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Figure 1. Marigold-DC is a zero-shot, generative method for depth completion. It leverages a pretrained, diffusion-based monocular
depth estimator as scene understanding prior and integrates sparse depth guidance into the denoising process. No fine-tuning is required,
as the method utilizes test-time optimization to update the latent representation. Compared to existing methods, Marigold-DC recovers
plausible depth maps even from very sparse depth observations and excels at zero-shot generalization across a broad range of scenes.

Abstract

Depth completion upgrades sparse depth measurements into
dense depth maps, guided by a conventional image. Exist-
ing methods for this highly ill-posed task operate in tightly
constrained settings, and tend to struggle when applied to im-
ages outside the training domain, as well as when the avail-
able depth measurements are sparse, irregularly distributed,
or of varying density. Inspired by recent advances in monocu-
lar depth estimation, we reframe depth completion as image-
conditional depth map generation, guided by a sparse set
of measurements. Our method, Marigold-DC, builds on a
pretrained latent diffusion model (LDM) for depth estima-
tion and injects the depth observations as test-time guidance,
via an optimization scheme that runs in tandem with the

iterative inference of denoising diffusion. The method ex-
hibits excellent zero-shot generalization across a diverse
range of environments and handles even extremely sparse
guidance effectively. Our results suggest that contemporary
monodepth priors greatly robustify depth completion: it may
be better to view the task as recovering dense depth from
(dense) image pixels, guided by sparse depth; rather than
as inpainting (sparse) depth, guided by an image. Project
website: https://MarigoldDepthCompletion.github.io/

1. Introduction
Depth completion aims to convert sparse depth measure-
ments into a dense depth map, using an image – typically
standard RGB or grayscale – as guidance (Fig. 1). It is
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useful across a range of computer vision applications that
combine conventional cameras with sparser range sensors,
e.g., robotics, autonomous driving, and 3D city modeling.
Traditional approaches predominantly rely on convolutional
neural networks (CNNs) [6, 7, 47, 54] or transformer mod-
els [58, 85, 88] and achieve satisfactory results within their
particular problem setting. However, they do not general-
ize well and fail, often catastrophically, when transferred to
new domains (Fig. 1). This is all the more concerning be-
cause depth sensors are barely standardized and each system
comes with its own sampling pattern, data gaps, and noise
characteristics.

In contrast, depth estimation only from a single view,
without depth guidance, has progressed to a point where it
generalizes remarkably well and can handle a broad range of
images “in the wild” [3, 57, 81, 83], which begs the question:
why does depth completion not generalize at least as well?

The answer, we claim, lies in the much more powerful
visual prior. Modern monodepth estimators build on top
of foundation models like DINOv2 [53] or Stable Diffu-
sion [60] and inherit their rich knowledge about the struc-
ture of the visual world. We therefore bridge the gap be-
tween depth completion and monocular depth and adapt
Marigold [33], a latent diffusion model (LDM) for mon-
odepth estimation, to the depth completion task. Marigold
casts depth estimation from a single image as generating a
depth map, conditioned on the input image. Marigold-DC
uses this capability as a basis and adds sparse depth observa-
tions as a further guidance signal. Importantly, our proposed
scheme is based on test-time optimization and does not alter
the Marigold model; thus avoiding the risk of degrading the
prior, as well as the effort of collecting or generating suitable
training data.

Our proposed guidance scheme exploits the iterative na-
ture of Denoising Diffusion Probabilistic Models (DDPMs)
[28, 72]. This class of models has revolutionized image
generation. They are capable of synthesizing photorealistic
images from pure noise, and by appropriate training, the
generative process can be conditioned on various inputs, in-
cluding text [60, 65] but also images and depth maps [86].
What is more, also fully trained DDPMs can, at test time, be
guided towards specific outputs by injecting suitable signals
into the inference process [1, 15], which opens up the pos-
sibility to repurpose them for certain applications without
having to retrain them.

In this paper, we leverage such test-time guidance for
depth completion, by guiding the inference loop of a pre-
trained monodepth estimator with additional depth input.
Our contributions are:
• We rethink depth completion from the perspective of

monocular depth prediction, such that it can benefit from
the comprehensive visual knowledge baked into state-of-
the-art monodepth estimators, and the associated ability to

generalize.
• We introduce a computational scheme that seamlessly in-

tegrates sparse depth cues into the diffusion process of
a pretrained LDM, and thus achieves depth completion
without any architectural modifications or retraining of
that base model.

• We design a strategy to anchor affine-invariant predictions
in latent space on sparse depth cues in metric space. By
dynamically adjusting the corresponding scale and shift
parameters during inference, our method effectively aligns
model predictions with the available depth measurements.

In experiments on several datasets, we demonstrate that
Marigold-DC sets a new state of the art for the depth com-
pletion task, especially in the desirable but challenging
zero-shot setting. With our take on depth completion as
a constrained form of monocular depth estimation, we hope
to close the widening performance gap between those two
closely related computer vision problems and inspire further
research towards depth completion methods that generalize
to unseen images, environments, and sensor setups.

2. Related Work

2.1. Depth Completion

Early depth completion methods rely solely on sparse depth
inputs and employ classical interpolation techniques or
sparsity-invariant convolutional neural networks (CNNs) [8,
36, 75]. These approaches often produce blurred predic-
tions lacking fine structural details, especially around ob-
ject boundaries. To address this, it has become common to
incorporate an RGB image as guidance, enabling sharper
transitions and improved extrapolation in regions without
depth information. Other works [30, 47, 48, 73] leverage
both sparse depth and RGB inputs using encoder-decoder
multi-modal fusion networks with a ResNet [26] backbone.

Advancements include multi-scale prediction objec-
tives [31, 37], intermediate representations such as surface
normals [55, 79, 87] or coarse depth estimates [42], and
graph-based approaches for modeling neighborhood rela-
tions [78, 89]. Post-processing refinement methods, mostly
following the spatial propagation network (SPN) mecha-
nism [43], have been proposed to enhance output qual-
ity. Notable examples include CSPN [6] and its successor
CSPN++ [7], which introduce convolutions with fixed and
adaptive kernels, respectively, improving efficiency. Fur-
ther improvements involve non-local neighborhoods in NL-
SPN [54], adaptive affinity matrices in DySPN [40], and
varying kernel scopes in LRRU [76]. This paradigm has
been extended to a three-stage method in BP-Net [74].

While most architectures process features in 2D, some
methods [5, 69, 80, 85] leverage 3D geometry information,
though this requires knowledge of camera intrinsics, lim-
iting generalization. The vision transformer (ViT) [16],
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widely successful in computer vision, has also been ex-
plored for depth completion in works like GuideFormer [58],
PointDC [85], and CompletionFormer [88]. To handle
sparse and irregular patterns, SpAgNet [12] proposes a
sparsity-agnostic framework and obtains reasonable predic-
tions even with <10 guidance points. For robust gener-
alization, VPP4DC [2] revisits depth completion from a
fictitious stereo-matching perspective, OGNI-DC [92] iter-
atively optimizes a depth gradient field, and Prompt Depth
Anything [39] fine-tunes a feedforward depth foundation
model [82] for sparse depth prompting.

Generative approaches have also been explored:
DepthFM [24] employs flow matching [41, 44] conditioned
on the RGB image and the sparse depth, densified with dis-
tance functions, to implement refinement. Similarly, Depth-
Lab [46] embeds the interpolated sparse depth in latent space
to condition a diffusion model alongside the RGB. Such den-
sification before or during processing is a viable strategy, as
also seen in concurrent work [29] leveraging depth priors
and [23], which encodes a blend of sparse guidance and
intermediate predictions back into the latent space. The
drawback of intermediate densification is that it introduces
high-frequency variations around sparse guidance points, re-
sulting in corruption of the latent codes. This requires spatial
smoothing to manage artifacts, adding further design choices
and complexity to the guidance framework. In contrast, our
guidance approach integrates observations via test-time opti-
mization, penalizes decoded predictions in the pixel space,
and can accommodate varying sparsity levels, cf . Fig. 1.

2.2. Diffusion Models
Denoising Diffusion Probabilistic Models (DDPMs) [28]
generate high-quality samples by reversing a Gaussian noise
diffusion process. Their enhanced sample quality [15] and
computational efficiency [51] have been well documented.
Denoising Diffusion Implicit Models (DDIMs) [70] offer
speedups with non-Markovian inference. Conditional dif-
fusion models allow controlled generation by incorporating
inputs like text [65], images [64], and semantic maps [86].
Stable Diffusion (SD) [60] exemplifies text-based image gen-
eration, using an LDM trained on the large-scale LAION-5B
dataset [68]. By performing denoising in compressed latent
space via a U-Net [61], it reduces complexity, making the
model more scalable and easier to fine-tune. A separately
trained variational autoencoder (VAE) maps images to and
from latent space, thus embedding extensive image knowl-
edge into the model weights, which has been utilized for
various downstream tasks.

2.3. Diffusion Guidance
To allow fine-grained control over the output, guidance-
based diffusion [14] incorporates external supervision along-
side the original conditioning, using a guidance function that

measures whether certain criteria are met. In guided image
generation, classifier guidance [15] enables class-conditional
outputs from a pretrained, unconditional diffusion model,
via gradients from a classifier trained on ImageNet [63] im-
ages at different noise scales. Similarly, gradients from a
CLIP model [56] trained on noisy images can guide gen-
eration toward a user-defined text caption [52]. An alter-
native, classifier-free guidance [27, 52], achieves similar
control without training a separate classifier, by parameter-
izing both conditional and unconditional diffusion models
within the same network. The approach is further extended
to handle general nonlinear inverse problems [9, 10], using
gradients calculated on the expected denoised images. Al-
ternatively, one can optimize the constraints on the clean
signal [91] and then reintroduce noise. Guidance is com-
monly framed from a score-based perspective on denoising
diffusion [71, 72], where an unconditional model approx-
imates the time-dependent score function of the log data
distribution. Finally, a variety of universal constraints, such
as segmentation masks, image style, and object location,
have been applied with SD under a single framework [1],
fully exploiting the flexibility and control of diffusion-based
image generation.

2.4. Diffusion for Monocular Depth Estimation

Monocular depth estimation predicts per-pixel depth from a
single RGB image, a challenging and ill-posed problem due
to the absence of definitive depth information. Deep learn-
ing approaches leverage features learned from large datasets
to tackle this. More recently, several methods have em-
ployed DDPMs for generative depth estimation. DDP [32]
conditions diffusion on image features for dense visual pre-
diction. DiffusionDepth [17] performs latent space diffu-
sion conditioned on features from a Swin Transformer [45].
DepthGen [67] and its successor DDVM [66] extend multi-
task diffusion models for depth estimation, addressing noisy
ground truth and emphasizing pretraining on synthetic and
real data for improved quality. VPD [90] utilizes a pretrained
SD with text input as its image feature extractor for various
visual perception tasks, highlighting the semantic knowledge
embedded in these models.

Marigold [33] repurposes Stable Diffusion to denoise
depth maps conditioned on an input image, achieving im-
pressive zero-shot monocular depth estimation with fine
details across diverse datasets. Trained purely on synthetic
data and relying on the foundational knowledge of Stable
Diffusion, this affine-invariant model outputs depth predic-
tions in a fixed [0, 1] range. Motivated by our view that
depth completion is essentially monocular depth estimation
anchored at sparse points, we develop a plug-and-play opti-
mization framework around Marigold by lifting its output to
metric space, enabling effective depth completion without
fine-tuning or architectural changes.
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3. Method
3.1. Guided Diffusion Formulation
We formulate depth completion as a guided monocular depth
estimation task and use Marigold, the pretrained, affine-
invariant, diffusion-based model, as our prior. At inference
time, we dynamically refine its predictions by incorporating
a penalizing loss L at sparse point measurements in metric
space. Marigold generates a linearly normalized depth map
d̂ ∈ RW×H within the range [0, 1] by sampling from the
conditional distribution D(d | x), where x ∈ RW×H×3 is
an RGB image, and d is a pixel-wise corresponding depth
map. Let c ∈ RW×H denote a sparse metric depth map in
the same image space, where only a limited subset of pixels
contains valid depth values. Let further â and b̂ represent
the scale and shift coefficients for linear prediction scaling,
maintained as additional parameterized variables throughout
the process and initialized as in Sec. 3.2.

The proposed modified inference pipeline for depth com-
pletion is presented in Fig. 2. We start by encoding the
input image x into latent space, using the SD encoder E to
obtain the latent code z(x) := E(x). We also sample a ran-
dom noise tensor z(d)T ∼ N (0, I) as the initial depth latent,
which we also treat as an optimizable parameter. We em-
ploy the DDIM scheduler [70] for accelerated inference with
T = 50 steps, adopting the fix for trailing timesteps [20].
Then, at every denoising iteration t, we feed the image latent
concatenated with the depth latent z(d)t into the U-Net to
obtain a noise estimate ϵ̂t := ϵθ(z

(d)
t , z(x), t). Instead of

immediately completing the current iteration and continuing
with timestep t− 1, we “preview” the final, denoised depth
latent z(d)0|t by computing a posterior mean estimate using
Tweedie’s formula [18]:

z
(d)
0|t =

z
(d)
t −

√
1− ᾱtϵ̂t√
ᾱt

, (1)

where ᾱt is defined by the noise schedule. After obtain-
ing z

(d)
0|t , we decode it through the SD decoder D to pro-

duce a predicted clean depth sample d̂t in pixel space. This
affine-invariant depth is then scaled and shifted using our
parameterized coefficients to render it in metric units as
d̂(m)
t := d̂t · â + b̂. We then compute the loss function L

between the sparse depth c and the metric estimate d̂m at
the pixels where c is valid, resizing the prediction as needed
if processing at an intermediate resolution (which is possi-
ble in Marigold). For L, we use an equally weighted sum
of mean absolute error and mean squared error. Intuitively,
this combination penalizes large geometric errors while also
encouraging fine-scale adjustments. Given the loss, we com-
pute gradients for both scale and shift coefficients, as well as
the latent depth variable z

(d)
t , by backpropagating through

the decoder D, the Eq. (1), and the U-Net prediction.

Figure 2. Overview of Marigold-DC inference scheme for depth
completion. Our method extends the existing Marigold architecture
(above the dashed line) by incorporating task-specific guidance
(below the line). Starting from the current depth latent variable z(d)

t ,
our method calculates a “preview” of the final denoised depth map
via the Tweedie formula. This preview is then decoded and scaled
using the learnable scale parameter â and shift b̂. We backpropagate
the loss (red arrows) between the “preview” and sparse depth and
adjust the latent simultaneously with the scale and shift. Finally, we
execute a scheduler step to proceed to the next denoising iteration.

We found that scaling the gradient w.r.t. the depth latent
proves effective in practice, such that its L2 norm is propor-
tional to that of the predicted score gradient [84]. We update
â, b̂, and z

(d)
t based on their respective gradients using the

Adam [34] optimizer, with a learning rate of 0.005 for the
affine parameters and 0.05 for the depth latent. The former
two always remain positive thanks to the parametrization
described in Sec. 3.2.

After this, we perform a scheduler step with the previ-
ously computed noise estimate ϵ̂ and proceed to the next
denoising iteration. Once the process is completed and the
final denoising iteration has been reached, we decode the
optimized affine-invariant depth map, apply the scale and
shift coefficients, and return a depth map in metric units.

The optimization loop is repeated at each timestep for a
total of T iterations, similarly to [9, 19, 22, 38], but with ad-
ditional variables included in the loop. This proposed update
encourages affine-invariant predictions to align with both
the image conditioning and sparse depth measurements, as a
standard depth completion architecture would, but with the
added benefit of a comprehensive representation of the vi-
sual world inherited from Stable Diffusion. This knowledge
prevents overfitting to noisy depth measurements because
the image prior serves as a strong regularizer.

Our end-to-end optimization approach is a variant of guid-
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ance methods that use Bayes’ rule to adjust the score function
with a conditional term [1, 15, 84]. This often involves the
diffusion posterior sampling (DPS) [9] approximation of the
likelihood, calculated on the expected clean samples. Our
choice of a simpler yet effective variant is motivated by three
factors: (i) For latent inverse problems, a straightforward
extension of DPS lacks the theoretical guarantees of its pixel-
space counterpart [62] due to extra nonlinearity introduced
by D and the absence of a one-to-one mapping from latent to
pixel space [14]; (ii) We introduce additional variables that
require optimization, as the mapping from the base model
output to sparse depth is linear but unknown, unlike tradi-
tional inverse approaches, which keep the mapping function
between prediction and the condition fixed. (iii) Modifying
the score gradient during our experiments led to less stable
optimization and reduced overall performance. In this way,
our streamlined guidance approach is able to handle varying
levels of sparsity in the depth guidance.

3.2. Scale and Shift Parameterization
Proper parameterization of scale and shift is crucial to
achieve high-quality results. Notably, expressing metric
depth through an affine-invariant prediction does not yield a
unique decomposition, as multiple affine transformations can
represent the same depth structure. However, since Marigold
outputs are in the unit interval, given affine parameters â
and b̂, only metric values within the range [b̂, â + b̂] can
be predicted. If this interval is not expressive enough, the
loss will push points in the affine-invariant space toward its
boundaries, leading to irrecoverable saturation.

We observe that a least squares fit to the condition c often
produces a range notably smaller than the full set of available
depth values, mainly because the initial geometry is not fully
accurate, especially at the far plane. The opposite is also true:
overshooting the range forces optimization towards a predic-
tion with a distribution of values concentrated in a sub-range,
even though Marigold has been trained to utilize the entire
range of the decoder. To enable meaningful, non-saturating
updates to all optimized components, we parameterize the
scale and shift as follows (min-max initialization):

â = α2 · (cmax − cmin) b̂ = β2 · cmin (2)

where cmax and cmin are the maximum and minimum depth
available as sparse conditioning, and α and β, initialized
to one, are the parameters that receive the actual gradient
updates. We ablate other initialization methods in Sec. 4.4.

3.3. Ensembling Procedure
Even with anchoring at guidance points, inherent variability
in the final depth maps persists with a generative method, de-
pending on the initial noise – similar to the unguided setting.
This variability is particularly pronounced in challenging
areas, such as reflective surfaces, edges, and distant planes,

where depth points are often missing due to sensor limita-
tions or range constraints. We leverage the variability via
a simple ensemble method in metric space: after linearly
scaling the predictions from multiple individual inferences,
we compute the pixel-wise median to produce the final result.
This gives us more robust estimates and, as an added benefit,
generates an uncertainty map based on the median absolute
deviation (MAD) between predictions. We use 10 separate
predictions for evaluation, as suggested for Marigold.

4. Experiments

4.1. Evaluation Datasets

We evaluate Marigold-DC in a zero-shot setting on 6 real-
world datasets unseen by the base model [33], which was
trained exclusively on synthetic data from Hypersim [59]
and Virtual KITTI [4]. The evaluation datasets span both
indoor and outdoor scenes, covering various image resolu-
tions, sparse depth densities, acquisition devices, and noise
levels. NYU-Depth V2 [50] consists of indoor scenes cap-
tured with an RGB-D Kinect sensor. We use the original test
split of 654 samples. Images are downsampled to 320× 240
and then center-cropped to 304× 228, following established
practice [6, 47, 54]. The sparse depth input is generated by
sampling 500 random points from the ground truth depth
map. ScanNet [13] contains room scans collected with a
commodity RGB-D sensor. Following the filtering in [69],
we select 745 samples from the official 100 scenes for test-
ing. Images are resized to 640× 480 to align with the depth
resolution, and 500 random points are sampled as sparse
guidance. The VOID [77] dataset includes synchronized
RGB and depth streams of indoor and outdoor scenes at a
resolution of 640×480, acquired via active stereo. We utilize
all 800 frames from the 8 designated test sequences, and their
provided sparse depth maps with three density levels of 150,
500, and 1500 points. iBims-1 [35] is a high-quality indoor
RGB-D dataset captured with a laser scanner, characterized
by its low noise level, sharp depth transitions, precise de-
tails, and extended depth range up to 50 meters. We employ
all 100 available images at 640 × 480 resolution and sam-
ple 1000 random depth points from the intersection of valid
pixel masks (invalid, transparent, missing) as per the official
evaluation protocol. The KITTI DC [75] dataset comprises
driving scenes with paired RGB images and sparse LiDAR
depth measurements captured at a resolution of 1216× 352.
The semi-dense ground truth is obtained by temporally ac-
cumulating multiple consecutive LiDAR frames with error
filtering [21, 75]. We use the original validation split of 1000
samples and remove outliers [11] from the guidance points
based on distance from the minimum depth within a local
7× 7 patch, as in [2]. DDAD [25] is an autonomous driving
dataset featuring a 360◦ multi-camera setup, capturing long-
range LiDAR depth up to 250 meters. The official validation
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set includes 3950 samples for each camera at 1936× 1216
resolution. Following [2, 92], we use only the front-facing
view and sample approximately 20% of the available depth
measurements as sparse input, applying the same filtering as
done for KITTI DC raw LiDAR [11].

4.2. Evaluation Protocol
As mentioned, Marigold-DC is a zero-shot approach that re-
quires no task-specific training, unlike most baselines, which
rely on depth-completion checkpoints trained specifically
for indoor (NYU-Depth V2) or outdoor (KITTI DC) envi-
ronments. Our proposition for fair evaluation is to transfer
the indoor checkpoints to the indoor benchmarks (ScanNet,
iBims-1, and VOID) and the outdoor checkpoints to the out-
door benchmark (DDAD). For evaluation on NYU-Depth V2
and KITTI DC, we avoid expensive retraining of baselines
on other datasets and instead reuse the available zero-shot
results from the VPP4DC [2] paper, reporting the best of all
examined training configurations and leaving the rest blank.

We run inference on each dataset at its original resolution,
except for NYU and DDAD, where we resize the images to a
768-pixel longer side while preserving the aspect ratio. This
is done for our method and Marigold, due to the image sizes
being too small and too large, respectively. In these cases,
we resize the output to the original resolution for guidance,
enabling processing at the finest level.

Following recent work [2, 69, 92], we report Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE) as
performance metrics.

4.3. Comparison with Other Methods
We compare Marigold-DC to 8 baselines that have achieved
strong results in standard evaluation settings on NYU-Depth
V2 and KITTI DC, with some also claiming good generaliza-
tion. NLSPN [54], SpAgNet [12], CompletionFormer [88]
and BP-Net [74] are variants of the multi-modal fusion with
depth refinement strategy. VPP4DC [2] reformulates the
problem as fictitious stereo matching and OGNI-DC [92]
optimizes a depth gradient field. DepthLab [46] uses latent
diffusion for densification and Prompt Depth Anything [39]
adapts the depth foundation model from [82] for completion
tasks. To show the effectiveness of our guidance framework,
we also compare to vanilla Marigold [33] using only the
RGB input with ensemble size 10, followed by (i) a least-
squares estimate and (ii) a L1 + L2 optimization for scale and
shift based on the sparse depth. These methods are referred
to as “Marigold + LS” and “Marigold + optim” below.

As shown in Tab. 1, Marigold-DC outperforms the base-
lines in most cases and secures the highest overall ranking by
a significant margin. Notably, this is achieved despite relying
on a frozen base model trained on synthetic datasets for a
different task, offering a true plug-and-play solution largely
independent of guidance patterns. We argue that the crucial
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Figure 3. Qualitative comparison of benchmarked methods on
samples from four datasets. Non-generative methods struggle with
dataset-specific biases, such as input resolution lock or variations in
guidance sparsity. Marigold-DC demonstrates high-quality metric
depth densification with strong generalization. Sampling patterns
and noise characteristics vary across datasets. Black regions indi-
cate missing depth values. Arrows suggest key areas of interest.

factor is to exploit the rich monocular depth estimation prior
provided by the base model, while simultaneously supplying
it with sparse evidence. This is in line with our hypothesis
that depth completion benefits more from a strong visual
prior than from task-specific training.

In Fig. 3, we present a qualitative comparison of samples
from several evaluation datasets. In these examples, although
the depths predicted with “Marigold + LS” are rich in de-
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Table 1. Quantitative comparison of Marigold-DC with state-of-the-art depth completion methods on several zero-shot benchmarks. All
metrics† are presented in absolute terms; bold numbers are best, underscored second best. In most cases, our method outperforms other
approaches in both indoor and outdoor scenes, despite not having seen a real depth sample nor being trained for the depth completion task.

Method ScanNet IBims-1 VOID 150 VOID 500 VOID 1500 NYU-Depth V2 KITTI DC DDAD
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

NLSPN [54] (ECCV ’20) 0.036 0.127 0.049 0.191 0.492 0.963 0.301 0.783 0.210 0.668 0.440 0.716 1.335 2.076 2.498 9.231
SpAgNet [12] (WACV ’23) ∅ ∅ ∅ ∅ 0.408 0.866 0.326 0.752 0.244 0.706 0.158 0.292 0.518 1.788 4.578 13.236
CompletionFormer [88] (CVPR ’23) 0.120 0.232 0.058 0.206 0.487 0.956 0.385 0.821 0.261 0.726 0.186 0.374 0.952 1.935 2.518 9.471
VPP4DC [2] (3DV ’24) 0.023 0.076 0.062 0.228 0.245 0.690 0.187 0.582 0.148 0.543 0.077 0.247 0.413 1.609 1.344 6.781
BP-Net [74] (CVPR ’24) 0.122 0.212 0.078 0.289 0.471 0.936 0.370 0.793 0.270 0.742 ⟳ ⟳ ⟳ ⟳ 2.270 8.344
OGNI-DC [92] (ECCV ’24) 0.029 0.094 0.059 0.186 0.261 0.693 0.198 0.589 0.175 0.593 ⟳ ⟳ ⟳ ⟳ 1.867 6.876
DepthLab [46] (arXiv preprint ’24) 0.051 0.081 0.098 0.198 0.268 0.689 0.223 0.590 0.214 0.602 0.184 0.276 0.921 2.171 4.498 8.379
Prompt Depth Anything [39] (CVPR ’25) 0.042 0.079 0.088 0.196 0.248 0.681 0.202 0.589 0.191 0.605 0.110 0.233 0.934 2.803 2.107 7.494
Marigold + optim [33] (CVPR ’24) 0.091 0.141 0.167 0.300 0.279 0.687 0.261 0.625 0.261 0.652 0.194 0.309 1.765 3.361 22.872 32.661
Marigold + LS [33] (CVPR ’24) 0.083 0.129 0.154 0.286 0.266 0.670 0.243 0.606 0.238 0.628 0.190 0.294 1.709 3.305 8.217 14.728

Ours (w/o ensemble) 0.020 0.063 0.062 0.205 0.201 0.629 0.167 0.546 0.157 0.557 0.057 0.142 0.558 1.676 2.985 7.905
Ours (w/ ensemble) 0.017 0.057 0.045 0.166 0.194 0.622 0.158 0.535 0.152 0.551 0.048 0.124 0.434 1.465 2.364 6.449

† Metrics highlighted in gray are sourced from OGNI-DC [92] and VPP4DC [2], reported with the best training setup. For the others, we evaluated all baselines in zero-shot
settings (cf . Sec. 4.2). ⟳ indicates that generating zero-shot results would require retraining on an unidentified set of datasets, as the available checkpoints were trained on these
benchmarks. ∅ denotes cases where neither training code nor checkpoints are available, making evaluation impossible.

RGB Image Ground Truth Depth Marigold-DC Prediction Marigold + LS Prediction

Figure 4. Comparison between vanilla Marigold and guided
predictions on iBims-1 [35] samples. With guidance from sparse
points, the scene geometry is correctly adjusted (first row) and the
depth of challenging protruding text can be recovered (second row).

tail, they frequently exhibit layout distortions (Fig. 4) and
struggle to position the far plane accurately. In such cases,
merely achieving correct depth ordering is insufficient, and
the overall scene layout becomes critical.

Performance degradation occurs rapidly in methods that
rely on spatial propagation, leading to visible artifacts in
the predictions. We hypothesize that this is primarily due
to their inability to handle inputs that are sparser than those
encountered during training.

Our depth completion approach produces realistic results
in regions lacking depth measurements and preserves fine de-
tails where other methods resort to coarse interpolation. This
makes our method particularly effective in sparse settings
with only a few hundred or even a few dozen points.

4.4. Ablation Studies

We analyze the impact of some key design choices on overall
performance. Aspects not targeted in each respective exper-
iment are fixed to our reference settings: a learning rate of
0.05 for the depth latent and 0.005 for affine parameters and
min-max initialization for scale and shift. We re-use some
of the default settings of Marigold [33], namely 50 DDIM
denoising steps and an ensemble size of 10. All studies are

conducted on a randomly selected subset of 100 samples
from the training split of NYU-Depth V2.

Learning rates. Since our method involves test-time opti-
mization, we evaluate the impact of different learning rates
used to update the depth latent and affine parameters. For the
study, we vary the value of λbase on a log-scale from 0.005
to 0.5, setting the learning rate for the depth latent to this
value and the learning rate for scale and shift to λbase/10.
The results are shown in Fig. 5: we observe a sweet spot
around λbase = 0.05, with performance degrading in both
directions. Lower values result in weak guidance, whereas
higher values lead to instability in the optimization process.

Number of denoising steps. We vary the number of de-
noising steps of the DDIM scheduler [70] and show results
in Fig. 5. Unsurprisingly, increasing the number of denoising
steps improves the results, though the relative gain dimin-
ishes between 25 and 50 steps, with performance saturating
beyond that. Inference with less than 25 steps comes at
the cost of reduced accuracy and geometric distortions. We
anticipate greater speed improvements by having the base
model trained on more complex, deeper scenes with en-
hanced far-plane supervision, since the discrepancy between
the initial prediction and the true linear scaling heavily influ-
ences convergence speed. Additional speedup by an order
of magnitude can be achieved with a TinyVAE [49], using
mixed precision and enabling model compilation.

Test-time ensembling. We assess the effectiveness of the
proposed test-time ensembling scheme by comparing differ-
ent ensemble sizes. As shown in Tab. 1 and Fig. 5, a single
prediction already yields competitive, often state-of-the-art
results. Consistent with standard Marigold, we observe a per-
formance boost through ensembling, with errors generally
decreasing as ensemble size increases, albeit with a linear in-
crease in runtime. The relative improvement diminishes for
ensemble sizes > 10. This is a hyper-parameter that can be
easily adjusted to balance between runtime and performance.
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Figure 5. Ablation of learning rate, number of inference steps, and ensemble size. Left: Empirically, we identify an optimal learning
rate that balances the trade-off between guidance strength and optimization stability. Middle: Performance consistently improves with
more denoising iterations, showing saturation beyond 50 steps. Right: A monotonic improvement is seen with increasing ensemble size,
diminishing after 10 predictions per sample.

Initialization NYU-Depth V2
MAE ↓ RMSE ↓

Least Squares 0.065 0.165
Oracle 0.058 0.153
Extended Min-Max 0.057 0.148
Min-Max 0.055 0.147

Table 2. Ablation of scale and shift initialization. Min-max
methods perform similarly to the oracle initialization, whereas least
squares performs significantly worse.

Scale and shift initialization. Proper initialization of scale
and shift is crucial to converge to a solution that aligns well
with the sparse depth conditioning, especially when signifi-
cant adjustments to the initial prediction are necessary. We
compare four initialization methods, each derived from the
affine-invariant depth map estimate obtained after the first
denoising iteration: (1) least-squares fit to align with sparse
depth; (2) min-max scaling to match the minimum and max-
imum values of the sparse input; (3) extended min-max scal-
ing, adjusting the range by 5% beyond the far plane and 5%
closer to the near plane, assuming the sparse points provide
only a lower bound on scene depth; (4) an oracle using the
union of sparse conditioning and ground truth, unavailable
in practice but serving as a near-perfect baseline.

As shown in Tab. 2, (extended) min-max and oracle initial-
ization achieve similar performance. Least-squares, however,
performs noticeably worse. We acknowledge that the min-
max method may struggle when the point distribution is not
fully representative of the actual range (e.g. the degenerate
case of guidance only in a narrow range). However, we are
not aware of any depth completion method that does not suf-
fer from this issue. Within our framework, the most robust
solution would be an improved model-based initialization or
a switch between min-max and least squares whenever the
point distribution is considered unrepresentative.

Guidance method. We compare our fully end-to-end opti-

Depth Latent Scale & Shift NYU-Depth V2
Score Function Direct Optim. Direct Optim. MAE ↓ RMSE ↓

✓ ✗ ✓ 0.058 0.150
✗ ✓ ✓ 0.055 0.147

Table 3. Ablation of guidance method. Direct optimization of
the depth latent proves more effective than modifying the score
function. Affine parameters are optimized separately in both cases.

mization framework to an alternative guidance approach that
adjusts the score function with a conditional term [1, 15, 84]
(i.e., adding the gradient of the likelihood to the predicted
noise) while optimizing scale and shift separately. Both
approaches are evaluated at their optimal settings, with re-
sults reported in Tab. 3. Our optimization-based method
outperforms the mixed variant, demonstrating both higher
performance and greater stability.

5. Conclusion
We have introduced Marigold-DC, which effectively com-
bines monocular depth estimators’ generalization and robust-
ness with the anchoring needed to solve depth completion
tasks. By leveraging a pretrained, affine-invariant diffusion-
based model and dynamically incorporating sparse depth
measurements during inference, Marigold-DC merges rich
monocular depth priors with reliable sensor data. Without
task-specific training, the method achieves state-of-the-art
performance across six zero-shot benchmarks spanning both
indoor and outdoor environments. With our work, we aim to
inspire further research on methods that prioritize general-
ization and robustness, to extend depth completion beyond
specific training domains and make it more applicable in
real-world settings. Our diffusion-based backbone intro-
duces computational overhead due to the iterative nature
of denoising diffusion models and its ensembling process.
Future research directions include reducing inference time
and supporting alternative guidance cues.
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[3] Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Mar-
cel Santos, Yichao Zhou, Stephan R Richter, and Vladlen
Koltun. Depth pro: Sharp monocular metric depth in less than
a second. arXiv preprint arXiv:2410.02073, 2024. 2

[4] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual KITTI 2. arXiv preprint arXiv:2001.10773, 2020. 5

[5] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learn-
ing joint 2d-3d representations for depth completion. In
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10022–10031, 2019. 2

[6] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth esti-
mation via affinity learned with convolutional spatial propa-
gation network. In European Conference on Computer Vision
(ECCV), pages 103–119, 2018. 2, 5

[7] Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang Yang.
CSPN++: Learning context and resource aware convolutional
spatial propagation networks for depth completion. In AAAI
Conference on Artificial Intelligence, 2019. 2

[8] Nathaniel Chodosh, Chaoyang Wang, and Simon Lucey. Deep
convolutional compressed sensing for lidar depth completion.
In Asian Conference on Computer Vision (ACCV), pages 499–
513, 2019. 2

[9] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann,
Marc Louis Klasky, and Jong Chul Ye. Diffusion posterior
sampling for general noisy inverse problems. In International
Conference on Learning Representations (ICLR), 2023. 3, 4,
5

[10] Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, and Mauri-
cio Delbracio. Prompt-tuning latent diffusion models for
inverse problems. In Proceedings of the 41st International
Conference on Machine Learning, pages 8941–8967. PMLR,
2024. 3

[11] Andrea Conti, Matteo Poggi, Filippo Aleotti, and Stefano
Mattoccia. Unsupervised confidence for LiDAR depth maps
and applications. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022. IROS. 5, 6

[12] Andrea Conti, Matteo Poggi, and Stefano Mattoccia. Spar-
sity agnostic depth completion. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 5871–5880, 2023. 3, 6, 7

[13] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:
Richly-annotated 3d reconstructions of indoor scenes. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 5

[14] Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsu-
fuji, Jong Chul Ye, Peyman Milanfar, Alexandros G. Dimakis,
and Mauricio Delbracio. A survey on diffusion models for
inverse problems, 2024. 3, 5

[15] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis. arXiv preprint arXiv:2105.05233,
2021. 2, 3, 5, 8

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16×16 words: Transformers for image recognition at
scale. International Conference on Learning Representations
(ICLR), 2021. 2

[17] Yiqun Duan, Xianda Guo, and Zheng Zhu. DiffusionDepth:
Diffusion denoising approach for monocular depth estimation.
arXiv preprint arXiv:2303.05021, 2023. 3

[18] Bradley Efron. Tweedie’s formula and selection bias. Journal
of the American Statistical Association, 106(496):1602–1614,
2011. 4

[19] Hugging Face. The hugging face diffusion models course.
https://huggingface.co/learn, 2022. Online, ac-
cessed on 2024-09-01. 4

[20] Gonzalo Martin Garcia, Karim Abou Zeid, Christian Schmidt,
Daan de Geus, Alexander Hermans, and Bastian Leibe. Fine-
tuning image-conditional diffusion models is easier than you
think. arXiv preprint arXiv:2409.11355, 2024. 4

[21] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012. 5

[22] Asya Grechka, Guillaume Couairon, and Matthieu Cord.
Gradpaint: Gradient-guided inpainting with diffusion models.
arXiv preprint arXiv:2309.09614, 2023. 4

[23] Jakub Gregorek and Lazaros Nalpantidis. SteeredMarigold:
Steering diffusion towards depth completion of largely incom-
plete depth maps. arXiv preprint arXiv:2409.10202, 2024.
3

[24] Ming Gui, Johannes S. Fischer, Ulrich Prestel, Pingchuan
Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas
Baumann, Vincent Tao Hu, and Björn Ommer. Depthfm:
Fast monocular depth estimation with flow matching. arXiv
preprint arXiv:2403.13788, 2024. 3

[25] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos,
and Adrien Gaidon. 3d packing for self-supervised monocular
depth estimation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 5

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2016. 2

[27] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS Workshop on Deep Generative Models
and Downstream Applications, 2021. 3

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. arXiv preprint arxiv:2006.11239,
2020. 2, 3

5367



[29] Lee Hyoseok, Kyeong Seon Kim, Kwon Byung-Ki, and Tae-
Hyun Oh. Zero-shot depth completion via test-time alignment
with affine-invariant depth prior. In AAAI Conference on
Artificial Intelligence, 2025. 3

[30] Saif Imran, Yunfei Long, Xiaoming Liu, and Daniel Morris.
Depth coefficients for depth completion. In IEEE Computer
Vision and Pattern Recognition (CVPR), 2019. 2

[31] Saif Imran, Xiaoming Liu, and Daniel Morris. Depth comple-
tion with twin-surface extrapolation at occlusion boundaries.
In IEEE Computer Vision and Pattern Recognition (CVPR),
2021. 2

[32] Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu,
Zhaoqiang Liu, Tong Lu, Zhenguo Li, and Ping Luo. DDP:
Diffusion model for dense visual prediction. In IEEE/CVF
International Conference on Computer Vision (ICCV), pages
21741–21752, 2023. 3

[33] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9492–9502, 2024. 2,
3, 5, 6, 7

[34] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 4

[35] Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, and Marco
Körner. Evaluation of cnn-based single-image depth estima-
tion methods. In European Conference on Computer Vision
Workshops (ECCVW), pages 331–348, 2019. 5, 7

[36] Jason Ku, Ali Harakeh, and Steven L Waslander. In defense
of classical image processing: Fast depth completion on the
cpu. In Conference on Computer and Robot Vision (CRV),
pages 16–22, 2018. 2

[37] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Chong
Zhang, et al. A multi-scale guided cascade hourglass network
for depth completion. In IEEE Conference on Applications of
Computer Vision (WACV), pages 32–40, 2020. 2

[38] Haotian Lin, Yixiao Wang, Mingxiao Huo, Chensheng Peng,
Zhiyuan Liu, and Masayoshi Tomizuka. Joint pedestrian tra-
jectory prediction through posterior sampling. arXiv preprint
arXiv:2404.00237, 2024. 4

[39] Haotong Lin, Sida Peng, Jingxiao Chen, Songyou Peng, Ji-
aming Sun, Minghuan Liu, Hujun Bao, Jiashi Feng, Xiaowei
Zhou, and Bingyi Kang. Prompting depth anything for 4k
resolution accurate metric depth estimation, 2025. 3, 6, 7

[40] Yuankai Lin, Hua Yang, Tao Cheng, Wending Zhou, and
Zhouping Yin. DySPN: Learning dynamic affinity for image-
guided depth completion. IEEE Transactions on Circuits and
Systems for Video Technology, pages 1–1, 2023. 2

[41] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximil-
ian Nickel, and Matthew Le. Flow matching for generative
modeling. In International Conference on Learning Repre-
sentations (ICLR), 2023. 3

[42] Lina Liu, Xibin Song, Xiaoyang Lyu, Junwei Diao, Meng-
meng Wang, Yong Liu, and Liangjun Zhang. FCFR-Net: Fea-
ture fusion based coarse-to-fine residual learning for depth
completion. In AAAI Conference on Artificial Intelligence,
2020. 2

[43] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,
Ming-Hsuan Yang, and Jan Kautz. Learning affinity via spa-
tial propagation networks. In Advances in Neural Information
Processing Systems, 2017. 2

[44] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight
and fast: Learning to generate and transfer data with rectified
flow. arXiv preprint arXiv:2209.03003, 2022. 3

[45] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 3

[46] Zhiheng Liu, Ka Leong Cheng, Qiuyu Wang, Shuzhe Wang,
Hao Ouyang, Bin Tan, Kai Zhu, Yujun Shen, Qifeng Chen,
and Ping Luo. DepthLab: From partial to complete. arXiv
preprint arXiv:2412.18153, 2024. 3, 6, 7

[47] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth
prediction from sparse depth samples and a single image. In
IEEE International Conference on Robotics and Automation
(ICRA), pages 4796–4803, 2018. 2, 5

[48] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac
Karaman. Self-supervised sparse-to-dense: Self-supervised
depth completion from LiDAR and monocular camera.
IEEE International Conference on Robotics and Automation
(ICRA), pages 3288–3295, 2018. 2

[49] Madebyollin. TAESD. https://github.com/madebyollin/taesd,
2025. Accessed: 2025-03-07. 7

[50] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In European Conference on Computer Vision
(ECCV), 2012. 5

[51] Alex Nichol and Prafulla Dhariwal. Improved denoising diffu-
sion probabilistic models. arXiv preprint arXiv:2102.09672,
2021. 3

[52] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 3

[53] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,
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