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ABSTRACT

Counterfactual explanations have emerged as a promising method for elucidat-
ing the behavior of opaque black-box models. Recently, several works leveraged
pixel-space diffusion models for counterfactual generation. To handle noisy, ad-
versarial gradients during counterfactual generation–causing unrealistic artifacts
or mere adversarial perturbations–they required either auxiliary adversarially ro-
bust models or computationally intensive guidance schemes. However, such re-
quirements limit their applicability, e.g., in scenarios with restricted access to the
model’s training data. To address these limitations, we introduce Latent Diffusion
Counterfactual Explanations (LDCE). LDCE harnesses the capabilities of recent
class- or text-conditional foundation latent diffusion models to expedite counter-
factual generation and focus on the important, semantic parts of the data. Fur-
thermore, we propose a novel consensus guidance mechanism to filter out noisy,
adversarial gradients that are misaligned with the diffusion model’s implicit clas-
sifier. We demonstrate the versatility of LDCE across a wide spectrum of models
trained on diverse datasets with different learning paradigms. Finally, we show-
case how LDCE can provide insights into model errors, enhancing our understand-
ing of black-box model behavior.

1 INTRODUCTION

Deep learning systems achieve remarkable results across diverse domains (e.g., Brown et al. (2020);
Jumper et al. (2021)), yet their opacity presents a pressing challenge: as their usage soars in vari-
ous applications, it becomes increasingly important to understand their underlying inner workings,
behavior, and decision-making processes (Arrieta et al., 2020). There are various lines of work that
facilitate a better understanding of model behavior, including: pixel attributions (e.g., Simonyan
et al. (2014); Bach et al. (2015); Selvaraju et al. (2017); Lundberg & Lee (2017)), feature visualiza-
tions (e.g., Erhan et al. (2009); Simonyan et al. (2014); Olah et al. (2017)), concept-based methods
(e.g., Bau et al. (2017); Kim et al. (2018); Koh et al. (2020)), inherently interpretable models (e.g.,
Brendel & Bethge (2019); Chen et al. (2019); Böhle et al. (2022)), and counterfactual explanations
(e.g., Wachter et al. (2017); Goyal et al. (2019)).

In this work, we focus on counterfactual explanations that modify a (f)actual input with the smallest
semantically meaningful change such that a target model changes its output. Formally, given a
(f)actual input xF and (target) model f , Wachter et al. (2017) proposed to find the counterfactual
explanation xCF that achieves a desired output yCF defined by loss function L and stays as close as
possible to the (f)actual input defined by a distance metric d, as follows:

xCF ∈ arg min
x′

λcL(f(x′), yCF) + λdd(x′, xF) . (1)

Generating (visual) counterfactual explanations from above optimization problem poses a challenge
since, e.g., relying solely on the classifier gradient often results in adversarial examples rather than
counterfactual explanations with semantically meaningful (i.e., human comprehensible) changes.
Thus, previous works resorted to adversarially robust models (e.g., Santurkar et al. (2019); Boreiko
et al. (2022)), restricted the set of image manipulations (e.g., Goyal et al. (2019); Wang et al. (2021)),
used generative models (e.g., Samangouei et al. (2018); Lang et al. (2021); Khorram & Fuxin (2022);
Jeanneret et al. (2022)), or used mixtures of aforementioned approaches (e.g., Augustin et al. (2022))
to regularize towards the (semantic) data manifold. However, these requirements or restrictions can
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(a) alp → coral reef
on ImageNet with ResNet-50

(b) no-smile → smile
on CelebA HQ with DenseNet-121

(c) birman → American pit bull
on Oxford Pets with OpenCLIP

(d) moon orchid → rose
on Oxford Flowers with DINO+linear

Figure 1: LDCE(-txt) can be applied to any classifier, is dataset-agnostic, and works across various
learning paradigms. We show counterfactual explanations (right) for the original image (left) for
various dataset and classifier combinations.

hinder the applicability, e.g., in real-world scenarios with restricted data access due to data privacy
reasons.

Thus, we introduce Latent Diffusion Counterfactual Explanations (LDCE) which is devoid from
such limitations. LDCE leverages recent class- or text-conditional foundational diffusion mod-
els combined with a novel consensus guidance mechanism that filters out adversarial gradients
of the target model that are not aligned with the gradients of the diffusion model’s implicit clas-
sifier. Moreover, through the decoupling of the semantic from pixel-level details by latent dif-
fusion models (Rombach et al., 2022), we not only expedite counterfactual generation but also
disentangle semantic from pixel-level changes during counterfactual generation. To the best of
our knowledge, LDCE is the first counterfactual approach that can be applied to any classifier;
independent of the learning paradigm (e.g., supervised or self-supervised) and with extensive do-
main coverage (as wide as the foundational model’s data coverage), while generating high-quality
visual counterfactual explanations of the tested classifier; see Figure 1. Code is available at
https://anonymous.4open.science/r/ldce.

In summary, our key contributions are the following:

• By leveraging recent class- or text-conditional foundation diffusion models (Rombach
et al., 2022), we present the first approach that is both model- and dataset-agnostic (re-
stricted only by the domain coverage of the foundation model).

• We introduce a novel consensus guidance mechanism that eliminates confounding ele-
ments, such as an auxiliary classifier, from the counterfactual generation by leveraging
foundation models’ implicit classifiers as a filter to ensure semantically meaningful changes
in the counterfactual explanations of the tested classifiers.

2 BACKGROUND

2.1 DIFFUSION MODELS

Recent work showed that diffusion models can generate high-quality images (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021; Rombach et al., 2022). The main
idea is to gradually add small amounts of Gaussian noise to the data in the forward diffusion process
and gradually undoing it in the learned reverse diffusion process. Specifically, given scalar noise
scales {αt}Tt=1 and an initial, clean image x0, the forward diffusion process generates intermediate
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noisy representations {xt}Tt=1, with T denoting the number of time steps. We can compute xt by
xt =

√
αtx0 +

√
1− αtεt, where εt ∼ N (0, I) . (2)

The score estimator (i.e., parameterized denoising network) εθ(xt, t)–typically a modified U-Net
(Ronneberger et al., 2015)–learns to undo the forward diffusion process for a pair (xt, t):

εθ(xt, t) ≈ ε̂t =
xt −

√
αtx0√

1− αt
. (3)

Note that by rewriting Equation 3 (or 2), we can approximately predict the clean data point

x̂0 ≈
xt −

√
1− αtεθ(xt, t)√

αt
. (4)

To gradually denoise, we can sample the next less noisy representation xt−1 with a sampling method
S(xt, ε̂t, t)→ xt−1, such as the DDIM sampler (Song et al., 2021):

xt−1 =
√
αt−1

xt −
√

1− αtε̂t√
αt

+
√

1− αt−1 − σ2
t ε̂t + σtεt . (5)

Latent diffusion models In contrast to GANs (Goodfellow et al., 2020), VAEs (Kingma &
Welling, 2014; Rezende et al., 2014), or normalizing flows (Rezende & Mohamed, 2015), (pixel-
space) diffusion models’ intermediate representations are high-dimensional, rendering the genera-
tive process computationally very intensive. To mitigate this, Rombach et al. (2022) proposed to
operate diffusion models in a perceptually equivalent, lower-dimensional latent space Z of a reg-
ularized autoencoder A(x) = D(E(x)) ≈ x with encoder E and decoder D (Esser et al., 2021).
Note that this also decouples semantic from perceptual compression s.t. the “focus [of the diffusion
model is] on the important, semantic bits of the data” (Rombach et al. (2022), p. 4).

Controlled image generation To condition the generation by some condition c, a class label or
text, we need to learn a score function ∇x log p(x|c). Through, Bayes’ rule we can decompose the
score function into an unconditional and conditional component:

∇x log pη(x|c) = ∇x log p(x) + η∇x log p(c|x) , (6)
where the guidance scale η governs the influence of the conditioning signal. Note that ∇x log p(x)
is just the unconditional score function and ∇x log p(c|x) can be a standard classifier. However,
intermediate representations of the diffusion process have high noise levels and directly using a clas-
sifier’s gradient may result in mere adversarial perturbations (Augustin et al., 2022). To overcome
this, previous work used noise-aware classifiers (Dhariwal & Nichol, 2021), optimized intermediate
representation of the diffusion process (Jeanneret et al., 2023; Wallace et al., 2023), or used one-
step approximations (Avrahami et al., 2022; Augustin et al., 2022; Bansal et al., 2023). In contrast
to these works, Ho & Salimans (2022) trained a conditional diffusion model ∇x log p(x|c) with
conditioning dropout and leveraged Bayes’ rule, i.e.,

∇x log p(c|x) = ∇x log p(x|c)−∇x log p(x) , (7)
to substitute the conditioning component∇x log p(c|x) from Equation 6:

∇x log pη(x|c) = ∇x log p(x) + η(∇x log p(x|c)−∇x log p(x)) . (8)

2.2 COUNTERFACTUAL EXPLANATIONS

A counterfactual explanation xCF is a sample with the smallest and semantically meaningful change
to an original factual input xF in order to achieve a desired output. In contrast to adversarial attacks,
counterfactual explanations focus on semantic (i.e., human comprehensible) changes. Initial works
on visual counterfactual explanations used gradient-based approaches (Wachter et al., 2017; San-
turkar et al., 2019; Boreiko et al., 2022) or restricted the set of image manipulations (Goyal et al.,
2019; Akula et al., 2020; Wang et al., 2021; Van Looveren & Klaise, 2021; Vandenhende et al.,
2022). Other works leveraged invertible networks (Hvilshøj et al., 2021), deep image priors (Thia-
garajan et al., 2021), or used generative models to regularize towards the image manifold to generate
high-quality visual counterfactual explanations (Samangouei et al., 2018; Lang et al., 2021; Sauer
& Geiger, 2021; Rodriguez et al., 2021; Khorram & Fuxin, 2022; Jacob et al., 2022). Other work
generated positive examples through latent transformations for contrastive learning, while enforcing
semantic consistency in the latent space of a generative model (Li et al., 2022). Recent works also
adopted (pixel-space) diffusion models due to their remarkable generative capabilities (Sanchez &
Tsaftaris, 2022; Jeanneret et al., 2022; 2023; Augustin et al., 2022).
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Algorithm 1 Latent diffusion counterfactual explanations (LDCE).
1: Input: (f)actual image xF, condition c, target model f , encoder E , decoder D, sampler S,

distance function d, “where” function φ, consensus threshold γ, time steps T , weighing factors
η, λc, λd

2: Output: counterfactual image xCF

3: zT ←
√
αtE(xF ) +

√
1− αtεt, where εt ∼ N (0, I) // c.f., Equation 2

4: for t = T, . . . , 0 do
5: εuc, εc ← εθ(zt, t, ∅), εθ(zt, t, c)

6: x̂0 ← D( zt−
√
1−αtεuc√
αt

) // c.f., Equation 4
7: cls score, dist score←

√
1− αt∇ztL(f(x̂0), c),

√
1− αt∇ztd(x̂0, x

F)
8: αi ← ∠(cls scorei, (εc − εuc)i) // c.f., Equation 10
9: consensus← φ(αi, γ, cls scorei, 0) // c.f., Equation 11

10: ε̂t ← εuc + η · (λc consensus
||consensus||2 + λd

dist score
||dist score||2 ) · ||εc||2 // c.f., Equation 6

11: zt−1 ← S(zt, ε̂t, t) // e.g., Equation 5
12: end for
13: xCF ← D(z0)

3 LATENT DIFFUSION COUNTERFACTUAL EXPLANATIONS (LDCE)

Since generating (visual) counterfactual explanations xCF is inherently challenging due to high
chance of adversarial perturbation by solely relying on the target model’s gradient, recent work
resorted to (pixel-space) diffusion models to regularize counterfactual generation towards the data
manifold by employing the following two-step procedure:

1. Abduction: add noise to the (f)actual image xF through the forward diffusion process, and

2. Interventional generation: guide the noisy intermediate representations by the gradients,
or a projection thereof, from the target model f s.t. the counterfactual xCF elicits a desired
output yCF from f .

Since intermediate representations of the diffusion model have high-noise levels and may result in
mere adversarial perturbations, previous work proposed several schemes to combat these. This in-
cluded sharing the encoder between target model and denoising network (Diff-SCM, Sanchez &
Tsaftaris (2022)), albeit at the cost of model-specificity. Other work (DiME, Jeanneret et al. (2022)
& ACE, Jeanneret et al. (2023)) proposed a computationally intensive iterative approach, where
at each diffusion time step, they generated an unconditional, clean image to compute gradients on
these unnoisy images, but necessitating backpropagation through the entire diffusion process up to
the current time step. This results in computational costs of O(T 2) or O(T · I) for DiME or ACE,
respectively, where T is the number of diffusion steps and I is the number of adversarial attack up-
date steps in ACE. Lastly, Augustin et al. (2022) (DVCE) introduced a guidance scheme involving
a projection between the target model and an auxiliary adversarially robust model. However, this
requires the auxiliary model to be trained on a very similar data distribution (and task), which may
limit its applicability in settings with restricted data access. Further, we found that counterfactu-
als generated by DVCE are confounded by the auxiliary model; see Appendix A for an extended
discussion or Figure 3 of Augustin et al. (2022).

3.1 OVERVIEW

We propose Latent Diffusion Counterfactual Explanations (LDCE) that addresses above limitations:
LDCE is model-agnostic, computationally efficient, and alleviates the need for an auxiliary classifier
requiring (data-specific, adversarial) training. LDCE harnesses the capabilities of recent class- or
text-conditional foundation (latent) diffusion models, augmented with a novel consensus guidance
mechanism (Section 3.2). The foundational nature of the text-conditional (latent) diffusion model
grants LDCE the versatility to be applied across diverse models, datasets (within reasonable bounds),
and learning paradigms, as illustrated in Figure 1. Further, we expedite counterfactual generation
by operating diffusion models within a perceptually equivalent, semantic latent space, as proposed
by Rombach et al. (2022). This also allows LDCE to “focus on the important, semantic [instead of
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unimportant, high-frequency details] of the data” (Rombach et al. (2022), p. 4). Moreover, our novel
consensus guidance mechanism ensures semantically meaningful changes during the reverse diffu-
sion process by leveraging the implicit classifier (Ho & Salimans, 2022) of class- or text-conditional
foundation diffusion models as a filter. Lastly, note that LDCE is compatible to and will benefit from
future advancements of diffusion models.

Algorithm 1 provides the implementation outline. We add Gaussian noise to the (f)actual image
xF (line 3) and then guide the backward diffusion process to the counterfactual xCF s.t. it elicits
a desired output yCF from the target model f , while staying close to the (f)actual input (l. 4-13).
Below, we describe how we foster semantically meaningful changes by generating counterfactual
explanations in the latent space together with our consensus guidance mechanism.

Counterfactual generation in latent space We propose generating counterfactual explanations
within a perceptually equivalent, lower-dimensional latent space of an autoencoder (Esser et al.,
2021) and rewrite Equation 1 as follows:

xCF = D(z′) ∈ arg min
z′∈Z={E(x)|x∈X}

λcL(f(D(z′)), yCF) + λdd(D(z′), xF) . (9)

Yet, we found that generating counterfactual explanations directly in the autoencoder’s latent space
(Esser et al., 2021) using a gradient-based approach only results in imperceptible, adversarial
changes. Conversely, employing a diffusion model on the latent space produced semantically more
meaningful changes. Further, it allows the diffusion model to “focus on the important, semantic bits
of the data” (Rombach et al. (2022), p. 4) and the autoencoder’s decoder D fills in the unimportant,
high-frequency image details. This contrasts prior works that used pixel-space diffusion models for
counterfactual generation. We refer to this approach as LDCE-no consensus.

3.2 CONSENSUS GUIDANCE MECHANISM

.
∠

. .. ..

classifier
gradients

consensus
mask

consensus
gradients

implicit
classifier
gradients

Figure 2: Our proposed consensus guidance
mechanism employs a filtering approach of gradi-
ents leveraging the implicit classifier of diffusion
models as reference for semantic meaningfulness.

To further mitigate the presence of semantically
non-meaningful changes, we introduce a novel
consensus guidance mechanism (see Figure 2).
During the reverse diffusion process, our guid-
ance mechanism exclusively allows for gradi-
ents from the target model that align with the
freely available implicit classifier of a class-
or text-conditional diffusion model (c.f., Equa-
tion 7). Consequently, we can use target mod-
els out-of-the-box and eliminate the need for
auxiliary models that need to be (adversarially)
trained on a similar data distribution (and task).
We denote these variants as LDCE-cls for class-
conditional or LDCE-txt for text-conditional
diffusion models, respectively.

Our consensus guidance mechanism is inspired by the observation that both the gradient of the tar-
get model, and the unconditional and conditional score functions of the class- or text-conditional
foundation diffusion model (c.f., Equation 7) estimate ∇x log p(c|x). The main idea of our con-
sensus guidance mechanism is to leverage the latter as a reference for semantic meaningfulness to
filter out misaligned gradients of the target model that are likely to result in non-meaningful, ad-
versarial modifications. More specifically, we compute the angles αi between the target model’s
gradients ∇ztL(f(x̂0), c) and the difference of the conditional and unconditional scores εc − εuc
(c.f., Equation 7) for each non-overlapping patch, indexed by i:

αi = ∠[(
√

1− αt∇ztL(f(x̂0), c))i, (εc − εuc)i] . (10)
To selectively en- or disable gradients for individual patches, we introduce an angular threshold γ:

φi(αi, γ,
√

1− αt∇ztL(f(x̂0), c))i, o) =

{ √
1− αt∇ztL(f(x̂0), c))i, αi ≤ γ

o, αi > γ
, (11)

where o is the overwrite value (in our case zeros 0). Note that by setting the overwrite value o to
zeros, only the target model and the unconditional score estimator–which is needed for regularization
towards the data manifold–directly influence counterfactual generation.
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(a) bald eagle → rooster (b) sandal → running shoe

(c) lakeside → seashore (d) barn → planetarium

(e) guacamole → mashed potato (f) cheetah → tiger

(g) backpack → plastic bag (h) soccer ball → golf ball

Figure 3: Qualitative comparison on ImageNet with ResNet-50. Left to right: original image, coun-
terfactual images for SVCE, DVCE, LDCE-cls, and LDCE-txt. Appendix I provides more examples.

4 EXPERIMENTS

Datasets & models We evaluated (and compared) LDCE on ImageNet (Deng et al., 2009) (on a
subset of 10k images), CelebA HQ (Lee et al., 2020), Oxford Flowers 102 (Nilsback & Zisserman,
2008), and Oxford Pets (Parkhi et al., 2012). All datasets have image resolutions of 256x256. We
used ResNet-50 (He et al., 2016), DenseNet-121 (Huang et al., 2017), OpenCLIP-VIT-B/32 (Cherti
et al., 2022), and (frozen) DINO-VIT-S/8 with linear classifier (Caron et al., 2021) for ImageNet,
CelebA HQ, Oxford Pets or Flowers 102, respectively, as target models. We provide dataset and
model licenses in Appendix B and further model details in Appendix C.

Evaluation protocol We use two protocols for counterfactual target class selection: (a) Semantic
Hierarchy: we randomly sample one of the top-4 closest classes based on the shortest path based
on WordNet (Miller, 1995). (b) Representational Similarity: we compute the instance-wise cosine
similarity with SimSiam (Chen & He, 2021) features of the (f)actual images xF and randomly sam-
ple one of the top-5 classes. Note that the latter procedure does not require any domain expertise
compared to the former. We adopted the former for ImageNet and the latter for Oxford Pets and
Flowers 102. For CelebA HQ, we selected the opposite binary target class.

The evaluation of (visual) counterfactual explanations is inherently challenging: what makes a good
counterfactual is arguably very subjective. Despite this, we used various quantitative evaluation cri-
teria covering commonly acknowledged desiderata. (a) Validity: We used Flip Ratio (FR), i.e., does
the generated counterfactual xCF yield the desired output yCF, and COUT (Khorram & Fuxin, 2022)
that additionally takes the sparsity of the changes into account. Further, we used the S3 criterion
(Jeanneret et al., 2023) that computes cosine similarity between the (f)actual xF and counterfac-
tual xCF. While it has been originally introduced a closeness criterion, we found that S3 correlates
strongly with FR, i.e., we found a high Spearman rank correlation of −0.83 using the numbers from
Table 2. (b) Closeness: We used L1 and L2 norms to assess closeness. However, note that Lp norms
can be confounded by unimportant, high-level image details. (c) Realism: We used FID and sFID
(Jeanneret et al., 2023) to assess realism. In contrast to FID, sFID removes the bias caused by the
closeness desiderata. Appendix D provides more details.

Implementation details We based LDCE-cls on a class-conditional latent diffusion model trained
on ImageNet (Rombach et al., 2022) and LDCE-txt on a fine-tuned variant of Stable Diffusion
v1.4 for 256x256 images (Pinkey, 2023). Model licenses and links to the weights are provided

6



Under review as a conference paper at ICLR 2024

(a) young → old

(b) old → young

(c) smile → no smile

(d) no smile → smile

(e) jpn. chin → persian cat

(f) am. bulldog → beagle

(g) coltsfoot → sunflower

(h) pink primrose → lotus

Figure 4: Qualitative results on CelebA HQ, Oxford Pets, and Flowers 102 using DenseNet-121,
CLIP, and DINO with linear classifier, respectively. Left: original image. Right: counterfactual
image generated by LDCE-txt. Additional examples are provided in Appendix I.

in Appendix B. For text conditioning, we mapped counterfactual target classes to CLIP-style text
prompts (Radford et al., 2021). For our consensus guidance scheme, we used spatial regions of size
1x1 and chose zeros as overwrite values. We used L1 as a distance function d to promote sparse
changes. We used a diffusion respacing factor of 2 to expedite counterfactual generation at the cost of
a reduction in image quality. We set the weighting factor η to 2. We optimized other hyperparameters
(diffusion steps T and the other weighing factors λc, γ, λd) on 10–20 examples. Note that these
hyperparameters control the trade-off of the desiderata validity, closeness, and realism. Appendix E
provides the selected hyperparameters.

4.1 QUALITATIVE EVALUATION

Figures 1, 3 and 4 show qualitative results for both LDCE-cls and LDCE-txt across a diverse range of
models (from convolutional networks to transformers) trained on various real-world datasets (from
ImageNet to CelebA-HQ, Oxford-Pets, or Flowers-102) with distinct learning paradigms (from su-
pervision, to vision-only or vision-language self-supervision). We observe that LDCE-txt can intro-
duce local changes, e.g., see Figure 1(b), as well as global modifications, e.g., see Figure 1(a). We
observe similar local as well as global changes for LDCE-cls in Figure 3. Notably, LDCE-txt can
also introduce intricate changes in the geometry of flower petals without being explicitly trained on
such data, see Figure 1(d) or the rightmost column of Figure 4. Further, we found that counterfac-
tual generation gradually evolves from coarse (low-frequency) features (e.g., blobs or shapes) at the
earlier time steps towards more intricate (high-frequency) details (e.g., textures) at later time steps.
We explores this further in Appendix F. Lastly, both LDCE variants can generate a diverse set of
counterfactuals, instead of only single instances, by introducing stochasticity in the abduction step
(see Appendix G for examples).

Figure 3 also compares LDCE with previous works: SVCE (Boreiko et al., 2022) and DVCE (Au-
gustin et al., 2022). We found that SVCE often generates high-frequency (Figure 3(c)) or copy-
paste-like artifacts (Figure 3(e)). Further, DVCE tends to generate blurry and lower-quality images.
This is also reflected in its worse (s)FID scores in Table 1. Moreover, note that counterfactuals
generated by DVCE are confounded by its auxiliary model; refer to Appendix A for an extended
discussion. In contrast to SVCE and DVCE, both LDCE variants generate fewer artifacts, less
blurry, and higher-quality counterfactual explanations. However, we also observed failure modes
(e.g., distorted secondary objects) and provide examples in Appendix K. We suspect that some of
these limitations are inherited from the underlying foundation diffusion model and, in part, to do-
main shift. We further discuss these challenges in Section 5.

4.2 QUANTITATIVE EVALUATION

We quantitatively compared LDCE to previous work (`1.5-SVCE (Boreiko et al., 2022), DVCE
(Augustin et al., 2022), and ACE (Jeanneret et al., 2023)) on ImageNet. Note that other previous
work is hardly applicable to ImageNet or code is not provided, e.g., C3LT (Khorram & Fuxin, 2022).
Note that we used a multiple-norm robust ResNet-50 (Croce & Hein, 2021) for `1.5-SVCE since it is
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Table 1: Comparison to SVCE and DVCE on ImageNet using ResNet-50.

Method L1 (↓) L2 (↓) FID (↓) sFID (↓) FR (↑)
`1.5-SVCE† (Boreiko et al., 2022) 5038 25 22.44 28.44 83.82
DVCE (Augustin et al., 2022) 9709 38 15.10 21.14 99.56

LDCE-no consensus 12337 41 21.70 27.10 98.4
LDCE-cls 12375 42 14.03 19.25 83.1
LDCE-txt∗ 11577 41 21.00 26.50 84.4
†: used an adversarially robust ResNet-50. ∗: diffusion model not trained on ImageNet.

tailored for adversarially robust models. Further, we limited our comparison to ACE to their smaller
evaluation protocol for ImageNet due to its computationally intensive nature.

Table 2: Comparison of LDCE-cls and LDCE-
txt (∗diffusion model not trained on ImageNet)
to ACE on ImageNet with ResNet-50.

Method FID sFID S3 COUT FR

Zebra – Sorrel

ACE `1 84.5 122.7 0.92 -0.45 47.0
ACE `2 67.7 98.4 0.90 -0.25 81.0

LDCE-cls 84.2 107.2 0.78 -0.06 88.0
LDCE-txt∗ 82.4 107.2 0.7113 -0.2097 81.0

Cheetah – Cougar

ACE `1 70.2 100.5 0.91 0.02 77.0
ACE `2 74.1 102.5 0.88 0.12 95.0

LDCE-cls 71.0 91.8 0.62 0.51 100.0
LDCE-txt∗ 91.2 117.0 0.59 0.34 98.0

Egyptian Cat – Persian Cat

ACE `1 93.6 156.7 0.85 0.25 85.0
ACE `2 107.3 160.4 0.78 0.34 97.0

LDCE-cls 102.7 140.7 0.63 0.52 99.0
LDCE-txt∗ 121.7 162.4 0.61 0.56 99.0

Table 1 shows that both LDCE variants achieve
strong performance for the validity (high FR) and
realism (low FID figures) desiderata. Unsurpris-
ingly, we find that SVCE generates counterfactu-
als that are closer to the (f)actual image (lower Lp
norms) since it specifically constraints optimiza-
tion within a `1.5-ball. We also note that unsur-
prisingly Lp norms are higher for both LDCE vari-
ants than for the other methods since Lp are con-
founded by unimportant, high-frequency image de-
tails that are not part of our counterfactual opti-
mization, i.e., the decoder just fills in these de-
tails. This is corroborated by our qualitative in-
spection in Section 4.1. Furthermore, we found
that both LDCE variants consistently outperform
ACE across nearly all evaluation criteria; see Ta-
ble 2. The only exception is FID, which is un-
surprising given that ACE enforces sparse changes,
resulting in counterfactuals that remain close to the
(f)actual images. This is affirmed by ACE’s lower
sFID scores, which accounts for this. We pro-
vide quantitative comparisons with other methods
on CelebA HQ in Appendix H. Despite not being
trained specifically for faces, LDCE-txt yielded competitive results to other methods.

Lastly, we evaluated the computational efficiency of diffusion-based counterfactual methods.
Specifically, we compared throughput on a single NVIDIA RTX 3090 GPU with 24 GB memory for
20 batches with maximal batch size. We report that LDCE-txt only required 156 s for four counter-
factuals, whereas DVCE needed 210 s for four counterfactuals, and ACE took 184 s for just a single
counterfactual. Note that DiME, by design, is even slower than ACE. Above throughput differences
translate to substantial speed-ups of 34 % and 371 % compared to DVCE or ACE, respectively.

Above results highlight LDCE as a strong counterfactual generation method. In particular, LDCE-
txt achieves on par and often superior performance compared to previous approaches, despite being
the only method not requiring any component to be trained on the same data as the target model–a
property that, to the best of our knowledge, has not been available in any previous work and also
enables applicability in real-world scenarios where data access may be restricted.

4.3 IDENTIFICATION AND RESOLUTION OF MODEL ERRORS

Counterfactual explanations should not solely generate high-quality images, like standard image
generation, editing or prompt-to-prompt methods (Hertz et al., 2023), but should serve to better un-
derstand model behavior. More specifically, we showcase how LDCE-txt can effectively enhance
our model understanding of ResNet-50 trained with supervision on ImageNet in the context of mis-
classifications. To this end, we generated counterfactual explanations of a ResNet-50’s misclassi-
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(a) kite → bald eagle (b) maraca → wooden spoon (c) running shoe → sandal

Figure 5: Examples of identified classification errors of ResNet-50. Left: original image that is mis-
classified. Right: counterfactual that is correctly classified. The red ellipses were added manually.

fications towards the true class. As illustrated in Figure 5, this elucidates missing or misleading
features in the original image that lead to a misclassification. For instance, it reveals that ResNet-50
may misclassify young bald eagles primarily due to the absence of their distinctive white heads (and
tails), which have yet to fully develop. Similarly, we found that painted wooden spoons may be
misclassified as maraca, while closed-toe sandals may be confused with running shoes.

To confirm that these findings generalize beyond single instances, we first tried to synthesize im-
ages for each error type with InstructPix2Pix (Brooks et al., 2023), but found that it often could not
follow the instructions; indicating that these model errors transcend ResNet-50 trained with supervi-
sion. Thus, we searched for 50 images on the internet, and report classification error rates of 88 %,
74 %, and 48 % for the bald eagle, wooden spoon, or sandal model errors, respectively. Finally, we
used these images to finetune the last linear layer of ResNet-50. To this end, we separated the 50
images into equally-sized train and test splits; finetuning details are provided in Appendix J. This
effectively mitigated these model errors and reduced error rates on the test set by 40 %, 32 %, or
16 %, respectively.

5 LIMITATIONS

The main limitation of LDCE is its slow counterfactual generation, which hinders real-time, inter-
active applications. However, advancements in distilling diffusion models (Salimans & Ho, 2022;
Song et al., 2023; Meng et al., 2023) or speed-up techniques (Dao et al., 2022; Bolya et al., 2023)
offer promise in mitigating this limitation. Another limitation is the requirement for hyperparameter
optimization. Although this is very swift, it still is necessary due to dataset differences and diverse
needs in use cases. Lastly, while contemporary foundation diffusion models have expanded their
data coverage (Schuhmann et al., 2021), they may not perform as effectively in specialized domains,
e.g., for biomedical data, or may contain (social) biases (Bianchi et al., 2023; Luccioni et al., 2023).

6 CONCLUSION

We introduced LDCE to generate semantically meaningful counterfactual explanations using class-
or text-conditional foundation (latent) diffusion models, combined with a novel consensus guid-
ance mechanism. We show LDCE’s versatility across diverse models learned with diverse learning
paradigms on diverse datasets, and demonstrate its applicability to better understand model errors
and resolve them. Future work could employ our consensus guidance mechanism for counterfac-
tual generation on tabular data or beyond, or LDCE could be extended by incorporating spatial and
textual priors.

BROADER IMPACT

Counterfactual explanations aid in understanding model behavior, can reveal model biases, etc. By
incorporating latent diffusion models (Rombach et al., 2022), we make a step forward in reducing
computational demands in the generation of counterfactual explanations. However, counterfactual
explanations may be manipulated (Slack et al., 2021) or abused. Further, (social) biases in the
foundation diffusion models (Bianchi et al., 2023; Luccioni et al., 2023) may also be reflected in
counterfactual explanations, resulting in misleading explanations.
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A INFLUENCE OF THE ADVERSARIAL ROBUST MODEL IN DVCE
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Figure 6: Distribution of angles between
the gradient of the target and the ro-
bust classifier over 100 images over 100
timesteps.

DVCE (Augustin et al., 2022) uses a projection tech-
nique to promote semantically meaningful changes,
i.e., they project the unit gradient of an adversarially
robust model onto a cone around the unit gradient
of the target model, when the gradient directions dis-
agree, i.e., the angle between them exceeds an angular
threshold α. More specifically, Augustin et al. (2022)
defined their cone projection as follows:

Pcone(α,v)[w] :=

{
〈u,w〉u, ∠(w, v) > α
v, else , (12)

where v, w are the unit gradients of the target clas-
sifier and adversarially robust classifier, respectively,
cone(α, v) := {w ∈ Rd : ∠(v, w) ≤ α}, and

u = sinα
Pv⊥(w)

||Pv⊥(w)||2
+ cosα

v

||v||2
, (13)

where Pv⊥(w) := w − 〈w,v〉〈v,v〉 v. However, due to the
high dimensionality of the unit gradients (R256·256·3), they are nearly orthogonal with high proba-
bility.1 In fact, we empirically observed that ca. 97.73 % of the gradients pairs have angles larger
than 60◦ during the counterfactual generation of 100 images from various classes; see Figure 6. As
a result, we almost always use the cone projection and found that the counterfactuals are substan-
tially influenced by the adversarially robust model: Figure 3 of Augustin et al. (2022) and Figure 7
highlight that the target model has a limited effect in shaping the counterfactuals. Consequently, we
cannot attribute the changes of counterfactual explanations solely to the target model since they are
confounded by the auxiliary adversarially robust model.

B DATASET AND MODEL LICENSES

Tables 3 and 4 provide licenses and URLs of the datasets or models, respectively, used in
our work. Our implementation is built upon Rombach et al. (2022) (License: Open RAIL-M,
URL: https://github.com/CompVis/stable-diffusion) and provided at https:
//anonymous.4open.science/r/ldce (License: MIT).

Table 3: Licenses and URLs for the datasets used in our experiments.

Dataset License URL

CelebAMask-HQ (Lee et al., 2020) CC BY 4.0 https://github.com/switchablenorms/CelebAMask-HQ
Oxford Flowers 102 (Nilsback & Zisserman, 2008) GNU https://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
ImageNet (Deng et al., 2009) Custom https://www.image-net.org/index.php
Oxford Pet (Parkhi et al., 2012) CC BY-SA 4.0 https://www.robots.ox.ac.uk/˜vgg/data/pets/

Table 4: Licenses and URLs for the target and diffusion models used in our experiments.

Models License URL

ImageNet class-
conditional LDM (Rombach et al., 2022) MIT https://github.com/CompVis/latent-diffusion

Mini Stable
diffusion 1.4 (Pinkey, 2023)

CreativeML
Open RAIL-M (Rombach et al., 2022) https://huggingface.co/justinpinkney/miniSD

ResNet-50 for ImageNet (He et al., 2016; TorchVision maintainers and contributors, 2016) BSD 3 https://github.com/pytorch/vision
Adv. robust ResNet-50 for ImageNet (Boreiko et al., 2022) MIT https://github.com/valentyn1boreiko/SVCEs_code
DenseNet-121 (Huang et al., 2017) for CelebA HQ (Jacob et al., 2022) Apache 2 https://github.com/valeoai/STEEX
DINO for Oxford Flowers 102 (Caron et al., 2021) Apache 2 https://github.com/facebookresearch/dino
OpenCLIP for Oxford Pets (Cherti et al., 2022) Custom https://github.com/mlfoundations/open_clip

SimSiam (Chen & He, 2021) CC BY-NC 4.0 https://github.com/facebookresearch/simsiam
CelebA HQ Oracle (Jacob et al., 2022) Apache 2 https://github.com/valeoai/STEEX
Ported VGGFace2
model from (Cao et al., 2018) MIT https://github.com/cydonia999/VGGFace2-pytorch

1Note that two randomly uniform unit vectors a nearly orthogonal with high probability in high-dimensional
spaces. This can be proven via the law of large numbers and central limit theorem.
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(a) tench → eel (b) tiger shark → great white shark

(c) electric ray → great white shark (d) rooster → ostrich

(e) bulbul → goldfinch (f) indigo bunting → goldfinch

Figure 7: Qualitative examples illustrating the marginal influence of the target model in DVCE.
From left to right: original image, counterfactual images generated using DVCE with cone projec-
tion using an angular threshold of 30◦ and the robust classifier, and DVCE using the robust classifier
only, i.e., without the target model.

C MODEL DETAILS

Below, we provide model details:

• ResNet50 (He et al., 2016) on ImageNet (Deng et al., 2009): We used the pretrained
ResNet-50 model provided by torchvision (TorchVision maintainers and contributors,
2016).

• DenseNet-121 (Huang et al., 2017) on CelebA HQ (Lee et al., 2020): We used the pre-
trained DenseNet-121 model provided by Jacob et al. (2022).

• OpenCLIP (Radford et al., 2021; Cherti et al., 2022) on Oxford Pets (Parkhi et al.,
2012): We used the provided weights of OpenCLIP ViT-B/32 (Dosovitskiy et al., 2021),
and achieved a top-1 zero-shot classification accuracy of 90.5 % using CLIP-style prompts
(Radford et al., 2021).

• DINO+linear (Caron et al., 2021) on Oxford Flowers 102 (Nilsback & Zisserman,
2008): We used the pretrained DINO ViT-S/8 model, added a trainable linear classifier,
and trained it on Oxford Flowers 102 for 30 epochs. We used SGD with a learning rate
of 0.001 and momentum of 0.9, and cosine annealing (Loshchilov & Hutter, 2019). The
model achieved a top-1 classification accuracy of 92.82 %.

D EVALUATION CRITERIA FOR COUNTERFACTUAL EXPLANATIONS

In this section, we discuss the evaluation criteria used to quantitatively assess the quality of coun-
terfactual explanations. Even though quantitative assessment of counterfactual explanations is ar-
guably very subjective, these evaluation criteria build a basis of quantitative evaluation based on the
commonly recognized desiderata validity, closeness, and realism.
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FLIP RATIO (FR)

This criterion focuses on assessing the validity of N counterfactual explanations by quantifying
the degree to which the original class label yF

i of the original image xF
i flips the target classifier’s

prediction f to the counterfactual target class yCF
i for the counterfactual image xCF

i :

FR =

N∑
i=1

I(f(xCF
i ) = yCF

i )

N
, (14)

where I is the indicator function.

COUNTERFACTUAL TRANSITION (COUT)

Counterfactual Transition (COUT) (Khorram & Fuxin, 2022) measures the sparsity of changes in
counterfactual explanations, incorporating validity and sparsity aspects. It quantifies the impact of
perturbations introduced to the (f)actual image xF using a normalized maskm that represents relative
changes compared to the counterfactual image xCF, i.e., m = δ(||xF − xCF||1), where δ normalizes
the absolute difference to [0, 1]. We progressively perturb xF by inserting top-ranked pixel batches
from xCF based on these sorted mask values.

For each perturbation step t ∈ {0, . . . , T}, we record the output scores of the classifier f for the
(f)actual class yF and the counterfactual class yCF throughout the transition from x0 = xF to xT =
xCF. From this, we can compute the COUT score:

COUT = AUPC(yCF)− AUPC(yF) ∈ [−1, 1] , (15)

where the area under the Perturbation Curve (AUPC) for each class y ∈ {yF, yCF} is defined as
follows:

AUPC(y) =
1

T

T−1∑
t=0

1

2

(
fy

(
x(t)
)

+ fy

(
x(t+1)

))
∈ [0, 1] . (16)

A high COUT score indicates that a counterfactual generation approach finds sparse changes that
flip classifiers’ output to the counterfactual class.

SIMSIAM SIMILARITY (S3)

This criterion measures the cosine similarity between a counterfactual image xCF and its corre-
sponding (f)actual image xF in the feature space of a self-supervised SimSiam model S (Chen &
He, 2021):

S3(xCF, xF) =
S(xCF) · S(xF)

‖S(xCF)‖‖S(xF)‖
. (17)

LP NORMS

Lp norms serve as closeness criteria by quantifying the magnitude of the changes between the coun-
terfactual image xCF

i and original image xF
i :

Lp =
1

N

N∑
i=1

‖di‖p , (18)

where 0 < p ≤ ∞ and C,H,W are the number of channels, image height, and image width,
respectively, and

‖di‖p =

(
C∑
c=1

H∑
h=1

W∑
w=1

|xF
i,c,h,w − xCF

i,c,h,w|p
) 1

p

. (19)

Note that Lp norms can be confounded by unimportant, high-frequency image details.
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MEAN NUMBER OF ATTRIBUTE CHANGES (MNAC)

Mean Number of Attribute Changes (MNAC) quantifies the average number of attributes modified
in the generated counterfactual explanations. It uses an oracle model Oa (i.e., VGGFace2 model
(Cao et al., 2018)) which predicts the probability of each attribute a ∈ A, where A is the entire
attributes space. MNAC is defined as follows:

MNAC =
1

N

N∑
i=1

∑
a∈A

[
I
(
I
(
Oa(xCF

i ) > β
)
6= I

(
Oa(xF

i ) > β
))]

, (20)

where β is a threshold (typically set to 0.5) that determines the presence of attributes. MNAC
quantifies the counterfactual method’s changes to the query attribute q, while remaining independent
of other attributes. However, a higher MNAC value can wrongly assign accountability for spurious
correlations to the counterfactual approach, when in fact they may be artifacts of the classifier.

CORRELATION DIFFERENCE (CD)

Correlation Difference (CD) (Jeanneret et al., 2022) evaluates the ability of counterfactual methods
to identify spurious correlations by comparing the Pearson correlation coefficient cq,a(x), of the
relative attribute changes δq and δa, before and after applying the counterfactual method. For each
attribute a, the attribute change δa is computed between pairs of samples i and j, as δai,j = ŷai − ŷaj ,
using the predicted probabilities ŷai and ŷaj from the oracle model O (i.e., VGGFace2 model (Cao
et al., 2018)). The CD for a query attribute q is then computed as:

CDq =
1

N

N∑
i=1

∑
a∈A
|cq,a(xCF)− cq,a(xF)| . (21)

FACE VERIFICATION ACCURACY (FVA) & FACE SIMILARITY (FS)

Face Verification Accuracy (FVA) quantifies whether counterfactual explanations for face attributes
maintain identity while modifying the target attribute using the VGGFace2 model (Cao et al., 2018),
or not. Alternatively, Jeanneret et al. (2023) proposed Face Similarity (FS) that addresses thresh-
olding issues and the abrupt transitions in classifier decisions in FVA when comparing the (f)actual
image xF and its corresponding counterfactual xCF. FS directly measures the cosine similarity be-
tween the feature encodings, providing a more continuous assessment (similar to S3).

FRÉCHET INCEPTION DISTANCES (FID & SFID)

Fréchet Inception Distance (FID) (Heusel et al., 2017) and split FID (sFID) (Jeanneret et al., 2023)
evaluate the realism of generated counterfactual images by measuring the distance on the dataset
level between the InceptionV3 (Szegedy et al., 2016) feature distributions of real and generated
images:

FID = ‖µF − µCF‖22 + Tr(ΣF + ΣCF − 2
√

ΣFΣCF) , (22)

where µF, µCF and ΣF,ΣCF are the feature-wise mean or covariance matrices of the InceptionV3
feature distributions of real and generated images, respectively. However, there is a strong bias in
FID towards counterfactual approaches that barely alter the pixels of the (f)actual inputs. To address
this, Jeanneret et al. (2023) proposed to split the dataset into two subsets: generate counterfactuals
for one subset, compute FID between those counterfactuals and the (f)actual inputs of the untouched
subset, and vice versa, and then take the mean of the resulting FIDs.

E HYPERPARAMETERS

Table 5 provides our manually tuned hyperparameters. For our LDCE-txt, we transform the coun-
terfactual target classes yCF to CLIP-style text prompts (Radford et al., 2021), as follows:

• ImageNet: a photo of a {category name}.

17



Under review as a conference paper at ICLR 2024

Table 5: Manually-tuned hyperparameters.

LDCE-cls LDCE-txt
Hyperparameters ImageNet ImageNet CelebA HQ Flowers Oxford Pets

consensus threshold γ 45◦ 50◦ 55◦ 45◦ 45◦
starts timestep T 191 191 200 250 191
classifier weighting λc 2.3 3.95 4.0 3.4 4.2
distance weighting λd 0.3 1.2 3.3 1.2 2.4

(a) standard poodle → dalmatian

(b) golf ball → baseball

(c) soccer ball → golf ball

(d) backpack → plastic bag

(e) sandal → running shoe

Figure 8: Visualization of changes over the course of the counterfactual generation. From left to
right: (f)actual image xF, intermediate visualizations (linearly spaced) till final counterfactual xCF.

• CelebA HQ: a photo of a {attribute name} person. (attribute
name ∈ {non-smiling, smiling, old, young}).

• Oxford Flowers 102: a photo of a {category name}, a type of
flower.

• Oxford Pets: a photo of a {category name}, a type of pet.

We note that more engineered prompts may yield better counterfactual explanations, but we leave
such studies for future work.

F CHANGES OVER THE COURSE OF THE COUNTERFACTUAL GENERATION

We conducted a deeper analysis to understand how a (f)actual image xF is transformed into a coun-
terfactual explanation xCF. To this end, we visualized intermediate steps (linearly spaced) of the
diffusion process in Figure 8. We found that the image gradually evolves from xF to xCF by mod-
ifying coarse (low-frequency) features (e.g., blobs or shapes) in the earlier steps and more intricate
(high-frequency) features (e.g., textures) in the latter steps of the diffusion process.
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(a) ant → ground beetle

(b) zebra → hippopotamus

(c) brabancon griffon → newfoundland

(d) soccer ball → golfball

(e) alp → coral reef

Figure 9: Qualitative diversity assessment across five different random seeds (0-4) using LDCE-
txt on ImageNet (Deng et al., 2009) with ResNet-50 (He et al., 2016). From left to right: original
image, counterfactual image generated by LDCE-txt for five different seeds.

G DIVERSITY OF THE GENERATED COUNTERFACTUAL EXPLANATIONS

Diffusion models by design are capable of generating image distributions. While the used DDIM
sampler (Song et al., 2021) is deterministic, we remark that the abduction step (application of for-
ward diffusion onto the (f)actual input xF) still introduces stochasticity in our approach, resulting
in the generation of diverse counterfactual images. More specifically, Figure 9 shows that the in-
jected noise influences the features that are added to or removed from the (f)actual image at different
scales. Therefore, to gain a more comprehensive understanding of the underlying semantics driv-
ing the transitions in classifiers’ decisions, we recommend to generate counterfactuals for multiple
random seeds.

H QUANTITATIVE RESULTS ON CELEBA HQ

Table 6 provides quantitative comparison to previous methods on CelebA HQ (Lee et al., 2020). We
compared to DiVE (Rodriguez et al., 2021), STEEX (Jacob et al., 2022), DiME (Jeanneret et al.,
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Table 6: Quantitative comparison to previous works using DenseNet-121 on CelebA HQ. All meth-
ods except for ours require access to the target classifier’s training data distribution.

Smile
Method FID (↓) sFID (↓) FVA (↑) FS (↑) MNAC (↓) CD (↓) COUT (↑)

DiVE (Rodriguez et al., 2021) 107.0 - 35.7 - 7.41 - -
STEEX (Jacob et al., 2022) 21.9 - 97.6 - 5.27 - -

DiME (Jeanneret et al., 2022) 18.1 27.7 96.7 0.6729 2.63 1.82 0.6495
ACE `1 (Jeanneret et al., 2023) 3.21 20.2 100.0 0.8941 1.56 2.61 0.5496
ACE `2 (Jeanneret et al., 2023) 6.93 22.0 100.0 0.8440 1.87 2.21 0.5946

LDCE-txt 13.6 25.8 99.1 0.756 2.44 1.68 0.3428
LDCE-txt∗ 15.3 26.7 99.8 0.8182 2.5 2.15 0.5938

Age
DiVE (Rodriguez et al., 2021) 107.5 - 32.3 - 6.76 - -

STEEX (Jacob et al., 2022) 26.8 - 96.0 - 5.63 - -
DiME (Jeanneret et al., 2022) 18.7 27.8 95.0 0.6597 2.10 4.29 0.5615

ACE `1 (Jeanneret et al., 2023) 5.31 21.7 99.6 0.8085 1.53 5.4 0.3984
ACE `2 (Jeanneret et al., 2023) 16.4 28.2 99.6 0.7743 1.92 4.21 0.5303

LDCE-txt 14.2 25.6 98.0 0.7319 2.12 4.02 0.3297
LDCE-txt∗ 15.5 27.1 99.9 0.815 1.86 4.14 0.4155

∗: overwrites values with classifier-free guidance score instead of zeros in our consensus guidance mechanism.

2022), and ACE (Jeanneret et al., 2023) on CelebA HQ (Lee et al., 2020) using a DenseNet-121
(Jacob et al., 2022). Note that in contrast to previous works, LDCE-txt is not specifically trained
on a face image distribution and still yields competitive quantitative results. Table 6, Figures 4(a)
to 4(d) as well as Figure 11 demonstrate the ability of LDCE-txt to capture and manipulate distinctive
facial features, also showcasing its efficacy in the domain of human faces: LDCE-txt inserts or
removes local features such as wrinkles, dimples, and eye bags when moving along the smile and
age attributes.

I ADDITIONAL QUALITATIVE EXAMPLES

Figures 10 to 13 provide additional qualitative examples for ImageNet with ResNet-50, CelebA HQ
with DenseNet-121, Oxford Pets with OpenCLIP VIT-B/32, or Oxford Flowers 102 with (frozen)
DINO-VIT-S/8 with (trained) linear classifier, respectively. Note that, in contrast to standard image
generation, editing or prompt-to-prompt tuning, we are interested in minimal semantically meaning-
ful changes to flip a target classifier’s prediction (and not just generating the best looking image).

J FINETUNING DETAILS

We finetuned the final linear layer of ResNet-50 on the ImageNet training set combined with 25
examples that correspond to the respective model error type for 16 epochs and a batch size of 512.
We use stochastic gradient descent with learning rate of 0.1, momentum of 0.9, and weight decay
of 0.0005. We used cosine annealing as learning rate scheduler and standard image augmentations
(random crop, horizontal flip, and normalization). We evaluated the final model on the holdout test
set.
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(a) stingray → great white shark

(b) kite → rooster

(c) poodle → dalmatian

(d) meerkat → ice bear

(e) marmot → porcupine

(f) indian elephant → african elephant

(g) lemon → orange
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(h) hot pot → pizza

(i) digital watch → wall clock

(j) gong → drum

(k) mitten → mask

(l) restaurant → library

(m) carbonara → guacamole

(n) valley → cliff

Figure 10: Additional qualitative results for on ImageNet with ResNet-50. From left to right: origi-
nal image, counterfactual images generated by SVCE (Boreiko et al., 2022), DVCE (Augustin et al.,
2022), LDCE-no consensus, LDCE-cls, and LDCE-txt.
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(a) no-smile → smile

(b) smile → no-smile

(c) young → old

(d) old → young

Figure 11: Additional qualitative results for LDCE-txt on CelebA HQ with DenseNet-121. Left:
original image. Right: counterfactual image.
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(a) abyssinian → egyptian (b) american bulldog → sphynx (c) american pitbull → stafford

(d) beagle → chihuahua (e) bengal → abyssinian (f) birman → siamese

(g) bombay → chihuahua (h) bombay → persian (i) boxer → american pitbull

(j) british shorthair → bengal (k) chihuahua → sphynx (l) egyptian → british shorthair

(m) spaniel → wheaten (n) great pyrenees → samoyed (o) havanese → yorkshire

(p) japanese chin → boxer (q) leonberger → newfoundland (r) russian blue → sphynx

(s) samoyed → pomeranian (t) german shorthaired → beagle (u) keeshond → birman

Figure 12: Additional qualitative results for LDCE-txt on Oxford Pets with OpenCLIP VIT-B/32.
Left: original image. Right: counterfactual image.
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(a) canterbury → balloon flower (b) sweet pea → bee balm (c) english marigold → sunflower

(d) english marigold → water lily (e) tiger lily → stemless gentian (f) moon orchid → spring crocus

(g) bird of paradise → yellow iris (h) monkshood → wallflower (i) king protea → passion flower

(j) preuvian lily → watercress (k) arum lily → magnolia (l) pincushion → snapdragon

(m) sweet william → petunia (n) garden phlox → sweet william (o) barbeton daisy → gazania

(p) marigold → carnation (q) japanese anemone → frangipani (r) silverbush → morning glory

(s) rose → camellia (t) morning glory → desert-rose (u) siam tulip → water lily

Figure 13: Additional qualitative results for LDCE-txt on Oxford Flowers 102 with (frozen) DINO-
VIT-S/8 with (trained) linear classifier. Left: original image. Right: counterfactual image.
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(a) bluriness
african elephant → armadillo

(b) distorted bodies
acoustic guitar → electric guitar

(c) distorted faces
american lobster → dungeness crab balm

(d) large distance to counterfactual class yCF

birdhouse → umbrella

Figure 14: Failure modes of LDCE (i.e., LDCE-txt) on ImageNet (Deng et al., 2009) with ResNet-50
(He et al., 2016). Left: original image. Right: counterfactual image.

K FAILURE MODES

In this section, we aim to disclose some observed failure modes of LDCE (specifically LDCE-txt):
(i) occasional blurry images (Figure 14(a)), (ii) distorted human bodies and faces (Figures 14(b)
and 14(c)), and (iii) a large distance to the counterfactual target class causing difficulties in counter-
factual generation (Figure 14(d)). Moreover, we note that these failure modes are further aggravated
when multiple instances of the same class (Figure 14(c)) or multiple classes or objects are present
in the image (Figure 14(a)).

As discussed in our limitations section (Section 5), we believe that the former cases (i & ii) can
mostly be attributed to limitations in the foundation diffusion model, which can potentially be ad-
dressed through orthogonal advancements in generative modeling. On the other hand, the latter
case (iii) could potentially be overcome by further hyperparameters tuning, e.g., increasing classi-
fier strength λc and decreasing the distance strength λd. However, it is important to note that such
adjustments may lead to counterfactuals that are farther away from the original instance, thereby
possibly violating the desired desiderata of closeness. Another approach would be to increase the
number of diffusion steps T , but this would result in longer counterfactual generation times. Achiev-
ing a balance for these hyperparameters is highly dependent on the specific user requirements and
the characteristics of the dataset.
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