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Abstract
In many applications, the labeled data at the
learner’s disposal is subject to privacy constraints
and is relatively limited. To derive a more accu-
rate predictor for the target domain, it is often
beneficial to leverage publicly available labeled
data from an alternative domain, somewhat close
to the target domain. This is the modern problem
of supervised domain adaptation from a public
source to a private target domain. We present two
(ε, δ)-differentially private adaptation algorithms
for supervised adaptation, for which we make
use of a general optimization problem, recently
shown to benefit from favorable theoretical learn-
ing guarantees. Our first algorithm is designed
for regression with linear predictors and shown to
solve a convex optimization problem. Our second
algorithm is a more general solution for loss func-
tions that may be non-convex but Lipschitz and
smooth. While our main objective is a theoreti-
cal analysis, we also report the results of several
experiments. We first show that the non-private
versions of our algorithms match state-of-the-art
performance in supervised adaptation and that for
larger values of the target sample size or ε, the
performance of our private algorithms remains
close to that of their non-private counterparts.

1. Introduction
In many applications, the labeled data at hand is not suffi-
cient to train an accurate model for a target domain. Instead,
a large amount of labeled data may be available from an-
other domain, a source domain, somewhat close to the target
domain. The problem then consists of using the labeled data
available from both the source and target domains to come
up with a more accurate predictor for the target domain.
This is the setting of supervised domain adaptation.
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The problem faced in practice is often even more challeng-
ing, since the labeled data from the target domain can be
sensitive and subject to privacy constraints (Bassily, Mohri,
and Suresh, 2022). For example, a corporation such as an
airline company, or an institution such as a hospital, may
seek to train a classifier based on private labeled data it
has collected, as well as a large amount of data available
from a public domain. To share the classifier internally, let
alone share it publicly to the benefit of other institutions or
individuals, it may have to train the classifier with privacy
guarantees. In the absence of the public domain data and
without the adaptation scenario, the framework of differen-
tial privacy (Dwork, McSherry, Nissim, and Smith, 2006b;
Dwork and Roth, 2014b) can be used to privately learn a
classifier that can be shared publicly. But, how can we rigor-
ously design a differentially private algorithm for supervised
domain adaptation?

This paper deals precisely with the problem of devising
a private (supervised) domain adaptation algorithm with
theoretical guarantees for this scenario. Our scenario covers
any standard privacy learning scenario where additional data
from another public source is sought.

The problem of domain adaptation has been theoretically
investigated in a series of publications in the past and the
notion of discrepancy was shown to be a key divergence
measure to the analysis of adaptation (Kifer et al., 2004;
Blitzer et al., 2008; Ben-David et al., 2010; Mansour et al.,
2009; Cortes & Mohri, 2011; Mohri & Muñoz Medina,
2012; Cortes & Mohri, 2014; Cortes et al., 2019; Zhang
et al., 2020b). Building on this prior work, Awasthi, Cortes,
and Mohri (2024) recently gave a general theoretical anal-
ysis of supervised adaptation that holds for any method
relying on reweighting the source and target labeled sam-
ples, including reweighting methods that depend on the
predictor selected. Thus, the analysis covers a large number
of algorithms in adaptation, including importance weighting
(Sugiyama et al., 2007b; Lu et al., 2021; Sugiyama et al.,
2007a; Cortes et al., 2010; Zhang et al., 2020a), KLIEP
(Sugiyama et al., 2007b), Kernel Mean Matching (KMM)
(Huang et al., 2006), discrepancy minimization (DM) or gen-
eralized discrepancy minimization (Cortes & Mohri, 2014;
Cortes et al., 2019). The authors also suggested a general
optimization problem that consists of minimizing the right-
hand side of their learning bound.

1



Differentially Private Domain Adaptation with Theoretical Guarantees

Contributions. We present two (ε, δ)-differentially private
adaptation algorithms for supervised adaptation, based on
the optimization problem of Awasthi et al. (2024). We
first consider a regression setting with linear predictors
(Section 4). We show that after a suitable reparameteri-
zation of the weights assigned to the sample losses, the
optimization problem for adaptation can be formulated as
a joint convex optimization problem over the choice of
the predictor and that of the reparameterized weights. We
then provide an (ε, δ)-differentially private adaptation algo-
rithm, CnvxAdap, using that convex formulation that can be
viewed as a variant of noisy projected gradient descent. We
note that noisy gradient descent is a general technique that
has been well studied in the literature of private optimiza-
tion (Bassily et al., 2014; Abadi et al., 2016; Wang et al.,
2017; Bassily et al., 2019). We prove a formal convergence
guarantee for our private algorithm in terms of ε and δ and
the sizes of the source and target samples.

We then consider in Section 5 a more general setting where
the loss function may be a non-convex function of the pa-
rameters and is only assumed to be Lipschitz and smooth.
This covers the familiar case where the logistic loss is ap-
plied to the output of neural networks, that is cross-entropy
with softmax. We show that, remarkably, here too, that
reparameterization of the weights combined with the use
of the softmax can help us design an (ε, δ)-differentially
private algorithm, NCnvxAdap, that benefits from favorable
convergence guarantees to stationary points of the objective
based on the gradient mapping criterion (Beck, 2017).

While the main objective of our work is a theoretical anal-
ysis, we also report extensive empirical evaluations. In
Section 6, we present the results of extensive experiments
conducted for both our convex and non-convex private al-
gorithms. We first show that the non-private version of
our convex algorithm, CnvxAdap (ε = +∞), matches state-
of-the-art performance in supervised adaptation and next,
that our private algorithm performs comparably to its non-
private counterpart, showcasing the effectiveness of our
privacy-preserving approach. Similarly, for our non-convex
algorithm, NCnvxAdap, the non-private version matches
state-of-the-art performance in supervised adaptation and
the performance of our private algorithm approaches that of
its non-private version as the target sample size and privacy
budget (ε) increase.

Related work. Private density estimation using a small
amount of public data has been studied in several recent pub-
lications, in particular for learning Gaussian distributions or
mixtures of Gaussians, under some assumptions about the
public data (Bie et al., 2022; Ben-David et al., 2023) (see
also (Tramèr et al., 2022)). The objective is distinct from
our goal of private adaptation in supervised learning.

The most closely related work to ours is the recent study of

Bassily et al. (2022), which considers a similar adaptation
scenario with a public source domain and a private target
domain and which also gives private algorithms with theo-
retical guarantees. However, that work can be distinguished
from ours in several aspects. First, the authors consider a
purely unsupervised adaptation scenario where no labeled
sample is available from the target domain, while we con-
sider a supervised scenario. Our study and algorithms can
be extended to the unsupervised or weakly supervised set-
ting using the notion of unlabeled discrepancy (Mansour
et al., 2009), by leveraging upper bounds on labeled dis-
crepancy in terms of unlabeled discrepancy as in (Awasthi
et al., 2024). Second, the learning guarantees of our private
algorithms benefit from the recent optimization of Awasthi
et al. (2024), which they show have stronger learning guar-
antees than those of the DM solution of Cortes & Mohri
(2014) adopted by Bassily et al. (2022). Similarly, in our
experiments, our convex optimization solution outperforms
the DM algorithm. Note that the empirical study of Bassily
et al. (2022) is limited to a single artificial dataset, while we
present empirical results with several non-artificial datasets.
Third, our private adaptation algorithms cover regression
and classification, while those of Bassily et al. (2022) only
address regression with the squared loss. In Appendix A,
we further discuss related work in adaptation and privacy.

We first introduce in Section 2 several basic concepts and
notation for adaptation and privacy, as well as the learning
problem we consider. Next, in Section 3 we describe su-
pervised adaptation optimization by Awasthi et al. (2024)
and derive private versions for that setting in Section 4 and
Section 5. Finally, Section 6 provides experimental results.

2. Preliminaries
We write X to denote the input space and Y the output
space which, in the regression setting, is assumed to be a
measurable subset of R. We will consider a hypothesis set
H of functions mapping from X to Y and a loss function
`∶Y × Y → R+. We will denote by B > 0 an upper bound
on the loss `(h(x), y) for h ∈H and (x, y) ∈ X × Y. Given
a distribution D over X × Y, we denote by L(D, h) the ex-
pected loss of h over D, L(D, h) = E(x,y)∼D[`(h(x), y)].
Domain adaptation. We study a (supervised) domain adap-
tation problem with a public source domain defined by a
distribution DPub over X × Y and a private target domain
defined by a distribution DPriv over X × Y. We assume that
the learner receives a labeled sample SPub of size m drawn
i.i.d. from DPub, SPub = ((xPub1 , yPub1 ), . . . , (xPubm , yPubm )),
as well as a labeled sample DPriv of size n drawn i.i.d. from
DPriv, SPriv = ((xPriv1 , yPriv1 ), . . . , (xPrivn , yPrivn )). The size
of the target sample n is typically more modest than that of
the source sample in applications, n≪m, but we will not
require that assumption and will also consider alternative
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scenarios. For convenience, we also write S = (SPub, SPriv)
to denote the full sample of size m + n.

Learning scenario. The learning problem consists of using
both samples to select a predictor h ∈H with privacy guar-
antees and small expected loss with respect to the target
distribution DPriv. The notion of privacy we adopt is that of
differential privacy (Dwork et al., 2006a;b; Dwork & Roth,
2014a), which in this context can be defined as follows.

Differential privacy: Given ε and δ > 0, a (random-
ized) algorithmM∶ (X × Y)m+n → H is said to be (ε, δ)-
differentially private if for any public sample SPub ∈
(X × Y)m, for any pair of private datasets SPriv and ŜPriv ∈
(X × Y)n that differ in exactly one entry, and for any measur-
able subset O ⊆ H, we have: P(M((SPub, SPriv)) ∈ O) ≤
eε P(M((SPub, ŜPriv)) ∈ O) + δ. Thus, the information
gained by an observer is approximately invariant to the pres-
ence or absence of a sample point in the private sample.

Discrepancy. For adaptation to be successful, the source
and target distributions must be close according to an appro-
priate divergence measure. Several notions of discrepancy
have been shown to be adequate divergence measures in
previous theoretical analyses of adaptation problems (Kifer
et al., 2004; Mansour et al., 2009; Mohri & Muñoz Med-
ina, 2012; Cortes & Mohri, 2014; Cortes et al., 2019). We
will denote by dis(DPriv,DPub) the labeled discrepancy
of DPriv and DPub, also called Y-discrepancy in (Mohri &
Muñoz Medina, 2012; Cortes et al., 2019) and defined by:

dis(DPriv,DPub) = sup
h∈H

∣L(DPriv, h) −L(DPub, h)∣. (1)

Labeled discrepancy can be straightforwardly upper
bounded in terms of the ∥ ⋅ ∥1 distance of the private and
public distributions: dis(DPriv,DPub) ≤ B∥DPriv −DPub∥1.
Some of its key benefits are that, unlike the ∥ ⋅ ∥1-distance,
it takes into account the loss function and the hypothesis set
and it can be estimated from finite samples, also in the pri-
vacy preserving setting, see Section 4. Note that, while we
are using absolute values for the difference of expectations,
our analysis does not require that and the proofs hold with
a one-sided definition. In some instances, a finer and more
favorable notion of local discrepancy can be used, where
the supremum is restricted to a subset H1 ⊂H (Cortes et al.,
2019; de Mathelin et al., 2021; Zhang et al., 2019; 2020b).

3. Optimization Problem for Supervised
Adaptation

Let d̂ denote the empirical estimate of the discrepancy based
on the samples SPub and SPriv:

d̂ ≜ sup
h∈H

∣ 1

n

m+n

∑
i=m+1

`(h(xi), yi) −
1

m

m

∑
i=1

`(h(xi), yi)∣. (2)

Let q ∈ [0,1]m+n denote a vector of weights over the full
sample (SPub, SPriv), which, depending on their values, are
used to emphasize or deemphasize the loss on each sample
(xi, yi). We also denote by qPub the total weight on the
first m (public) points, qPub = ∑mi=1 qi, and by qPriv the total
weight on the next n (private) ones, qPriv = ∑m+n

i=m+1 qi. Note
that q is not required to be a distribution. Then, the following
joint optimization problem based on a q-weighted empiri-
cal loss and the empirical discrepancy d̂ was suggested by
Awasthi et al. (2024) for supervised domain adaptation.

min
h∈H
q∈Q

m+n

∑
i=1

qi[`(h(xi), yi) + d̂1i≤m] (3)

+ λ1∥q − p0∥1 + λ2∥q∥2 + λ∞∥q∥∞,
where Q = [0,1]m+n and where λ1, λ2 and λ∞ are non-
negative hyperparameters. Here, p0 is a reference or ideal
reweighting choice, further discussed below.

This optimization is directly based on minimizing the right-
hand side of a generalization bound (see Theorem B.1, Ap-
pendix B), for which we give a self-contained and more
concise proof. Moreover, (Awasthi et al., 2024) established
a corresponding lower bound for any reweighting technique
in terms of the q-weighted empirical loss and the discrep-
ancy of the distributions DPriv and DPub for a weight vector
q. This further validates the significance of the generaliza-
tion bound. It suggests that the optimization problem (3)
admits the strongest theoretical learning guarantee we can
hope for and can be regarded as an ideal algorithm among
reweighting-based algorithms for supervised adaptation.

The key idea behind the optimization is to assign different
weights q to labeled samples to account for the presence of
distinct domain distributions, akin to reweighting strategies
such as importance weighting. The success of adaptation
hinges on a favorable balance of several crucial factors ex-
pressed by Theorem B.1. We aim to select a predictor h
with a small q-weighted empirical loss (∑i qi`(h(xi), yi)).
Yet, we must limit the total q-weight assigned to source
domain samples if the empirical discrepancy d̂ is substantial
(captured by the d̂ term in (3)). Avoiding disproportionate
weighting on a few points is critical to maintaining an ade-
quate effective sample size, addressed by the inclusion of
the norm-2 term ∥q∥2. The norm-1 term encourages the
choice of q not deviating significantly from the reference
weights p0, while the norm-∞ term relates to controlling
complexity. A careful empirical tuning of the hyperparame-
ters helps achieve a judicious balance between these terms,
leading to a well-performing adaptation process. A more
detailed discussion is given in Appendix E.

A natural reference p0, which we assume in the following, is
an α-mixture of the empirical distributions D̂Pub and D̂Priv

associated to the samples SPub and SPriv: p0 = αD̂Pub +
(1 − α)D̂Priv, with α ∈ (0,1). Thus, p0

i is equal to α
m

if
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i ∈ [1,m], 1−α
n

otherwise. The mixture parameter α can be
chosen as a function of the estimated discrepancy.

An important advantage of the solution based on this opti-
mization problem is that the weights q are selected in con-
junction with the predictor h. This is unlike most reweight-
ing techniques in the literature, such as importance weight-
ing (Sugiyama et al., 2007b; Lu et al., 2021; Sugiyama
et al., 2007a; Cortes et al., 2010; Zhang et al., 2020a),
KLIEP (Sugiyama et al., 2007b), Kernel Mean Matching
(KMM) (Huang et al., 2006), discrepancy minimization
(DM) (Cortes & Mohri, 2014), and gapBoost (Wang et al.,
2019), that consist of first pre-determining some weights q
irrespective of the choice of h, and subsequently selecting
h by minimizing a q-weighted empirical loss.

Optimality and theoretical guarantees. In light of the
theoretical properties already underscored, we define an
ideal algorithm for private supervised adaptation as one
that achieves (ε, δ)-DP and returns a solution closely ap-
proximating that of problem (3). This paper introduces two
differentially private algorithms that precisely fulfill these
criteria. We also present empirical evidence demonstrating
the proximity of the performance of our private algorithms
to that of the non-private optimization problem (3).

For a fixed choice of q, an additional error term of

Ω(
√

d log 1
δ

εn
) is necessary to ensure privacy for convex ERM

(Bassily et al., 2014; Steinke & Ullman, 2015). Here, d
represents the dimension of the parameter space. Therefore,
the term is necessary in the expected loss of any (ε, δ)-
differentially private supervised adaptation algorithm based
on sample reweighting. Remarkably, the theoretical guaran-
tee that we prove for our first algorithm only differs from

that of (3) by a term closely matching
√

d log 1
δ

εn
.

4. Private Adaptation Algorithm for
Regression with Linear Predictors

In this section, we consider a regression problem with the
squared loss and using linear predictors, for which we give
a differentially private adaptation algorithm.

We consider an input space X = {x ∈ Rd∶ ∥x∥2 ≤ r}, r >
0, an output space Y = {y ∈ R∶ ∣y∣ ≤ 1}, and a family of
bounded linear predictors H = {x↦ w ⋅ x ∣ w ∈W}, where
W = {w∶ ∥w∥2 ≤ Λ}, for some Λ > 0. This covers scenarios
where we fix lower layers of a pre-trained neural network
and only seek to learn the parameters of the top layer.

Note that the squared loss is bounded for x ∈ X and w ∈W:
`sq(w ⋅ x, y) = (w ⋅ x − y)2 ≤ (Λr + 1)2 ≜ B. It is also
G-Lipschitz, G ≜ 2r(Λr + 1), with respect to w ∈W since
∣`sq(w ⋅x, y) − `sq(w′ ⋅x, y)∣ ≤ G∥w−w′∥2 for allw,w′ ∈W
and (x, y) ∈ X×Y. Furthermore, `sq(⋅, y) is convex in y ∈ Y.

To devise an (ε, δ)-differentially private algorithm for our
adaptation scenario, we first show how to privately estimate
the discrepancy term. Next, we show that the natural opti-
mization problem (3) can be cast as a convex optimization
problem, for which we design a favorable private solution.

Discrepancy estimates. Since `sq is convex with respect to
its first argument, problem (2) can be cast as two difference-
of-convex problems ((DC)-programming) by removing the
absolute value and considering both possible signs. Each
of these problems can be solved using the DCA algorithm
of (Tao & An, 1998) (see also (Yuille & Rangarajan, 2003;
Sriperumbudur et al., 2007)). Furthermore, for the squared
loss `sq with our linear hypotheses, the DCA method is
guaranteed to reach a global optimum (Tao & An, 1998).

Now, observe that the empirical discrepancy d̂ defined in
(2) is estimated using private data, therefore, the addi-
tion of noise is crucial to ensure the differential privacy
(DP). This term solely depends on the dataset S and not on
the particular choice of h or q and it remains unchanged
through the iterations of Algorithm 1. Therefore, its (pri-
vate) estimation can be performed upfront, prior to the
algorithm’s execution. Furthermore, the sensitivity of d̂
with respect to replacing one point in SPriv is at most B/n.
Thus, we can first generate an ε/2-differentially private ver-
sion d̂DP = Proj

[0,B]
(d̂ + ν) of d̂ by augmenting d̂ with

ν ∼ Lap(2B/(εn)), where Lap(2B/(εn)) is a Laplace dis-
tribution with scale 2B/(εn), and projecting over the in-
terval [0,B]. Thus, we modify the objective function (3)
by replacing d̂ with d̂DP. Note also that by the properties
of the Laplace distribution and the fact that d̂ ≥ 0, the ex-
pected excess optimization error due to this modification is
in O(B/(εn)), which, as we shall see, is dominated by the
excess error due to privately optimizing the new objective.
In the following, in the private optimization algorithm we
present (Algorithm 1), we instantiate the privacy parameter
with ε/2 so that the overall algorithm is (ε, δ)-differentially
private. Alternatively, we could add noise directly to the
gradients to account for the empirical discrepancy term es-
timated from the private data. However, a straightforward
analysis shows that this approach would introduce signifi-
cantly more noise to the gradients.

After substituting with our choice of a uniform reference
distribution, as mentioned in Section 2, the problem reduces
to privately solving the following optimization problem:

min
∥w∥2≤Λ
q∈Q

m+n

∑
i=1

qi[(w ⋅ xi − yi)2 + d̂DP1i≤m] (4)

+λ1[
m

∑
i=1

∣qi −
α

m
∣ +

n+m

∑
i=m+1

∣qi −
1 − α
n

∣] + λ2∥q∥2 + λ∞∥q∥∞.

This optimization presents two main challenges: (1) while
it is convex with respect to w and with respect to q, it is
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not jointly convex; (2) the gradient sensitivity with respect
to q of the objective is a constant and thus not favorable to
derive differential privacy guarantees. In the following, we
will show how both issues can be tackled. Inspecting (4)
leads to the following useful observation.

Observe that for each i ∈ [m], the objective is increasing in
qi over [ α

m
,1] and similarly, for each i ∈ [m+1,m+n], it is

increasing in qi over the interval [ 1−α
n
,1]. Thus, the follow-

ing stricter constraints on q in (4) do not affect the optimal
solution: ∀i ∈ [m], 0 ≤ qi ≤ α

m
;∀i ∈ [n], 0 ≤ qm+i ≤ 1−α

n
.

The problem can thus be equivalently formulated as:

min
∥w∥2≤Λ,q

m+n

∑
i=1

qi[(w ⋅ xi − yi)2 + d̂DP1i≤m]

+ λ1[1 −
m+n

∑
i=1

qi] + λ2∥q∥2 + λ∞∥q∥∞ (5)

s.t. ∀i ∈ [m], 0 ≤ qi ≤
α

m
;∀i ∈ [n], 0 ≤ qn+i ≤

1 − α
n

.

Convex-optimization formulation. We now derive a con-
vex formulation of this optimization problem, which enables
us to devise an efficient private algorithm with formal con-
vergence guarantee. We introduce new variables ui = 1

qi
,

∀i ∈ [1,m + n], and use the following upper bound that
holds by the convexity of x↦ 1/x on R∗

+
:

1 −
m+n

∑
i=1

1

ui
≤ ( α

m
)

2 m

∑
i=1

ui + (1 − α
n

)
2 m+n

∑
i=m+1

ui − 1.

This yields the following optimization problem in (w,u):

min
∥w∥2≤Λ,u

m+n

∑
i=1

(w ⋅ xi − yi)2 + d̂DP 1i≤m
ui

(6)

+ κ1[
α2

m2

m

∑
i=1

ui+
(1 − α)2

n2

m+n

∑
i=m+1

ui−1]+κ2[
m+n

∑
i=1

1

u2
i

]
1
2

+ κ∞
min
i

ui

s.t. ∀i ∈ [m],ui ≥
m

α
; ∀i ∈ [n],um+i ≥

n

1 − α,

with new hyperparameters κ1, κ2, κ∞. The problem (6) is
a joint convex optimization problem in w and u since the
constraints on u are affine, the constraint on w is convex,
and since each term (w⋅xi−yi)

2

ui
is jointly convex in (w,ui)

as a quadratic-over-linear function (Boyd & Vandenberghe,
2014). We will denote by F(w,u) the objective function and
by U the feasible set of u, U = ([m

α
,∞)m × [ n

1−α
,∞)n).

We can establish that, under a reasonable assumption, the
incremental error resulting from optimizing problem (6)
based on the convex upper bound we used, instead of opti-
mizing the original objective (5) remains negligible. Specif-
ically, we can show that this additional error is bounded
by O(∥q∗ − p0∥1), where q∗ represents the optimal weight
vector for the original (5) and p0 denotes the reference dis-
tribution. We expect this term, O(∥q∗ − p0∥1), to be much

smaller than O(1/√n) in all scenarios where the bound of
Theorem B.1 (Appendix B) is advantageous, that is, when it
provides a benefit over training solely on the target sample.
We formally state this in the theorem below, with the proof
provided in Appendix C.1.

Theorem 4.1. Let G(w,q) denote the objective function
of problem (5) and (w∗,q∗) its minimizer (the solution of
(5)). Let (w̃, ũ) be the minimizer of F(w,u) (the solution
of (6)). Define q̃ ∈ [0,1]m+n as the weight vector obtained
by applying the inverse transformation to ũ: q̃i → 1

ũi
,∀i ∈

[m+n]. Assume that there exists a universal constant C ≥ 1
such that ∀i ∈ [m + n],Cq∗i ≥ p0

i . Then, then the following
inequality holds:

G(w̃, q̃) ≤ G(w∗,q∗) +O(∥p0 − q∗∥1).

In the following, we will use the shorthands uPub =
(u1, . . . ,um) and uPriv = (um+1, . . . ,um+n), and denote
by L̂Pub(w,uPub) and L̂Priv(w,uPriv) their contributions to

the empirical loss: L̂Pub(w,uPub) ≜ ∑mi=1
(w⋅xPub

i −yPubi )
2
+d̂DP

uPubi
,

L̂Priv(w,uPriv) ≜ ∑ni=1
(w⋅xPriv

i −yPrivi )
2

uPrivi

. Note that, since dif-

ferential privacy is closed under postprocessing, d̂DP is safe
to publish as a differentially private estimate of d̂. Thus,
the only term in F(w,u) that is sensitive from a privacy
perspective is L̂Priv(w,uPriv).

Let ∇w,∇uPub , and ∇uPriv denote the gradients with respect
to w,uPub, and uPriv, respectively. We will also use the
shorthand B̄ ≜ B + κ1 + κ2 + κ∞. The following lemma
shows several important properties of the objective function.
The proof is given in Appendix C.2.

Lemma 4.2. The following properties hold for the objective
function F.

(i) The following upper bounds hold for the gradients, for
all (w,u) ∈W×U: ∥∇wF(w,u)∥2 ≤ G, ∥∇uPubF(w,u)∥2 ≤
α2

(B+B̄)

m3/2 , and ∥∇uPrivF(w,u)∥2 ≤ (1−α)2B̄

n3/2 .

(ii) The `2-sensitivity of ∇wL̂Priv(w,uPriv) with respect to
changing one private data point is at most 2(1−α)G

n
;

(iii) The `2-sensitivity of ∇uPriv L̂
Priv(w,uPriv) with respect

to changing one private data point is at most (1−α)2B
n2 .

Algorithm 1, denoted CnvxAdap, gives pseudocode for our
differentially private adaptation algorithm based on the con-
vex problem (6). Our algorithm is a variant of noisy pro-
jected gradient descent with steps 7, 9, and 11 implementing
the Euclidean projection of (wt,ut) onto the constraint set
W × U. The non-private version of Algorithm 1 we will
denote CnvxAdap

∞
for ε=∞. The following provides both

a DP and convergence guarantee for our algorithm.

Theorem 4.3. For any δ > 0 and 0 < ε ≤ 8 log(1/δ), Al-
gorithm 1 is (ε, δ)-differentially private. Furthermore, let
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Algorithm 1 CnvxAdap Private adaptation algorithm based
on F

Require: SPub ∈ (X × Y)m; SPriv ∈ (X × Y)n; privacy pa-
rameters (ε, δ); hyperparameters κ1, κ2, κ∞; number
of iterations T .

1: Choose (w0,u0) in W ×U arbitrarily.

2: Set σ1 ∶=
2s1

√

T log( 3
δ )

ε
, where s1 ∶= 2(1−α)G

n
.

3: Set σ2 ∶=
2s2

√

T log( 3
δ )

ε
, where s2 ∶= (1−α)2B

n2 .
4: Set step sizes ηw ∶= Λ

√

T (G2+dσ2
1)

, ηuPub ∶=
m3/2

√

T α2(B+B̄)
, and ηuPriv ∶= n3/2

√

T ((1−α)4B̄2+n4σ2
2)

.

5: for t = 0 to T − 1 do
6: wt+1 ∶= wt − ηw(∇wF(wt,ut) + zt), where zt ∼

N (0, σ2
1Id).

7: If ∥wt+1∥2 > Λ then wt+1 ← Λ wt+1
∥wt+1∥2

.
8: uPubt+1 ∶= uPubt − ηuPub ∇uPubF(wt,ut).
9: For every i ∈ [m], set uPubi,t+1 ←max(uPubi,t+1,

m
α
).

10: uPrivt+1 ∶= uPrivt − ηuPriv (∇uPrivF(wt,ut) + z′t), where
z′t ∼ N (0, σ2

2In).
11: For every i ∈ [n], set uPrivi,t+1 ←max(uPrivi,t+1,

n
1−α

).
12: end for
13: return (w̄, ū) = 1

T ∑
T
t=1(wt,ut).

(w∗,u∗) be a minimizer of F(w,u), then, the expected opti-
mization error of the solution (w̄, ū) returned by Algorithm 1
is bounded as follows:

F(w̄, ū) − F(w∗,u∗)

≤ O(
GΛ

√
d log 1

δ

nε
+
Bmax(1, ∥u0 − u∗∥2

2)
√

log 1
δ

n3/2ε
),

for T ≥ max(1, n2ε2

d(1−α)2 log( 1
δ )
, B̄2ε2

B2 log( 1
δ )
, ε2B̄2n3

log( 1
δ )B

2m3 ).

The more explicit form of the bound as well as the
proof are presented in Appendix C.3. We note here
that, for sufficiently large n, our bound scales as
O(GΛ

√
d log(1/δ)/nε). This bound on the optimization

error is essentially optimal for our optimization problem
under differential privacy. To see this, note that our opti-
mization task is generally harder than the standard empirical
risk minimization (ERM) as the latter task can be viewed as
a simple instantiation of our optimization problem, where
the optimal weights q are uniform on the private data and
zero on the public data, and they are given to the algorithm
beforehand (hence, the optimization algorithm is only re-
quired to optimize over the parameters vectorw). Hence, the
known lower bound of Ω(GΛ

√
d log(1/δ)/nε) on private

convex ERM (Bassily et al., 2014)1 implies a lower bound

1The lower bound in (Bassily et al., 2014) does not have the

on the optimization error in our problem. Note that this im-
plies that the additional error incurred by our algorithm due
to privacy (i.e., compared to the best non-private algorithm
for optimizing (3)) scales as O(

√
d log(1/δ)/εn), which

matches the necessary additional error (due to privacy) in
the expected loss of any private algorithm based on sample
reweighting, as discussed in Section 3. Formally stated:

Theorem 4.4. Suppose n ≥ (Bmax(1,UPub
+UPriv

))
2

(GΛ)2d
and

T ≥ max(1, n2ε2

d(1−α)2 log( 1
δ )
, B̄2ε2

B2 log( 1
δ )
, ε2B̄2n3

log( 1
δ )B

2m3 ) in Algo-
rithm 1. Then, the resulting expected optimization error is

O(GΛ
√

d log(1/δ)

nε
), which is optimal.

5. Private Adaptation – More General
Settings

Here, we consider a general possibly non-convex setting,
where the loss function is only assumed to be G-Lipschitz
and β-smooth, that is differentiable, with β-Lipschitz gradi-
ent in the parameter w with respect to the `2-norm. To sim-
plify, we will here abusively adopt the notation `(w,x, y)
to denote the loss associated with a parameter vector w ∈W
(defining a hypothesis) and a labeled point (x, y) ∈ X × Y.
Since the `2-diameter of W is Λ-bounded and the loss is
Lipschitz, we assume without loss of generality that ` is
uniformly bounded by B = GΛ over W ×X × Y.

Our goal is to privately optimize a more general version
of problem 5, where the squared loss is replaced with any
such loss `. This is in general a non-convex optimization
problem and finding a global minimum is hence intractable.
An alternative, widely adopted in the literature, is to find a
stationary point of the non-convex objective.

Challenges for the design of a private adaptation algo-
rithm. Before we discuss the stationarity criterion, we first
describe our approach. One issue with the objective when
expressed as a function of q = (qPub,qPriv) is that its gra-
dient with respect to qPriv admits an Ω(1) sensitivity. That
can improved by introducing new variables q̃Pub = α

m
qPub

and q̃Priv = 1−α
n

qPriv, thereby reducing the sensitivity of the
gradient with respect to q̃Priv to O( 1

n
). Since this gradient

is n-dimensional, the magnitude of the noise added for pri-
vacy will be O( 1

√
n
). However, we can further enhance the

sensitivity if we resort to the reparameterization technique
described in Section 4. As we show in the sequel, by apply-
ing the transformation of variables ui = 1

qi
, i ∈ [m + n], we

are able to reduce the sensitivity of the gradient components,
and hence achieve better convergence guarantees.
√

log(1/δ) factor, but it’s been known that the lower bound can
be improved to include this factor via the more recent results of
(Steinke & Ullman, 2015).
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Another challenge we face here is the non-smoothness of the
objective. Together with the non-convex functions, it leads
to weaker convergence guarantees even in the non-private
setting (Arjevani et al., 2019; Shamir, 2020). Although the
aforementioned transformation ensures that the term corre-
sponding to ∥q∥2 is smooth as a function of u, the term cor-
responding to ∥q∥∞, i.e., 1

mini∈[m+n] ui
, remains non-smooth.

To address this issue, we replace that term with its µ-softmax
approximation, namely, 1

µ
log(∑m+n

i=1 eµ/ui), where µ > 0 is
the softmax approximation parameter. A basic fact about
this µ-softmax approximation is that its approximation er-
ror is uniformly bounded by O( 1

µ
log(m + n)). With µ =

O(
√
m + n), the excess error we incur is Õ(1/

√
m + n).

Thus, our goal is to privately find a stationary point of the
following optimization problem:

min
∥w∥2≤Λ

u

m+n

∑
i=1

`(w,xi, yi) + d̂DP 1i≤m
ui

(7)

+ λ1[1 −
m+n

∑
i=1

1

ui
] + λ2[

m+n

∑
i=1

1

u2
i

]
1
2

+ λ∞
µ

log[
m+n

∑
i=1

e
µ
ui]

s.t. ∀i ∈ [m],ui ≥
m

α
; ∀i ∈ [n],um+i ≥

n

1 − α.

We denote the objective in (7) by J(w,u), and let V ≜W×U,
where W ×U is the constraint set in the above problem.

In the following lemma, we show several useful properties
of J that will be crucial for proving the privacy and conver-
gence guarantees of our private algorithm. We stress that
our reparameterization idea, which led to the above problem
formulation, was key to ensuring such properties. That and
the following lemma are crucial results enabling us to devise
a private adaptation solution with guarantees for this general
non-convex setting. The proof is given in Appendix D.1.

Lemma 5.1. The objective function J admits the following
properties:
(i) J satisfies the same properties as those stated for F in
Lemma 4.2.
(ii) Assume m

1
3 = O(n), n = O(m3), and µ = O((m +

n) 2
3 ). Then, J is β̄-smooth over V, where β̄ = O(β).

Gradient mapping as a stationarity criterion. Here, we
adopt a standard stationarity criterion given by the norm of
the gradient mapping (Beck, 2017). The γ-gradient map-
ping of a function f ∶V→ R at v ∈ V is denoted and defined
by Gf,γ(v) ≜ γ(v − ProjV(v − 1

γ
∇f(v))). A point v∗ ∈ V

is a stationary point of f if and only if ∥Gf,γ(v∗)∥2 = 0.
For an r-smooth function f , ∥Gf,r(⋅)∥2 serves as a measure
of convergence to a stationary point (Beck, 2017; Ghadimi
et al., 2016; Li & Li, 2018).

Private algorithm for general adaptation settings: Our
private algorithm for the non-convex problem, denoted by

NCnvxAdap, is a variant of noisy projected gradient descent.
Our algorithm admits exactly the same generic description
as Algorithm 1, including the settings of the noise variances
σ2

1 and σ2
2 , with the following differences: (1) we use J

instead of F; (2) we set ηw = ηuPub = ηuPriv = η ≜ 1
β̄

, where β̄
is the smoothness parameter given in Lemma 5.1; (3) the
algorithm returns (wt∗ ,ut∗), where t∗ is drawn uniformly
from [T ]. The full pseudocode of NCnvxAdap is given
in Appendix D.2. We will denote by NCnvxAdap

∞
the

non-private version of NCnvxAdap.

Our algorithm is similar to that of Wang & Xu (2019), but
our analysis is distinct and yields stronger guarantee than
their Theorem 2. The convergence measure in that reference
is based on the norm of the noisy projected gradient. In con-
trast, our convergence guarantee is based on the noiseless
gradient mapping GJ,β̄(wt,ut), which we view as more rele-
vant. The following theorem gives privacy and convergence
guarantees for our algorithm, see proof in Appendix D.3; it
establishes the total number of iterations (gradient updates)
of our algorithm is in O(ε/

√
d log(1/δ)).

Theorem 5.2. Algorithm NCnvxAdap is (ε, δ)-
differentially private. Moreover, for the choice
T = O(εn/

√
d log(1/δ)), the output of the algorithm

satisfies the following bound on the norm of the gradient
mapping: ∥GJ,β̄(wt∗ ,ut∗)∥2

2 = O(
√
β̄d log(1/δ)/εn).

6. Experiments
We report here the results of several experiments for both
our convex private adaptation algorithm for regression,
CnvxAdap introduced in Section 4, and our non-convex
private algorithm for more general settings, NCnvxAdap
introduced in Section 5. Since state-of-the-art supervised
domain adaptation algorithms have not been extended to the
private supervised domain adaptation we consider, we adopt
the following experimental validation procedure. First, we
compare the non-private versions of our algorithms with
the state-of-the-art supervised domain adaptation algorithm
SBest by Awasthi, Cortes, and Mohri (2024) and demon-
strate similar performance. Next, we show that the private
versions of our algorithms perform close to their non-private
counterparts for larger sample sizes or larger ε.

Non-private comparison to baselines in regression. We
consider five regression datasets with dimensions as high as
384 from the UCI machine learning repository (Dua & Graff,
2017), the Wind, Airline, Gas, News and Slice. De-
tailed information about the sample sizes of these datasets is
given in Table 4 (Appendix E). We compare our non-private
convex algorithm CnvxAdap

∞
with the SBest algorithm

(Awasthi et al., 2024), which has demonstrated superior per-
formance to other supervised domain adaptation algorithms.
We carry out model selection on the target validation set
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Figure 1. Performance of CnvxAdap and NCnvxAdap on various
dataset against number of target samples for various values of ε.

and report in Table 1 the mean and standard deviation on
the test set over 10 random splits of the target training and
validation sets. For details on hyperparameter tuning see
Appendix E. We report relative MeanSquaredErrors, MSE,
normalized so that training on the target data only has an
MSE of 1.0. Thus, MSE numbers less than one signify per-
formance improvements achieved by leveraging the source
data in the algorithm. The results show that our convex
algorithm achieves comparable performance with the SBest
algorithm. For reference, we also compare with unsuper-
vised domain adaptation baselines such as Kernel Mean
Matching (KMM) (Huang et al., 2006) and the DM algo-
rithm (Cortes & Mohri, 2014), see Table 3 (Appendix E).

Table 1. MSE of non-private convex algorithm against baselines.
We report relative errors normalized so that training on target only
has an MSE of 1.0. The best results are indicated in boldface.

Dataset SBest CnvxAdap
∞

Wind 0.985 ± 0.018 0.985 ± 0.019
Airline 0.979 ± 0.016 0.992 ± 0.012
Gas 0.374 ± 0.023 0.342 ± 0.023
News 0.996 ± 0.017 0.995 ± 0.019
Slice 0.995 ± 0.063 0.992 ± 0.050

Comparison of private and non-private algorithm in re-
gression. Having demonstrated the quality of our non-
private algorithm CnvxAdap

∞
, we study the performance

and convergence properties of CnvxAdap as a function of
the privacy guarantee ε and training sample size n. To obtain
larger training set sizes, we sample the data with replace-
ment (see Appendix E for a more detailed discussion). For
all experiments, the privacy parameter δ is set to be 0.01.

Figure 1(upper left panel) presents the MSE on Gas over
ten runs against the number of target samples with various
values of ε as small as 0.5. The dashed line corresponds
to the non-private convex solution of CnvxAdap

∞
, and is

essentially flat. As we obtain larger training set sizes by
sampling the data with replacement, for a point in the tar-
get data, the decrease in its weight and the increase in its

Table 2. Accuracy of non-private non-convex algorithm against
supervised baselines. Best results are boldfaced.

Dataset Train source Train target SBest NCnvxAdap
∞

Adult 88.44 ± 0.61 91.09 ± 0.54 91.17 ± 0.66 91.38 ± 0.49
German 74.16 ± 1.64 76.40 ± 1.17 77.78 ± 0.95 77.96 ± 1.31
Accent 51.60 ± 1.09 92.27 ± 1.10 93.61 ± 2.00 93.95 ± 0.78
CIFAR-100 58.50 ± 0.30 59.51 ± 0.38 62.33 ± 0.56 62.19 ± 0.32
CIFAR-10 83.18 ± 0.47 85.18 ± 0.24 86.93 ± 0.30 86.44 ± 0.29
SVHN 84.16 ± 1.21 86.28 ± 0.44 87.47 ± 0.45 87.34 ± 0.46
ImageNet 71.20 ± 1.75 85.70 ± 0.29 87.09 ± 0.28 86.84 ± 0.38

frequency would largely cancel each other out in the non-
private setting. We observe that the performance of our
private adaptation algorithm CnvxAdap approaches that of
the non-private solution (ε = ∞), as ε increases and as n
increases, thereby verifying our convergence and theoret-
ical analyses. For ε = 10 or ε = 15, the performance of
CnvxAdap is close to that of CnvxAdap

∞
for n = 10,000.

Appendix E contains additional experiments and compar-
isons. We compared CnvxAdap with the noisy minibatch
SGD from (Bassily et al., 2019), Figure 2. We verify that
our algorithm outperforms minibatch SGD, which only ben-
efits from target labeled data. In Table 5, we report results
comparing our private adaptation algorithm CnvxAdap to
the non-private DM algorithm (Cortes & Mohri, 2014) on
the multi-domain sentiment analysis dataset (Blitzer et al.,
2007). For ε=4 the performance of CnvxAdap is on par with
the DM algorithm, and for as low a value as ε=10, it clearly
outperforms DM. Finally, despite the difference in scenario,
as discussed in Section 1, in Appendix E we also compare
our algorithm to the private-DM (Bassily et al., 2022) and
show that for low values of ε and even high values of n, the
private-DM does not outperform our algorithm.

Non-private comparison to baselines in classification.
For the general non-convex setting, we experiment with
logistic regression classifiers and consider seven datasets.
Three datasets are from the UCI machine learning repository
(Dua & Graff, 2017), the Adult, German and Accent
(see Appendix E for the details). We also convert the
CIFAR-100, CIFAR-10 (Krizhevsky, 2009), SVHN (Net-
zer et al., 2011) and ImageNet (Deng et al., 2009) datasets
into domain adaptation tasks by establishing two distinct
sampling methods for selecting the source and target data
(see Appendix E for more details). In Table 2, we first com-
pare our non-private non-convex algorithm NCnvxAdap

∞

with the SBest algorithm (Awasthi et al., 2024) and report
mean and standard deviation of the accuracy on the test set
over 10 random splits of the target training (70%), valida-
tion (20%) and test sets (10%). The results show that our
non-convex algorithm achieves comparable performance
with SBest. See also Appendix E, Table 6 for a comparison
with the KMM algorithm (Huang et al., 2006)).

Comparison of private and non-private algorithm in
classification. We then study the performance and conver-
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gence properties of NCnvxAdap as a function of the privacy
guarantee ε and training sample size n. Figure 1 presents
3 plots of the accuracy on the Adult, CIFAR-100, and
CIFAR-10 datasets over ten runs against the number of
target samples with various values of ε. The dashed line
corresponds to the non-private solution of NCnvxAdap

∞
.

We observe that the performance of our private algorithm
approaches that of the non-private solution (ε = ∞), as ε
increases and as n increases. For ε = 10 or ε = 15, the
performance is close to the dashed line for n = 10,000.

7. Discussion
Our proof and algorithmic techniques, including our novel
reparameterization method, offer potential tools for the anal-
ysis of other related problems. We briefly highlight three
potential extensions in the following discussion.

Reverse scenario. We presented a detailed analysis of dif-
ferentially private learning algorithms with strong theoreti-
cal guarantees for adaptation from a public source domain
to a private domain. An equally important scenario is that
of differentially private adaptation from a private source
domain to a public target domain. This problem arises in
various crucial applications. For example, in healthcare data
sharing, a hospital may wish to publish aggregated statis-
tics about patient outcomes to contribute to public health
research without compromising patient privacy. In Census
data release, a national statistical agency might want to re-
lease census data for public use in research, policy-making,
and business planning. For smart grid data, utility compa-
nies collect detailed electricity usage data from smart meters,
which is private, to learn about enhanced grid management
and improve energy efficiency. Similarly, in location-based
services, a company providing services such as a navigation
app may wish to release aggregate data on traffic patterns
and points of interest to improve urban planning and busi-
ness strategies.

On online platforms and social media, a social media plat-
form may aim to share insights on user engagement and
content popularity trends with marketers and researchers.
For public safety and crime statistics, law enforcement agen-
cies collect crime data and aim to share this information
to inform public safety initiatives and academic research.
Lastly, in educational research, institutions collect data on
student performance and learning behaviors, which may be
used to improve educational strategies and outcomes.

Given the structure of the learning bound and the objective
function in our private optimization-based adaptation algo-
rithms, our algorithms can be straightforwardly modified
to derive private algorithms with similar guarantees in this
reverse scenario, where the source domain is private, and
the target domain is public.

Handling distinct feature spaces. Our current formulation
assumes the same input space for the source and target distri-
butions. For adaptation problems with distinct input feature
spaces, two approaches can be taken to extend our results:
(1) If the mapping Ψ between the spaces is known, our the-
ory can be readily extended to accommodate this situation.
In this case, the adaptation algorithm can be adjusted by
incorporating the mapping Ψ in the learning process; we
consider (h ○Ψ)(x) for source domain instances; (2) If the
mapping Ψ is unknown, it needs to be learned simultane-
ously with h. In this scenario, we consider (h ○Ψ)(x) for
source domain instances, with Ψ being an integral part of
the learning process. We leave a detailed analysis, including
a needed extension of the generalization bound of Theo-
rem B.1, to future work. The case of distinct output spaces
is similar.

Unsupervised adaptation. Our study primarily focused on
supervised adaptation. However, the theoretical framework
and algorithms presented can be generalized to unsuper-
vised or weakly supervised settings by leveraging the notion
of unlabeled discrepancy (Mansour et al., 2009; Awasthi
et al., 2024). Specifically, we can leverage the established
bounds on labeled discrepancy in terms of unlabeled dis-
crepancy (Awasthi et al., 2024) to extend our analysis and
reparameterization techniques. By integrating our results
with Theorem 6 and Corollary 7 from Awasthi, Cortes, and
Mohri (2024)[Section 5], we can derive a differentially pri-
vate adaptation algorithm for unsupervised or weakly super-
vised scenarios. The resulting algorithm can be viewed as a
differentially private counterpart of the BEST-DA algorithm
proposed in (Awasthi et al., 2024) [2024, Section 5]. We
will present a more extensive analysis of this algorithm in
future work.

8. Conclusion
We presented two (ε, δ)-differentially private algorithms for
supervised adaptation based on strong theoretical learning
guarantees. Our experimental results suggest that these algo-
rithms can be effective in applications and scenarios where
domain adaptation can be successful. Our work includes
several key contributions. We established strong theoretical
foundations for our algorithms, ensuring both privacy and
learning guarantees. We introduced a new reparameteriza-
tion technique, which we believe holds broader applicability
in analyzing other related problems within private machine
learning. Lastly, we validated the practical effectiveness
of our algorithms through comprehensive experiments on
real-world datasets, showcasing their potential in privacy-
preserving domain adaptation. We believe that these algo-
rithms represent a step towards practical, privacy-preserving
domain adaptation, enabling us to leverage sensitive data for
real-world applications, while protecting individual privacy.

9



Differentially Private Domain Adaptation with Theoretical Guarantees

Acknowledgements
Raef Bassily’s research is supported by NSF CAREER
Award 2144532 and NSF Award 2112471. We thank our
colleague, Pranjal Awasthi, for early discussions about this
work.

Impact Statement
Differentially private adaptation enables models to learn
from public datasets while safeguarding privacy in private
target domains. In healthcare, it can unlock diagnostic and
personalized treatments, while in finance and law enforce-
ment, it can promote fairness by mitigating biases. This
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A. Related work
There is a very broad literature on domain adaptation that we cannot survey in detail within this limited space. Thus, we refer
the reader to surveys such as (Pan & Yang, 2009; Wang & Deng, 2018; Li, 2012) for a relatively comprehensive overview
and briefly discuss approaches that are the most relevant to our study.

Our analysis admits a strong theoretical component since we seek a differentially private algorithm with theoretical learning
and privacy guarantees. We benefit from several past publications already referenced that have given a theoretical analysis of
adaptation using the notion of discrepancy. There are several other related publications using the notion of discrepancy for a
PAC-Bayesian analysis (Germain et al., 2013) or active learning (de Mathelin et al., 2021). There are also other interesting
theoretical analyses of adaptation such as (Hanneke & Kpotufe, 2019), which deals with the notions of super transfer or
localization; these notions admit some connections with that of (local) discrepancy (Cortes et al., 2019; Zhang et al., 2020b).

In the privacy literature, several interesting algorithms have been given with formal differentially private learning guarantees,
assuming access to public data (Chaudhuri & Hsu, 2011; Beimel et al., 2013; Bassily et al., 2018; Alon et al., 2019; Nandi
& Bassily, 2020; Bassily et al., 2020). But these results cannot be used in the adaptation scenario we consider since they
assume that the source and target domains coincide. A differentially private correlation alignment approach for domain
adaptation was given by Jin et al. (2021) for a distinct scenario where both source and target data are private. More recently,
Wang et al. (2020) described algorithms for deep domain adaptation for classification, but the authors do not provide
theoretical guarantees for these algorithms.

The problem of private density estimation using a small amounto public data has been studied in several recent publications.
Bie et al. (2022) studied the problem of estimating a d-dimensional Gaussian distribution, under the assumption of access
to a Gaussian that may have vanishing similarity in total variation distance with the underlying Gaussian of the private
data. Ben-David et al. (2023) studied the problem of private distribution learning with access to public data. They related
private density estimation to sample compression schemes for distributions. They approximately recovered previous results
on Gaussians, and presented other results such as sample complexity upper bounds for arbitrary k-mixtures of Gaussians.
Tramèr et al. (2022) presented a general discussion of the question of private learning with large-scale public pretraining.

As discussed in the main text, the most closely related work to ours is the recent study of Bassily et al. (2022), which
considers a similar adaptation scenario with a public source domain and a private target domain and which also gives
private algorithms with theoretical guarantees. However, that work can be distinguished from ours in several aspects.
First, the authors consider a purely unsupervised adaptation scenario where no labeled sample is available from the target
domain, while we consider a supervised scenario. Our study and algorithms can be extended to the unsupervised or weakly
supervised setting using the notion of unlabeled discrepancy (Mansour et al., 2009), by leveraging upper bounds on labeled
discrepancy in terms of unlabeled discrepancy as in (Awasthi et al., 2024). Second, the learning guarantees of our private
algorithms benefit from the recent optimization of Awasthi et al. (2024), which they show are theoretically stronger than
those of the DM solution of Cortes & Mohri (2014) adopted by Bassily et al. (2022). Similarly, in our experiments, our
convex optimization solution outperforms the DM algorithm. Note that the empirical study in (Bassily et al., 2022) is
limited to a single specific artificial dataset, while we present empirical results with several non-artificial datasets. Third, our
private adaptation algorithms include solutions both for regression and classification, while those of Bassily et al. (2022) are
specifically given for regression with the squared loss.

B. General analysis of supervised adaptation
In this section, we describe the general learning bound of Awasthi et al. (2024), for which we give a self-contained and
concise proof. This bound holds for any sample reweighting method in domain adaptation. This includes as special cases a
number of methods presented for adaptation in the past, including KMM (Huang et al., 2006), KLIEP (Sugiyama et al.,
2007b), importance weighting with bounded weights (Cortes et al., 2010), discrepancy minimization (Cortes & Mohri,
2014), gapBoost algorithm (Wang et al., 2019), and many others. Next, we discuss the implications of this bound and the
related optimization problem.

15



Differentially Private Domain Adaptation with Theoretical Guarantees

B.1. General learning bound

The learning bound draws on a natural extension of the notion of Rademacher complexity to the weighted case, q-weighted
Rademacher complexity, which is denoted by Rq(` ○H) and defined by

Rq(` ○H) = E
SPub,SPriv,σ

[sup
h∈H

m+n

∑
i=1

σiqi`(h(xi), yi)], (8)

where σis are independent random variables uniformly distributed over {−1,+1}. The bound holds uniformly over both
the choice of a hypothesis h selected in H and that of a weight vector q in the open ∥ ⋅ ∥1-ball of radius one centered in p0,
B1(p0,1) = {q∶ ∥q − p0∥1 < 1}, where p0 can be interpreted as a reference or ideal reweighting choice.

Theorem B.1. For any η > 0, with probability at least 1 − η over the draw of a sample SPub of size m from DPub and a
sample SPriv of size n from DPriv, the following holds for all h ∈H and q ∈ B1(p0,1):

L(DPriv, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) + qPubdis(DPriv,DPub) + 2Rq(` ○H) + 6B∥q − p0∥1

+B[∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1
+
√

log(2/η)
2

].

Proof. The proof of theorem consists of first deriving a q-weighted Rademacher complexity bound for a fixed reweighting
q, using the fact that the expectation of the empirical term is then

(qPubL(DPub, h) + qPrivL(DPriv, h)).

Next, the difference of qPrivL(DPriv, h) and this term is analyzed in terms of the discrepancy term qPubdis(DPriv,DPub)
and then the bound is extended to hold uniformly over B1(p0,1), using a technique similar to that of deriving uniform
margin bounds, see for example (Mohri et al., 2018)[Chapter 5]. We will use S to refer to the full sample: S = (SPub, SPriv)
and will use the shorthand LS(q, h) = ∑m+n

i=1 qi`(h(xi), yi) for the empirical term.

Fix q ∈ [0,1]m+n. The expectation of LS(q, h) over the draw of (SPub, SPriv) ∼ (DPub)m × (DPub)n is then given by

E
S
[LS(q, h)] =

m

∑
i=1

qi E
SPub

[`(h(xi), yi)] +
m+n

∑
i=m+1

qi E
SPriv

[`(h(xi), yi)]

=
m

∑
i=1

qiL(DPub, h) +
m+n

∑
i=m+1

qiL(DPriv, h)

= qPubL(DPub, h) + qPrivL(DPriv, h).

Consider Ψ(S) = suph∈H{qPubL(DPub, h) + qPrivL(DPriv, h) −LS(q, h)}. Changing point xi to x′i affects Ψ(S) at most
by qiB, since the loss is bounded by B. It is also not hard to see that the standard symmetrization argument (see (Mohri
et al., 2018)) can be extended to the weighted case and that ES[Ψ(S)] ≤ 2Rq(` ○H). Thus, by McDiarmid’s inequality, for
any η > 0, with probability at least 1 − η, the following holds:

qPubL(DPub, h) + qPrivL(DPriv, h) −LS(q, h) ≤ 2Rq(` ○H) +B

¿
ÁÁÀ log 1

η

2m
. (9)

Now, we can also analyze the difference of L(DPriv, h) and qPubL(DPub, h) + qPrivL(DPriv, h) as follows:

L(DPriv, h) − (qPubL(DPub, h) + qPrivL(DPriv, h))
= (1 − qPriv)L(DPriv, h) − qPubL(DPub, h)
= (1 − qPriv − qPub)L(DPriv, h) + qPub(L(DPriv, h) −L(DPub, h))
= (∥p0∥1 − ∥q∥1)L(DPriv, h) + qPub(L(DPriv, h) −L(DPub, h))
≤ B∥p0 − q∥1 + qPubdis(DPriv,DPub). (10)
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Combining (9) and (10) yields the following high-probability inequality for a fixed q:

L(DPriv, h) ≤ LS(q, h) + 2B∥p0 − q∥1 + qPubdis(DPriv,DPub) +Rq(` ○H) +B

¿
ÁÁÀ log 1

η

2m
. (11)

Consider a sequence of weight vectors qk ∈ [0,1]m+n and a sequence of confidence weights ηk = η
2k+1

. Inequality (11),
with q replaced by qk and η replaced by ηk, holds for each k ≥ 0, with probability 1 − ηk. Thus, by the union bound, since
∑+∞k=0

η
2k+1

= η, with probability 1 − η, it holds for all k ≥ 0.

L(DPriv, h) ≤ LS(qk, h) + 2B∥p0 − qk∥1 + qk,Pubdis(DPriv,DPub) +Rqk(` ○H) +B

¿
ÁÁÀ log 1

η

2m
. (12)

We can choose qk such that ∥qk − p0∥1 = 1 − 1
2k

. Then, for any q ∈ B(p0,1), there exists k ≥ 0 such that ∥qk − p0∥1 ≤
∥q − p0∥1 < ∥qk+1 − p0∥1 and thus such that

√
2 log(k + 1) =

√
2 log log2

2

1 − ∥qk − p0∥1
≤
√

2 log log2

2

1 − ∥q − p0∥1
.

Furthermore, for that k, the following inequalities hold:

LS(qk, h) ≤
m+n

∑
i=1

qi`(h(xi), yi) +B∥qk − q∥1 ≤ LS(q, h) + 2B∥p0 − q∥1

qk,Pub ≤ qPub + ∥qk − q∥1 ≤ qPub + 2∥p0 − q∥1

Rqk(` ○H) ≤Rq(` ○H) +B∥qk − q∥1 ≤Rq(` ○H) + 2B∥q − p0∥1,

∥qk∥2 ≤ ∥q∥2 + ∥qk − q∥2 ≤ ∥q∥2 + ∥qk − q∥1 ≤ ∥q∥2 + 2∥q − p0∥1.

Plugging in these inequalities in (12) completes the proof.

B.2. Optimization problem

The bound suggests the following to achieve a good generalization error in adaptation: ensure a small q-empirical loss (first
term), but not at the price of a too sparse weight vector, which would result in a larger ∥q∥2 (fifth term); allocate a smaller
total weight to public points when the discrepancy is larger (second term); limit the q-weighted complexity of the hypothesis
set H combined with the loss function ` (third term); and ensure the closeness of q to the reference weight vector p0 (fourth
and fifth terms).

The joint optimization problem (3) is directly based on minimizing the right-hand side of the inequality over the choice of
both h ∈H and q ∈ B1(p0,1). By McDiarmid’s inequality, the discrepancy term dis(DPriv,DPub) can be replaced by its
estimate d̂ (2) from finite sample modulo a term in O(

√
m+n
mn

). Instead of the supremum over the full family H, one can
also use a local discrepancy (Cortes et al., 2019; de Mathelin et al., 2021; Zhang et al., 2019; 2020b) and restrict oneself
to a ball around the empirical minimizer of the private loss of radius O(1/√n). Using Talagrand’s inequality (Ledoux &
Talagrand, 1991) and the straightforward observation that for any i, x↦ qix is ∥q∥∞-Lipschitz, the weighted Rademacher
complexity bound can be upper bounded by ∥q∥∞(m + n)Rm+n(` ○H), where Rm+n(` ○H) is the standard (unweighted)
Rademacher complexity of the family of loss functions over the hypothesis set H. For uniform weights, this is an equality.
Thus, using the upper bounds just discussed and replacing constants with hyperparameters, minimizing the right-hand side
of the learning bounds of Theorem B.1 can be formulated as the joint optimization problem (3).

C. Proofs of Section 4
C.1. Proof of Theorem 4.1

Theorem 4.1. Let G(w,q) denote the objective function of problem (5) and (w∗,q∗) its minimizer (the solution of (5)).
Let (w̃, ũ) be the minimizer of F(w,u) (the solution of (6)). Define q̃ ∈ [0,1]m+n as the weight vector obtained by applying
the inverse transformation to ũ: q̃i → 1

ũi
,∀i ∈ [m + n]. Assume that there exists a universal constant C ≥ 1 such that

∀i ∈ [m + n],Cq∗i ≥ p0
i . Then, then the following inequality holds:

G(w̃, q̃) ≤ G(w∗,q∗) +O(∥p0 − q∗∥1).
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Proof. We maintain identical hyperparameter settings for both the original objective (problem (5)) and the relaxed objective
(problem (6)). Define

g(u) ≜ 1 −
m+n

∑
i=1

1

ui
and f(u) ≜ ( α

m
)

2 m

∑
i=1

ui + (1 − α
n

)
2 m+n

∑
i=m+1

ui − 1.

Here, g(u) represents the non-convex (concave) term in the original objective after reparameterization (q→ u, as defined
in Section 4), and f(u) is its convex upper bound, which replaces g(u) in the convex objective (6). We first bound the
difference f(u) − g(u) in terms of the second-order term of the Taylor expansion of g(u) around u = ( 1

p01
, . . . , 1

p0m+n
),

where p0 = (p0
1, . . . ,p

0
m+n) is the reference weight vector. Note that f(u) is the first-order term of the Taylor expansion

of g(u) (and the zeroth-order term is zero), and hence, the difference f(u) − g(u) can be bounded in terms of the second-

order term, namely, f(u) − g(u) = O(Eu), where Eu = ∑m+n
i=1 (p0

i )
3 (ui − 1

p0i
)

2
. By applying the inverse transformation

ui → 1/qi,∀i ∈ [m + n], we write the above error in terms of q: Eq = ∑m+n
i=1 p0

i (
p0i
qi
− 1)

2

.

Recall that (w∗,q∗) is the solution of the original optimization problem (5). Note that in Section 4 we showed that (5) is
equivalent to (4) under the specific form of p0 we use. Next, we establish an upper bound for Eq∗ under the assumption that
there is a universal constant C ≥ 1 such that ∀i ∈ [m+n],Cq∗i ≥ p0

i . Note that, by default, for all i ∈ [m+n], we must have
q∗i ≤ p0

i by the constraints in the original problem (5).

Now, observe that the following holds:

Eq∗ =
m+n

∑
i=1

p0
i [

p0
i

q∗i
− 1]

2

≤ (C − 1)
m+n

∑
i=1

p0
i [

p0
i

q∗i
− 1]

= (C − 1)
m+n

∑
i=1

p0
i [

p0
i − q∗i
q∗i

]

≤ C(C − 1)
m+n

∑
i=1

[p0
i − q∗i ]

= C(C − 1)∥p0 − q∗∥
1
,

where the second inequality follows from p0i
q∗i
− 1 ≤ C − 1 by assumption, the fourth inequality follows from q∗i ≥

p0i
C

again by

the same assumption, and the last inequality follows from the fact that q∗i ≤ p0
i ,∀i ∈ [m + n].

We now present the final step of the proof. Recall that G(w,q) denotes the original objective (5) and F(w,u) denotes
the convex objective (6). Recall also that (w̃, ũ) denotes the solution of (6) (i.e., the minimizer of F) and q̃ denotes the
weight vector corresponding to ũ after applying the inverse transformation. Let u∗ denote the parameterization of q∗, that is,
u∗i = 1

q∗i
,∀i ∈ [m + n]. Observe that

G(w̃, q̃) ≤ F(w̃, ũ) ≤ F(w∗,u∗) ≤ G(w∗,q∗) +O(Eq∗) = G(w∗,q∗) +O(∥p0 − q∗∥
1
),

where the first inequality follows because F(w,u) uniformly upper bounds G(w,q) (when u is the parameterization of q),
the second inequality follows because (w̃, ũ) is the minimizer of F, and the third inequality follows from f(u∗) − g(u∗) =
O(Eq∗).

C.2. Proof of Lemma 4.2

Lemma C.1. The following properties hold for the objective function F.

(i) The following upper bounds hold for the gradients, for all (w,u) ∈ W × U: ∥∇wF(w,u)∥2 ≤ G, ∥∇uPubF(w,u)∥2 ≤
α2

(B+B̄)

m3/2 , and ∥∇uPrivF(w,u)∥2 ≤ (1−α)2B̄

n3/2 .

(ii) The `2-sensitivity of ∇wL̂Priv(w,uPriv) with respect to changing one private data point is at most 2(1−α)G
n

;

(iii) The `2-sensitivity of ∇uPriv L̂
Priv(w,uPriv) with respect to changing one private data point is at most (1−α)2B

n2 .
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Proof. First observe that the following inequalities hold:

∥∇wF(w,u)∥2 ≤
m+n

∑
i=1

∥∇w`sq(w, (xi, yi))∥2

ui
≤ G

n+m

∑
i=1

1

ui
≤ G,

where the second inequality follows from the G-Lipschitzness of the loss, and the third from the constraints on u: 1
ui

≤
α
m
,∀i ∈ [m] and 1

ui
≤ 1−α

n
,∀i ∈ [m + 1,m + n].

Next, note that we have

∣∂F(w,u)
∂uPubi

∣ ≤ 2B

(uPubi )2
+ κ1

α2

m
+ κ2

1

(uPubi )
3

√
∑m+n
i=1

1

(uPubi )
2

+ κ∞
1(i ∈ argminj∈[m+n] uj)

(uPubi )2

≤ 2B

(uPubi )2
+ κ1

α2

m
+ κ2

(uPubi )2
+ κ∞

(uPubi )2

≤ α2

m2
(2B + κ1 + κ2 + κ∞),

where the first inequality follows from the fact that the loss is uniformly bounded by B, and hence `sq(w, (xi, yi)) +
d̂DP 1i≤m ≤ 2B. The remaining steps follow straightforwardly from the constraints on uPub. Thus, we have
∥∇uPubF(w,uPub)∥2 ≤ α2

m3/2 (2B + κ1 + κ2 + κ∞).

Similarly, we have ∣∂F(w,u)
∂uPrivi

∣ ≤ (1−α)2

n2 (B + κ1 + κ2 + κ∞) and thus

∥∇uPrivF(w,uPriv)∥2 ≤
(1 − α)2

n3/2
(B + κ1 + κ2 + κ∞).

This proves the first item of the lemma.

Second, we bound the `2-sensitivity of ∇wL̂Priv(w,uPriv) and ∇uPriv L̂
Priv(w,uPriv). Consider any pair of neighboring private

datasets SPriv and S̄Priv. Let (xPrivj , yPrivj ) and (x̄Privj , ȳPrivj ) be the data points by which the two datasets differ. To emphasize
the dependence on the dataset, we will denote ∇wL̂Priv(w,uPriv) with respect to dataset S as ∇wL̂Priv(w,uPriv;S). We can
write:

∥∇wL̂Priv(w,uPriv;SPriv) −∇wL̂Priv(w,uPriv; S̄Priv)∥
2

=
∥∇w`sq(w, (xPrivj , yPrivj )) −∇w`sq(w, (x̄Privj , ȳPrivj ))∥

2

uPrivj

≤ 2G(1 − α)
n

.

Similarly, we can write:

∥∇uPriv L̂
Priv(w,uPriv;SPriv) −∇uPriv L̂

Priv(w,uPriv; S̄Priv)∥
2

=
RRRRRRRRRRRRR

`sq(w, (xPrivj , yPrivj )) − `sq(w, (x̄Privj , ȳPrivj ))
(uPrivj )2

RRRRRRRRRRRRR

≤ B(1 − α)2

n2
.

This completes the proof.

C.3. Proof of Theorem 4.3

Theorem 4.3. For any δ > 0 and 0 < ε ≤ 8 log(1/δ), Algorithm 1 is (ε, δ)-differentially private. Furthermore, let (w∗,u∗)
be a minimizer of F(w,u), then, the expected optimization error of the solution (w̄, ū) returned by Algorithm 1 is bounded
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as follows:

F(w̄, ū) − F(w∗,u∗)

≤ O(
GΛ

√
d log 1

δ

nε
+
Bmax(1, ∥u0 − u∗∥2

2)
√

log 1
δ

n3/2ε
),

for T ≥ max(1, n2ε2

d(1−α)2 log( 1
δ )
, B̄2ε2

B2 log( 1
δ )
, ε2B̄2n3

log( 1
δ )B

2m3 ).

We will show more precisely the following inequality:

E [F(w̄, ū) − F(w∗,u∗)]

≤ ΛG

√
1

T
+

32(1 − α)2d log( 2
δ
)

n2ε2

+
(1 − α)2(UPriv + 1)

2n3/2

√
B̄2

T
+

8B2 log( 2
δ
)

ε2

+
α2(UPub + 1)(B + B̄)

2m3/2
√
T

,

where u∗ = (uPub∗,uPriv∗), UPriv ≜ ∥uPriv0 − uPriv∗∥2
2, and UPub ≜ ∥uPub0 − uPub∗∥2

2.

Proof. First, we show the privacy guarantee. At a high level, Algorithm 1 can be viewed as T -fold adaptive composition of
the Gaussian mechanism, and hence, the privacy guarantee can be shown using the properties of the Gaussian mechanism and,
particularly, how it composes adaptively. One way to show that is to resort to the privacy-loss random variable interpretation
of (ε, δ)-differential privacy (Dwork & Roth, 2014b); namely, one can use the fact that privacy loss random variable of
the Gaussian mechanism is also Gaussian (Balle & Wang, 2018) and the fact that the privacy loss of the T -fold adaptive
composition is a sum of T such variables (and hence, is also Gaussian) to prove the desired privacy guarantee. A more
direct approach for the proof is to use the notion of zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)
and then transforming the final guarantee to (ε, δ)-differential privacy. Note that for any iteration t ∈ [T ] in Algorithm 1,
the only quantities that depend on the private dataset are the gradient components ∇wF(wt,ut) and ∇uPrivF(wt,ut). From
the guarantees on the `2-sensitivity of these gradient components given by parts 2 and 3 of Lemma 4.2 and by the zCDP
properties of the Gaussian mechanism (Bun & Steinke, 2016, Lemma 2.5), each iteration t ∈ [T ] of Algorithm 1 is

ε2

16T log(1/δ)
-zCDP. Hence, by the adaptive composition of zCDP (Bun & Steinke, 2016, Lemma 2.3) over the T iterations of

the algorithm, we get that Algorithm 1 is ε2

16 log(1/δ)
-zCDP. By transforming this guarantee into an approximate differential

privacy guarantee (Bun & Steinke, 2016, Lemma 3.5) and using the fact that ε ≤ 8 log(1/δ), we get that Algorithm 1 is
(ε, δ)-differentially private.

Next, we prove the bound on the optimization error. The proof involves some tweaks of the the standard analysis of the
(stochastic) projected gradient descent algorithm for convex objectives. In particular, our proof entails decomposing each
gradient ∇F into its three components ∇wF,∇uPubF, and ∇FuPriv to allow for introducing a different step size for updating
each of w,uPub and uPriv. By a standard argument, we have

E [∥wt+1 −w∗∥2
2]

≤ E [∥wt −w∗∥2
2] − 2ηwE [⟨∇wF(wt,ut) + zt,wt −w∗⟩] + η2

wE [∥∇wF(wt,ut) + zt∥2
2]

= E [∥wt −w∗∥2
2] − 2ηwE [⟨∇wF(wt,ut),wt −w∗⟩] + η2

wE [∥∇wF(wt,ut) + zt∥2
2]

≤ E [∥wt −w∗∥2
2] − 2ηwE [⟨∇wF(wt,ut),wt −w∗⟩] + η2

w(G2 + σ2
1d),

where the second step follows from the linearity of expectation and the fact that zt is independent of ((w0,u0), . . . , (wt,ut))
and that zt has zero mean, and the last step follows from the fact that ∥∇wF(wt,ut)∥2

2 ≤ G2 proved in Lemma 4.2 and the
fact that ∥zt∥2

2 = σ2
1d. Hence,

E [⟨∇wF(wt,ut),wt −w∗⟩] ≤
E [∥wt −w∗∥2

2] −E [∥wt+1 −w∗∥2
2]

2ηw
+ ηw

2
(G2 + σ2

1d) (13)
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By a similar argument for ∥uPubt+1 − uPubt ∥2
2 and ∥uPrivt+1 − uPrivt ∥2

2 and using Lemma 4.2, we get

E [⟨∇uPubF(wt,ut),uPubt − uPub∗⟩]

≤
E [∥uPubt − uPub∗∥2

2] −E [∥uPubt+1 − uPub∗∥2
2]

2ηuPub
+ ηuPub

2
E [∥∇uPubF(wt,ut)∥2

2]

≤
E [∥uPubt − uPub∗∥2

2] −E [∥uPubt+1 − uPub∗∥2
2]

2ηuPub
+ ηuPub

2
⋅ α

4(B̄ +B)2

m3
(14)

E [⟨∇uPrivF(wt,ut),uPrivt − uPriv∗⟩]

≤
E [∥uPrivt − uPriv∗∥2

2] −E [∥uPrivt+1 − uPriv∗∥2
2]

2ηuPriv
+ ηuPriv

2
E [∥∇uPrivF(wt,ut) + z′t∥2

2]

≤
E [∥uPrivt − uPriv∗∥2

2] −E [∥uPrivt+1 − uPriv∗∥2
2]

2ηuPriv
+ ηuPriv

2
((1 − α)4B̄2

n3
+ σ2

2n) (15)

By convexity of F, we have

E [F(wt,ut) − F(w∗,u∗)] ≤ E [⟨∇F(wt,ut), (wt,ut) − (w∗,u∗)⟩] (16)

= E [⟨∇wF(wt,ut),wt −w∗⟩] +E [⟨∇uPubF(wt,ut),uPubt − uPub∗⟩] (17)

+E [⟨∇uPrivF(wt,ut),uPrivt − uPriv∗⟩] (18)

As in the standard analysis of gradient descent for convex objectives, we combine (18) with (13), (14), and (15), and use the
fact that F(w̄, ū) − F(w∗,u∗) ≤ 1

T ∑
T
t=1(F(wt,ut) − F(w∗,u∗)) (which follows from the convexity of F) to arrive at

E [F(w̄, ū) − F(w∗,u∗)] ≤ Λ2

2ηwT
+ ηw

2
(G2 + dσ2

1) +
UPriv

2ηuPrivT
+ ηuPriv

2
((1 − α)4B̄2

n3
+ nσ2

2)

+ UPub

2ηuPubT
+ ηuPub

2
⋅ α

4(B + B̄)2

m3

Substituting with the choices of ηw, ηuPub , and ηuPriv in step 4 of Algorithm 1 yields the claimed upper bound on the expected
optimization error.

D. Proofs of Section 5
D.1. Proof of Lemma 5.1

Lemma D.1. The objective function J admits the following properties:
(i) J satisfies the same properties as those stated for F in Lemma 4.2.
(ii) Assume m

1
3 = O(n), n = O(m3), and µ = O((m + n) 2

3 ). Then, J is β̄-smooth over V, where β̄ = O(β).

Proof. First, the proof of item 1 is similar to that of Lemma 4.2 with minor, straightforward differences: first, note that that
replacing the squared loss with any G-Lipschitz loss impacts neither the bounds on the norm of the gradient components nor
the sensitivity of the gradients with respect to the private dataset; second, the two different terms in J are the (1 −∑m+n

i=1
1
ui
)

term and the µ-softmax term 1
µ

log(∑m+n
i=1 e

µ
ui ) do not affect the bounds on the gradient norms (a straightforward calculation

of the gradients of these terms with respect to uPub and uPriv, together with the constraints on these variables, shows that the
bounds on the norm of the gradient components still hold) and those two terms also do not have any effect on the sensitivity
of the gradients with respect to the private dataset.

Next, we show the smoothness guarantee for J. First, note that J is twice differentiable. We can express its Hessian as

H(w,u) =
⎡⎢⎢⎢⎢⎢⎣

∇2
wJ K

KT ∇2
uJ

⎤⎥⎥⎥⎥⎥⎦
,
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where, for any (w,u), ∇2
wJ(w,u) ∈ Rd×d is given by ∇2

wJ(w,u) = [ ∂2J
∂wi∂wj

(w,u)∶ (i, j) ∈ [d]2], ∇2
uJ(w,u) ∈

R(m+n)×(m+n) by ∇2
uJ(w,u) = [ ∂2J

∂ui∂uj
(w,u)∶ (i, j) ∈ [m + n]2], and K(w,u) ∈ Rd×(m+n) by K(w,u) =

[ ∂2J
∂wi∂uj

(w,u)∶ i ∈ [d], j ∈ [m + n]]. Note that the spectral norm of H can be upper bounded as follows:

∥H(w,u)∥2 = max
V =(V1,V2)

∥V ∥2≤1

∥H(w,u)V ∥2

= max
V =(V1,V2)

∥V ∥2≤1

∥[∇
2
wJ(w,u)V1 +K(w,u)V2

K⊺(w,u)V1 +∇2
uJ(w,u)V2

]∥
2

≤ ∥∇2
wJ(w,u)∥2 + ∥K(w,u)∥2 + ∥∇2

uJ(w,u)∥2.

Thus, to prove that J is O(β)-smooth, it suffices for us to show that ∥∇2
wJ∥2 + ∥K∥2 + ∥∇2

uJ∥2 = O(β).

First, observe that the following inequalities hold:

∥∇2
wJ∥2

= ∥
m+n

∑
i=1

∇2
w`(w,xi, yi)∥

2

≤
m+n

∑
i=1

∥∇2
w`(w,xi, yi)∥2

ui
≤ β

m+n

∑
i=1

1

ui
≤ β, (19)

where the second inequality follows from the β-smoothness of the loss ` and the last inequality from the constraints ui ≥ m
α

for i ∈ [m] and ui ≥ 1−α
n

for i ∈ [m + 1,m + n].

Second, we bound ∥∇2
uJ∥2

. Observe that for all i ∈ [m + n], we have

∂2J(w,u)
∂u2

i

=
2(`(w,xi, yi) + d̂DP 1i≤m − λ1)

u3
i

+ λ2

3 1
u4i
∑m+n
j=1

1
u2j
− 1

u6i

(∑m+n
j=1

1
u2j

)
3
2

+ λ∞
(2 + µ

ui
) eµ/ui

u3i
∑m+n
j=1 eµ/uj + µ

u4i
e2µ/ui

(∑m+n
j=1 eµ/uj)2

.

Thus, since the loss ` is uniformly bounded by B and ui ≥ m
α
∀i ∈ [m], we can bound ∣∂

2J(w,u)
∂u2i

∣ for all i ∈ [m] as follows:

∣∂
2J(w,u)
∂u2

i

∣ ≤ 2α3∣2B − λ1∣
m3

+ 3λ2

1
u4i√
∑m+n
j=1

1
u2j

+ λ∞
2
u3i
eµ/ui + µ

u4i
eµ/ui ∑m+n

j=1 eµ/uj

(∑m+n
j=1 eµ/uj)2

≤ 2α3∣2B − λ1∣
m3

+ 3λ2

u3
i

+ λ∞( 2

u3
i

+ µ

u4
i

)

≤ 2α3∣2B − λ1∣ + 3λ2α
3 + 2λ∞α

3

m3
+ µλ∞α

4

m4
.

Similarly, we can show that for all i ∈ [m + 1,m + n],

∣∂
2J(w,u)
∂u2

i

∣ ≤ 2(1 − α)3∣B − λ1∣ + 3λ2(1 − α)3 + 2λ∞(1 − α)3

n3
+ µλ∞(1 − α)4

n4
.

Moreover, for all i, j ∈ [m + n] where i ≠ j,

∣∂
2J(w,u)
∂ui∂uj

∣ =
λ2

u3i u
3
j

(∑m+n
t=1

1
u2t

)
3
2

+
λ∞µ
u2i u

2
j
eµ/uieµ/uj

(∑m+n
t=1 eµ/ut)2

≤ λ2

u3
i

+ λ∞µ
u2
i u

2
j

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2α
3

m3 + λ∞µα
4

m4 , i ∈ [m], j ∈ [m] (i ≠ j)
λ2α

3

m3 + λ∞µα
2
(1−α)2

m2n2 , i ∈ [m], j ∈ [m + 1,m + n]
λ2(1−α)

3

n3 + λ∞µα
2
(1−α)2

m2n2 , i ∈ [m + 1,m + n], j ∈ [m]
λ2(1−α)

3

n3 + λ∞µ(1−α)
4

n4 , i ∈ [m + 1,m + n], j ∈ [m + 1,m + n] (i ≠ j)
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Letting ∥⋅∥F denote the Frobenius norm, given all the above bounds, we can bound ∥∇2
uJ(w,u)∥2 as

∥∇2
uJ(w,u)∥2

≤ ∥∇2
uJ(w,u)∥F =

⎛
⎝
m+n

∑
i=1

m+n

∑
j=1

∣∂
2J(w,u)
∂ui∂uj

∣
2⎞
⎠

1
2

≤ λ2α
3

m2
+

2α3(∣2B − λ1∣ + λ2
√
n + λ∞)

m
5
2

+ λ∞µα4( 1

m3
+ 1

m
7
2

)

+ λ2(1 − α)3

n2
+

2(1 − α)3(∣B − λ1∣ + λ2
√
m + λ∞)

n
5
2

+ λ∞µ(1 − α)4( 1

n3
+ 1

n
7
2

)

+ 2λ∞µα
2(1 − α)2

m
3
2n

3
2

≜ β′. (20)

Note that β′ = O(
√
n

m5/2 +
√
m

n5/2 + µ( 1
m3 + 1

n3 )). Hence, when m = O(n3), n = O(m3), and µ = O((m + n) 2
3 ), we have

β′ = O( 1
m
+ 1
n
).

Finally, we bound ∥K∥2. Observe that for all i ∈ [d] and j ∈ [m + n], we have

∣∂
2J(w,u)
∂wi∂uj

∣ =
∣∂`(w,xj ,yj)

∂wi
∣

u2
j

.

Hence, we have

∥K∥2 ≤ ∥K∥F =
⎛
⎝
m+n

∑
j=1

1

u4
j

d

∑
i=1

∣∂`(w,xj , yj)
∂wi

∣
2⎞
⎠

1
2

≤ G
⎛
⎝
m+n

∑
j=1

1

u4
j

⎞
⎠

1
2

≤ G( α2

m3/2
+ (1 − α)2

n3/2
). (21)

Putting inequalities (19), (20), and (21) together, we see that J is β̄-smooth, where β̄ = β + β′ +G( α2

m3/2 + (1−α)2

n3/2 ). As

mentioned earlier, when the conditions on m,n, and µ in the lemma statement are satisfied, β′ = O( 1
m
+ 1
n
). Thus, under

these conditions, we have β̄ = O(β).

D.2. Formal description of Algorithm NCnvxAdap of Section 5

Next, we give the pseudocode for our private algorithm (Algorithm 2) for general adaptation scenarios described in Section 5.

D.3. Proof of Theorem 5.2

Theorem 5.2. Algorithm NCnvxAdap is (ε, δ)-differentially private. Moreover, for the choice T = O(εn/
√
d log(1/δ)),

the output of the algorithm satisfies the following bound on the norm of the gradient mapping: ∥GJ,β̄(wt∗ ,ut∗)∥2
2 =

O(
√
β̄d log(1/δ)/εn).

Proof. First, we note that the privacy guarantee follows from exactly the same privacy argument for Algorithm 1 given in
the proof of Theorem 4.3. This because the differences between our algorithm in Section 5 (Algorithm 2 in Appendix D.2)
and Algorithm 1 do not impact the privacy analysis.

We now turn to the proof of convergence to a stationary point of J over W ×U by showing that the expected norm of the
gradient mapping of J at the output (wt∗ ,ut∗) is bounded as given in the theorem statement.
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Algorithm 2 NCnvxAdap Private algorithm for general adaptation scenarios based on J

Require: SPub ∈ (X × Y)m; SPriv ∈ (X × Y)n; privacy parameters (ε, δ); hyperparameters λ1, λ2, λ∞; number of iterations
T .

1: Choose (w0,u0) in W ×U arbitrarily.

2: Set σ1 ∶=
2s1

√

T log( 3
δ )

ε
, where s1 ∶= 2(1−α)G

n
.

3: Set σ2 ∶=
2s2

√

T log( 3
δ )

ε
, where s2 ∶= (1−α)2B

n2 .
4: Set step size η ∶= 1

β̄
, where β̄ is the smoothness parameter given in Lemma 5.1.

5: for t = 0 to T − 1 do
6: wt+1 ∶= wt − η(∇wJ(wt,ut) + zt), where zt ∼ N (0, σ2

1Id).
7: If ∥wt+1∥2 > Λ then wt+1 ← Λ wt+1

∥wt+1∥2
.

8: uPubt+1 ∶= uPubt − η∇uPubJ(wt,ut).
9: For every i ∈ [m], set uPubi,t+1 ←max(uPubi,t+1,

m
α
).

10: uPrivt+1 ∶= uPrivt − η (∇uPrivJ(wt,ut) + z′t), where z′t ∼ N (0, σ2
2In).

11: For every i ∈ [n], set uPrivi,t+1 ←max(uPrivi,t+1,
n

1−α
).

12: end for
13: return (wt∗ ,ut∗), where t∗ is uniformly sampled from [T ].

To simplify notation, we let vt ≜ (wt,ut) ∀t ∈ [T ], let V ≜ W × U, and let gt ≜ (zt,0m,z′t) be the combined noise
vector added to ∇J = (∇wJ(vt),∇uPubJ(vt),∇uPrivJ(vt)) in the t-th iteration ∀t ∈ [T ]. Here, 0m denote the m-dimensional
all-zero vector. Recall that zt ∼ N (0d, σ2

1Id) and z′t ∼ N (0n, σ2
2In) as defined in steps 4 and 10 in Algorithm 2. We let

σ̄2 = dσ2
1 + nσ2

2 . Also, we let ∇̃t ≜ ∇J(vt) + gt, ∀t ∈ [T ]. For any v ∈ Rd+m+n, we let ProjV(v) denote the Euclidean
projection of v onto V.

By β̄-smoothness of J, we have

J(vt+1) ≤ J(vt) + ⟨∇J(vt), vt+1 − vt⟩ +
β̄

2
∥vt+1 − vt∥2

2

= J(vt) + ⟨∇̃t, vt+1 − vt⟩ − ⟨gt, vt+1 − vt⟩ +
β̄

2
∥vt+1 − vt∥2

2 (22)

Note that vt+1 = ProjV(vt − η∇̃t). By a known property of Euclidean projection (e.g., see (Beck, 2017)[Theorem 9.8]), we
have

⟨vt − η∇̃t − vt+1, vt − vt+1⟩ ≤ 0,

which implies

⟨∇̃t, vt − vt+1⟩ ≤ −
1

η
∥vt+1 − vt∥2

2.

Hence, inequality (22) implies

J(vt+1) ≤ J(vt) −
1

η
(1 − β̄η

2
)∥vt+1 − vt∥2

2 − ⟨gt, vt+1 − vt⟩

≤ J(vt) −
1

η
(1 − β̄η

2
)∥vt+1 − vt∥2

2 + ∥gt∥2∥vt+1 − vt∥2.

By setting η = 1
β̄

, taking the expectation of both sides of the inequality above, and use the fact that E [∥gt∥2∥vt+1 − vt∥2] ≤
√

E [∥gt∥2
2]E [∥vt+1 − vt∥2

2], we get

E [J(vt+1)] ≤ E [J(vt)] −
β̄

2
(
√

E [∥vt+1 − vt∥2
2] −

σ̄

β̄
)

2

+ σ̄
2

2β̄
,
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which implies

(
√

E [β̄2∥vt+1 − vt∥2
2] − σ̄)

2

≤ 2β̄E [J(vt+1) − J(vt)] + σ̄2.

Since E [β̄2∥vt+1 − vt∥2
2] ≤ 2(

√
E [β̄2∥vt+1 − vt∥2

2] − σ̄)
2

+ 2σ̄2, we get

E [β̄2∥vt+1 − vt∥2
2] ≤ 4β̄E [J(vt+1) − J(vt)] + 4σ̄2. (23)

For any t ∈ [T ], let v†
t ≜ ProjV(vt − η∇J(vt)). Observe that

∥vt − v†
t∥2 ≤ ∥vt − vt+1∥2 + ∥vt+1 − v†

t∥2

= ∥vt − vt+1∥2 + ∥ProjV(vt − η∇̃t) −ProjV(vt − η∇J(vt))∥2

≤ ∥vt+1 − vt∥2 + η∥gt∥2

= ∥vt+1 − vt∥2 +
∥gt∥2

β̄
,

where the first bound follows from the triangle inequality and the third bound follows from the non-expansiveness of the
Euclidean projection. Thus, we have

E [∥vt − v†
t∥2

2] ≤ 2E [∥vt+1 − vt∥2
2] + 2

σ̄2

β̄2
.

Combining this with (23) yields

E [∥GJ,β̄(vt)∥2
2] = E [β̄2∥vt − v†

t∥2
2] ≤ 8β̄E [J(vt+1) − J(vt)] + 10σ̄2.

Now, taking expectation with respect to the randomness in the uniformly drawn index t∗ of the output, we get

E [∥GJ,β̄(vt∗)∥2
2] =

1

T

T

∑
t=1

E [∥GJ,β̄(vt)∥2
2]

≤ 8β̄

T
E [J(v0) − J(vT )] + 10σ̄2

≤ 8( β̄M
T

+ 40(1 − α)2G2dT log(2/δ)
ε2n2

+ (1 − α)4B2T log(2/δ)
ε2n3

),

where in the second inequality, we use the fact that J is uniformly bounded over V by M ≜ 2B + λ1 + λ2( α
√
m
+ 1−α

√
n
) +

λ∞ max( α
m
, 1−α
n

). By setting

T =
√
β̄Mεn3/2

(1 − α)
√

log( 2
δ
)
√

40G2dn + (1 − α)2B2
= O

⎛
⎜
⎝

nε√
d log( 1

δ
)

⎞
⎟
⎠
,

we finally obtain

E [∥GJ,β̄(vt∗)∥2
2] ≤ 16(1 − α)

√
β̄M

√
log(2

δ
)(2

√
10G

√
d

εn
+ (1 − α)B

εn
3
2

) = O
⎛
⎜
⎝

√
β̄d log( 1

δ
)

εn

⎞
⎟
⎠
,

which completes the proof.
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Table 3. MSE of non-private convex algorithm against unsupervised baselines. We report relative errors normalized so that training on
target only has an MSE of 1.0. The best results are indicated in boldface.

Dataset KMM DM CnvxAdap
∞

Wind 1.009 ± 0.035 1.009 ± 0.045 0.985 ± 0.019
Airline 2.716 ± 0.202 1.547 ± 0.068 0.992 ± 0.012
Gas 0.441 ± 0.034 0.381 ± 0.028 0.342 ± 0.023
News 1.162 ± 0.044 1.006 ± 0.009 0.995 ± 0.019
Slice 1.282 ± 0.076 1.218 ± 0.130 0.992 ± 0.050

Target training Target validation Target test Source training Input
Dataset sample size sample size sample size sample size dimension
Wind 158 200 200 6016 11
Airline 200 300 300 16000 11
Gas 613 1000 2000 7297 133
News 737 1000 1000 3000 50
Slice 1077 154 308 7803 384

Table 4. Sample sizes of the datasets Wind, Airline, Gas, News and Slice.

E. Additional experimental results
E.1. Convex setting

Table 4 gives the sample sizes and input dimensions of the datasets Wind, Airline, Gas, News and Slice. For the
Wind dataset (Haslett & Raftery, 1989), the source and target data are collected in different months of the year with the
labels being the speed of the wind. The Airline dataset stems from (Ikonomovska, 2009). The source and target data
come from a subset of the data for the Chicago O’Haire International Airport (ORD) in 2008 and are divided based on
different hours of the day. The goal is to predict the amount of time the flight is delayed. The Gas dataset (Rodriguez-Lujan
et al., 2014; Vergara et al., 2012; Dua & Graff, 2017) uses features from various sensor measurements to predict the
concentration level. For the News dataset (Fernandes, 2015; Dua & Graff, 2017), the source contains articles from Monday
to Saturday while the target contains articles from Sunday. The task is to predict the popularity of the articles. The Slice
dataset (Graf et al., 2011) uses features retrieved from CT images to predict the relative location of CT slices on the axial
axis of the human body. The source and target data are divided based on individual patients.

We compare our non-private convex algorithm CnvxAdap
∞

with unsupervised domain adaptation baselines, the Kernel
Mean Matching (KMM) algorithm (Huang et al., 2006) and the DM algorithm (Cortes & Mohri, 2014). Table 3 shows that
our convex algorithm consistently outperforms the baselines. For reference, we also compared our algorithm with the noisy
minibatch SGD from (Bassily et al., 2019) (top dash-dotted plots in the figure), see Figure 2. We verify that our algorithm
outperforms that noisy minibatch SGD algorithm, which only benefits from the target labeled data.

To further illustrate the effectiveness of our algorithms, we also report a series of additional empirical results comparing
our private adaptation algorithm CnvxAdap to the non-private baseline, the DM algorithm (Cortes & Mohri, 2014), on
the multi-domain sentiment analysis dataset (Blitzer et al., 2007) formed as a regression task for each category as in
prior work (Awasthi et al., 2024). We consider four categories: BOOKS, DVD, ELECTRONICS, and KITCHEN. We report
MeanSquaredErrors, MSE, for 12 pairwise experiments (TaskA, TaskB) in Table 5. As a source, we use a combination
of 500 examples from TaskA and 200 examples from TaskB. For the target data we use 300 examples from TaskB. We
use 50 examples from TaskB for validation and 1000 examples for testing. The results are averaged over 10 independent
source/target splits, which show that our private adaptation algorithm CnvxAdap consistently outperforms DM (non-private
algorithm), even for ε = 10 for this relatively small target sample size.

For a more fair comparison with private-DM (Bassily et al., 2022), here, we also provide results for our private algorithm
CnvxAdap with α = 1. In future work we seek to estimate α in a principled way based on the discrepancy. Figure 3 shows
that even for high values of n, the private-DM does not outperform our algorithm.
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Figure 2. MSE on the Gas dataset over ten runs against the number of target samples with various values of ε. Comparison of our
algorithm (solid lines) with the noisy minibatch SGD from (Bassily et al., 2019) (dash-dotted lines).

Table 5. MSE of CnvxAdap for ε=4 and ε=10 against the non-private DM algorithm on the sentiment analysis dataset.

Source Target CnvxAdap (ε = 4) CnvxAdap (ε = 10) DM
BOOKS 1.649 ± 1.909 0.713 ± 0.625 0.778 ± 0.459

KITCHEN DVD 0.832 ± 0.640 0.521 ± 0.354 1.396 ± 1.145
ELEC 0.790 ± 0.153 0.555 ± 0.139 1.740 ± 1.483
DVD 0.929 ± 0.365 0.637 ± 0.297 0.761 ± 0.562

BOOKS ELEC 0.708 ± 0.092 0.485 ± 0.147 0.711 ± 0.320
KITCHEN 0.796 ± 0.126 0.632 ± 0.181 0.956 ± 0.442
ELEC 0.671 ± 0.120 0.429 ± 0.189 0.677 ± 0.231

DVD KITCHEN 0.665 ± 0.197 0.453 ± 0.189 1.185 ± 0.753
BOOKS 0.727 ± 0.288 0.430 ± 0.143 0.676 ± 0.812
KITCHEN 0.671 ± 0.161 0.439 ± 0.141 1.389 ± 0.755

ELEC BOOKS 0.743 ± 0.365 0.351 ± 0.204 0.884 ± 0.639
DVD 0.755 ± 0.585 0.589 ± 0.495 0.843 ± 0.403

E.2. Non-convex setting

The detailed information about the sample sizes and input dimensions of the datasets Adult, German, Accent,
CIFAR-100, CIFAR-10, SVHN and ImageNet is given in Table 7. For the Adult dataset, also known as the Census
Income dataset, the source and target data are divided by the gender attribute to predict whether the income exceeds $50K.
The source and target data of the South German Credit dataset, German, are divided based on whether the debtor has lived
in the present residence for at least three years. The goal is to predict the status of the debtor’s checking account with the
bank. The Speaker Accent Recognition dataset, Accent, uses features from the soundtrack of words read by speakers from
different countries to predict the accent. The source contains examples whose language attribute is US or UK while the
target contains the remaining examples.

We use the CLIP (Radford et al., 2021) model to extract features from the ImageNet (Deng et al., 2009) dataset and
extract features from the CIFAR-100, CIFAR-10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011) datasets by using
the outputs of the second-to-last layer of ResNet (He et al., 2016). We transform those datasets into binary classification
by assigning half of the labels as +1 and the other half as −1 and then convert them into domain adaptation tasks where
the source and target data consist of distinct mixtures of uniform sampling and Gaussian sampling using the mean and
covariance of the data. For the CIFAR-100 and ImageNet datasets, 95% of the source data and 5% of the target data
come from Gaussian sampling; for the CIFAR-10 dataset, 90% of the source data and 10% of the target data come from
Gaussian sampling; for the SVHN dataset, 80% of the source data and 20% of the target data come from Gaussian sampling.

We compare our non-private non-convex algorithm NCnvxAdap
∞

with the KMM algorithm (Huang et al., 2006). Table 6
shows that our non-convex algorithm consistently outperforms the baselines.

Hyperparameter tuning. We do hyper-parameter selection based on a validation set, while the reported results are
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Figure 3. Mean values of MSE on the Gas dataset over ten runs against the number of target samples with ε = 15. Comparison of our
algorithm (α = 1) with the private-DM from (Bassily et al., 2022).

Table 6. Accuracy of non-private non-convex algorithm against unsupervised baselines. Best results are boldfaced.

Dataset Train source Train target KMM NCnvxAdap
∞

Adult 88.44 ± 0.61 91.09 ± 0.54 74.62 ± 0.64 91.38 ± 0.49
German 74.16 ± 1.64 76.40 ± 1.17 74.43 ± 1.65 77.96 ± 1.31
Accent 51.60 ± 1.09 92.27 ± 1.10 52.18 ± 2.27 93.95 ± 0.78
CIFAR-100 58.50 ± 0.30 59.51 ± 0.38 58.27 ± 0.28 62.19 ± 0.32
CIFAR-10 83.18 ± 0.47 85.18 ± 0.24 83.57 ± 0.45 86.44 ± 0.29
SVHN 84.16 ± 1.21 86.28 ± 0.44 84.13 ± 1.21 87.34 ± 0.46
ImageNet 71.20 ± 1.75 85.70 ± 0.29 71.25 ± 1.77 86.84 ± 0.38

evaluated on the test set. The sample sizes of the datasets are reported in Table 4 and Table 7. We select α over
{0.1,0.3,0.5,0.7,0.9}. For Algorithm 1, we select κ1 over {1,5,10,100,200}, κ2 over {5,10,50,100,1000}, κ∞ over
{0.1,1,5,10,100} and the number of iterations T is set as 15,000. For Algorithm 2, we select λ1 over {1,10,100,200,250},
λ2 over {0.01,0.1,1,10,100}, λ∞ over {0.01,0.1,1,5,10} and the number of iterations T is set as 15,000. While our
algorithm involves hyperparameters, it is important to note that this holds for virtually all standard learning algorithms,
even in the absence of adaptation; e.g., neural networks require fine-tuning of multiple parameters through validation
datasets. In particular, our methodology does not rely more on hyperparameter tuning than the baselines. Empirical
hyperparameter tuning can incur a privacy cost indeed, which requires careful attention. One approach to mitigate this is
using privacy-preserving hyperparameter tuning via local sensitivity analysis to estimate the privacy cost of each tuning
query.

Sampling with replacement. We use sampling with replacement to increase the number of samples in the datasets we
experiment on and enable reporting results for larger values of target sample size n. In terms of the privacy guarantee, we
would like to note that the sampling with replacement we perform does not mean that each individual in the resulting dataset
contributes multiple data points. Each of the repeated data points is viewed as belonging to a different individual (that is, we
assume the total number of individuals in the dataset also increases with sampling so that the size of the sampled dataset
equals the total number of individuals).
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Target training Target validation Target test Source training Input
Dataset sample size sample size sample size sample size dimension
Adult 6847 978 1957 20379 14
German 2452 350 702 562 20
Accent 833 119 238 210 12
CIFAR-100 250 8250 16500 2500 64
CIFAR-10 125 4125 8251 1249 64
SVHN 122 4029 8058 1830 64
ImageNet 128 4227 8456 1280 512

Table 7. Sample sizes of the datasets Adult, German, Accent, CIFAR-100, CIFAR-10, SVHN and ImageNet.
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