Auto-regressive models: VAR (Tian et al.| 2024), RAR (Yu et al., [2024a)),
MAR (Li et al.}2024). These models consist of strong baselines for experiment evaluations.

Evaluation metrics. We report the commonly used Frechet inception distance (FID) (Heusel et al.}
2017). In addition, we report sFID (Nash et al.,2021), Inception Score (IS) (Salimans et al.,|2016),
Precision (Pre.), and Recall (Rec.) (Kynkéaanniemi et al.l [2019) as supplementary metrics. We also
report the computation costs to generate one sample with each model in terms of FLOPS to measure
the trade-off between generation quality and inference speed.

4.2 OVERALL EVALUATION

System-level performance. We present a thorough comparison with recent state-of-the-art image
generation approaches on ImageNet 256 x 256 dataset in tables[I]and[2] As shown in table[I] both
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Figure 4: FID-50K and Inception Score with different scales Figure 5: FID-5K results dur-
during inference. MG also offers inference-time flexibility ing training. MG is faster than
to control the tradeoff of quality and diversity. both vanilla and CFG models.

DiT-XL/2 and SiT-XL/2 models greatly benefit from our method, achieving the outstanding per-
formance gain of 81.5% and 84.4%. It is worth mentioning that our models do not apply modern
techniques in the inference process, including rejection sampling (Tian et al.,|2024)), Classifier-free
Guidance (Ho et al., |2020) and guidance interval (Kynkdanniemi et al., |2024). Compared to ad-
vanced methods, our models are light-weight, e.g. 675M in contrast to RAR-XXL with 1.5B and
MAR-H with 943M parameters, and consume less computational resources, for example, Light-
ningDIiT uses DiT-XL/1 to reduce patch size to 1 X 1 and needs 16x computation in attention
operations. We visualize our results in fig. [6]

Compare with CFG. To facilitate a fair evaluation, we also compare with other methods that uses
Classifier-free Guidance. While other methods significantly benefit and are indispensable from CFG,
it introduces an additional forward without condition and doubles the sampling costs. Also, it usually
requires a careful search over the hyper-parameter of guidance scale to achieve the best trade-off
between quality and diversity. In contrast, our models still surpass other methods with CFG.

Sampling cost. We report the computation consumption for each model to generate one sample
in terms of Tflops. Other methods uses Classifier-free Guidance to boost quality and require to
run models twice during inference, one with condition and one without condition. Meanwhile, our
models run significantly faster and do not sacrifice inference speed for sampling quality.

4.3 SCALING UP

Model sizes. We study MG with different sizes of models in table We train the B/2, L/2, and XL/2
variants of DiT and SiT models, and compare with both vanilla and CFG results. It demonstrates
that our method is capable to boost the performance of models with different sizes and designs.

High-resolution images. Next, we apply MG on ImageNet 512 x 512 dataset in table[d] to validate
our method in handling high resolution images and difficult distributions. In addition to DiT and
SiT, we also conduct experiments with EDM2-XXL (Karras et al.,|2024b)). The results confirm that
the generation quality is also significantly improved with MG and exceeds CFG by a remarkable
margin in all cases.

Text-to-image models. Furthermore, scaling up our method to text-to-image models is of imparable
significance. In table@ we finetune Stable Diffusion (SD) 1.5 (Rombach et al., 2022)) model with
MG on LAION-400M (Schuhmann et al., [2021]) dataset, and report FID of zero-shot text-to-image
generation on COCO 2014 (Lin et al., 2014} dataset. As shown, MG improves the FID of SD 1.5
from 23.11 to 7.86 and even surpasses the 8.32 of CFG. It reveals the promising capability of MG
across various conditioning modalities as shown in fig.
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Figure 6: Uncurated—sa{fnples of SiIT-XL/2+MG.
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Figure 7: Text-to-image samples of SD1.5+MG.

4.4 ABLATION STUDY

Hyper-parameter w. In egs. (I6) and (I8), the hyper-parameter w controls the scale of posterior
probability and serves an important role akin to the guidance scale in CFG. We conduct ablation
experiments with different choices of w in table [] where w = 0 refers to vanilla diffusion models.
It shows that w also acts as a crucial role and balances the trade-off between quality and diversity.
Nevertheless, MG is still better than CFG even if w is not optimized, e.g. w = 0.75.

Auto-tuning w. To overcome the tedious manual search of w, we propose to automatically adjust
w, and obtain comparable performances with manual search in the highlighted rows in table [6]

Scale-aware networks. It is optional for MG whether to take the scale w as an additional input.
In table 7] the models with w-input (orange) slightly lag behind the counterparts without w-input
(blue), but still exceeds the quality of CFG, demonstrating the superiority of our method.

Hyper-parameter )\. The dropping ratio A is important to our method. To enable the estimation in
eq. (I2), we randomly drop the condition ¢ of part of data, and replace it with an additional empty
label @. In table we find that A € {0.10,0.15} offers satisfactory performances.

Flexibility. In fig. f] MG is also capable of sampling with different balances between quality and
diversity. For MG with our proposed scale-aware networks, we can simply feed different guidance
scales w as input. Otherwise, we can also wrap MG models with standard CFG, exactly as vanilla
diffusion models. More details are provided in Appendix.

Efficiency. One key advantage of MG is that it not only improves inference speed, but also acceler-
ates the training process and convergence. In fig. [5] MG obtains significantly faster training speed
and better performance comparing to both vanilla and CFG models. In terms of sampling efficiency,
MG requires less FLOPS than other methods in tables [I] and [2] with performances in parallel with
LightningDiT (Yao & Wang}, [2025)), which consumes = 9x computation resources than MG.

5 CONCLUSION

This work addresses the limitations of the commonly used Classifier-free Guidance (CFG) of diffu-
sion models, and proposes Model-guidance (MG) as an efficient and advantageous replacement. We
first investigate the mechanism of CFG and locate the source of performance gain as a joint optimiza-
tion of posterior probability. Then, we transcend the idea into the training process of diffusion mod-
els and directly learn the score of the joint distribution, V log pg(x:|c) = V log pg(z:|c)pe(clas)™.
Comprehensive experiments demonstrate that our method significantly boosts the generation perfor-
mance without efficiency loss, scales to different models and datasets, and achieves state-of-the-art
results on ImageNet 256 x 256 dataset. We believe this work contributes to future diffusion models.
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A REPRODUCTION CODE

We provide the code to reproduce the SiT-XL/2+MG results with FID of 1.34 in tables [T] and [
Please kindly refer to our anonymous supplementary materials for further information.

B LIMITATIONS AND BROADER IMPACTS

Limitations While this work aims to improve the generation quality and sampling speed of current
diffusion models, it is still relied on existing encoders and decoders (Rombach et al., [2022). Since
concurrent works (Yao & Wangl |[2025) that propose to train encoders and decoders in an end-to-end
manner have achieved great success, a natural and encouraging next step is to take both encoders
and decoders into accounts.

Broader Impacts While this work is mainly conducted on image generation diffusion models, au-
toregressive (AR) models and generative models on other modalities also employ CFG to improve
performance. Extending this work to AR models and other modalities is also promising. On the
negative side, our method learns from its training data and could therefore mirror any biases present.
The image generation capabilities in this work might also be misused to spread false information,
and we will limit the release of our model weights.

C COMPARE MG WITH DISTILLATION

C.1 OFFLINE DISTILLATION

Table 9: Comparison between MG and Guided-Distillation.

Model | FID] sFID| ISt Pref Rec.t

DiT-XL/2 | 9.62 6.85 1215 0.67  0.67
+CFG 227 460 2782 0.83 0.57
+GD 2.31 459 2823 082 0.59
+MGous) | 1.78 446 2985 0.80 0.66

SiT-XL72 | 8.61 6.32 131.7  0.68 0.67
+CFG 2.06 449 2775 0.83 0.59
+GD 2.09 4.67 2754 0.1 0.56
+MGous) | 1.34 458 3215 0.81 0.65

To thoroughly investigate the advantages of our method, we also conduct experiments in section [C.]
to compare with the commonly used two-stage Guided-Distillation (GD) (Meng et al., 2023). As
shown, the performances of GD are slightly worse than the original models, while MG exhibits
significant improvements over the original models. In addition, the training costs of GD are higher
than MG since its two-stage nature.

C.2 ONLINE DISTILLATION

Although GD is designed as an offline method to distill pre-trained models, the idea of incorporat-
ing the form of GD in eqs. (23) and (24) into the pre-training stage as online distillation naturally
emerges.

Lop = Bt (20,0),¢ len (21,1, ¢, w) — €5 (24, 2, C)||2 ) (23)
€9w(xta tv C) = 69(It7 ta C) + w(€9<xt7 ta C) - Gg(l't, t? @))7 (24)

However, the student model €, (¢, t, ¢, w) additionally consumes w as input, which is different from
the teacher model €y (4, t, ¢). Here, we thoroughly discuss both options.
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Case 1: We abandon the additional input w and train € (¢, ¢, ¢). In this case, the training loss is

2
L :Ew,t,(:po,c),e ||€9(Itv t, C) - 6”
—_————
first term (25)
+ |leo(we,t, ) — sglea(@e,t, ) + wleg(ar, t,c) — eg(r,t,2)))|
second term

With £, the model is confused by multiple update directions. The first term in eq. directs the
model to predict the ground-truth noise €, while the second term in eq. (25)) instructs the model to
match the prediction modified by CFG. On the other hand, MG in eqs. (I5) and has the unified
prediction target and update direction, leading to faster convergence and better performance.

Case 2: We adopt the form €g(x+, ¢, ¢, w) and feed with the scale w. In this case, the training loss is

2
Lo :Ew,t,(wo,c),e ”69(zt7tvcv 0) - E”

first term

(26)

+ |leg(xe, t, c,w) — sg(ea(xs, t, ¢, 0) + w(eg(zy, t, ¢, 0) — €g(xy, t, D, —1)))||2

second term

With £, the model is pretrained in the first term in eq. (26) and distilled in the second term in eq. (26)
separately. The distilled model eg(z4, t, ¢, w) is supervised by another teacher model eg(z4, ¢, ¢, 0),
resulting the same issue as two-staged approaches.

Table 10: Comparison between MG and online distillation.

Model | FID| sFID| ISt Pref Rect
DiT-B/2 43.5 36.7 39.23  0.62 0.34

+CFG 9.67 9.14 160.6  0.79  0.36
+L 11.3 12.4 1479 074  0.34
+L> 10.1 10.9 157.1  0.78 0.36

+MGeous) | 7.24 556 189.2 0.84 038
SiT-B/2 33.0 27.8 6524 0.68 035

+CFG 8.35 8.63 173.0 0.78  0.37
+L1 9.76 10.7 1543 072 035
+L 8.38 8.94 169.6 0.76  0.36

+MGours) | 6.49 569 2123 086  0.38

Experimental comparison. We additionally conduct experiments with the loss functions in
eqs. (23) and (26) and compare with MG in section [C.2] As depicted, eq. (25) obtains the worst
results, while MG outperforms both eqs. and (26).

D HYPERPARAMETER AND IMPLEMENTATION DETAILS

Implementations. We implement our method based on the code of DiT (Peebles & Xie| [2023)
and SiT (Ma et al., [2024; [Yu et al.| [2024b)). Throughout the experiments, we use the exact same
structure as DiT (Peebles & Xiel 2023) and SiT (Ma et al., [2024), and add an embedding for scale-
aware networks that sums to the condition and timestep embedding. We use AdamW (Kingma)
2014; Loshchilov}, 2019) with constant learning rate of le-4, (31, 82) = (0.9,0.999) without weight
decay. We also pre-compute and save the latent vectors of images and use these latent vectors for
training. As consequences, we only apply simple random horizontal flip as data augmentation. We
use stabilityai/sd-vae-ft-ema for encoding and decoding images. The detailed hyper-
parameter setup are provided in table
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Table 11: Setup for tables|1|and

DiT-XL/2 SiT-XL./2
Architecture
Input dim. 32x32x4 32x32x4
Num. layers 28 28
Hidden dim. 1,152 1,152
Num. heads 16 16
Hyperparameters
w 1.3 1.45
A 0.1 0.1
Scale-aware X X
Optimization
Prediction € \
Batch size 256 256
Optimizer AdamW AdamW
Ir 0.0001 0.0001
(81, B2) (0.9, 0.999) (0.9, 0.999)
Inference
Sampler ADM (Dhariwal & Nichol, 2021)  Euler-Maruyama
Steps 250 2

Algorithm 2 Training with Model-guidance Loss: PyTorch-like Pseudo-code

def train(scale=1.0, beta_1=0.05, beta_2=0.05, auto_adjust_scale=False):
for step, (x, c) in enumerate (dataloader):
# sample random noise and timestep
noise = torch.randn (x.shape)
timestep = torch.randint (0, diffusion.num_timesteps, x.size(0))

# sample x_t from x
x_t = diffusion.qg_sample(x, timestep, noise)

# randomly drop labels
z[torch.perm(len(z)) [:len(z) // 10]]1 = 0

# predict noise from x_t
noise_pred = net(x_t, timestep, z)

# compute learning target
with torch.no_grad() :
pred_w_cond = noise_pred.detach ()
# one additional forward
pred_wo_cond = net (x_t, timestep, torch.zeros_like(z))
target = noise + (scale - 1) % (pred_w_cond - pred_wo_cond)

# compute loss and optimize

loss = ((noise_pred - target) x*+* 2).mean()
loss.backward ()

opt.step ()

opt.zero_grad()

# to automatically adjust scale
if auto_adjust_scale and step % freqg eval ==
fid_eval = evaluate (net)
# raise scale if fid is lower than history record
if fid_eval < history_fid:
scale *= (1 + beta_1)
else:
scale *= (1 — beta_l1)
history_fid = history_fid » (1 - beta_2) + fid_eval % beta_2

Sampler. For DiT, we use the ADM (Dhariwal & Nicholl [2021)) sampler with 250 steps the same
as the original DiT paper (Peebles & Xiel [2023). For SiT, we use the Euler-Maruyama sampler with

250 steps the same as the original SiT paper (Ma et al.| 2024).
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Computing resources. We use 16x NVIDIA A100 40GB GPUs for experiments. We use a batch
size of 256 and remain unchanged for all experiments.

Pseudo-code. We provide a torch-like pseudo-code of training models with MG in algorithm 2}

E TRAINING WALL-TIME

Table 12: Training speed-up comparison on DiT-B/2.

| MG vs. vanilla DiT | MG vs. DiT+CFG

Training speedup (iterations to same FID) 6.50% 2.07x
Training speedup (wall-time to same FID) 5.71x 1.77 %
Performance gain (same iterations) 62% 34%
Performance gain (same wall time) 57% 24%

Table 13: Training speed-up comparison on SiT-B/2.

| MG vs. vanilla SiT | MG vs. SiT+CFG

Training speedup (iterations to same FID) 7.04 % 2.11x
Training speedup (wall-time to same FID) 6.18x% 1.94 x
Performance gain (same iterations) 57% 23%
Performance gain (same wall time) 53% 20%

In addition to fig. [5] we also report the training speed-up in terms of both iterations and wall-time
in tables|12|and When comparing with vanilla diffusion models, MG achieves > 5.7 X training
speed-up and > 50% performance gains. When comparing diffusion models using CFG sampling,
MG still yields > 1.7x training speed-up and > 20% performance gains, whether in terms of
training iterations or wall-time.

1.75 A
1.50 A CFG
. MG
1.25 A x1.14
x1.00 x1.00 x1.00 x1.00
1.00 -~ " - N -
0.75 A
0.50 A
0.25 A
0.00 -
Wall-time GPU memory usage Total
per training iteration inference wall-time

Figure 8: Comparing the computational efficiency of CFG and MG.

We also compare the wall-time per training iteration, GPU memory usage during training, and the
total inference time to generate one image in fig. [8] Since MG requires only one additional forward
of the online model during training (see algorithm [I), it significantly boosts convergence speed,
improves performance, and reduce inference time by half at the cost of a mere overhead of 0.14 x.

Note that while modern implementations of CFG concatenate conditional and unconditional predic-
tions in the batch dimension and run one network forward with doubled batch size during inference,
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Table 14: Comparison of total inference time in seconds to generate one sample. CFG (separate)
means separately predicting conditional and unconditional scores during inference, and CFG (paral-
lel) refers to concatenate conditional and unconditional predictions in batch dimension and forward
once.

Batch size \ vanilla SiT ~ SiT+CFG (separate) SiT+CFG (parallel) SiT+MG

32 1.42 2.86 2.86 142
64 1.37 2.76 2.75 137
128 1.33 2.67 2.64 1.33
256 1.30 2.61 Out of Memory 1.30

their inference time is still proportional to Tflops in tables [I|and [2[ and thereby doubled than MG.
In table [T4] we also test and compare different implementations of CFG to MG on SiT-B/2 and
one A100 80GB GPU with varying batch sizes. MG is twice faster than CFG even with parallel
implementation and sufficient GPU memory.

Finally, we report the computational overhead of the proposed automatic adjustment algorithm for
the hyper-parameter w. As in algorithm[2} we evaluate FID-1K as an intermediate evaluation metric
to adjust scale, which introduces an inference process of 1 minutes per evaluation on DiT-B/2 and
SiT-B/2 models. We evaluate and adjust every 20K iterations, which corresponds to an overhead of
20 minutes and ~ 1.4% of total training time.

F INFERENCE-TIME FLEXIBILITY

F.1 SCALE-AWARE NETWORKS

MG is also capable of sampling with different balances between quality and diversity. When im-
plemented with the proposed scale-aware networks, we can simply change the input scale w. MG
obtains better quality and diversity than CFG, as shown by the lower FID and higher IS scores across
all guidance scale than CFG in fig. [4]

F.2 APPLYING CFG ON MG MODELS

While MG itself achieves better results in most cases, MG still offers inference-time flexibility even
without the proposed scale-aware networks by applying the standard CFG. Specifically, MG models
€y are fully compatible with the original CFG framework. We can query the network twice to get
g (x4, t, ¢) with condition and ey (z¢, t, &) with empty label, then compute the final prediction with
€o(xe,t,¢) = €p(xt, t, ¢) + w(ep(we, t,¢c) — eg(as, t,D)). Here, w < 0 is also a valid option.

F.3 UNBIASED PREDICTION

The compatibility of MG and CFG leads to an important property. We can reformulate the MG loss
in egs. and as

Lnic = Bt (wo.0),c l0(@s,t,¢) = [e +w - sg(eg(ws, 1, ¢) — €o(ar,t, )] 27)
= Et,(;co,c),e ” [Gﬁ(xtv t, C) —w- Sg(@(l’t, t, C) - Eﬁ(xta t, @))] - 6”2 ;

which means that [(1 — w)eg(xy, t, ¢) + weg (4, t, F)] as a whole is trained by the standard dif-
fusion loss in eq. (3) and learns the true distribution, i.e. [(1 — w)ej(xy,t, ) + wey(x¢,t,D)] =
—0¢Vy, log pt(z¢|c) when optimal. Then we can apply CFG with w’ = —w at inference time to get
o+ (my,t,¢) = €gr (T4, t,¢) + W' (€9 (w4, t, ¢) — €p (T4, t, D))
= (1 —w)ep (x4, t, ) + weg« (4, t, )
= —0¢Vyz, logpi(zi]c),

(28)

and sample with the unbiased prediction &« (x4, t, ¢) to recover the true data distribution p(z|c).
This indicates that while MG drives the model to directly learn the joint distribution pg(x¢|c) in
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eq. (7). the true data distribution p(z|c) is implicitly learned and MG does not introduce diversity
loss.

F.4 COMPATIBILITY WITH OTHER METHODS

Table 15: Compatibility of MG and CADS (Sadat et al.l 2024). CADS is also applicable on MG
models.

| FID}

DiT (Peebles & Xie, [2023)) 9.62
DiT+CFG (Peebles & Xie, [2023) | 2.27
DiT+CADS (Sadat et al.,|2024) 1.70
DiT+MG+CADS 1.57

Besides the original CFG, MG is also orthogonal to and compatible with other techniques that im-
prove DiT and SiT. As an example, we conduct ablation experiments in table [I5]and show that MG
is also orthogonal to and compatible with CADS (Sadat et al.,[2024) and CADS also enjoys benefits
from MG.

G MORE RESULTS
G.1 ADDITIONAL METRICS

Table 16: FDpinov2, KID, and CLIP-T evaluation results.

| FDpiwov2l KID)  CLIP-T}

REPA (Yu et al., 2024b)) 58.71 0.052 0.334
LightningDiT (Yao & Wang, 2025)) 55.04 0.050 0.325
DiT+CFG (Peebles & Xie|[2023) 78.93 0.064 0.317
SiT+CFG (Ma et al., 2024) 70.52 0.053 0.326
DiT+MG (ours) 71.66 0.051 0.323
SiT+MG (ours) 53.49 0.043 0.342

Table 17: CLIP-T and HPSv2 evaluation results.

| CLIP-Tt HPSv2t

Stable Diffusion (Rombach et al., [2022) 1.5 0.346 27.03
Stable Diffusion 1.5 +MG (ours) 0.352 27.18

In addition to the commonly used FID and IS, we also report more evaluation metrics and results,
including FDpiNov2 (Stein et al., |2023) in and Kernel Inception Distance (KID) (Binkowski et al.,
2018) in table[I6] To assess the alignment of the generated images of MG and given conditions, we
report CLIP-T (Radford et al.| 2021) score in tables [I6] and [I7] by computing the CLIP similarity
between images and the corresponding text prompts. The text prompt is ”a photo of [CLASS]”
for class-conditional image generation task on ImageNet in table where [CLASS] is replaced
by the label name. For text-to-image models, we additionally report the HPSv2 (Wu et al., 2023)
results in table

G.2 2D EXAMPLES

We use a custom version of the visualization script in (Karras et al.| 2024a) to train models and plot
figs. 2] and [0 to [T2] Beside the 2D example in fig. 2] we also provide more detailed examples in
figs.|9} [IT]and [T2] The default scale of CFG is w = 2 in figs. 2} [0} [IT]and [T2] and we also provide
illustrations with different scales in fig.

19



Under review as a conference paper at ICLR 2026

G.3 GENERATED SAMPLES

We present more visualization of generated samples with our SiT-XL/2+MG model in figs. [T3]to 20}
We also present more text-to-image samples of our SD1.5+MG model in fig.

Cond. samples Uncond. samples CFG samples MG samples

v %

_Cond. trajectories Uncond. trajectories CFG trajectories = MG trajectories

~

e
Cond. PDF Uncond. PDF CFG model PDF MG model PDF
) i y L7 » 1 2 3 2
‘.-/_: S ' ‘.“ /",./:' LRl .’/,r:f” —
\h:. - L ‘.:N - "\ ,Q‘.:N
N * L
AN S = = YU = ¢
Nod r .

Figure 9: Diffusion models trained on a grid 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our

approach.
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Figure 10: The generated samples, trajectories, and PDF at different guidance scales, where w = 2
corresponds to the CFG results in figs. 2]and 0]
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Figure 11: Diffusion models trained on a dots 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our

approach.
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Figure 12: Diffusion models trained on a tree 2D distribution with two classes, which are marked
with orange and gray colors, respectively. We plot the generated samples, trajectories, and prob-
ability density function (PDF) of conditional, unconditional, classifier-free guided model, and our
approach.
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Figure 13: Generated samples of SiT-XL/2+MG  Figure 14: Generated samples of SiT-XL/2+MG
on the class American eagle (22). on the class macaw (88).

Figure 15: Generated samples of SiT-XL/2+MG  Figure 16: Generated samples of SiT-XL/2+MG
on the class golden retriever (207). on the class lesser panda (387).
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Figure 17: Generated samples of SiT-XL/2+MG  Figure 18: Generated samples of SiT-XL/2+MG
on the class coral reef (973). on the class valley (979).

Figure 19: Generated samples of SiT-XL/2+MG  Figure 20: Generated samples of SiT-XL/2+MG
on the class geyser (974). on the class volcano (980).
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Figure 21: Text-to-image samples of SD1.5+MG.
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