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Abstract

In many practical scenarios—like hyperparame-
ter search or continual retraining with new data—
related training runs are performed many times in
sequence. Current practice is to train each of these
models independently from scratch. We study the
problem of exploiting the computation invested
in previous runs to reduce the cost of future runs
using knowledge distillation (KD). We find that
augmenting future runs with KD from previous
runs dramatically reduces the time necessary to
train these models, even taking into account the
overhead of KD. We improve on these results
with two strategies that reduce the overhead of
KD by 80-90% with minimal effect on accuracy
and vast pareto-improvements in overall cost. We
conclude that KD is a promising avenue for re-
ducing the cost of the expensive preparatory work
that precedes training final models in practice.

1. Introduction
In the real world, there are many scenarios in which model
training must be performed repeatedly (e.g. manual model
tweaking, explicit hyperparameter search, retraining on new
data, etc.). Doing so is expensive, especially since con-
temporary practice is to begin each new run from the same
starting point, throwing away the work that was put into
previous runs. There is justification for this practice: start-
ing from an already-trained model can make it difficult for
the model’s behavior to change in light of new conditions
or data (Achille et al., 2019; Ash & Adams, 2020), un-
dermining the benefits of beginning with learned features.
However, as training costs skyrocket into the millions of
dollars, spending many times that amount developing the
appropriate training procedure looks increasingly untenable.
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In such scenarios, it would be useful to leverage informa-
tion from prior training runs to train future models faster
without explicitly reusing the models themselves. In this
paper, we develop and demonstrate the efficacy of one such
approach: distillation from previous training runs. Knowl-
edge distillation (KD) is the process of training a model
(known as the student) to mimic the outputs of one or more
existing models (known as teachers) rather than training on
the labels associated with the data (Hinton et al., 2015). KD
has been used to condense ensembles of trained models into
a single model (You et al., 2017; Chen et al., 2019; Park
& Kwak, 2020; Asif et al., 2019) and to compress large
trained models into smaller forms that are more amenable
for inference.

In this paper, we evaluate KD as a way to convey informa-
tion from prior training runs to future runs in a way that
speeds up learning and reduces cost. The distinctive as-
pects of our problem setting are that (1) prior training
runs are necessarily suboptimal (otherwise, the current
training run wouldn’t be necessary) and (2) minimizing the
cost of KD is paramount (otherwise, it wouldn’t actually
reduce the cost of future runs).

KD has several characteristics that make it a promising
avenue for reducing the cost of future training runs. It is
softer than using the trained weights from a previous run.
It makes it possible to take advantage of multiple previous
runs. It is known to lead to effective learning; students can
even reach a higher accuracy than their teachers (Allen-Zhu
& Li, 2020). Finally, it can be regimented: not all teachers
must necessarily be used on all steps, and some steps need
not include any distillation.

In this paper, we study KD as a means to reduce the cost
of future training runs in workflows of related runs like
hyperparameter search. We explore the design space for
strategies that are both (1) effective even in the context
of suboptimal teachers and (2) efficient enough to provide
real reductions in training cost. We focus on ResNet-56 on
CIFAR-100, and we find that:

Distillation makes future training runs cheaper. Distill-
ing from five identically trained teachers allows the student
to reach the accuracy of any individual teacher in 70% fewer
steps or to reach accuracy 3.9 percentage points higher.
When the teachers result from hyperparameter search over
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learning rate (which leads to a diverse set of teachers, many
of which are suboptimal), the student can still match the best
teacher’s accuracy in 66% fewer steps and reach accuracy 3
percentage points higher when trained to completion. Even
accounting for the overhead of distillation, this is a pareto
improvement over training the student from scratch.

Distillation need not be applied on every step. Applying
distillation on only 10% of training steps still allows the
student network to recover much of the aforementioned
performance, mitigating the otherwise significant cost of
performing distillation. Strategically distributing those steps
throughout training further improves this result.

Not all teachers are necessary on all steps. These results
also hold when we sample a small number of teachers—or
even just one teacher—every time distillation is performed
rather than using all teachers. The model requires more
steps and reaches slightly lower accuracy, but the reduction
in distillation overhead is so dramatic that it is still a pareto
improvement over distilling from all teachers or training
normally.

We conclude that KD is a promising avenue for reducing
the cost of a common and cripplingly expensive reality: de-
veloping and maintaining real-world models requires many
related training runs, not just one.

2. Experimental Framework
We focus on CIFAR-100 and ResNet-56. This benchmark is
challenging enough to capture the properties of larger-scale
settings while still permitting us to explore the design space
of a paradigm in which each experiment requires multiple
training runs using our limited computational resources.

In many real-world training workflows, model training must
be performed repeatedly, resulting in multiple trained mod-
els of the same architecture. To investigate distillation in this
context, for each experiment, we will train five ResNet-56
models on CIFAR-100 (teachers) that differ only in their ran-
dom seed and hyperparameters. We will then further train
another ResNet-56 (student) model with knowledge distil-
lation (the specifics of the distillation vary depending on
the experiment). All teacher and student models are trained
for 200 epochs, with a batch size of 128 and exponential
learning-rate decay scheduler (decay factor γ = 0.975). All
student models are trained with same initial learning rate of
0.1. When we train students, we perform three replicates of
each training runs with different random initializations and
present the average in our results.

We trained on AWS using P3.2xlarge GPU instances
(NVIDIA V100s) with a pre-existing Deep Learning AMI.

Figure 1. KD Pipeline

3. The Efficacy of Knowledge Distillation
In this section, we evaluate the efficacy of knowledge dis-
tillation as a tool for accelerating the training of student
networks. We find that it is highly effective at doing so,
even when the teachers have different (and often subopti-
mal) accuracy as a result of hyperparameter search.

Methodology. We train five different teachers using the
setup from Section 2. We then train a student using one or
more of these teachers via KD. Concretely, to transfer knowl-
edge from those teachers to the student, we use the averaged
response from a set of n teachers (T ) as the supervision sig-
nal. Specifically, we adjust the loss for our student model to
combine the cross-entropy (CE) between the student output
logits (ŷs) and the ground truth (y) with the mean squared
error (MSE) between the student output logits and an av-
erage teacher output logits (ŷt). Concretely, this modified
loss is: LKD = CE(ŷs, y) +MSE

(
ŷs,

1
n

∑
t∈T ŷt

)
KD with identical teachers. We begin by studying KD
in settings where all teachers are trained with the same
hyperparameters and differ only in random seed. Although
this setting is a simplification of our motivating real world
scenarios, it is a proving ground for ideas and a chance
to identify the best possible outcomes from using KD to
accelerate future training runs. If a strategy does not work
in this simpler setting, we should not expect it to work when
teachers are suboptimal.

We first train five teachers for this experiment using learning
rate 0.1 and different random seeds. We denote the teachers
A0 through A4. Tables 1 and 2 show the final accuracy
of each teacher and the speed at which the teachers learn;
since they are trained with different random seeds, their
performance varies slightly.

In Tables 1 and 2, we show the effect of distilling with the
aforementioned loss when varying the number of teachers
T from 1 to 5. Increasing the number of teachers increases
the final accuracy of the student and the time necessary for
it to reach any given level of accuracy, with diminishing
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Table 1. Accuracy at epoch 200 for teachers
trained with the same hyperparameters and stu-
dents distilled from 1-5 of those teachers.

Model Test Accuracy

Teacher A0 65.6%
Teacher A1 67.4%
Teacher A2 68.3%
Teacher A3 66.0%
Teacher A4 65.8%
KD (1 Teacher) 69.2%
KD (2 Teachers) 71.2%
KD (3 Teachers) 72.0%
KD (4 Teachers) 72.2%
KD (5 Teachers) 72.2%

Table 2. Epochs necessary to reach the specified test accuracy for teachers trained
with the same hyperparameters and students distilled from 1-5 of those teachers.

Model 65.0% 66.0% 67.0% 68.0% 69.0% 70.0%

Teacher A0 96 — — — — —
Teacher A1 71 82 112 — — —
Teacher A2 57 67 92 124 — —
Teacher A3 92 119 — — — —
Teacher A4 89 130 — — — —
KD (1 Teacher) 25 33 36 66 104 —
KD (2 Teachers) 22 25 33 43 54 81
KD (3 Teachers) 19 21 27 35 48 64
KD (4 Teachers) 17 21 30 33 43 58
KD (5 Teachers) 17 22 27 33 42 59

returns as the number of teachers increases. With ≥ 3
teachers, it can reach the same level of accuracy as the best
individual teacher in less than 30% of the epochs. When
trained to completion, the student reaches an accuracy that
is 3.9 percentage points higher than the best teacher.

KD from diverse and suboptimal teachers. We next study
the practical scenario in which the teachers differ. We do
so by simulating hyperparameter search over learning rate,
varying the initial learning rate among the values 0.5, 0.2,
0.1, 0.05, and 0.01. We denote these teachers as B0-B4,
respectively.

As Table 3 shows, these differences in learning rate af-
fect the performance of the teachers appreciably. Teacher
B1 with learning rate 0.2 reaches the highest test accuracy
(69.5%), while Teacher B4 with learning rate 0.01 only
reaches 62.1%. Tables 3 and Table 4 show the result of per-
forming knowledge distillation with these teachers. Despite
the diversity of the teachers, a student trained with all five
teachers performs as well or better than using identically
trained teachers and reaches 69% accuracy in 33% of the
training time required by the best performing teacher.

To contextualize these results, we also study two baselines.
First, we consider a scenario where we use the weights of
the best teacher (B1 with learning rate 0.2) as a starting
point for training the new model (a baseline we refer to as
fine-tuning). With the initial 200 epochs, B1 has already
saturated. When fintuning, we observe that finetuning with
lr=0.1 is better than small learning rate like 1e-4, this implies
that the original teacher model may converge in a local
minima and a large learning rate can help it jump out of the
local minima. Despite the fact that the new model is building
on trained weights from the highest-performing teacher, it
still reaches lower overall accuracy than the distilled model
by 2 percentage points and learns more slowly once it begins
modifying its initial weights. This supports the findings
in prior work that training may constrain the network’s

ability to learn in new ways (Achille et al., 2019; Ash &
Adams, 2020) and our contention that distillation offers a
middle ground in which the new model can benefit from
prior computation without being overly constrained by it.

Second, we consider a baseline where we allocate the ad-
ditional computation needed by distillation in a different
way. The forward pass of training is approximately one
third of the cost of training, meaning that distilling from five
teachers increases the cost of training by to approximately
8
3 of its original value. Instead of spending those additional
resources on distillation, we also consider simply training a
larger model that costs approximately twice as much to train:
ResNet-110. We find that using the settings in the original
paper (He et al., 2016) can yield highest test accuracy: use
learning rate of 0.01 to warm up in the first 400 iterations
then switch back to 0.1, and divide the learning rate by 10 at
32k and 48k iterations. Nevertheless, this model still reach
lower accuracy than the distilled model, and it trains more
slowly.

Summary. We conclude that, not only does KD allow the
student model to train faster even in the real-world context
of hyperparameter search with suboptimal teachers, but it
outperforms two compelling alternatives.

4. Making Distillation Efficient
In the previous section, we showed that training future runs
with KD provides a pareto improvement over training them
from scratch, even when the teacher models are subopti-
mal and even taking into account the additional cost of KD.
However, that additional cost is significant. Generally, per-
forming a forward pass is about 1

3 of the total cost of a
training step, meaning each additional teacher increases the
cost of training by 1

3 . Specifically, on P3.2xlarge instance,
the time used for training a single ResNet56 on CIFAR100
without KD for one epoch is about 15s, adding a teacher
would add about 5s. Therefore, performing KD with all
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Table 3. Accuracy at epoch 200 for teach-
ers trained with different hyperparameters
(learning rates), a student, and baselines.

Model Test Accuracy

Teacher B0 (0.5) 69.3%
Teacher B1 (0.2) 69.5%
Teacher B2 (0.1) 66.1%
Teacher B3 (0.05) 65.1%
Teacher B4 (0.01) 62.1%
KD (5 Teachers) 72.5%
Finetune Teacher B1 70.5%
ResNet-110 71.4%

Table 4. Epochs necessary to reach the specified test accuracy for teachers trained with
different hyperparameters (learning rates), a student, and baselines.

Model 65.0% 66.0% 67.0% 68.0% 69.0% 70.0%

Teacher B0 (0.5) 96 102 110 118 136 —
Teacher B1 (0.2) 64 73 89 99 123 —
Teacher B2 (0.1) 95 113 — — — —
Teacher B3 (0.05) 107 — — — — —
Teacher B4 (0.01) — — — — — —
KD (5 Teachers) 19 22 26 34 41 55
Finetune Teacher B1 35 38 59 72 78 108
ResNet-110 80 80 80 80 80 80

Table 5. Accuracy at epoch 200 when dis-
tilling from teachers trained with different
hyperparmeters (learning rates).

Model Test Accuracy

All 5 teachers 72.5%
Sample 1 Teacher 72.1%
Sample 2 Teachers 72.4%
Sample 3 Teachers 72.5%

Table 6. Epochs necessary to reach the specified test accuracy when distilling from teachers
trained with different hyperparameters (learning rates).

Model 65.0% 66.0% 67.0% 68.0% 69.0% 70.0%

All 5 Teachers 19 22 26 34 41 55
Sample 1 Teacher 26 34 37 44 58 72
Sample 2 Teachers 24 27 33 40 51 66
Sample 3 Teachers 22 23 30 37 48 60

Table 7. Accuracy at epoch 200 when distilling for 20 epochs dis-
tributed at different times during training from teachers trained
with different hyperparameters (learning rates).

Model Test Accuracy

Every Epoch (Baseline) 72.5%

First 20 Epochs 69.3%
Middle 20 Epochs 68.9%
Last 20 Epochs 68.9%
First+Last 10 Epochs 69.8%
Every 10 Epochs 70.4%
2 Epochs Every 20 Epochs 70.8%

5 teachers as Section 3 would increase the overall cost of
training by 167%. In this section, we consider several ap-
proaches to reduce this overhead to further reduce the cost of
training each subsequent model in a multi-run workflow like
hyperparameter search. In all experiments, we use teachers
B0-B4 which are trained with different hyperparameters.

KD with multiple teachers is flexible, providing many differ-
ent degrees of freedom to reduce costs. We will look at two
of these parts of the design space: only using some teachers
on every step (sampling) and performing distillation only
during some parts of training (scheduling).

Sampling. We consider an orthogonal approach for reduc-
ing the cost of KD: using a randomly sampled subset of the
available teachers on each step. This reduces the overhead
of distillation proportionally. By sampling 1 of 5 teachers,
we increase the overall cost of training by only 33.3%, com-

paring to 167% when using 5 teachers for KD every step.
Table 5 and Table 6 show the results of doing so. Sampling
just one teacher on each step outperforms sampling a single
fixed teacher (Table 1) by 2.9 percentage points, despite
the fact that many of the teachers sampled have subopti-
mal learning rates and accuracy. It only sacrifices a small
amount of accuracy compared to using all five teachers on
every step (by 0.4 percentage points). Although it learns
about 30% slower (Table 6) than when using all five teach-
ers, there is 5x less overhead from KD, more than making
up the difference.

Scheduling. Scheduling involves using KD only during
specific parts of training. During all other parts of training,
we use a standard cross-entorpy loss between the student
output and the ground-truth label. For simplicity in this
section, we fix the total number of KD epochs to 20 and
study different ways to spend this budget during training.
By setting the total number of KD epochs to 20 and using
five teachers, we increase the overall cost of training by only
17%, compared to 167% when performing KD at all steps.

We consider six different schedules for distributing these
20 epochs across training: the first 20 epochs, middle 20
epochs, last 20 epochs, first and last 10 epochs, 1 epoch
for every 10 epochs, and 2 consecutive epochs for every 20
epochs. The results of these experiments are in Table 7. The
best approaches involve performing distillation periodically,
and doing so for longer blocks of 2 consecutive epochs
performs better than shorter blocks of 1. This approach
outperforms performing distillation in one or two blocks
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during training by a margin of one or more percentage points.
None of these approaches match performing distillation
on every step, but—considering the cost savings—the best
approach is a pareto improvement.

Summary. KD already provides a pareto improvement
over training a new network from scratch, and the results in
this section show that there are significant opportunities to
make this process even more efficient by scheduling when
to perform distillation and sampling teachers rather than
using every teacher on every step.

5. Conclusions
In this paper, we studied a common real-world scenario:
training a sequence of related networks whose configura-
tions vary in small ways. This preparatory work—not the
final training run—comprises the vast majority of the cost
of developing models in practice. To reduce this cost, we
leveraged knowledge distillation from earlier runs to reduce
the cost of future runs. Not only did it prove effective, but
it vastly reduced the number of steps necessary to reach
the same accuracy as previous models, especially once we
applied distillation in a targeted fashion.

This preliminary study serves as the basis for our deeper
dive into this problem. There are many remaining questions
that must be answered before this strategy is ready for use
in practice. We intend to study how it works in larger-scale
settings and how it applies to other topics areas like NLP.
Finally, we will evaluate the extent to which this strategy af-
fects the trajectory and outcome of multi-run workloads like
hyperparameter search. However, these initial results have
shed light on a promising future where model development
costs are far lower than today.
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A. KD with Good Teachers vs. Bad Teachers
In Section 3, we studied the effect of performing KD us-
ing teachers that resulted from hyperparameter search over
learning rates. The final accuracies of these teachers varied
widely, with several (B2, B3, and B4) performing worse
than others.

In that experiment, we only showed results when distilling
from all five teachers B0-B4. However, each teacher may
make different contributions to the performance of the stu-
dent. On the one hand, training with a worse-performing
teacher may lead to a worse-performing student. On the
other hand, the literature shows (Allen-Zhu & Li, 2020)
and our experiments have confirmed that student networks
often outperform their teachers. To address these questions,
we compare distilling separately with the best-performing
teacher (B1) and the worst-performing teacher (B4).

We apply 4 different KD strategies: only distilling from B1,
only distilling from B4, sampling one network from among
both on each step, and learning from both networks. The
results of this experiment are in Figure 2. We find that learn-
ing from the worse-performing teacher (B4, light orange
line) leads to a worse-performing student (dark orange line)
compared to learning from the better-performing teacher
(B1, light green line and dark green line). The best perfor-
mance occurs when learning from both teachers or sampling
among them.

B. Distilling Only When Teachers are Correct
In this appendix, we study whether it is best to learn from
teachers only when they are correct. Teachers are not always
correct; the argmax of their averaged output distributions
may disagree with the label. Is it important for the overall
function that the student learns to receive even this incorrect
signal?

To address this question, we perform a modified form of KD
where we discard the distillation part of the loss whenever
the argmax of the averaged teacher output disagrees with
the ground truth label. The result of this experiment using
teachers B1 and B4 is in Figure 2 (pink line). We find
that it is detrimental to ignore the teachers when they are
incorrect; doing so leads to accuracy that is 0.4 percentage
points lower than learning from both teachers on every step
(71.4% accuracy vs. 71.8% accuracy). We conclude that
even incorrect signals from the teachers are a useful part of
the overall distillation process.

C. Combining Scheduling and Sampling
In Section 4, we found that both scheduling and sampling
could provide pareto improvements in the tradeoff between
the cost of training student models and their final accuracy.

Figure 2. KD with various combinations of teachers B1 (the best
performing teacher) and B4 (the worst performing teacher).

In this section, we combine these two methods. We run
KD using two different schedules (first and last 10 epochs,
every 10 epochs), and we sample 1 teacher to use for KD
on every batch. Table 8 shows the result of this experiment.
Interestingly, the results vary depending on the schedule
chosen. Sampling improves accuracy appreciably when us-
ing distillation at the beginning and end of training, whereas
it hurts accuracy appreciably when using distillation for one
epoch out of every ten epochs. Due to Amdahl’s Law, com-
bining these two methods leads to diminishing returns in
cost reduction (since they are both targeting the same source
of cost: the overhead from performing distillation), so it is
unclear whether it is beneficial to do so given these results.

Table 8. Accuracy at epoch 200 when distilling from teachers
trained with different hyperparameters when combining both the
scheduling and sampling strategies.

Model Test Accuracy

KD Every Epoch 72.5%
KD First+Last 10 Epochs, All 5 Teachers 69.8%
KD First+Last 10 Epochs, Sampling 1 70.3%
KD Every 10 Epochs, All 5 Teachers 70.4%
KD Every 10 Epochs, Sampling 1 69.7%


