Gotta Catch’em All!: Multi-Generator and Multi-Lingual Benchmark for
Detecting LLM-Generated Code Snippets

Anonymous ACL submission

Abstract

The advent of commercial services based on
large language models (LLMs), such as Chat-
GPT and Copilot, has significantly enhanced
software development productivity. Despite
their widespread adoption and benefits, con-
cerns regarding the security vulnerabilities of
LLM-generated code snippets, potential copy-
right and licensing infringements, and academic
cheating. Recognizing the importance of detect-
ing LLM-generated code snippets, we introduce
the first benchmark, DeECo (Detecting Code
generated by LLMs), aimed at addressing these
challenges. DECo comprises a dataset of 246K
samples across four programming languages:
C, C++, Java, and Python, generated by two
commercial LLMs, ChatGPT and Gemini-Pro,
and two open-source, code-specialized LLMs,
WizardCoder and DeepSeek-Coder. We for-
mulate two key tasks based on the DECo: (1)
binary detection to discern whether a given code
snippet was written by a human or an LLM, and
(2) multi-class detection to identify the specific
generator among humans and the four LLMs.
We conduct extensive experiments evaluating
13 detection methods on the DECo dataset.

1 Introduction

The proliferation of LLMs has ushered in a new era
of technological advancements, particularly in the
realms of generating natural language texts and code
snippets (Zan et al., 2022). Commercial services
such as ChatGPT and Copilot, which are based on
LLMs, have become essential tools for improving
software development productivity and aiding in the
learning process for students studying programming.
Despite their widespread adoption and numerous
benefits, these advancements also come with their
own set of challenges. As the utility of LLMs con-
tinues to expand, so do concerns surrounding the
security vulnerabilities (Pearce et al., 2022; San-
doval et al., 2023) inherent in LLM-generated code

snippets. Issues such as potential copyright! and
licensing? infringements have emerged as pressing
challenges within the community. Additionally,
due to the risk of students cheating on exams or
committing acts of plagiarism in assignments using
ChatGPT, some universities have restricted the use
of ChatGPT3. These concerns highlight the urgent
need for mechanisms capable of detecting LLM-
generated code snippets (Wang et al., 2023a; Lee
et al., 2023; Nguyen et al., 2023; Yang et al., 2023).

In response to these growing concerns, we
present DECo, a pioneering benchmark specifically
designed to address the challenges of identifying
LLM-generated code snippets. DECo is a bench-
mark consisting of 246K code snippets written
in four major programming languages: C, C++,
Java, and Python. We construct DECo using two
commercial LLMs, ChatGPT and Gemini-Pro, and
two code-specialized open-source LLMs, Wizard-
Coder (Luo et al., 2023) and DeepSeek-Coder (Guo
et al., 2024). First, we collect entirely human-
written code snippets by gathering software projects
from Github repositories created before the emer-
gence of code-generating LLMs. Then, based on
the collected human-written code snippets, we gen-
erate LLM-written code snippets using four LLMs.
We formulate two key tasks based on the DECo
benchmark: (1) LLLM-generated code detection.
This task aims to discern whether a given code
snippet was written by a human or LLM, and (2)
Identifying the authors of code snippets. This
task seeks to identify the specific generator among
humans and the four LLMs (i.e., authorship attribu-
tion).

We conduct extensive experiments evaluating

Thttps://felixreda.eu/2021/07/

github-copilot-is-not-infringing-your-copyright/

2https://www.techtarget.com/
searchsoftwarequality/news/252526359/

Developers-warned-GitHub-Copilot-code-may-be-licensed

3https://www.universityworldnews.com/post.
php?story=20230222132357841

https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.universityworldnews.com/post.php?story=20230222132357841
https://www.universityworldnews.com/post.php?story=20230222132357841

13 detection methods on DECo benchmark. Ex-
perimental results demonstrate that state-of-the-art
methods struggle to distinguish between human-
written code snippets and LLM-generated code
snippets. In addition, we conduct the following
analyses: (1) an examination of linguistic features
in code snippets written by humans and code snip-
pets generated by LLM, and (2) an exploration of
the impact of natural language comments in the task
of identifying the authors of code snippets. Our
contributions can be summarized as follows:

e We construct the first benchmark, DgCo,
for LLM-generated code snippets detection.
DEeCo consists of 246K samples across four
programming languages, generated using four
distinct LLMs.

¢ Based on the DECo benchmark, we formulate
two tasks: (1) LLM-generated code detec-
tion, and (2) Identifying the authors of code
snippets.

* We conduct extensive experiments evaluating
13 detection methods including state-of-the-art
methods on the DECo benchmark.

* Through analysis, we identify distinct linguis-
tic features between human-written code snip-
pets and those generated by LLMs.

2 Related Work

2.1 Datasets for Detecting
Machine-Generated Text

Guo et al. (2023) constructed the HC3 dataset,
which consists of 40K questions and their answers
from human experts and ChatGPT. The HC3 dataset
is composed of both English and Chinese, and
its questions cover open-domain, financial, med-
ical, and psychological areas. Su et al. (2023b)
broadened the scope of the HC3 dataset, originally
centered on question-answering, by developing the
HC3 Plus dataset, which incorporates data suited
for summarization, translation, and paraphrasing
tasks. Wang et al. (2024) constructed the M4 dataset
that consists of multi-generator, multi-domain, and
multi-lingual corpus.

2.2 Methods for Detecting
Machine-Generated Text

Watermarking Methods Watermarking meth-
ods (Kirchenbauer et al., 2023; Kuditipudi et al.,

2023) enable the effective detection of machine-
generated text by injecting detectable patterns into
the generated text. These methods require direct
intervention in the decoding process of the language
model to leave a watermark in the generated text.
White-Box Zero-shot Detection Methods White-
box zero-shot detection methods detect machine-
generated text based on the log probability (Mitchell
et al., 2023) or perplexity (Hans et al., 2024) cal-
culated from the given text, without any additional
training process. White-box detection methods
require full or partial access to the generator. Re-
cently, Mireshghallah et al. (2024) reported that
using a surrogate model as a detection can achieve
satisfactory detection performance.

Black-Box Zero-shot Detection Methods Black-
box zero-shot detection methods only require the tar-
get text. Zhu et al. (2023) proposed a paraphrasing-
based method using ChatGPT. Based on the hy-
pothesis that machine-generated text aligns better
with the generation logic and statistical patterns
learned by ChatGPT than human-written text, they
proposed a method to identify the original text as
machine-generated if the paraphrased text is similar
to the original text.

2.3 Methods for Detecting
Machine-Generated Code Snippet

Lee et al. (2023) pointed out that the quality of
generated code snippets is degraded when water-
marking methods are applied to the process of
code generation. They suggested removing low-
entropy segments at injecting watermarks. Yang
et al. (2023) proposed DetectGPT4Code, a modi-
fication of the existing machine-generated text de-
tection method, DetectGPT (Mitchell et al., 2023),
using a code-specialized surrogate model. Wang
et al. (2023a) evaluated whether existing machine-
generated text detectors are effective at detecting
machine-generated code snippets. They reported
that the existing detectors exhibit diminished effi-
cacy in identifying code snippets in contrast to their
performance in detecting natural language texts.
Previous studies conducted experiments using ex-
isting datasets for code-related downstream tasks,
considering the code snippets included in these
datasets to have been written by humans. However,
we cannot be certain that all code snippets present in
existing datasets were authored by humans. (Wang
et al.,, 2023a). Therefore, we collect code snip-
pets from GitHub repositories created before the
emergence of LLMs.

DeECo-Binary Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder Total
C 25,907 16,855 12,151 8,081 5,288 68,282

C++ 14,441 5,077 10,850 5,689 3,579 39,636
Java 23,903 7,234 19,293 12,614 9,216 72,260
Python 21,545 5,699 13,789 13,796 11,101 65,930
Total 85,796 34,865 56,083 40,180 29,184 246,108
DeECo-Murtt Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder Total
C 457 457 457 457 457 2,285

C++ 385 385 385 385 385 1,925
Java 1,494 1,494 1,494 1,494 1,494 7,470
Python 1,935 1,935 1,935 1,935 1,935 9,675
Total 4,271 4,271 4,271 4,271 4,271 21,355

Table 1: Data statistics of DECo-BiNarRy and DECo-MuLTI.

3 DEeCo Dataset

We present DECo, the first benchmark for LLM-
generated code detection. DeCo features the fol-
lowing characteristics.

Large-Scale: DeCo consists of a total of 246K
human-written and LLM-generated code snippets.
Multi-Lingual: DeCo consists of code snippets
written in four programming languages: C, C++,
Java, and Python.

Multi-Generator: When constructing the DECo
dataset, we utilize the following four LLMs to
generate LLM-generated code snippets: 1) Com-
mercial LLMs: ChatGPT and Gemini-Pro; 2) Open-
source, code-specialized LLMs: WizardCoder and
DeepSeek-Coder.

Two Tasks: The DeCo benchmark consists of
two subsets supporting the following two tasks:
1) DECo-Binary: A dataset for binary detection
tasks determining whether a given code snippet was
written by a human or an LLM; 2) DECo-MuLti: A
dataset for multi-class classification tasks predicting
which generator wrote a given code snippet.

3.1 Human-Written Code Snippets Collection

We collect code snippets which are fully human-
written by gathering code snippets from GitHub
repositories created before the emergence of LLMs.
Specifically, we collect repositories created between
January 1, 2019, at 00:00 and January 1, 2020, at
00:004 , which have the MIT license and contain
code snippets written in C, C++, Java, and Python.
Afterward, we retain only the code snippets from
the collected ones that consist solely of ASCII
characters and have token counts ranging from 50
to 950. Additionally, we remove code snippets with
licenses other than Apache, BSD, and MIT.

4We consider GPT-3, released in June 2020, as the first
LLM with code generation capabilities.

3.2 LLM-Generated Code Snippets
Construction

We construct LLM-generated code snippets by pro-
viding human-written code snippets and instructing
the LLMs to rewrite them. We prompt the fol-
lowing LLMs to construct LLM-generated code
snippets: 1) OpenAl ChatGPT?: is a conversa-
tional AI model, known for its exceptional ability to
understand context and generate natural responses
during conversations; 2) Google Gemini-Pro®: is
a multi-modal generative Al model that was un-
veiled in 2023; 3) WizardCoder”: is an instruc-
tion fine-tuned open-source LLLM, demonstrating
superior performance across various code-related
downstream tasks; 4) DeepSeek-Coder?: is an
open-source LLM trained on project-level source
code corpus using a fill-in-the-blank pre-training
objective. We provide each LLM with a human-
written code snippet and instruct it to revise the
code snippet while maintaining the original pro-
gramming language and functionality of the code
snippet. The prompt we used can be found in Fig-
ure 1 of Appendix A. We observe the characteristics
of LLMs and the types of errors they produce dur-
ing the code generation process. We discuss these
in Appendix B and C, respectively.

3.3 Data Filtering and Cleaning

If the code snippets generated by LLMs are less than
30% of the length of the original human-written
code snippets, we consider such code snippets to
have different functionalities from human-written
code snippets and therefore remove them. We com-
pute the similarity between LLM-generated code
snippets and human-written code snippets based

SGPT-3.5-turbo-1106

¢Gemini 1.0

"WizardCoder-33B-V1.1
8DeepSeek-Coder-33B-instruct

on the longest common subsequence (LCS) and
then calculate percentiles of this similarity. Among
the code snippets generated by LLMs, those with
similarity scores of 75th percentile or higher are
considered to have undergone minimal modifica-
tion from human-written code snippets, and are
thus removed. Some LLM-generated code snip-
pets have a prefix such as cpp at the beginning,
indicating the programming language of the code
snippet. As this can serve as a clue to identify
code snippets generated by LLMs, we use regular
expressions to remove such prefixes. The regular
expressions used to remove prefixes can be found
in Figure 9 of Appendix D. For data anonymiza-
tion, we remove email addresses, URLs, and phone
numbers included in code snippets using regular
expression. The regular expressions we used for
data anonymization can be found in Figure 10 of
Appendix D.

3.4 Data Annotation

We collect a total of 85,796 human-written code
snippets and based on these, we construct a total
of 160,312 LLLM-generated code snippets. Based
on a total of 246,108 code snippets, we construct
DEeCo-Binary and DECo-MuLTI.

DEeCo-BinarYy Since DECo-BiNnary is a bench-
mark for the binary detection task, we annotate
human-written code snippets with a label of 0 and
LLM-generated code snippets with a label of 1. Ex-
amples of data from the DECo-Binary benchmark
can be found in the Appendix E.

DeCo-MuLtt We construct the DeECo-MutLtr
dataset by selecting only the code snippets that
all four LLMs have successfully modified. There-
fore, the code snippets included in DECo-MuLTI
have a total of five authors, including humans, for
the same code snippet. Since DECo-Mutrr is a
benchmark for multi-class classification tasks, we
annotate code snippets generated by humans, Chat-
GPT, Gemini-Pro, WizardCoder, and DeepSeek-
Coder with labels 0, 1, 2, 3, and 4, respectively.
Table 1 presents the data statistics of DECo-BINARY
and DECo-Mutrri. We analyze the similarity be-
tween code snippets in the DECo-MuLr dataset
using Stanford Moss® (Measure of software simi-
larity), a tool for evaluating the similarity of code
snippets. In this analysis, we explore both the sim-
ilarity between human-written code snippets and
those generated by LLMs, as well as the similarities

https://theory.stanford.edu/~aiken/moss/

among code snippets produced by different LLMs.
The analysis results can be found in the Appendix F.

4 [Experimental Settings
4.1 Task Definition

We explore the following two tasks based on the
DEeCo-Binary dataset and the DECo-Muttr dataset.
Task 1: LLM-Generated Code Detection. This
taks is a binary detection task aimed at determining
whether a given code snippet was written by a
human or generated by an LLM.

Task 2: Code Generator Classification. This
task is a multi-class classification task aimed at
predicting the generator that wrote the given code
snippet. To the best of our knowledge, we are the
first to explore authorship attribution tasks targeting
code domain.

4.2 Binary Detection Methods for Task 1

For the LLLM-generated code detection task, we
employ 10 black-box zero-shot detection methods.
Since white-box detection methods and watermark-
ing methods cannot be applied to commercial LLMs
such as ChatGPT and Gemini-Pro!©, we exclude
them from the experiments. Black-box zero-shot
detection methods are divided into the following
three categories.

Metric-based Detection Metric-based detection
methods employ pre-trained languages models
to analyze text and derive distinctive features
from it, such as the rank or entropy of individ-
ual words in a text based on preceding context.
We use the following six metric-based detection
methods: 1) Log-Likelihood (Solaiman et al.,
2019); 2) Rank (Gehrmann et al., 2019); 3) Log-
Rank (Mitchell et al., 2023); 4) Entropy (Gehrmann
et al., 2019); 5) LRR (Su et al., 2023a); 6) Binocu-
lars (Hans et al., 2024).

Perturbation-based Detection Perturbation-based
detection methods assess alterations in the log prob-
ability of the model when introducing slight changes
to the original text. We employ the following three
perturbation-based detection methods: 1) Detect-
GPT (Mitchell et al., 2023); 2) NPR (Su et al.,
2023a); 3) DetectGPT4Code (Yang et al., 2023).
Paraphrasing-based Detection Paraphrasing-
based detection methods are based on the hypoth-
esis that when both human-written and machine-
generated texts are revised through an LLM, the

0For these commercial LLMs, we cannot obtain log proba-
bilities or directly intervene in the decoding process.

https://theory.stanford.edu/~aiken/moss/

machine-generated text undergoes less alteration
compared to the human-written text. We employ
BARTScore-CNN proposed by Zhu et al. (2023).
Detailed information about the detection methods
we used can be found in the Appendix G.

4.3 Classification Models for Task 2

We present three code generator classifiers by fine-
tuning the following models using the DECo-MuLTI
dataset.

* OpenAl Detector (Solaiman et al., 2019):
This model is trained using texts generated
by GPT-2, capable of determining whether a
given text was authored by GPT-2 or not.

¢ ChatGPT Detector (Guo et al., 2023): This
model is trained on texts generated by Chat-
GPT, which are included in the HC3 dataset.

* CodeBERT (Feng et al., 2020): CodeBERT
is a language model pre-trained on masked lan-
guage modeling and replaced token detection
tasks for six programming languages.

All three models are based on the RoBERTa-
base (Liu et al., 2019) architecture. The OpenAl de-
tector and ChatGPT detector are models trained on
the task of distinguishing between human-written
texts and machine-generated texts, while Code-
BERT is a pre-trained model on a code corpus
consisting of six programming languages. We ini-
tialize the models with their pre-trained checkpoints
and fine-tune them on the DECo-MuLTI dataset.

4.4 Evaluation Metrics

LLM-Generated Code Detection We use Area
Under the Receiver Operating Characteristic
curve (AUROC) as an evaluation metric for task
1. AUROC represents the area under the curve
when plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold
settings. AUROC provides a single scalar value
that summarizes the performance of the detector
across all possible classification thresholds.

Code Generator Classification For task 2, we
employ the following two evaluation metrics: 1)
Macro F1 Score: is a metric used to evaluate the
performance of multi-class classification models.
It calculates the harmonic mean of precision and
recall for each class and then takes the average
across all cases, giving equal weight to each class. 2)
Accuracy: measures the ratio of correctly predicted

samples to the total number of samples in the
dataset.

4.5 Implementation Details

LLM-Generated Code Detection We experiment
with BARTScore-CNN! and Binoculars'? using
their official implementations. The official imple-
mentation of BARTScore-CNN uses ChatGPT for
paraphrasing, however, to reduce the cost of API
usage, we opt for Gemini-Pro®® instead. Based
on the implementation of DetectGPT provided by
MGTBench (He et al., 2023), we implement De-
tectGPT4Code, utilizing CodeT5+ 220M (Wang
et al., 2023b) as the perturbation model and Py-
CodeGPT* as the surrogate model for measuring
log probability. For the remaining detection meth-
ods, we utilize the implementations provided by
MGTBench®s. All the detection methods we use for
task 1 are zero-shot detection methods. Therefore,
we conduct evaluations on all samples in the DECo-
Bivary dataset without training process. For the
experiments of task 1, we use the NVIDIA RTX
A6000 with 48GB of memory.

Code Generator Classification We divide the
DeCo-Mutrr dataset into proportions of 8:1:1 to
obtain the training, validation, and testing subsets.
The model is trained using the training subset,
and the model checkpoint from the epoch with
the best performance on the validation subset is
saved. We assess the model performance on the
testing subset using this model checkpoint. We
perform hyper-parameter search based on validation
accuracy within the ranges of learning rates { 1e-5,
2e-5, 5e-5}, and batch sizes {8, 16, 32}. We train
the model using AdamW (Loshchilov and Hutter,
2019) as the optimizer. We conduct fine-tuning
over 10 epochs. For the experiments of task 2, we
use the NVIDIA RTX 3090 with 24GB of memory.

S Experimental Results

5.1 LLM-Generated Code Detection

Table 2 shows the performance of LLM-generated
code detection for 10 zero-shot binary detection
methods. We report the performance of detection
methods for each programming language and their
overall performance across all programming lan-

Uhttps://github.com/thunlp/
LLM-generated-text-detection
Zhttps://github.com/ahans30/Binoculars
3Gemini-Pro currently does not charge for API usage.
“https://huggingface.co/Daoguang/PyCodeGPT
Bhttps://github.com/xinleihe/MGTBench

https://github.com/thunlp/LLM-generated-text-detection
https://github.com/thunlp/LLM-generated-text-detection
https://github.com/ahans30/Binoculars
https://huggingface.co/Daoguang/PyCodeGPT
https://github.com/xinleihe/MGTBench

Zero-Shot Binary Detector C C++ Java Python | Overall
Log-Likelihood (Solaiman et al., 2019) | 54.14 56.54 56.29 55.55 55.63
Rank (Gehrmann et al., 2019) 57.06 56.46 5599 54.10 55.90
Log-Rank (Mitchell et al., 2023) 5491 56.06 5599 55.09 55.51
Entropy (Gehrmann et al., 2019) 46.69 49.69 4832 43.62 47.08
LRR (Su et al., 2023a) 46.52 5334 5198 49.66 50.37
Binoculars (Hans et al., 2024) 46.36 48.13 51.19 46.92 48.15
DetectGPT (Mitchell et al., 2023) 60.48 57.60 5580 57.37 57.81
NPR (Su et al., 2023a) 62.01 57.73 5570 57.63 58.26
DetectGPT4Code (Yang et al., 2023) 61.04 5797 5446 57.30 57.69
BARTScore-CNN (Zhu et al., 2023) 57.15 5941 59.05 56.24 57.96

Table 2: Taskl) LLM-Generated Code Detection Performance. We use AUROC as an evaluation metric.
Detectors divided by horizontal lines are, from top to bottom, metric-based detectors, perturbation-based detectors,
and a paraphrasing-based detector. The numbers in the rightmost column represent the average performance across
four programming languages. We emphasize the highest overall performance in bold.

Classifier C C++ Java Python Overall
F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC
OpenAl Detector | 36.53 37.18 | 3435 36.40 | 3594 38.10 | 3538 39.06 | 35.5510.92 37.69.0.55
ChatGPT Detector | 2691 32.08 | 31.98 35.17 | 36.64 37.76 | 2845 34.57 | 30.99.145 34.89.082
CodeBERT 4251 4323 | 39.04 41.63 | 36.83 3794 | 3408 36.86 | 38.11.; 13 39.91.0.0

Table 3: Task2) Code Generator Classification Performance. F1 and ACC represent macro F1 score and accuracy
respectively. We report the average performance of experiments conducted with five different seeds. The numbers in
the rightmost column represent the average performance across four programming languages. We emphasize the

highest overall performance in bold.

guages. The detection methods in the Table 2 are
divided into three groups based on horizontal lines,
from top to bottom: metric-based detection meth-
ods, perturbation-based detection methods, and a
paraphrasing-based detection method. Some detec-
tion methods show performance worse than random
predictions (typically an AUROC of 50), and even
the best-performing method only shows slightly
better performance than random predictions. This
highlights the difficulty of the task of detecting
LLM-generated code snippets.

The perturbation-based detection methods and
a paraphrasing-based detection method generally
show superior performance compared to metric-
based detection methods. Interestingly, despite
using a code-specialized language model, Detect-
GPT4Code shows lower performance compared to
DetectGPT, which uses a language model special-
ized for natural language texts. This suggests that
simply replacing a language model specialized for
natural language with a code-specialized one is not
highly effective for detecting LLM-generated code
snippets. BARTScore-CNN, which is a state-of-the-
art (SOTA) methodology for detecting texts gen-
erated by LLMs, also shows unsatisfactory perfor-

mance in detecting LLM-generated code snippets.
Based on these experimental results, we emphasize
the need for further research into methodologies for
detecting LLM-generated code snippets.

Finding. SOTA methods for detecting texts
generated by LLMs struggle to detect LLM-
generated code snippets.

5.2 Code Generator Classification

Table 3 shows the performance of three classifiers
on the task of classifying the generator of a code
snippet. We report the average performance of
experiments conducted with five different seeds.
For overall results across four languages, we re-
port both the average performance and the standard
deviation. The standard deviations for individual
programming languages can be found in the Ap-
pendix H (Table 6). Overall, CodeBERT, which is
pre-trained on programming languages, shows supe-
rior performance compared to models pre-trained
on the task of distinguishing between machine-
generated and human-written texts. This shows that
for the task of identifying the generator of a code
snippet, it is beneficial for the model to first acquire
knowledge about programming languages.

The confusion matrices for each model’s predic-
tions can be found in the Appendix I. Additionally,
the embedding visualization analysis for the DECo-
Murt dataset can be found in the Appendix J.
Through embedding visualization analysis, we ob-
serve distinct differences between code snippets
written by humans and those generated by LLMs.
However, there are no clear differences observed
among code snippets generated by different LLMs.
This highlights the challenge of classifying the gen-
erator of code snippets. If a specific LLM generates
a significant number of vulnerable code snippets
or produces copyrighted code snippets, it becomes
even more crucial to identify code snippets gener-
ated by such an LLM. Therefore, we emphasize the
need for research into classification methodologies
for this task.

Finding. For the task of classifying the gener-
ator of code snippets, it is effective for models
to be pre-trained on programming languages.

6 Analysis

6.1 Linguistic Analysis

We analyze the linguistic features of human-written
code snippets and LL.M-generated code snippets
from the perspectives of density and average log-
perplexity.

Density Density refers to how frequently various
tokens appear within code snippets. Density is
calculated as follows:

Density = 100 x V/(L X N), Q8

where V represents the number of unique tokens
used in all code snippets, L is the average number of
tokens present in each code snippet, and N denotes
the number of code snippets. A high density value
indicates that a more diverse range of tokens have
been used in code snippets.

Log-Perplexity Log-perplexity is a measure of how
well a probability distribution predicts a sample.
In the context of language models, it quantifies
how confused the model is when predicting the
next token. Log-perplexity is the average negative
log-likelihood of all tokens in the given sequence.
Log-perplexity is calculated as follows:

M
1
Log-PPL(T) =~ > log, P(tilti-1, ..o 11),
i=1
(2)

where M denotes the total number of tokens in the
sequence and P(¢;|t;—1, ..., 1) represents the prob-
ability of token #; given the preceding tokens in the
sequence. A lower log-perplexity indicates that the
model is more confident in its predictions, whereas
a higher log-perplexity suggests that the model is
more uncertain. For calculating log-perplexity, we
use CodeLlama 7B (Roziere et al., 2023). We cal-
culate the log-perplexity for each code snippet, and
then compute the average value.

Table 4 shows the results of the linguistic anal-
ysis for the DECo-Murrtr dataset. In the case of
density, code snippets written by humans show the
lowest values for all four programming languages.
This indicates that LLMs use a more diverse range
of tokens than humans when writing code snip-
pets. One possible reason for this is that humans
tend to follow coding conventions!® when writing
code snippets. That is, when naming variables
and functions, humans tend to adhere to coding
conventions, which may result in more standard-
ized naming rules than those followed by LLMs.
The results of the linguistic analysis, including the
average length (L) and vocabulary size (V), can be
found in the Appendix K (Table 7).

For the three programming languages other than
Python, code snippets written by humans show
the lowest average log-perplexity values. This
indicates that CodeLlama is more familiar with
code snippets written by humans than those writ-
ten by LLMs. This phenomenon can be attributed
to the composition of the dataset utilized for the
pre-training of CodeLlama, which potentially in-
cludes a greater volume of code snippets authored
by humans compared to code snippets generated
by LLMs. CodeLlama was released in August
2023, while ChatGPT was released in November
2022, WizardCoder in June 2023, Gemini-Pro in
November 2023, and DeepSeek-Coder in January
2024. Therefore, it is unlikely that the data used
for pre-training CodeLlama included code snippets
generated by the four LLMs we utilized, given their
respective release dates.

When looking at overall results for four program-
ming languages, code snippets written by humans
show the lowest density value and the lowest aver-
age log-perplexity value. Among the LL.Ms, code
snippets written by Gemini-Pro exhibit the lowest
density value and the lowest average log-perplexity
value. Table 8 in the Appendix K presents the re-

https://peps.python.org/pep-0008/

https://peps.python.org/pep-0008/

Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Density C 18.70 22.98 22.59 22.61 24.19
Avg. Log-Perplexity 0.49 0.51 0.50 0.54 0.55
Density Cat 23.37 27.04 26.64 27.18 28.17
Avg. Log-Perplexity 0.48 0.55 0.51 0.53 0.54
Density Java 19.02 23.01 22.69 22.78 24.49
Avg. Log-Perplexity 0.42 0.45 0.44 0.47 0.47
Density Python 21.84 27.01 26.00 25.70 28.15
Avg. Log-Perplexity 0.66 0.64 0.63 0.68 0.65
Density Overall 20.73 25.01 24.48 24.56 26.25
Avg. Log-Perplexity 0.51 0.54 0.52 0.56 0.55

Table 4: Linguistic analysis on the DECo-Mutrt dataset. In each row, the smallest number is highlighted in bold. We
can see that, overall, code snippets written by humans have lower density values and smaller average log-perplexity

values compared to those written by LLMs.

sults of linguistic analysis conducted after removing
natural language comments from the DECo-Mutt1
dataset. We confirm that similar results are obtained
even after the removal of comments.

Finding. There are distinct linguistic fea-
tures between human-written code snippets
and LLM-generated code snippets.

6.2 Impact of Natural Language Comments

We investigate the impact of natural language com-
ments in the task of classifying the generator of
code snippets. We conduct analysis using Code-
BERT, which showed the highest performance in
this task (analysis using the OpenAl Detector and
ChatGPT Detector can be found in Table 9 of Ap-
pendix L). We remove natural language comments
from the DECo-MutTt dataset (both training and
evaluation data) and measure the performance of
models. We report the average performance of
experiments conducted with five different seeds.
Table 5 compares the performance of the model on
code snippets with natural language comments and
code snippets without natural language comments.
Through the experimental results, we observe that
removing natural language comments from code
snippets leads to an average decrease of 10.62%p in
macro F1 score and 9.72%p in accuracy across four
programming languages. This indicates that natural
language comments are an important feature in the
predictions of models for this task. The confusion
matrices for the predictions of each model can be
found in Figure 23 of Appendix L.

Finding. In the task of identifying the authors
of code snippets, natural language comments
are an important feature.

NL | Macro Fl1 Accuracy
C [0) 42.51 43.23

X 27.65 (| 14.86%p) 30.03 (| 13.20%p)
Cit @) 39.04 41.63

X 30.35 (| 8.69%p) 31.58 (| 10.05%p)
Java [e) 36.83 37.94

X 27.63 (] 9.20%p) 32.15 (| 5.79%p)
Python [e) 34.08 36.86

X 24.35 (] 9.73%p) 27.00 (| 9.86%p)
Overall (@) 38.11 3991

X 27.49 (| 10.62%p) 30.19 (| 9.72%p)

Table 5: We analyze the impact of natural language
comments in the task of identifying the authors of code
snippets. We experiment using CodeBERT, which ex-
hibits the best performance.

7 Conclusion

We have addressed critical challenges associated
with the deployment of LLMs in code generation
by introducing the DECo benchmark—a pioneer-
ing effort for detecting code snippets generated by
LLMs. The DeCo benchmark, incorporating 246K
code snippets across four programming languages
and generated by both commercial and open-source
LLMs, provides a foundation for this research. We
propose two tasks based on the DECo dataset: 1)
Detection of LLM-generated code snippets; and 2)
Classification of the authors who wrote the code
snippets. We evaluate 13 detection methods, includ-
ing SOTA methods, on the DECo dataset. We find
that SOTA methods for detecting LLM-generated
texts struggle with detecting LLM-generated code
snippets. Furthermore, we analyze the linguistic
features of the DECo dataset from the perspectives
of density and average log-perplexity. We discover
distinct differences between code snippets written
by humans and those generated by LLMs. We hope
our findings paves the way for more secure and
trustworthy use of Al in coding applications.

Limitations

We propose the first benchmark for detecting LLM-
generated code snippets, and perform various anal-
yses, including the evaluation of different detection
methods and linguistic analysis. However, there are
some limitations to our research.

Low-resource Programming Languages We
cover four major programming languages: C, C++,
Java, and Python. However, we do not include
low-resource programming languages such as Ju-
lia, Rust, and Lua in the DECo dataset. Detecting
LLM-generated code snippets in low-resource pro-
gramming languages is also important, and we leave
this as future work.

Various Sizes of LLMs We construct the DECo
dataset using commercial LLMs such as ChatGPT
and Gemini-Pro, whose exact model sizes are un-
known, along with open-source LLMs like Wiz-
ardCoder and DeepSeek-Coder with a parameter
size of 33B. However, recently, LLMs of various
sizes (ranging from 2B to 70B) have been released.
The code generation capabilities are expected to
differ depending on the model size of LLMs, and
thus, the characteristics of the generated code snip-
pets are also expected to vary. Analyzing the code
snippets generated by LLMs of different sizes is an
important avenue for future research.

Detection Methods We experiment with various de-
tection methods on the DeECo dataset, and discover
that even SOTA methods struggle to detect LLM-
generated code snippets. We confirm that even De-
tectGPT4Code, a method specifically designed for
detecting LLM-generated code snippets, does not
achieve satisfactory performance. We emphasize
the necessity for active research on methodologies
to detect LLM-generated code snippets.

Ethical Considerations

We discuss some ethical concerns and broader
impacts of our research.

Licenses The code snippets comprising the DECo
dataset adhere to one of the licenses: Apache, BSD,
or MIT.

Personal Information We anonymize the data
by removing email addresses, URLs, and phone
numbers included in the comments of the code
snippets comprising the DECo dataset.

Broader Impact Due to potential security vul-
nerabilities, copyright issues, and concerns about
academic cheating in code snippets generated by
LLMs, there is a need to develop systems to detect

these code snippets. The DeCo dataset can be
utilized to develop models for this purpose.

References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Meérouane Debbah, Etienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, et al. 2023. The Fal-
con Series of Open Language Models. arXiv preprint
arXiv:2311.16867.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT:
A Pre-trained Model for Programming and Natural
Languages. In Findings of the Association for Com-
putational Linguistics: EMNLP.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical Detection and Visual-
ization of Generated Text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How Close is ChatGPT to Human Ex-
perts? Comparison Corpus, Evaluation, and Detec-
tion. arXiv preprint arXiv:2301.07597.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y Wu,
YK Li, et al. 2024. DeepSeek-Coder: When the Large
Language Model Meets Programming—The Rise of
Code Intelligence. arXiv preprint arXiv:2401.14196.

Abhimanyu Hans, Avi Schwarzschild, Valeriia
Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein.
2024. Spotting LLMs With Binoculars: Zero-Shot
Detection of Machine-Generated Text. arXiv preprint
arXiv:2401.12070.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. MGTBench: Benchmarking
Machine-Generated Text Detection. arXiv preprint
arXiv:2303.14822.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan
Katz, Ian Miers, and Tom Goldstein. 2023. A Water-
mark for Large Language Models. In International
Conference on Machine Learning.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
Distortion-free Watermarks for Language Models.
arXiv preprint arXiv:2307.15593.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023. Who Wrote this Code? Watermarking for
Code Generation. arXiv preprint arXiv:2305.15060.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A robustly optimized BERT pretraining approach.
arXiv preprint.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization. In Proceedings of the
9th International Conference on Learning Represen-
tations.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:
Empowering Code Large Language Models with
Evol-Instruct. arXiv preprint arXiv:2306.08568.

Niloofar Mireshghallah, Justus Mattern, Sicun Gao,
Reza Shokri, and Taylor Berg-Kirkpatrick. 2024.
Smaller Language Models are Better Zero-shot
Machine-Generated Text Detectors. In Proceedings
of the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
2: Short Papers).

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
DetectGPT: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning.

Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio,
Riccardo Rubei, Davide Di Ruscio, and Massimiliano
Di Penta. 2023. Is this Snippet Written by Chatgpt? an
Empirical Study with a CodeBERT-based Classifier.
arXiv preprint arXiv:2307.09381.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Bren-
dan Dolan-Gavitt, and Ramesh Karri. 2022. Asleep
at the Keyboard? Assessing the Security of Github
Copilot’s Code Contributions. In 2022 IEEE Sympo-
sium on Security and Privacy (SP).

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code Llama: Open Foundation Models for Code.
arXiv preprint arXiv:2308.12950.

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh
Karri, Siddharth Garg, and Brendan Dolan-Gavitt.
2023. Lost at C: A User Study on the Security Impli-
cations of Large Language Model Code Assistants. In
32nd USENIX Security Symposium (USENIX Security
23).

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al.
2019. Release Strategies and the Social Impacts of
Language Models. arXiv preprint arXiv:1908.09203.

Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov.
2023a. DetectLLM: Leveraging Log Rank Informa-
tion for Zero-Shot Detection of Machine-Generated
Text. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023.

10

Zhenpeng Su, Xing Wu, Wei Zhou, Guangyuan Ma, and
Songlin Hu. 2023b. HC3 Plus: A Semantic-Invariant
Human ChatGPT Comparison Corpus. arXiv preprint
arXiv:2309.02731.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research.

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li.
2023a. Evaluating AIGC Detectors on Code Content.
arXiv preprint arXiv:2304.05193.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023b. CodeT5+: Open Code
Large Language Models for Code Understanding and
Generation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-

ing.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar
Habash, Iryna Gurevych, and Preslav Nakov. 2024.
M4: Multi-generator, Multi-domain, and Multi-
lingual Black-Box Machine-Generated Text Detection.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers).

Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda
Petzold, William Yang Wang, and Wei Cheng. 2023.
Zero-shot Detection of Machine-Generated Codes.
arXiv preprint arXiv:2310.05103.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. 2022. Large Language Mod-
els Meet NL2Code: A Survey. arXiv preprint
arXiv:2212.09420.

Biru Zhu, Lifan Yuan, Ganqu Cui, Yangyi Chen, Chong
Fu, Bingxiang He, Yangdong Deng, Zhiyuan Liu,
Maosong Sun, and Ming Gu. 2023. Beat LLMs at
Their Own Game: Zero-Shot LLM-Generated Text
Detection via Querying ChatGPT. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing.

A Prompt for Code Generation via LL.Ms

Figure 1 represents the prompt used for code generation with LLMs. We provide human-written code
snippets ((CODEY]) along with their programming languages ([LANG]), and instruct LLMs to modify the
code snippets while maintaining their functionality and programming language.

I will give you a code snippet written in [LANG].

Please modify this code snippet while ensuring that the functionality
of the given code snippet is preserved.

Please make some changes to the code to avoid it being too similar to
the original.

The revised code snippet must be written in the same programming
language as the original.

Do not include any explanations about how you modified the code
snippet or add any arbitrary comments to the code snippet.

After modifying, prepend a prefix at the beginning of the revised
code snippet indicating its programming language.

For example, if the revised code snippet is written in [LANG], add
""" [LANG] "~ at the start.

The following code snippet is the one you need to modify.

[CODE]

Figure 1: Prompt for code generation using LLMs. We utilize LLMs to generate code snippets by incorporating
human-written code snippets ((CODE]) along with their respective programming languages ([LANG]) into this
prompt template.

B Characteristics of LLMs during Code Generation

We describe several characteristics exhibited by LLMs during the code generation process:

* LLMs tend to confuse the C and C++ languages. We provide LLMs with human-written code
snippets as input and instruct them to maintain the programming language of the given code snippet.
However, LLMs sometimes confuse between the C and C++ languages. For example, even when the
provided human-written code snippet is explicitly stated to be written in C, LLMs may generate a
code snippet written in C++ instead.

» LLMs tend to generate short-length code snippets. As seen in Tables 7 and 8, code snippets generated
by LLMs are generally shorter than those written by humans.

* LLM:s tend to remove documentation located at the top of code snippets when modifying human-
written code snippets.

* Among LLMs, ChatGPT tends to primarily modify variable names and function names when
modifying human-written code snippets compared to other LLMs.

Figures 2 and 3 respectively illustrate examples of a code snippet written by a human and a code snippet
written by ChatGPT.

11

gdImagePtr im;
FILE *in, *out;
X, y, w, h;

if (argc !'= 7) {
fprintf (stderr,
"Usage: ¢ rttopng filename.gd filename.png x y w h\n");
exit (1);

fopen (argvI[l],
(fin) |

fprintf (stderr, "Input file does not exist!\n");
exit

atoi
atoi
atoi
= atoi

Figure 2: Example from the DECo-Binary dataset. Human-written C code snippet.

#ifdef
finclude
#endif

v

'config.h"

#include <stdio.h>
#include tdlib.h>
#include "gd.h"

main (argc, **argv)

gdImagePtr img;
FILE *input, *output;
startX, startY, width, height;

if (argc !'= 7) {
fprintf (stderr,
"Usage: convertToPng input.gd output.png startX startY width height\n");
exit (1);
}
input = fopen (argv[l], "rb");
if (!input) {
fprintf (stderr, "Error: Input file is missing!\n");
exit (1);
}

startX = atoi (argv
startY¥ = atoi (argv
width = atoi (argv|
height = atoi (argv

Figure 3: Example from the DECo-Binary dataset. ChatGPT-generated C code snippet.

C Types of Errors that Occur During Code Generation Using LLMs

We report on some types of errors that occur when generating code snippets using LLMs. We report
the types of errors in descending order of frequency. Examples of each error type can be found in
Figures 4, 5, 6, 7, and 8.

Case 1) Missing Code Snippets: This refers to cases where LLMs output only natural language descriptions
without code snippets. LLMs produce summaries describing the functionality of human-written code
snippets.

Case 2) Code Snippets Written in Different Programming Languages: This occurs when LLMs output
code snippets written in a different programming language from human-written code snippets. Such cases
are most common when human-written code snippets are written in C or C++.

Case 3) Miss Use of Quotation Marks: LLMs often omit closing quotation marks when writing
comments. This can result in error code snippets. Such occurrences are more common when using
open-source LLMs for code generation.

Case 4) Miss Use of Parentheses: LL.Ms often miss closing parentheses. This occurs more frequently
when using open-source LL.Ms as well.

Case 5) Repetitive Output of Meaningless Characters: Occasionally, LLMs may output repetitive
meaningless characters when generating code snippets. These cases are very rare, and commercial LLMs
rarely exhibit this behavior.

In the given C code snippet, it is unclear what modifications are needed. However, if
you want to add error checking or some additional functionality, it would be helpful to
know specifically what these changes would be.

Figure 5: Error types occurring during code snippet generation by LLMs. Case 2) Code Snippets Written in Different
Programming Languages.

Figure 6: Error types occurring during code snippet generation by LLMs. Case 3) Miss Use of Quotation Marks.

13

HITE, count) {
count, cudaMemcpyD

free (in);
free (out) ;
return -1;

Figure 7: Error types occurring during code snippet generation by LLMs. Case 4) Miss Use of Parentheses.

GG PPPPTTTTSSSSSOOOOITIITITIINNNN

oolean isInterleave
if(sl.length ()
if (sl.length (4 . e ~eturn isInterl
boolean|] =) ngth () + 1];

length

sl.charA

Figure 8: Error types occurring during code snippet generation by LLMs. Case 5) Repetitive Output of Meaningless
Characters.

14

D Data Filtering and Cleaning

Regular Expressions for Removing the PL Prefix

Figure 9 displays the regular expressions used to remove the prefixes indicating the programming
languages of code snippets. LLMs often prepend a prefix indicating the programming language of the
code snippet, such as cpp at the beginning of the code snippet. Such prefixes could introduce bias into the
detection model, leading it to classify code snippets with the prefix as being authored by the LLM. Thus,
we remove such prefixes using regular expressions.

\\n(.*?) |C\\n(.*?)"', | \n|C\n"'],

\n | \\ \+\+\n | C\\+\\+\\n",

\
\n(.?) | \n (.2) [c\+\+\n (.?) [C\+\+\n (.?
NN NNE [CNNENN+ \\ \ N\ \ \\H\\NH\\n | C\\N+\\+\\n"],

’ \

\n | \\n | \n', 5 \n(.*?) | \\n (.*?)
\n | \n |

\n | A\ \n (.2) "',

Figure 9: Regular expressions for removing the prefixes indicating the programming languages of code snippets.

Regular Expressions for Data Anonymization
Figure 10 displays the regular expressions for data anonymization. We use regular expressions to
remove URLSs, phone numbers, and email addresses included in the comments of code snippets.

\/\/ ["\z\n\t\f\v
, '"[URL]")

1{3}[) 121 .17 3 \.]? 1{4,6} HONE NUMBER] ')
1+ Wi 2,} ' [EMAIL] ')

Figure 10: Regular expressions used for data anonymization by removing URL addresses, phone numbers, and
email addresses.

15

E Examples of DECo-BiNnary Benchmark

Figures 11 to 18 present examples of data from the DECo-BiNnary benchmark. Sections marked with a
red box represent areas removed by the LLM during the modification of the human-written code snippet.
Those marked with a pink box indicate additions made by the LLM. Meanwhile, the areas highlighted
with a yellow box show where the LLM has modified the human-written code snippet.

@

fmax
fmin
X >=071.0:0.0

(*array 3d) [n] [n];

Figure 12: Example from the DECo-Binary dataset. C code snippet generated by DeepSeek-Coder.

16

. height; j++) {

aitKey (0) ;
destroyAllWindows () ;

return 0;

Figure 13: Example from the DECo-BiNARY dataset. C++ code snippet written by human.

imgWidth = i1nputImage.rc
imgHeight = inputImage.

outputImage.a
) inputImage.a

::destroyAllWindows () ;

return 0;

Figure 14: Example from the DECo-BiNaRrY dataset. C++ code snippet generated by DeepSeek-Coder.

17

ole x;
le vy

ible
ole h:

Position (double x,

= Xy

ition position) {
= position.x;
= position.y;
= position.w;
position.h;

Figure 15: Example from the DECo-BiNARrY dataset. Java code snippet generated by human.

Figure 16: Example from the DECo-BINARY dataset. Java code snippet generated by Gemini-Pro.

18

if arr[mid]

find index
find ind

find:'
find index
find inde

Figure 17: Example from the DECo-BiNARrY dataset. Python code snippet written by human.

19

tart = mid

end = mid

find index
find index

Figure 18: Example from the DECo-BiNary dataset. Python code snippet generated by WizardCoder.

20

F Similarity Between Code Snippets Written by Various Generators

We analyze the similarity between code snippets written by various authors using Stanford Moss, a tool used
for measuring software similarity, which is also utilized in source code plagiarism detection. We randomly
sample 400 code snippets from the DECo-MutLrt1 dataset (100 code snippets per programming language)
and utilize them for analysis. Figure 19 presents the results of similarity analysis using Moss. We can
observe that code snippets generated by commercial LLMs (ChatGPT and Gemini-Pro) are more similar
to code snippets written by humans compared to those generated by open-source LLMs (WizardCoder
and DeepSeek-Coder). Due to the user-friendly interfaces such as web Uls and APIs, many users tend
to use commercial LLMs more than open-source LLMs. Therefore, the analysis results showing that
commercial LLMs generate code snippets more similar to human-written ones than open-source LLMs
further underscore the importance of the task of detecting LLM-generated code snippets. When comparing
between LLMs, we can observe that the similarity between code snippets generated by ChatGPT and
Gemini-Pro is the highest.

Finding. Code snippets generated by commercial LLMs are more similar to human-written code
snippets than those generated by open-source LLM:s.

80

Human- Human- 90
70
80
DeekSeek-Coder- 32.40 DeekSeek-Coder- 50.90
60
i 70
WizardCoder- 38.70 20.80 50 WizardCoder- 53.40 40.30
-60
Gemini-Pro- 42.80 23.45 21.90 -40 Gemini-Pro{WEfPAtl 39.40 42.90
30 -50
ChatGPT {0l 34.45 34.20 36.70 ChatGPT JELREM 44.90 47.30
c Ja = o s pa o o 5 o -40
E 2 2 3 3 E 2 2 3 3
E] Q Q < © 3 Q) £ ©
I %‘) ° IS 6 I ™ ° € 6
© o] [] ©]
g & 6 g & 6
x = hé =
[} (]
[[
[a} a
(@cC (b) C++
90
Human- Human-
80 70
DeekSeek-Coder- DeekSeek-Coder- 51.90
70
60
WizardCoder - 53.10 60 WizardCoder- 47.55 38.80
-50
Gemini-Pro 33.25 37.65 -50 Gemini-Pro {ePAV8 33.55 33.10
| -40
ChatGPT JElPLl 43.70 46.55 60.40 40 ChatGPT {AKEN 42.10 38.50 54.25
s 5 05 o b c 5 5 o b
E 2 8 3 8 E 2 % 3 &
Z Q 9] £ © 2 Q o £ ©
¥ e € S ~ ® £ 5
© o] [©]
3 N U] 2 N 1G]
x = hé =
[) Q
[(]
[a} a
(c) Java (d) Python

Figure 19: The similarity between code snippets written by various authors, measured using Stanford Moss, a tool
for measuring software similarity. The analysis results show that ChatGPT writes code snippets most similarly to
humans, followed by Gemini-Pro. Both of these LLMs are commercial LLMs.

21

G Details on Binary Detection Methods

The details on binary detection methods for task 1 are as follows.
Metric-based Detection

* Log-Likelihood: This approach uses a language model to calculate the log probability of each word
in a given text and then takes the average. If the average log-probability value is high, the given text
is considered to be LLM-generated.

* Rank: By evaluating the absolute rank of each word within a text based on its preceding context, we
can calculate a score for the text by averaging these rank values. A lower score suggests the text is
more likely to have been generated by LLMs.

* Log-Rank: This approach applies logarithmic function to the rank value of each word in the given
text.

* Entropy: This approach takes the average entropy value of each word, given its preceding context.
Texts generate by LLMs tend to exhibit lower entropy scores.

* LRR (Log-Likelihood Log-Rank Ratio): This approach utilizes both log-likelihood and log-rank.

* Binoculars: This approach utilizes two language models to calculate cross-perplexity, and based
on this, it detects LLM-generated text. Binoculars utilizes the Falcon 7B and Falcon-Instruct
7B (Almazrouei et al., 2023) models to compute cross-perplexity.

Perturbation-based Detection

* DetectGPT: DetectGPT evaluates how the model’s log probability function responds to slight
modifications made to the original text. The underlying idea is that text produced by an LLM typically
resides at a local optimum of the model’s log probability function. Consequently, any small changes
to text generated by the LLM are likely to result in a decreased log probability compared to the
original text.

* NPR (Normalized Log-Rank Perturbation): This approach is based on the observation that when
slight perturbations are applied, the log-rank score of text written by LLMs increases more than that
of text written by humans.

* DetectGPT4Code: DetectGPT4Code is a modified version of DetectGPT that uses models specialized
for code to apply perturbations to a given code snippet and to calculate the log probability of the code
snippet.

Paraphrasing-based Detection

BARTScore-CNN is based on the assumption that ChatGPT makes fewer modifications to text written
by LLMs than to text written by humans. It involves editing the given text with ChatGPT and then
calculating the similarity to the original text using BARTScore. The calculated similarity score is used to
detect LLM-generated text.

22

H Experimental Results of Task 2

Table 6 represents the experimental results of task 2 (Code Generator Classification). We report the
average performance and standard deviation of experiments across five different seeds. Overall, among
the three classification models, CodeBERT exhibits the most superior performance.

OpenAl Detector ChatGPT Detector CodeBERT
Macro F1 =~ Accuracy | Macro F1 ~ Accuracy | Macro F1 Accuracy
C 36.53.0.73 37.18.10.99 | 2691060 32.08:1.12 | 42.511160 43.23:1.73
C++ 34'3510.64 36.40i()_()4 31.98i0_9g 35.1711_10 39.04i1_3g 41-6310.88
Java 35.94&1.23 38. 10¢0.19 36.64&0.69 37.76i0,59 36.83i1.16 37-9410.52
Python 35-38¢1.10 39.06i0_37 28.45i1_51 34.5710_43 34-08¢0.56 36.86i0_57
Overall 35-5510.92 37.69i()_55 30.994_,1_45 34.8910_82 38.1 lil_lg 39.914_,0_92

Table 6: Task2) Code Generator Classification Performance. We report the average performance and standard
deviation of experiments using five different seeds.

23

I Confusion Matrices for the Experimental Results of Task 2

Figure 20 displays the confusion matrices of model predictions for the test split of the DECo-MuLtI
dataset (overall results for four programming languages). In all three classification models, predicting the
generator of the given code snippet as DeepSeek-Coder is the most common scenario. We observe that
CodeBERT shows a significantly more balanced prediction across each class compared to the other two

classification models.

Finding. In the task of predicting the author of a given code snippet, CodeBERT provides more
balanced predictions than the OpenAl Detector and ChatGPT Detector.

0.6
Human {10%58 0.05 0.12 0.08 Human 0.16 0.13 0.09 0.22 05
0.5
ChatGPT-3.51 0.19 0.17 0.09 ChatGPT-3.5{0.26 0.22 0.20 0.10 0.22 0.4
o 0.4 o
Q fe)
< Gemini-Pro{ 0.04 0.030.11 03 < Gemini-Pro { 0.04 o.o70.13 0.20 0.3
> : 3
= =
WizardCoder4 0.13 0.06 0.21 0.17 0.2 WizardCoder4 0.14 0.16 0.22 0.17 0.2
DeepSeek-Coder10.06 0.06 0.17 0.10 0.1 DeepSeek-Coder10.10 0.17 0.19 0.12 0.1
& 2 L ¢ A
S &L S S Sl <
RN F S ¢ XK S ¢
X & ,/@‘ & > 12 .¢";\ &
o) N © o N o
R K
i o
Predicted label Predicted label
(a) OpenAl Detector (b) ChatGPT Detector
Human 0.4
ChatGPT-3.5 1
© 0.3
s
°© Gemini-Pro 0.06
2 0.2
WizardCoder 0.10
DeepSeek-Coder{ 0.04 0.1

Predicted label
(c) CodeBERT
Figure 20: Confusion matrices of model predictions for the test split of the DECo-MuLtr dataset. These provide

overall results for the four programming languages. CodeBERT makes much more balanced predictions compared
to the other two models.

24

J Embedding Analysis

Figures 21, and 22 respectively visualize the embeddings of code snippets from the DECo-MutLT1 dataset
for each programming language. We visualize the embeddings obtained using CodelLlama 7B with
t-SNE (Van der Maaten and Hinton, 2008). For all four programming languages, embeddings of code
snippets written by humans and LLMs are clearly distinguishable, but there is almost no distinction
between embeddings of code snippets written by LLMs. This demonstrates the difficulty of predicting
which LLM authored a given code snippet, underscoring the need for research into effective classification
models for this task.

Finding. There is a clear distinction between the embeddings of human-written code snippets and
those written by LLMs, but there is little distinction among the embeddings of code snippets written
by different LLMs.

25

© Human o Gemini-Pro o DeepSeek-Coder
o ChatGPT e WizardCoder

—60 —40 —20 0 20 40 60

(b) C++

Figure 21: Analysis of embeddings for code snippets from the DECo-MutLrtr dataset. We visualize embeddings
obtained using the CodeLlama 7B model. While embeddings are clearly distinguishable between humans and LLMs,
there is little distinction among LLMs.

26

© Human o Gemini-Pro o DeepSeek-Coder
o ChatGPT e WizardCoder

100 -

75 1

50 -

25 1

_25 4

_50 4

_75 4

—100

100 —-75 -50 -25 O 25 50 75 100

100 -

75 1

50 A

25 A

_25 4

_50 4

_75 4

—100

(b) Python

Figure 22: Analysis of embeddings for code snippets from the DECo-MuLrtr dataset. We visualize embeddings
obtained using the CodeLlama 7B model. While embeddings are clearly distinguishable between humans and LLMs,
there is little distinction among LLMs.

27

K Linguistic Analysis

Tables 7 and 8 respectively show the results of linguistic analysis for the DECo-Mutrtr dataset and the
results of linguistic analysis for the DECo-MuLtr dataset after removing natural language comments.
Table 8 reveals that excluding the case of Java, human-written code snippets have the lowest density and
the lowest average log-perplexity across all languages.

Finding. Regardless of the presence of natural language comments, code snippets authored by
humans generally exhibit lower density values and lower average log-perplexity values compared to
code snippets authored by LLMs.

C Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 21,003 19,394 16,924 18,125 17,188
Avg. Length 245.66 184.63 163.89 175.36 155.43
Density 18.70 22.98 22.59 22.61 24.19
Avg. Log-Perplexity 0.49 0.51 0.50 0.54 0.55
C++ Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 18,056 16,980 15,925 16,361 14,841
Avg. Length 200.60 163.05 155.22 156.30 136.81
Density 23.37 27.04 26.64 27.18 28.17
Avg. Log-Perplexity 0.48 0.55 0.51 0.53 0.54
Java Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 62,998 59,817 57,077 54,332 50,465
Avg. Length 221.68 173.96 168.37 159.59 137.92
Density 19.02 23.01 22.69 22.78 24.49
Avg. Log-Perplexity 0.42 0.45 0.44 0.47 0.47
Python Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 98,985 91,574 91,162 87,627 81,044
Avg. Length 23412 175.17 181.14 176.15 148.77
Density 21.84 27.01 26.00 25.70 28.15
Avg. Log-Perplexity 0.66 0.64 0.63 0.68 0.65

Table 7: Linguistic analysis on the DECo-MuLrti dataset. We can see that, overall, code snippets written by humans
have lower density values and smaller average log-perplexity values compared to those written by LLMs.

28

C Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 15,215 16,193 14,492 14,651 14,224
Avg. Length 28795 285.15 269.91 25791 239.67
Density 11.56 12.42 11.74 12.43 12.98
Avg. Log-Perplexity 0.38 0.40 0.40 0.41 0.43
C++ Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 14,725 15,201 14,117 14,131 13,487
Avg. Length 285.19 139.10 253.71 257.48 240.78
Density 13.41 28.38 14.45 14.25 14.54
Avg. Log-Perplexity 0.38 0.51 0.39 0.39 0.40
Java Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 53,513 55,362 52,468 49,592 48,638
Avg. Length 147.68 145.19 144.92 136.74 131.39
Density 24.25 25.52 24.23 24.27 24.77
Avg. Log-Perplexity 0.42 0.46 0.44 0.47 0.47
Python Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 81,587 83,115 80,915 76,989 75,772
Avg. Length 147.45 142.30 140.04 132.77 130.84
Density 28.59 30.18 29.85 29.96 29.92
Avg. Log-Perplexity ~ 0.59 0.62 0.60 0.63 0.63

Table 8: Linguistic analysis on the DECo-MuLtt dataset after removing natural language comments. We can see
that, overall, code snippets written by humans have lower density values and smaller average log-perplexity values

compared to those written by LLMs.

29

L Impact of Natural Language Comments

Table 9 presents the results of the analysis on the impact of natural language comments in predicting
the author of a given code snippet. Both the OpenAl Detector and the ChatGPT Detector experience
significant performance degradation when natural language comments are removed. This indicates that
natural language comments are an important feature in classifying the author of a code snippet. Figure 23
displays the confusion matrices of model predictions for the test split of the DECo-MuLtr dataset after
removing natural language comments (overall results for four programming languages).

Finding. In the task of predicting the author of a given code snippet, natural language comments are
an important feature.

NL OpenAl Detector ChatGPT Detector
Macro F1 Accuracy Macro F1 Accuracy

C O | 36.53 37.18 26.91 32.08
X | 27.79 (| 8.74%p) 29.78 (| 7.40%p) | 18.62 (| 8.29%p) 27.06 (| 5.02%p)

Cirt O | 3435 36.40 31.98 35.17
X [24.64(19.71%p) 28.40 (] 8.00%p) | 19.27 (| 12.71%p) 25.22 (| 9.95%p)

Java O | 3594 38.10 36.64 37.76
X | 31.77 (L 4.17%p) 33.86 (] 4.24%p) | 28.06 (| 8.58%p) 31.86 (| 5.90%p)

Python O | 3538 39.06 28.45 34.57
X | 21.66 (| 13.72%p) 27.02 (| 12.04%p) | 21.17 (| 7.28%p) 27.54 (| 7.03%p)

Overall O | 35.55 37.68 30.99 34.89
X | 26.46 (| 9.09%p) 29.76 (| 7.92%p) | 21.78 (| 9.21%p) 27.92 (| 6.97%p)

Table 9: We analyze the impact of natural language comments in the task of identifying the authors of code snippets.
We report the average performance of experiments conducted with five different seeds.

30

Human {107 MOkt 0.35 Human 1 0.20 0.04 0.23
0.30 04
ChatGPT-3.5 4 & % HURet] ’ ChatGPT-3.510.18 0.05 0.19
% 0.25 % 0.3
© Gemini-Pro 0.26 0 g °© Gemini-Pro 1 0.07 0.08 0.18
=] 0.20 S
= = 0.2
WizardCoder 1 ¢/ 71 NORchE 0.15 WizardCoder 1 0.17 0.07 0.23
DeepSeek-Coder { (h2h (0 0.10 DeepSeek-Coder { 0.19 [0ferd 0.11 0.04 01
6 O & & N & &
0(“% Q&?’ .(‘\\9 006 oob \;\(‘@ (’oe’ o
RS 6"0 0?}(\‘ 4:5\6 e,?\'{_ RS &0 S zé{_'
WS » 2
o) N R C R
Q
Predicted label Predicted label
(a) OpenAl Detector (b) ChatGPT Detector
Human 0.4
_ ChatGPT-3.5 0.3
[]
®
° Gemini-Pro
2 0.2
WizardCoder
DeepSeek-Coder 0.1

Predicted label

(c) CodeBERT

Figure 23: Confusion matrices of model predictions for the test split of the DECo-MurTr dataset after removing
natural language comments. These provide overall results for the four programming languages.

31

	Introduction
	Related Work
	Datasets for Detecting Machine-Generated Text
	Methods for Detecting Machine-Generated Text
	Methods for Detecting Machine-Generated Code Snippet

	DeCo Dataset
	Human-Written Code Snippets Collection
	LLM-Generated Code Snippets Construction
	Data Filtering and Cleaning
	Data Annotation

	Experimental Settings
	Task Definition
	Binary Detection Methods for Task 1
	Classification Models for Task 2
	Evaluation Metrics
	Implementation Details

	Experimental Results
	LLM-Generated Code Detection
	Code Generator Classification

	Analysis
	Linguistic Analysis
	Impact of Natural Language Comments

	Conclusion
	Prompt for Code Generation via LLMs
	Characteristics of LLMs during Code Generation
	Types of Errors that Occur During Code Generation Using LLMs
	Data Filtering and Cleaning
	Examples of DeCo-Binary Benchmark
	Similarity Between Code Snippets Written by Various Generators
	Details on Binary Detection Methods
	Experimental Results of Task 2
	Confusion Matrices for the Experimental Results of Task 2
	Embedding Analysis
	Linguistic Analysis
	Impact of Natural Language Comments

