
Gotta Catch’em All!: Multi-Generator and Multi-Lingual Benchmark for
Detecting LLM-Generated Code Snippets

Anonymous ACL submission

Abstract

The advent of commercial services based on001
large language models (LLMs), such as Chat-002
GPT and Copilot, has significantly enhanced003
software development productivity. Despite004
their widespread adoption and benefits, con-005
cerns regarding the security vulnerabilities of006
LLM-generated code snippets, potential copy-007
right and licensing infringements, and academic008
cheating. Recognizing the importance of detect-009
ing LLM-generated code snippets, we introduce010
the first benchmark, DeCo (Detecting Code011
generated by LLMs), aimed at addressing these012
challenges. DeCo comprises a dataset of 246K013
samples across four programming languages:014
C, C++, Java, and Python, generated by two015
commercial LLMs, ChatGPT and Gemini-Pro,016
and two open-source, code-specialized LLMs,017
WizardCoder and DeepSeek-Coder. We for-018
mulate two key tasks based on the DeCo: (1)019
binary detection to discern whether a given code020
snippet was written by a human or an LLM, and021
(2) multi-class detection to identify the specific022
generator among humans and the four LLMs.023
We conduct extensive experiments evaluating024
13 detection methods on the DeCo dataset.025

1 Introduction026

The proliferation of LLMs has ushered in a new era027

of technological advancements, particularly in the028

realms of generating natural language texts and code029

snippets (Zan et al., 2022). Commercial services030

such as ChatGPT and Copilot, which are based on031

LLMs, have become essential tools for improving032

software development productivity and aiding in the033

learning process for students studying programming.034

Despite their widespread adoption and numerous035

benefits, these advancements also come with their036

own set of challenges. As the utility of LLMs con-037

tinues to expand, so do concerns surrounding the038

security vulnerabilities (Pearce et al., 2022; San-039

doval et al., 2023) inherent in LLM-generated code040

snippets. Issues such as potential copyright1 and 041

licensing2 infringements have emerged as pressing 042

challenges within the community. Additionally, 043

due to the risk of students cheating on exams or 044

committing acts of plagiarism in assignments using 045

ChatGPT, some universities have restricted the use 046

of ChatGPT3. These concerns highlight the urgent 047

need for mechanisms capable of detecting LLM- 048

generated code snippets (Wang et al., 2023a; Lee 049

et al., 2023; Nguyen et al., 2023; Yang et al., 2023). 050

In response to these growing concerns, we 051

present DeCo, a pioneering benchmark specifically 052

designed to address the challenges of identifying 053

LLM-generated code snippets. DeCo is a bench- 054

mark consisting of 246K code snippets written 055

in four major programming languages: C, C++, 056

Java, and Python. We construct DeCo using two 057

commercial LLMs, ChatGPT and Gemini-Pro, and 058

two code-specialized open-source LLMs, Wizard- 059

Coder (Luo et al., 2023) and DeepSeek-Coder (Guo 060

et al., 2024). First, we collect entirely human- 061

written code snippets by gathering software projects 062

from Github repositories created before the emer- 063

gence of code-generating LLMs. Then, based on 064

the collected human-written code snippets, we gen- 065

erate LLM-written code snippets using four LLMs. 066

We formulate two key tasks based on the DeCo 067

benchmark: (1) LLM-generated code detection. 068

This task aims to discern whether a given code 069

snippet was written by a human or LLM, and (2) 070

Identifying the authors of code snippets. This 071

task seeks to identify the specific generator among 072

humans and the four LLMs (i.e., authorship attribu- 073

tion). 074

We conduct extensive experiments evaluating 075

1https://felixreda.eu/2021/07/
github-copilot-is-not-infringing-your-copyright/

2https://www.techtarget.com/
searchsoftwarequality/news/252526359/
Developers-warned-GitHub-Copilot-code-may-be-licensed

3https://www.universityworldnews.com/post.
php?story=20230222132357841

1

https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.universityworldnews.com/post.php?story=20230222132357841
https://www.universityworldnews.com/post.php?story=20230222132357841

13 detection methods on DeCo benchmark. Ex-076

perimental results demonstrate that state-of-the-art077

methods struggle to distinguish between human-078

written code snippets and LLM-generated code079

snippets. In addition, we conduct the following080

analyses: (1) an examination of linguistic features081

in code snippets written by humans and code snip-082

pets generated by LLM, and (2) an exploration of083

the impact of natural language comments in the task084

of identifying the authors of code snippets. Our085

contributions can be summarized as follows:086

• We construct the first benchmark, DeCo,087

for LLM-generated code snippets detection.088

DeCo consists of 246K samples across four089

programming languages, generated using four090

distinct LLMs.091

• Based on the DeCo benchmark, we formulate092

two tasks: (1) LLM-generated code detec-093

tion, and (2) Identifying the authors of code094

snippets.095

• We conduct extensive experiments evaluating096

13 detection methods including state-of-the-art097

methods on the DeCo benchmark.098

• Through analysis, we identify distinct linguis-099

tic features between human-written code snip-100

pets and those generated by LLMs.101

2 Related Work102

2.1 Datasets for Detecting103

Machine-Generated Text104

Guo et al. (2023) constructed the HC3 dataset,105

which consists of 40K questions and their answers106

from human experts and ChatGPT. The HC3 dataset107

is composed of both English and Chinese, and108

its questions cover open-domain, financial, med-109

ical, and psychological areas. Su et al. (2023b)110

broadened the scope of the HC3 dataset, originally111

centered on question-answering, by developing the112

HC3 Plus dataset, which incorporates data suited113

for summarization, translation, and paraphrasing114

tasks. Wang et al. (2024) constructed the M4 dataset115

that consists of multi-generator, multi-domain, and116

multi-lingual corpus.117

2.2 Methods for Detecting118

Machine-Generated Text119

Watermarking Methods Watermarking meth-120

ods (Kirchenbauer et al., 2023; Kuditipudi et al.,121

2023) enable the effective detection of machine- 122

generated text by injecting detectable patterns into 123

the generated text. These methods require direct 124

intervention in the decoding process of the language 125

model to leave a watermark in the generated text. 126

White-Box Zero-shot Detection Methods White- 127

box zero-shot detection methods detect machine- 128

generated text based on the log probability (Mitchell 129

et al., 2023) or perplexity (Hans et al., 2024) cal- 130

culated from the given text, without any additional 131

training process. White-box detection methods 132

require full or partial access to the generator. Re- 133

cently, Mireshghallah et al. (2024) reported that 134

using a surrogate model as a detection can achieve 135

satisfactory detection performance. 136

Black-Box Zero-shot Detection Methods Black- 137

box zero-shot detection methods only require the tar- 138

get text. Zhu et al. (2023) proposed a paraphrasing- 139

based method using ChatGPT. Based on the hy- 140

pothesis that machine-generated text aligns better 141

with the generation logic and statistical patterns 142

learned by ChatGPT than human-written text, they 143

proposed a method to identify the original text as 144

machine-generated if the paraphrased text is similar 145

to the original text. 146

2.3 Methods for Detecting 147

Machine-Generated Code Snippet 148

Lee et al. (2023) pointed out that the quality of 149

generated code snippets is degraded when water- 150

marking methods are applied to the process of 151

code generation. They suggested removing low- 152

entropy segments at injecting watermarks. Yang 153

et al. (2023) proposed DetectGPT4Code, a modi- 154

fication of the existing machine-generated text de- 155

tection method, DetectGPT (Mitchell et al., 2023), 156

using a code-specialized surrogate model. Wang 157

et al. (2023a) evaluated whether existing machine- 158

generated text detectors are effective at detecting 159

machine-generated code snippets. They reported 160

that the existing detectors exhibit diminished effi- 161

cacy in identifying code snippets in contrast to their 162

performance in detecting natural language texts. 163

Previous studies conducted experiments using ex- 164

isting datasets for code-related downstream tasks, 165

considering the code snippets included in these 166

datasets to have been written by humans. However, 167

we cannot be certain that all code snippets present in 168

existing datasets were authored by humans. (Wang 169

et al., 2023a). Therefore, we collect code snip- 170

pets from GitHub repositories created before the 171

emergence of LLMs. 172

2

DeCo-Binary Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder Total
C 25,907 16,855 12,151 8,081 5,288 68,282

C++ 14,441 5,077 10,850 5,689 3,579 39,636
Java 23,903 7,234 19,293 12,614 9,216 72,260

Python 21,545 5,699 13,789 13,796 11,101 65,930
Total 85,796 34,865 56,083 40,180 29,184 246,108

DeCo-Multi Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder Total
C 457 457 457 457 457 2,285

C++ 385 385 385 385 385 1,925
Java 1,494 1,494 1,494 1,494 1,494 7,470

Python 1,935 1,935 1,935 1,935 1,935 9,675
Total 4,271 4,271 4,271 4,271 4,271 21,355

Table 1: Data statistics of DeCo-Binary and DeCo-Multi.

3 DeCo Dataset173

We present DeCo, the first benchmark for LLM-174

generated code detection. DeCo features the fol-175

lowing characteristics.176

Large-Scale: DeCo consists of a total of 246K177

human-written and LLM-generated code snippets.178

Multi-Lingual: DeCo consists of code snippets179

written in four programming languages: C, C++,180

Java, and Python.181

Multi-Generator: When constructing the DeCo182

dataset, we utilize the following four LLMs to183

generate LLM-generated code snippets: 1) Com-184

mercial LLMs: ChatGPT and Gemini-Pro; 2) Open-185

source, code-specialized LLMs: WizardCoder and186

DeepSeek-Coder.187

Two Tasks: The DeCo benchmark consists of188

two subsets supporting the following two tasks:189

1) DeCo-Binary: A dataset for binary detection190

tasks determining whether a given code snippet was191

written by a human or an LLM; 2) DeCo-Multi: A192

dataset for multi-class classification tasks predicting193

which generator wrote a given code snippet.194

3.1 Human-Written Code Snippets Collection195

We collect code snippets which are fully human-196

written by gathering code snippets from GitHub197

repositories created before the emergence of LLMs.198

Specifically, we collect repositories created between199

January 1, 2019, at 00:00 and January 1, 2020, at200

00:004 , which have the MIT license and contain201

code snippets written in C, C++, Java, and Python.202

Afterward, we retain only the code snippets from203

the collected ones that consist solely of ASCII204

characters and have token counts ranging from 50205

to 950. Additionally, we remove code snippets with206

licenses other than Apache, BSD, and MIT.207

4We consider GPT-3, released in June 2020, as the first
LLM with code generation capabilities.

3.2 LLM-Generated Code Snippets 208

Construction 209

We construct LLM-generated code snippets by pro- 210

viding human-written code snippets and instructing 211

the LLMs to rewrite them. We prompt the fol- 212

lowing LLMs to construct LLM-generated code 213

snippets: 1) OpenAI ChatGPT5: is a conversa- 214

tional AI model, known for its exceptional ability to 215

understand context and generate natural responses 216

during conversations; 2) Google Gemini-Pro6: is 217

a multi-modal generative AI model that was un- 218

veiled in 2023; 3) WizardCoder7: is an instruc- 219

tion fine-tuned open-source LLM, demonstrating 220

superior performance across various code-related 221

downstream tasks; 4) DeepSeek-Coder8: is an 222

open-source LLM trained on project-level source 223

code corpus using a fill-in-the-blank pre-training 224

objective. We provide each LLM with a human- 225

written code snippet and instruct it to revise the 226

code snippet while maintaining the original pro- 227

gramming language and functionality of the code 228

snippet. The prompt we used can be found in Fig- 229

ure 1 of Appendix A. We observe the characteristics 230

of LLMs and the types of errors they produce dur- 231

ing the code generation process. We discuss these 232

in Appendix B and C, respectively. 233

3.3 Data Filtering and Cleaning 234

If the code snippets generated by LLMs are less than 235

30% of the length of the original human-written 236

code snippets, we consider such code snippets to 237

have different functionalities from human-written 238

code snippets and therefore remove them. We com- 239

pute the similarity between LLM-generated code 240

snippets and human-written code snippets based 241

5GPT-3.5-turbo-1106
6Gemini 1.0
7WizardCoder-33B-V1.1
8DeepSeek-Coder-33B-instruct

3

on the longest common subsequence (LCS) and242

then calculate percentiles of this similarity. Among243

the code snippets generated by LLMs, those with244

similarity scores of 75th percentile or higher are245

considered to have undergone minimal modifica-246

tion from human-written code snippets, and are247

thus removed. Some LLM-generated code snip-248

pets have a prefix such as cpp at the beginning,249

indicating the programming language of the code250

snippet. As this can serve as a clue to identify251

code snippets generated by LLMs, we use regular252

expressions to remove such prefixes. The regular253

expressions used to remove prefixes can be found254

in Figure 9 of Appendix D. For data anonymiza-255

tion, we remove email addresses, URLs, and phone256

numbers included in code snippets using regular257

expression. The regular expressions we used for258

data anonymization can be found in Figure 10 of259

Appendix D.260

3.4 Data Annotation261

We collect a total of 85,796 human-written code262

snippets and based on these, we construct a total263

of 160,312 LLM-generated code snippets. Based264

on a total of 246,108 code snippets, we construct265

DeCo-Binary and DeCo-Multi.266

DeCo-Binary Since DeCo-Binary is a bench-267

mark for the binary detection task, we annotate268

human-written code snippets with a label of 0 and269

LLM-generated code snippets with a label of 1. Ex-270

amples of data from the DeCo-Binary benchmark271

can be found in the Appendix E.272

DeCo-Multi We construct the DeCo-Multi273

dataset by selecting only the code snippets that274

all four LLMs have successfully modified. There-275

fore, the code snippets included in DeCo-Multi276

have a total of five authors, including humans, for277

the same code snippet. Since DeCo-Multi is a278

benchmark for multi-class classification tasks, we279

annotate code snippets generated by humans, Chat-280

GPT, Gemini-Pro, WizardCoder, and DeepSeek-281

Coder with labels 0, 1, 2, 3, and 4, respectively.282

Table 1 presents the data statistics of DeCo-Binary283

and DeCo-Multi. We analyze the similarity be-284

tween code snippets in the DeCo-Multi dataset285

using Stanford Moss9 (Measure of software simi-286

larity), a tool for evaluating the similarity of code287

snippets. In this analysis, we explore both the sim-288

ilarity between human-written code snippets and289

those generated by LLMs, as well as the similarities290

9https://theory.stanford.edu/~aiken/moss/

among code snippets produced by different LLMs. 291

The analysis results can be found in the Appendix F. 292

4 Experimental Settings 293

4.1 Task Definition 294

We explore the following two tasks based on the 295

DeCo-Binary dataset and the DeCo-Multi dataset. 296

Task 1: LLM-Generated Code Detection. This 297

taks is a binary detection task aimed at determining 298

whether a given code snippet was written by a 299

human or generated by an LLM. 300

Task 2: Code Generator Classification. This 301

task is a multi-class classification task aimed at 302

predicting the generator that wrote the given code 303

snippet. To the best of our knowledge, we are the 304

first to explore authorship attribution tasks targeting 305

code domain. 306

4.2 Binary Detection Methods for Task 1 307

For the LLM-generated code detection task, we 308

employ 10 black-box zero-shot detection methods. 309

Since white-box detection methods and watermark- 310

ing methods cannot be applied to commercial LLMs 311

such as ChatGPT and Gemini-Pro10, we exclude 312

them from the experiments. Black-box zero-shot 313

detection methods are divided into the following 314

three categories. 315

Metric-based Detection Metric-based detection 316

methods employ pre-trained languages models 317

to analyze text and derive distinctive features 318

from it, such as the rank or entropy of individ- 319

ual words in a text based on preceding context. 320

We use the following six metric-based detection 321

methods: 1) Log-Likelihood (Solaiman et al., 322

2019); 2) Rank (Gehrmann et al., 2019); 3) Log- 323

Rank (Mitchell et al., 2023); 4) Entropy (Gehrmann 324

et al., 2019); 5) LRR (Su et al., 2023a); 6) Binocu- 325

lars (Hans et al., 2024). 326

Perturbation-based Detection Perturbation-based 327

detection methods assess alterations in the log prob- 328

ability of the model when introducing slight changes 329

to the original text. We employ the following three 330

perturbation-based detection methods: 1) Detect- 331

GPT (Mitchell et al., 2023); 2) NPR (Su et al., 332

2023a); 3) DetectGPT4Code (Yang et al., 2023). 333

Paraphrasing-based Detection Paraphrasing- 334

based detection methods are based on the hypoth- 335

esis that when both human-written and machine- 336

generated texts are revised through an LLM, the 337

10For these commercial LLMs, we cannot obtain log proba-
bilities or directly intervene in the decoding process.

4

https://theory.stanford.edu/~aiken/moss/

machine-generated text undergoes less alteration338

compared to the human-written text. We employ339

BARTScore-CNN proposed by Zhu et al. (2023).340

Detailed information about the detection methods341

we used can be found in the Appendix G.342

4.3 Classification Models for Task 2343

We present three code generator classifiers by fine-344

tuning the following models using the DeCo-Multi345

dataset.346

• OpenAI Detector (Solaiman et al., 2019):347

This model is trained using texts generated348

by GPT-2, capable of determining whether a349

given text was authored by GPT-2 or not.350

• ChatGPT Detector (Guo et al., 2023): This351

model is trained on texts generated by Chat-352

GPT, which are included in the HC3 dataset.353

• CodeBERT (Feng et al., 2020): CodeBERT354

is a language model pre-trained on masked lan-355

guage modeling and replaced token detection356

tasks for six programming languages.357

All three models are based on the RoBERTa-358

base (Liu et al., 2019) architecture. The OpenAI de-359

tector and ChatGPT detector are models trained on360

the task of distinguishing between human-written361

texts and machine-generated texts, while Code-362

BERT is a pre-trained model on a code corpus363

consisting of six programming languages. We ini-364

tialize the models with their pre-trained checkpoints365

and fine-tune them on the DeCo-Multi dataset.366

4.4 Evaluation Metrics367

LLM-Generated Code Detection We use Area368

Under the Receiver Operating Characteristic369

curve (AUROC) as an evaluation metric for task370

1. AUROC represents the area under the curve371

when plotting the True Positive Rate (TPR) against372

the False Positive Rate (FPR) at various threshold373

settings. AUROC provides a single scalar value374

that summarizes the performance of the detector375

across all possible classification thresholds.376

Code Generator Classification For task 2, we377

employ the following two evaluation metrics: 1)378

Macro F1 Score: is a metric used to evaluate the379

performance of multi-class classification models.380

It calculates the harmonic mean of precision and381

recall for each class and then takes the average382

across all cases, giving equal weight to each class. 2)383

Accuracy: measures the ratio of correctly predicted384

samples to the total number of samples in the 385

dataset. 386

4.5 Implementation Details 387

LLM-Generated Code Detection We experiment 388

with BARTScore-CNN11 and Binoculars12 using 389

their official implementations. The official imple- 390

mentation of BARTScore-CNN uses ChatGPT for 391

paraphrasing, however, to reduce the cost of API 392

usage, we opt for Gemini-Pro13 instead. Based 393

on the implementation of DetectGPT provided by 394

MGTBench (He et al., 2023), we implement De- 395

tectGPT4Code, utilizing CodeT5+ 220M (Wang 396

et al., 2023b) as the perturbation model and Py- 397

CodeGPT14 as the surrogate model for measuring 398

log probability. For the remaining detection meth- 399

ods, we utilize the implementations provided by 400

MGTBench15. All the detection methods we use for 401

task 1 are zero-shot detection methods. Therefore, 402

we conduct evaluations on all samples in the DeCo- 403

Binary dataset without training process. For the 404

experiments of task 1, we use the NVIDIA RTX 405

A6000 with 48GB of memory. 406

Code Generator Classification We divide the 407

DeCo-Multi dataset into proportions of 8:1:1 to 408

obtain the training, validation, and testing subsets. 409

The model is trained using the training subset, 410

and the model checkpoint from the epoch with 411

the best performance on the validation subset is 412

saved. We assess the model performance on the 413

testing subset using this model checkpoint. We 414

perform hyper-parameter search based on validation 415

accuracy within the ranges of learning rates {1e-5, 416

2e-5, 5e-5}, and batch sizes {8, 16, 32}. We train 417

the model using AdamW (Loshchilov and Hutter, 418

2019) as the optimizer. We conduct fine-tuning 419

over 10 epochs. For the experiments of task 2, we 420

use the NVIDIA RTX 3090 with 24GB of memory. 421

5 Experimental Results 422

5.1 LLM-Generated Code Detection 423

Table 2 shows the performance of LLM-generated 424

code detection for 10 zero-shot binary detection 425

methods. We report the performance of detection 426

methods for each programming language and their 427

overall performance across all programming lan- 428

11https://github.com/thunlp/
LLM-generated-text-detection

12https://github.com/ahans30/Binoculars
13Gemini-Pro currently does not charge for API usage.
14https://huggingface.co/Daoguang/PyCodeGPT
15https://github.com/xinleihe/MGTBench

5

https://github.com/thunlp/LLM-generated-text-detection
https://github.com/thunlp/LLM-generated-text-detection
https://github.com/ahans30/Binoculars
https://huggingface.co/Daoguang/PyCodeGPT
https://github.com/xinleihe/MGTBench

Zero-Shot Binary Detector C C++ Java Python Overall
Log-Likelihood (Solaiman et al., 2019) 54.14 56.54 56.29 55.55 55.63
Rank (Gehrmann et al., 2019) 57.06 56.46 55.99 54.10 55.90
Log-Rank (Mitchell et al., 2023) 54.91 56.06 55.99 55.09 55.51
Entropy (Gehrmann et al., 2019) 46.69 49.69 48.32 43.62 47.08
LRR (Su et al., 2023a) 46.52 53.34 51.98 49.66 50.37
Binoculars (Hans et al., 2024) 46.36 48.13 51.19 46.92 48.15
DetectGPT (Mitchell et al., 2023) 60.48 57.60 55.80 57.37 57.81
NPR (Su et al., 2023a) 62.01 57.73 55.70 57.63 58.26
DetectGPT4Code (Yang et al., 2023) 61.04 57.97 54.46 57.30 57.69
BARTScore-CNN (Zhu et al., 2023) 57.15 59.41 59.05 56.24 57.96

Table 2: Task1) LLM-Generated Code Detection Performance. We use AUROC as an evaluation metric.
Detectors divided by horizontal lines are, from top to bottom, metric-based detectors, perturbation-based detectors,
and a paraphrasing-based detector. The numbers in the rightmost column represent the average performance across
four programming languages. We emphasize the highest overall performance in bold.

Classifier C C++ Java Python Overall
F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

OpenAI Detector 36.53 37.18 34.35 36.40 35.94 38.10 35.38 39.06 35.55±0.92 37.69±0.55
ChatGPT Detector 26.91 32.08 31.98 35.17 36.64 37.76 28.45 34.57 30.99±1.45 34.89±0.82

CodeBERT 42.51 43.23 39.04 41.63 36.83 37.94 34.08 36.86 38.11±1.18 39.91±0.92

Table 3: Task2) Code Generator Classification Performance. F1 and ACC represent macro F1 score and accuracy
respectively. We report the average performance of experiments conducted with five different seeds. The numbers in
the rightmost column represent the average performance across four programming languages. We emphasize the
highest overall performance in bold.

guages. The detection methods in the Table 2 are429

divided into three groups based on horizontal lines,430

from top to bottom: metric-based detection meth-431

ods, perturbation-based detection methods, and a432

paraphrasing-based detection method. Some detec-433

tion methods show performance worse than random434

predictions (typically an AUROC of 50), and even435

the best-performing method only shows slightly436

better performance than random predictions. This437

highlights the difficulty of the task of detecting438

LLM-generated code snippets.439

The perturbation-based detection methods and440

a paraphrasing-based detection method generally441

show superior performance compared to metric-442

based detection methods. Interestingly, despite443

using a code-specialized language model, Detect-444

GPT4Code shows lower performance compared to445

DetectGPT, which uses a language model special-446

ized for natural language texts. This suggests that447

simply replacing a language model specialized for448

natural language with a code-specialized one is not449

highly effective for detecting LLM-generated code450

snippets. BARTScore-CNN, which is a state-of-the-451

art (SOTA) methodology for detecting texts gen-452

erated by LLMs, also shows unsatisfactory perfor-453

mance in detecting LLM-generated code snippets. 454

Based on these experimental results, we emphasize 455

the need for further research into methodologies for 456

detecting LLM-generated code snippets. 457

Finding. SOTA methods for detecting texts
generated by LLMs struggle to detect LLM-
generated code snippets.

5.2 Code Generator Classification 458

Table 3 shows the performance of three classifiers 459

on the task of classifying the generator of a code 460

snippet. We report the average performance of 461

experiments conducted with five different seeds. 462

For overall results across four languages, we re- 463

port both the average performance and the standard 464

deviation. The standard deviations for individual 465

programming languages can be found in the Ap- 466

pendix H (Table 6). Overall, CodeBERT, which is 467

pre-trained on programming languages, shows supe- 468

rior performance compared to models pre-trained 469

on the task of distinguishing between machine- 470

generated and human-written texts. This shows that 471

for the task of identifying the generator of a code 472

snippet, it is beneficial for the model to first acquire 473

knowledge about programming languages. 474

6

The confusion matrices for each model’s predic-475

tions can be found in the Appendix I. Additionally,476

the embedding visualization analysis for the DeCo-477

Multi dataset can be found in the Appendix J.478

Through embedding visualization analysis, we ob-479

serve distinct differences between code snippets480

written by humans and those generated by LLMs.481

However, there are no clear differences observed482

among code snippets generated by different LLMs.483

This highlights the challenge of classifying the gen-484

erator of code snippets. If a specific LLM generates485

a significant number of vulnerable code snippets486

or produces copyrighted code snippets, it becomes487

even more crucial to identify code snippets gener-488

ated by such an LLM. Therefore, we emphasize the489

need for research into classification methodologies490

for this task.491

Finding. For the task of classifying the gener-
ator of code snippets, it is effective for models
to be pre-trained on programming languages.

6 Analysis492

6.1 Linguistic Analysis493

We analyze the linguistic features of human-written494

code snippets and LLM-generated code snippets495

from the perspectives of density and average log-496

perplexity.497

Density Density refers to how frequently various498

tokens appear within code snippets. Density is499

calculated as follows:500

Density = 100 ×𝑉/(𝐿 × 𝑁), (1)501

where 𝑉 represents the number of unique tokens502

used in all code snippets, 𝐿 is the average number of503

tokens present in each code snippet, and 𝑁 denotes504

the number of code snippets. A high density value505

indicates that a more diverse range of tokens have506

been used in code snippets.507

Log-Perplexity Log-perplexity is a measure of how508

well a probability distribution predicts a sample.509

In the context of language models, it quantifies510

how confused the model is when predicting the511

next token. Log-perplexity is the average negative512

log-likelihood of all tokens in the given sequence.513

Log-perplexity is calculated as follows:514

Log-PPL(𝑇) = − 1
𝑀

𝑀∑︁
𝑖=1

log2 𝑃(𝑡𝑖 |𝑡𝑖−1, ..., 𝑡1),

(2)515

where 𝑀 denotes the total number of tokens in the 516

sequence and 𝑃(𝑡𝑖 |𝑡𝑖−1, ..., 𝑡1) represents the prob- 517

ability of token 𝑡𝑖 given the preceding tokens in the 518

sequence. A lower log-perplexity indicates that the 519

model is more confident in its predictions, whereas 520

a higher log-perplexity suggests that the model is 521

more uncertain. For calculating log-perplexity, we 522

use CodeLlama 7B (Roziere et al., 2023). We cal- 523

culate the log-perplexity for each code snippet, and 524

then compute the average value. 525

Table 4 shows the results of the linguistic anal- 526

ysis for the DeCo-Multi dataset. In the case of 527

density, code snippets written by humans show the 528

lowest values for all four programming languages. 529

This indicates that LLMs use a more diverse range 530

of tokens than humans when writing code snip- 531

pets. One possible reason for this is that humans 532

tend to follow coding conventions16 when writing 533

code snippets. That is, when naming variables 534

and functions, humans tend to adhere to coding 535

conventions, which may result in more standard- 536

ized naming rules than those followed by LLMs. 537

The results of the linguistic analysis, including the 538

average length (𝐿) and vocabulary size (𝑉), can be 539

found in the Appendix K (Table 7). 540

For the three programming languages other than 541

Python, code snippets written by humans show 542

the lowest average log-perplexity values. This 543

indicates that CodeLlama is more familiar with 544

code snippets written by humans than those writ- 545

ten by LLMs. This phenomenon can be attributed 546

to the composition of the dataset utilized for the 547

pre-training of CodeLlama, which potentially in- 548

cludes a greater volume of code snippets authored 549

by humans compared to code snippets generated 550

by LLMs. CodeLlama was released in August 551

2023, while ChatGPT was released in November 552

2022, WizardCoder in June 2023, Gemini-Pro in 553

November 2023, and DeepSeek-Coder in January 554

2024. Therefore, it is unlikely that the data used 555

for pre-training CodeLlama included code snippets 556

generated by the four LLMs we utilized, given their 557

respective release dates. 558

When looking at overall results for four program- 559

ming languages, code snippets written by humans 560

show the lowest density value and the lowest aver- 561

age log-perplexity value. Among the LLMs, code 562

snippets written by Gemini-Pro exhibit the lowest 563

density value and the lowest average log-perplexity 564

value. Table 8 in the Appendix K presents the re- 565

16https://peps.python.org/pep-0008/

7

https://peps.python.org/pep-0008/

Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Density C 18.70 22.98 22.59 22.61 24.19

Avg. Log-Perplexity 0.49 0.51 0.50 0.54 0.55
Density C++ 23.37 27.04 26.64 27.18 28.17

Avg. Log-Perplexity 0.48 0.55 0.51 0.53 0.54
Density Java 19.02 23.01 22.69 22.78 24.49

Avg. Log-Perplexity 0.42 0.45 0.44 0.47 0.47
Density Python 21.84 27.01 26.00 25.70 28.15

Avg. Log-Perplexity 0.66 0.64 0.63 0.68 0.65
Density Overall 20.73 25.01 24.48 24.56 26.25

Avg. Log-Perplexity 0.51 0.54 0.52 0.56 0.55

Table 4: Linguistic analysis on the DeCo-Multi dataset. In each row, the smallest number is highlighted in bold. We
can see that, overall, code snippets written by humans have lower density values and smaller average log-perplexity
values compared to those written by LLMs.

sults of linguistic analysis conducted after removing566

natural language comments from the DeCo-Multi567

dataset. We confirm that similar results are obtained568

even after the removal of comments.569

Finding. There are distinct linguistic fea-
tures between human-written code snippets
and LLM-generated code snippets.

6.2 Impact of Natural Language Comments570

We investigate the impact of natural language com-571

ments in the task of classifying the generator of572

code snippets. We conduct analysis using Code-573

BERT, which showed the highest performance in574

this task (analysis using the OpenAI Detector and575

ChatGPT Detector can be found in Table 9 of Ap-576

pendix L). We remove natural language comments577

from the DeCo-Multi dataset (both training and578

evaluation data) and measure the performance of579

models. We report the average performance of580

experiments conducted with five different seeds.581

Table 5 compares the performance of the model on582

code snippets with natural language comments and583

code snippets without natural language comments.584

Through the experimental results, we observe that585

removing natural language comments from code586

snippets leads to an average decrease of 10.62%p in587

macro F1 score and 9.72%p in accuracy across four588

programming languages. This indicates that natural589

language comments are an important feature in the590

predictions of models for this task. The confusion591

matrices for the predictions of each model can be592

found in Figure 23 of Appendix L.593

Finding. In the task of identifying the authors
of code snippets, natural language comments
are an important feature.

NL Macro F1 Accuracy

C O 42.51 43.23
X 27.65 (↓ 14.86%p) 30.03 (↓ 13.20%p)

C++ O 39.04 41.63
X 30.35 (↓ 8.69%p) 31.58 (↓ 10.05%p)

Java O 36.83 37.94
X 27.63 (↓ 9.20%p) 32.15 (↓ 5.79%p)

Python O 34.08 36.86
X 24.35 (↓ 9.73%p) 27.00 (↓ 9.86%p)

Overall O 38.11 39.91
X 27.49 (↓ 10.62%p) 30.19 (↓ 9.72%p)

Table 5: We analyze the impact of natural language
comments in the task of identifying the authors of code
snippets. We experiment using CodeBERT, which ex-
hibits the best performance.

7 Conclusion 594

We have addressed critical challenges associated 595

with the deployment of LLMs in code generation 596

by introducing the DeCo benchmark—a pioneer- 597

ing effort for detecting code snippets generated by 598

LLMs. The DeCo benchmark, incorporating 246K 599

code snippets across four programming languages 600

and generated by both commercial and open-source 601

LLMs, provides a foundation for this research. We 602

propose two tasks based on the DeCo dataset: 1) 603

Detection of LLM-generated code snippets; and 2) 604

Classification of the authors who wrote the code 605

snippets. We evaluate 13 detection methods, includ- 606

ing SOTA methods, on the DeCo dataset. We find 607

that SOTA methods for detecting LLM-generated 608

texts struggle with detecting LLM-generated code 609

snippets. Furthermore, we analyze the linguistic 610

features of the DeCo dataset from the perspectives 611

of density and average log-perplexity. We discover 612

distinct differences between code snippets written 613

by humans and those generated by LLMs. We hope 614

our findings paves the way for more secure and 615

trustworthy use of AI in coding applications. 616

8

Limitations617

We propose the first benchmark for detecting LLM-618

generated code snippets, and perform various anal-619

yses, including the evaluation of different detection620

methods and linguistic analysis. However, there are621

some limitations to our research.622

Low-resource Programming Languages We623

cover four major programming languages: C, C++,624

Java, and Python. However, we do not include625

low-resource programming languages such as Ju-626

lia, Rust, and Lua in the DeCo dataset. Detecting627

LLM-generated code snippets in low-resource pro-628

gramming languages is also important, and we leave629

this as future work.630

Various Sizes of LLMs We construct the DeCo631

dataset using commercial LLMs such as ChatGPT632

and Gemini-Pro, whose exact model sizes are un-633

known, along with open-source LLMs like Wiz-634

ardCoder and DeepSeek-Coder with a parameter635

size of 33B. However, recently, LLMs of various636

sizes (ranging from 2B to 70B) have been released.637

The code generation capabilities are expected to638

differ depending on the model size of LLMs, and639

thus, the characteristics of the generated code snip-640

pets are also expected to vary. Analyzing the code641

snippets generated by LLMs of different sizes is an642

important avenue for future research.643

Detection Methods We experiment with various de-644

tection methods on the DeCo dataset, and discover645

that even SOTA methods struggle to detect LLM-646

generated code snippets. We confirm that even De-647

tectGPT4Code, a method specifically designed for648

detecting LLM-generated code snippets, does not649

achieve satisfactory performance. We emphasize650

the necessity for active research on methodologies651

to detect LLM-generated code snippets.652

Ethical Considerations653

We discuss some ethical concerns and broader654

impacts of our research.655

Licenses The code snippets comprising the DeCo656

dataset adhere to one of the licenses: Apache, BSD,657

or MIT.658

Personal Information We anonymize the data659

by removing email addresses, URLs, and phone660

numbers included in the comments of the code661

snippets comprising the DeCo dataset.662

Broader Impact Due to potential security vul-663

nerabilities, copyright issues, and concerns about664

academic cheating in code snippets generated by665

LLMs, there is a need to develop systems to detect666

these code snippets. The DeCo dataset can be 667

utilized to develop models for this purpose. 668

References 669

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al- 670
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, 671
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, 672
Julien Launay, Quentin Malartic, et al. 2023. The Fal- 673
con Series of Open Language Models. arXiv preprint 674
arXiv:2311.16867. 675

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, 676
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing 677
Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: 678
A Pre-trained Model for Programming and Natural 679
Languages. In Findings of the Association for Com- 680
putational Linguistics: EMNLP. 681

Sebastian Gehrmann, Hendrik Strobelt, and Alexander 682
Rush. 2019. GLTR: Statistical Detection and Visual- 683
ization of Generated Text. In Proceedings of the 57th 684
Annual Meeting of the Association for Computational 685
Linguistics: System Demonstrations. 686

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, 687
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng 688
Wu. 2023. How Close is ChatGPT to Human Ex- 689
perts? Comparison Corpus, Evaluation, and Detec- 690
tion. arXiv preprint arXiv:2301.07597. 691

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 692
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y Wu, 693
YK Li, et al. 2024. DeepSeek-Coder: When the Large 694
Language Model Meets Programming–The Rise of 695
Code Intelligence. arXiv preprint arXiv:2401.14196. 696

Abhimanyu Hans, Avi Schwarzschild, Valeriia 697
Cherepanova, Hamid Kazemi, Aniruddha Saha, 698
Micah Goldblum, Jonas Geiping, and Tom Goldstein. 699
2024. Spotting LLMs With Binoculars: Zero-Shot 700
Detection of Machine-Generated Text. arXiv preprint 701
arXiv:2401.12070. 702

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, 703
and Yang Zhang. 2023. MGTBench: Benchmarking 704
Machine-Generated Text Detection. arXiv preprint 705
arXiv:2303.14822. 706

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan 707
Katz, Ian Miers, and Tom Goldstein. 2023. A Water- 708
mark for Large Language Models. In International 709
Conference on Machine Learning. 710

Rohith Kuditipudi, John Thickstun, Tatsunori 711
Hashimoto, and Percy Liang. 2023. Robust 712
Distortion-free Watermarks for Language Models. 713
arXiv preprint arXiv:2307.15593. 714

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, 715
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee 716
Kim. 2023. Who Wrote this Code? Watermarking for 717
Code Generation. arXiv preprint arXiv:2305.15060. 718

9

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar719
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke720
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:721
A robustly optimized BERT pretraining approach.722
arXiv preprint.723

Ilya Loshchilov and Frank Hutter. 2019. Decoupled724
Weight Decay Regularization. In Proceedings of the725
9th International Conference on Learning Represen-726
tations.727

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-728
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,729
Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:730
Empowering Code Large Language Models with731
Evol-Instruct. arXiv preprint arXiv:2306.08568.732

Niloofar Mireshghallah, Justus Mattern, Sicun Gao,733
Reza Shokri, and Taylor Berg-Kirkpatrick. 2024.734
Smaller Language Models are Better Zero-shot735
Machine-Generated Text Detectors. In Proceedings736
of the 18th Conference of the European Chapter of the737
Association for Computational Linguistics (Volume738
2: Short Papers).739

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,740
Christopher D Manning, and Chelsea Finn. 2023.741
DetectGPT: Zero-shot machine-generated text detec-742
tion using probability curvature. In International743
Conference on Machine Learning.744

Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio,745
Riccardo Rubei, Davide Di Ruscio, and Massimiliano746
Di Penta. 2023. Is this Snippet Written by Chatgpt? an747
Empirical Study with a CodeBERT-based Classifier.748
arXiv preprint arXiv:2307.09381.749

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Bren-750
dan Dolan-Gavitt, and Ramesh Karri. 2022. Asleep751
at the Keyboard? Assessing the Security of Github752
Copilot’s Code Contributions. In 2022 IEEE Sympo-753
sium on Security and Privacy (SP).754

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten755
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,756
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.757
Code Llama: Open Foundation Models for Code.758
arXiv preprint arXiv:2308.12950.759

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh760
Karri, Siddharth Garg, and Brendan Dolan-Gavitt.761
2023. Lost at C: A User Study on the Security Impli-762
cations of Large Language Model Code Assistants. In763
32nd USENIX Security Symposium (USENIX Security764
23).765

Irene Solaiman, Miles Brundage, Jack Clark, Amanda766
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,767
Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al.768
2019. Release Strategies and the Social Impacts of769
Language Models. arXiv preprint arXiv:1908.09203.770

Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov.771
2023a. DetectLLM: Leveraging Log Rank Informa-772
tion for Zero-Shot Detection of Machine-Generated773
Text. In Findings of the Association for Computa-774
tional Linguistics: EMNLP 2023.775

Zhenpeng Su, Xing Wu, Wei Zhou, Guangyuan Ma, and 776
Songlin Hu. 2023b. HC3 Plus: A Semantic-Invariant 777
Human ChatGPT Comparison Corpus. arXiv preprint 778
arXiv:2309.02731. 779

Laurens Van der Maaten and Geoffrey Hinton. 2008. 780
Visualizing data using t-sne. Journal of machine 781
learning research. 782

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li. 783
2023a. Evaluating AIGC Detectors on Code Content. 784
arXiv preprint arXiv:2304.05193. 785

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun- 786
nan Li, and Steven Hoi. 2023b. CodeT5+: Open Code 787
Large Language Models for Code Understanding and 788
Generation. In Proceedings of the 2023 Conference 789
on Empirical Methods in Natural Language Process- 790
ing. 791

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan 792
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White- 793
house, Osama Mohammed Afzal, Tarek Mahmoud, 794
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar 795
Habash, Iryna Gurevych, and Preslav Nakov. 2024. 796
M4: Multi-generator, Multi-domain, and Multi- 797
lingual Black-Box Machine-Generated Text Detection. 798
In Proceedings of the 18th Conference of the Euro- 799
pean Chapter of the Association for Computational 800
Linguistics (Volume 1: Long Papers). 801

Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda 802
Petzold, William Yang Wang, and Wei Cheng. 2023. 803
Zero-shot Detection of Machine-Generated Codes. 804
arXiv preprint arXiv:2310.05103. 805

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie 806
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and 807
Jian-Guang Lou. 2022. Large Language Mod- 808
els Meet NL2Code: A Survey. arXiv preprint 809
arXiv:2212.09420. 810

Biru Zhu, Lifan Yuan, Ganqu Cui, Yangyi Chen, Chong 811
Fu, Bingxiang He, Yangdong Deng, Zhiyuan Liu, 812
Maosong Sun, and Ming Gu. 2023. Beat LLMs at 813
Their Own Game: Zero-Shot LLM-Generated Text 814
Detection via Querying ChatGPT. In Proceedings 815
of the 2023 Conference on Empirical Methods in 816
Natural Language Processing. 817

10

A Prompt for Code Generation via LLMs 818

Figure 1 represents the prompt used for code generation with LLMs. We provide human-written code 819

snippets ([CODE]) along with their programming languages ([LANG]), and instruct LLMs to modify the 820

code snippets while maintaining their functionality and programming language. 821

I will give you a code snippet written in [LANG].

Please modify this code snippet while ensuring that the functionality

of the given code snippet is preserved.

Please make some changes to the code to avoid it being too similar to

the original.

The revised code snippet must be written in the same programming

language as the original.

Do not include any explanations about how you modified the code

snippet or add any arbitrary comments to the code snippet.

After modifying, prepend a prefix at the beginning of the revised

code snippet indicating its programming language.

For example, if the revised code snippet is written in [LANG], add

```[LANG]``` at the start.

The following code snippet is the one you need to modify.

---------------------------------------------------------------------

[CODE]

Figure 1: Prompt for code generation using LLMs. We utilize LLMs to generate code snippets by incorporating
human-written code snippets ([CODE]) along with their respective programming languages ([LANG]) into this
prompt template.

B Characteristics of LLMs during Code Generation 822

We describe several characteristics exhibited by LLMs during the code generation process: 823

• LLMs tend to confuse the C and C++ languages. We provide LLMs with human-written code 824

snippets as input and instruct them to maintain the programming language of the given code snippet. 825

However, LLMs sometimes confuse between the C and C++ languages. For example, even when the 826

provided human-written code snippet is explicitly stated to be written in C, LLMs may generate a 827

code snippet written in C++ instead. 828

• LLMs tend to generate short-length code snippets. As seen in Tables 7 and 8, code snippets generated 829

by LLMs are generally shorter than those written by humans. 830

• LLMs tend to remove documentation located at the top of code snippets when modifying human- 831

written code snippets. 832

• Among LLMs, ChatGPT tends to primarily modify variable names and function names when 833

modifying human-written code snippets compared to other LLMs. 834

Figures 2 and 3 respectively illustrate examples of a code snippet written by a human and a code snippet 835

written by ChatGPT. 836

11



#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>     /* For atoi */
#include "gd.h"

/* A short program which converts a .png file into a .gd file, for
   your convenience in creating images on the fly from a
   basis image that must be loaded quickly. The .gd format
   is not intended to be a general-purpose format. */

int
main (int argc, char **argv)
{
    gdImagePtr im;
    FILE *in, *out;
    int x, y, w, h;

    if (argc != 7) {
        fprintf (stderr,
                 "Usage: gdparttopng filename.gd filename.png x y w h\n");             
        exit (1);
    }
    in = fopen (argv[1], "rb");
    if (!in) {
        fprintf(stderr, "Input file does not exist!\n");
        exit (1);
    }

    x = atoi (argv[3]);
    y = atoi (argv[4]);
    w = atoi (argv[5]);
    h = atoi (argv[6]);
...

Figure 2: Example from the DeCo-Binary dataset. Human-written C code snippet.

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>     /* For atoi */
#include "gd.h"

int main (int argc, char **argv)
{
    gdImagePtr img;
    FILE *input, *output;
    int startX, startY, width, height;

    if (argc != 7) {
        fprintf (stderr,
               "Usage: convertToPng input.gd output.png startX startY width height\n");
        exit (1);
    }
    input = fopen (argv[1], "rb");
    if (!input) {
        fprintf(stderr, "Error: Input file is missing!\n");
        exit (1);
    }

    startX = atoi (argv[3]);
    startY = atoi (argv[4]);
    width = atoi (argv[5]);
    height = atoi (argv[6]);
...

Figure 3: Example from the DeCo-Binary dataset. ChatGPT-generated C code snippet.

12



C Types of Errors that Occur During Code Generation Using LLMs 837

We report on some types of errors that occur when generating code snippets using LLMs. We report 838

the types of errors in descending order of frequency. Examples of each error type can be found in 839

Figures 4, 5, 6, 7, and 8. 840

Case 1) Missing Code Snippets: This refers to cases where LLMs output only natural language descriptions 841

without code snippets. LLMs produce summaries describing the functionality of human-written code 842

snippets. 843

Case 2) Code Snippets Written in Different Programming Languages: This occurs when LLMs output 844

code snippets written in a different programming language from human-written code snippets. Such cases 845

are most common when human-written code snippets are written in C or C++. 846

Case 3) Miss Use of Quotation Marks: LLMs often omit closing quotation marks when writing 847

comments. This can result in error code snippets. Such occurrences are more common when using 848

open-source LLMs for code generation. 849

Case 4) Miss Use of Parentheses: LLMs often miss closing parentheses. This occurs more frequently 850

when using open-source LLMs as well. 851

Case 5) Repetitive Output of Meaningless Characters: Occasionally, LLMs may output repetitive 852

meaningless characters when generating code snippets. These cases are very rare, and commercial LLMs 853

rarely exhibit this behavior. 854

In the given C code snippet, it is unclear what modifications are needed. However, if 
you want to add error checking or some additional functionality, it would be helpful to
know specifically what these changes would be. 

Figure 4: Error types occurring during code snippet generation by LLMs. Case 1) Missing Code Snippets.

C# code:
```csharp
using System;
using System.Collections.Generic;
using OneLayeredBucket; // This assumes you have a reference to the `OneLayeredBucket`
library or namespace. You need to replace this with your actual namespace if
different.
...

Figure 5: Error types occurring during code snippet generation by LLMs. Case 2) Code Snippets Written in Different
Programming Languages.

...
class StackExchangeOAuth2Adapter(OAuth2Adapter):
 provider_id = StackExchangeProvider.id
 access_token_url = '[URL]
 authorize_url = '[URL]
 profile_url = '[URL]
...

Figure 6: Error types occurring during code snippet generation by LLMs. Case 3) Miss Use of Quotation Marks.

13

...
int cudaMemcpyDtoH(void *dst, const void *src, size_t count){
 cudaError_t err = cudaMemcpy(dst, src, count, cudaMemcpyDeviceToHost);
 return (err == cudaSuccess) ? 0 : -1;
}
end:
 free(in);
 free(out);
 return -1;
}

Figure 7: Error types occurring during code snippet generation by LLMs. Case 4) Miss Use of Parentheses.

GGGGGGGGGGGGGGGGCCCCCXXXXPPPPTTTTSSSSSOOOOIIIIIINNNN
class Solution {
 public:
 boolean isInterleave(String s1, String s2, String s3) {
 if(s1.length() + s2.length() != s3.length()) return false;
 if(s1.length() < s2.length()) return isInterleave(s2, s1, s3);
 boolean[] f = new boolean[s2.length() + 1];
 Arrays.fill(f, true);
 for(int j = 1; j <= s2.length(); ++j) {
 f[j] = f[j - 1] && s2.charAt(jGGGGGGG - 1) == s3.charAt(j - 1);
 }
 for(intGGGGGGGGGGGGGGGGGGGGGGGGG i = 1; i <= s1.length(); ++i) {
 f[0] = f[0] && s1.charAt(i - 1) == s3.charAt(i + j - 1);
 for(int j = 1; j <= s2.length(); ++j) {
 f[j] = (f[j] && s1.charAt(i - 1) == s3.charAt(i + j - 1))
 || (f[j - 1] && s2.charAt(j - 1) == s3.charAt(i + j - 1));
 }
 }
 return f[s2.length()];
 }
};

Figure 8: Error types occurring during code snippet generation by LLMs. Case 5) Repetitive Output of Meaningless
Characters.

14

D Data Filtering and Cleaning 855

Regular Expressions for Removing the PL Prefix 856

Figure 9 displays the regular expressions used to remove the prefixes indicating the programming 857

languages of code snippets. LLMs often prepend a prefix indicating the programming language of the 858

code snippet, such as cpp at the beginning of the code snippet. Such prefixes could introduce bias into the 859

detection model, leading it to classify code snippets with the prefix as being authored by the LLM. Thus, 860

we remove such prefixes using regular expressions. 861

regex = {
"c": [r'c\\n|C\n', r'c\\n(.*?)|C\\n(.*?)', r'c|C', r'c\n|C\n'],
"cpp": [r'cpp\\n|CPP\n|Cpp\\n|c\+\+\n|C\\+\\+\\n',
r'cpp\n(.?)|CPP\n(.?)|Cpp\n(.?)|c\+\+\n(.?)|C\+\+\n(.?)',
r'cpp|CPP|Cpp|c\\+\\+|C\\+\\+', r'cpp\\n|CPP\\n|Cpp\\n|c\\+\\+\\n|C\\+\\+\\n'],
"java": [r'java\n|JAVA\\n|Java\n', r'java\\n(.*?)|JAVA\\n(.*?)|Java\\n(.*?)',
r'java|JAVA|Java', r'java\n|JAVA\n|Java\n'],
"py": [r'python\\n|Python\n|PYTHON\\n', r'python\n(.?)|Python\n(.?)|PYTHON\n(.?)',
r'python|Python|PYTHON', r'python\\n|Python\\n|PYTHON\\n']
}

Figure 9: Regular expressions for removing the prefixes indicating the programming languages of code snippets.

Regular Expressions for Data Anonymization 862

Figure 10 displays the regular expressions for data anonymization. We use regular expressions to 863

remove URLs, phone numbers, and email addresses included in the comments of code snippets. 864

import re
re.sub(r'http(s?):\/\/[^\r\n\t\f\v)\]\}]+', '[URL]')
re.sub(r'www\.\S+', '[URL]')
re.sub(r'^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$', '[PHONE NUMBER]')
re.sub(r'(?i)\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b', '[EMAIL]')

Figure 10: Regular expressions used for data anonymization by removing URL addresses, phone numbers, and
email addresses.

15

E Examples of DeCo-Binary Benchmark865

Figures 11 to 18 present examples of data from the DeCo-Binary benchmark. Sections marked with a866

red box represent areas removed by the LLM during the modification of the human-written code snippet.867

Those marked with a pink box indicate additions made by the LLM. Meanwhile, the areas highlighted868

with a yellow box show where the LLM has modified the human-written code snippet.869

#ifndef TAPENADE
#include <math.h>
#endif
#define Max(x,y) fmax(x,y)
#define Min(x,y) fmin(x,y)
#define Heaviside(x) ((x>=0)?1.0:0.0)

#define u(x,xx,xxx) u[x][xx][xxx]
#define c(x,xx,xxx) c[x][xx][xxx]
#define u_1(x,xx,xxx) u_1[x][xx][xxx]
#define u_2(x,xx,xxx) u_2[x][xx][xxx]
void wave3d(double* u_vec, double* c_vec, double* u_1_vec, double* u_2_vec, double D,
 int n) {
 double (*u)[n][n] = (double (*)[n][n]) u_vec;
double (*c)[n][n] = (double (*)[n][n]) c_vec;
double (*u_1)[n][n] = (double (*)[n][n]) u_1_vec;
double (*u_2)[n][n] = (double (*)[n][n]) u_2_vec;

 int i;
 int j;
 int k;
 #pragma omp parallel for private(k,j,i)
 for (i=1; i<=n - 2; i++) {
 for (j=1; j<=n - 2; j++) {
 for (k=1; k<=n - 2; k++) {
 u(i,j,k) += D*(-6*u_1(i, j, k) + u_1(i, j, k - 1) + u_1(i, j, k + 1) +

u_1(i, j - 1, k) + u_1(i, j + 1, k) + u_1(i - 1, j, k) +
u_1(i + 1, j, k))*c(i, j, k) + 2.0*u_1(i, j, k) - u_2(i, j, k);

 }
 }
 }
}

Figure 11: Example from the DeCo-Binary dataset. C code snippet written by human.

#include <math.h>
#define Max(x,y) fmax((x),(y))
#define Min(x,y) fmin((x),(y))
#define Heaviside(x) ((x)>=0?1.0:0.0)

typedef double (*array_3d)[n][n];

void wave3d(double* u_vec, double* c_vec, double* u_1_vec, double* u_2_vec, double D,
 int n) {
 array_3d u = (array_3d) u_vec;
 array_3d c = (array_3d) c_vec;
 array_3d u_1 = (array_3d) u_1_vec;
 array_3d u_2 = (array_3d) u_2_vec;

 int i, j, k;

 #pragma omp parallel for private(k,j,i)
 for (i=1; i<=n - 2; i++) {
 for (j=1; j<=n - 2; j++) {
 for (k=1; k<=n - 2; k++) {
 u[i][j][k] += D*(-6*u_1[i][j][k] + u_1[i][j][k - 1] + u_1[i][j][k + 1]

+ u_1[i][j - 1][k] + u_1[i][j + 1][k] + u_1[i - 1][j][k]
+ u_1[i + 1][j][k])*c[i][j][k] + 2.0*u_1[i][j][k] - u_2[i][j][k];

 }
 }
 }
}

Figure 12: Example from the DeCo-Binary dataset. C code snippet generated by DeepSeek-Coder.

16

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>

int main(int argc, const char* argv[]){
 cv::Mat img = cv::imread("imori.jpg", cv::IMREAD_COLOR);

 int width = img.rows;
 int height = img.cols;

 cv::Mat out = cv::Mat::zeros(height, width, CV_8UC3);

 for (int j = 0; j < height; j++){
 for (int i = 0; i < width; i++){
 for (int c = 0; c < 3; c++){
 out.at<cv::Vec3b>(j,i)[c] = (uchar)(floor((double)img.at<cv::Vec3b>(j,i)[c] / 64)

* 64 + 32);
 }
 }
 }

 //cv::imwrite("out.jpg", out);
 cv::imshow("answer", out);
 cv::waitKey(0);
 cv::destroyAllWindows();

 return 0;
}

Figure 13: Example from the DeCo-Binary dataset. C++ code snippet written by human.

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>

int main(int argc, const char* argv[]){
 cv::Mat inputImage = cv::imread("input.jpg", cv::IMREAD_COLOR);

 int imgWidth = inputImage.rows;
 int imgHeight = inputImage.cols;

 cv::Mat outputImage = cv::Mat::zeros(imgHeight, imgWidth, CV_8UC3);

 for (int y = 0; y < imgHeight; y++){
 for (int x = 0; x < imgWidth; x++){
 for (int c = 0; c < 3; c++){
 outputImage.at<cv::Vec3b>(y,x)[c] =

(uchar)(floor((double)inputImage.at<cv::Vec3b>(y,x)[c] / 64) *
64 + 32);

 }
 }
 }

 //cv::imwrite("output.jpg", outputImage);
 cv::imshow("result", outputImage);
 cv::waitKey(0);
 cv::destroyAllWindows();

 return 0;
}

Figure 14: Example from the DeCo-Binary dataset. C++ code snippet generated by DeepSeek-Coder.

17

package dzhuang.pedyield.tracker;

public class Position {
 // objects position
 public double x; // x of the middle point
 public double y; // y of the middle point
 public double w;
 public double h;

 public Position(double x, double y, double w, double h) {
 this.x = x;
 this.y = y;
 this.w = w;
 this.h = h;
 }

 public Position(Position position) {
 this.x = position.x;
 this.y = position.y;
 this.w = position.w;
 this.h = position.h;
 }
}

Figure 15: Example from the DeCo-Binary dataset. Java code snippet generated by human.

import java.awt.geom.Rectangle2D;

public class Position extends Rectangle2D.Double {
 public Position(double x, double y, double w, double h) {
 super(x, y, w, h);
 }

 public Position(Position position) {
 super(position.x, position.y, position.w, position.h);
 }
}

Figure 16: Example from the DeCo-Binary dataset. Java code snippet generated by Gemini-Pro.

18

"""
An sorted array of integers was rotated an unknown number of times.

Given such an array, find the index of the element in the array in faster than linear
time.
If the element doesn't exist in the array, return null.
For example, given the array [13, 18, 25, 2, 8, 10] and the element 8,
return 4 (the index of 8 in the array).
You can assume all the integers in the array are unique.
"""
from typing import Optional

def find_index(arr: list, k: int) -> Optional[int]:
 start, end = 0, len(arr) - 1

 while start <= end:
 mid: int = (start + end) >> 1

 if arr[mid] == k:
 return mid
 elif arr[mid] > k:
 if k < arr[0] and arr[mid] > arr[0]:
 start = mid + 1
 else:
 end = mid - 1
 else:
 if k > arr[0] and arr[mid] < arr[0]:
 end = mid - 1
 else:
 start = mid + 1
 return None

if __name__ == "__main__":
 arr: list = [13, 18, 25, 2, 8, 10]

 assert find_index(arr, 13) == 0
 assert find_index(arr, 18) == 1
 assert find_index(arr, 25) == 2
 assert find_index(arr, 2) == 3
 assert find_index(arr, 8) == 4
 assert find_index(arr, 10) == 5
 assert find_index(arr, 1) is None

Figure 17: Example from the DeCo-Binary dataset. Python code snippet written by human.

19

from typing import Optional

def find_index(arr: list, k: int) -> Optional[int]:
 start, end = 0, len(arr) - 1

 while start <= end:
 mid = (start + end) >> 1

 if arr[mid] == k:
 return mid
 elif arr[mid] < arr[0] != (k < arr[0]):
 if arr[mid] < k:
 start = mid + 1
 else:
 end = mid - 1
 else:
 if arr[mid] < k:
 start = mid + 1
 else:
 end = mid - 1
 return None

if __name__ == "__main__":
 arr = [13, 18, 25, 2, 8, 10]

 assert find_index(arr, 13) == 0
 assert find_index(arr, 18) == 1
 assert find_index(arr, 25) == 2
 assert find_index(arr, 2) == 3
 assert find_index(arr, 8) == 4
 assert find_index(arr, 10) == 5
 assert find_index(arr, 1) is None

Figure 18: Example from the DeCo-Binary dataset. Python code snippet generated by WizardCoder.

20

F Similarity Between Code Snippets Written by Various Generators 870

We analyze the similarity between code snippets written by various authors using Stanford Moss, a tool used 871

for measuring software similarity, which is also utilized in source code plagiarism detection. We randomly 872

sample 400 code snippets from the DeCo-Multi dataset (100 code snippets per programming language) 873

and utilize them for analysis. Figure 19 presents the results of similarity analysis using Moss. We can 874

observe that code snippets generated by commercial LLMs (ChatGPT and Gemini-Pro) are more similar 875

to code snippets written by humans compared to those generated by open-source LLMs (WizardCoder 876

and DeepSeek-Coder). Due to the user-friendly interfaces such as web UIs and APIs, many users tend 877

to use commercial LLMs more than open-source LLMs. Therefore, the analysis results showing that 878

commercial LLMs generate code snippets more similar to human-written ones than open-source LLMs 879

further underscore the importance of the task of detecting LLM-generated code snippets. When comparing 880

between LLMs, we can observe that the similarity between code snippets generated by ChatGPT and 881

Gemini-Pro is the highest. 882

Finding. Code snippets generated by commercial LLMs are more similar to human-written code
snippets than those generated by open-source LLMs.

Hu
m

an

De
ek

Se
ek

-C
od

er

W
iza

rd
Co

de
r

Ge
m

in
i-P

ro

Ch
at

GP
T

Human

DeekSeek-Coder

WizardCoder

Gemini-Pro

ChatGPT

32.40

38.70 20.80

42.80 23.45 21.90

80.25 34.45 34.20 36.70
30

40

50

60

70

80

(a) C

Hu
m

an

De
ek

Se
ek

-C
od

er

W
iza

rd
Co

de
r

Ge
m

in
i-P

ro

Ch
at

GP
T

Human

DeekSeek-Coder

WizardCoder

Gemini-Pro

ChatGPT

50.90

53.40 40.30

73.20 39.40 42.90

94.10 44.90 47.30 66.70
40

50

60

70

80

90

(b) C++

Hu
m

an

De
ek

Se
ek

-C
od

er

W
iza

rd
Co

de
r

Ge
m

in
i-P

ro

Ch
at

GP
T

Human

DeekSeek-Coder

WizardCoder

Gemini-Pro

ChatGPT

60.70

61.25 53.10

63.20 33.25 37.65

90.20 43.70 46.55 60.40 40

50

60

70

80

90

(c) Java

Hu
m

an

De
ek

Se
ek

-C
od

er

W
iza

rd
Co

de
r

Ge
m

in
i-P

ro

Ch
at

GP
T

Human

DeekSeek-Coder

WizardCoder

Gemini-Pro

ChatGPT

51.90

47.55 38.80

62.25 33.55 33.10

79.55 42.10 38.50 54.25 40

50

60

70

(d) Python

Figure 19: The similarity between code snippets written by various authors, measured using Stanford Moss, a tool
for measuring software similarity. The analysis results show that ChatGPT writes code snippets most similarly to
humans, followed by Gemini-Pro. Both of these LLMs are commercial LLMs.

21

G Details on Binary Detection Methods883

The details on binary detection methods for task 1 are as follows.884

Metric-based Detection885

• Log-Likelihood: This approach uses a language model to calculate the log probability of each word886

in a given text and then takes the average. If the average log-probability value is high, the given text887

is considered to be LLM-generated.888

• Rank: By evaluating the absolute rank of each word within a text based on its preceding context, we889

can calculate a score for the text by averaging these rank values. A lower score suggests the text is890

more likely to have been generated by LLMs.891

• Log-Rank: This approach applies logarithmic function to the rank value of each word in the given892

text.893

• Entropy: This approach takes the average entropy value of each word, given its preceding context.894

Texts generate by LLMs tend to exhibit lower entropy scores.895

• LRR (Log-Likelihood Log-Rank Ratio): This approach utilizes both log-likelihood and log-rank.896

• Binoculars: This approach utilizes two language models to calculate cross-perplexity, and based897

on this, it detects LLM-generated text. Binoculars utilizes the Falcon 7B and Falcon-Instruct898

7B (Almazrouei et al., 2023) models to compute cross-perplexity.899

Perturbation-based Detection900

• DetectGPT: DetectGPT evaluates how the model’s log probability function responds to slight901

modifications made to the original text. The underlying idea is that text produced by an LLM typically902

resides at a local optimum of the model’s log probability function. Consequently, any small changes903

to text generated by the LLM are likely to result in a decreased log probability compared to the904

original text.905

• NPR (Normalized Log-Rank Perturbation): This approach is based on the observation that when906

slight perturbations are applied, the log-rank score of text written by LLMs increases more than that907

of text written by humans.908

• DetectGPT4Code: DetectGPT4Code is a modified version of DetectGPT that uses models specialized909

for code to apply perturbations to a given code snippet and to calculate the log probability of the code910

snippet.911

Paraphrasing-based Detection912

BARTScore-CNN is based on the assumption that ChatGPT makes fewer modifications to text written913

by LLMs than to text written by humans. It involves editing the given text with ChatGPT and then914

calculating the similarity to the original text using BARTScore. The calculated similarity score is used to915

detect LLM-generated text.916

22

H Experimental Results of Task 2 917

Table 6 represents the experimental results of task 2 (Code Generator Classification). We report the 918

average performance and standard deviation of experiments across five different seeds. Overall, among 919

the three classification models, CodeBERT exhibits the most superior performance. 920

OpenAI Detector ChatGPT Detector CodeBERT
Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

C 36.53±0.73 37.18±0.99 26.91±2.62 32.08±1.12 42.51±1.60 43.23±1.73
C++ 34.35±0.64 36.40±0.64 31.98±0.98 35.17±1.10 39.04±1.38 41.63±0.88
Java 35.94±1.23 38.10±0.19 36.64±0.69 37.76±0.59 36.83±1.16 37.94±0.52

Python 35.38±1.10 39.06±0.37 28.45±1.51 34.57±0.48 34.08±0.56 36.86±0.57
Overall 35.55±0.92 37.69±0.55 30.99±1.45 34.89±0.82 38.11±1.18 39.91±0.92

Table 6: Task2) Code Generator Classification Performance. We report the average performance and standard
deviation of experiments using five different seeds.

23

I Confusion Matrices for the Experimental Results of Task 2921

Figure 20 displays the confusion matrices of model predictions for the test split of the DeCo-Multi922

dataset (overall results for four programming languages). In all three classification models, predicting the923

generator of the given code snippet as DeepSeek-Coder is the most common scenario. We observe that924

CodeBERT shows a significantly more balanced prediction across each class compared to the other two925

classification models.926

Finding. In the task of predicting the author of a given code snippet, CodeBERT provides more
balanced predictions than the OpenAI Detector and ChatGPT Detector.

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder

Tr
ue

 la
be

l

0.41 0.05 0.12 0.08 0.34

0.21 0.19 0.17 0.09 0.34

0.04 0.03 0.53 0.11 0.28

0.13 0.06 0.21 0.17 0.44

0.06 0.06 0.17 0.10 0.62 0.1

0.2

0.3

0.4

0.5

0.6

(a) OpenAI Detector

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder

Tr
ue

 la
be

l

0.40 0.16 0.13 0.09 0.22

0.26 0.22 0.20 0.10 0.22

0.04 0.07 0.57 0.13 0.20

0.14 0.16 0.22 0.17 0.30

0.10 0.17 0.19 0.12 0.42 0.1

0.2

0.3

0.4

0.5

(b) ChatGPT Detector

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder

Tr
ue

 la
be

l

0.40 0.19 0.08 0.15 0.17

0.17 0.37 0.12 0.17 0.18

0.06 0.10 0.45 0.17 0.22

0.10 0.16 0.18 0.29 0.28

0.04 0.17 0.14 0.21 0.44 0.1

0.2

0.3

0.4

(c) CodeBERT

Figure 20: Confusion matrices of model predictions for the test split of the DeCo-Multi dataset. These provide
overall results for the four programming languages. CodeBERT makes much more balanced predictions compared
to the other two models.

24

J Embedding Analysis 927

Figures 21, and 22 respectively visualize the embeddings of code snippets from the DeCo-Multi dataset 928

for each programming language. We visualize the embeddings obtained using CodeLlama 7B with 929

t-SNE (Van der Maaten and Hinton, 2008). For all four programming languages, embeddings of code 930

snippets written by humans and LLMs are clearly distinguishable, but there is almost no distinction 931

between embeddings of code snippets written by LLMs. This demonstrates the difficulty of predicting 932

which LLM authored a given code snippet, underscoring the need for research into effective classification 933

models for this task. 934

Finding. There is a clear distinction between the embeddings of human-written code snippets and
those written by LLMs, but there is little distinction among the embeddings of code snippets written
by different LLMs.

25

60 40 20 0 20 40 60

60

40

20

0

20

40

60

Human
ChatGPT

Gemini-Pro
WizardCoder

DeepSeek-Coder

(a) C

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(b) C++

Figure 21: Analysis of embeddings for code snippets from the DeCo-Multi dataset. We visualize embeddings
obtained using the CodeLlama 7B model. While embeddings are clearly distinguishable between humans and LLMs,
there is little distinction among LLMs.

26

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

Human
ChatGPT

Gemini-Pro
WizardCoder

DeepSeek-Coder

(a) Java

100 50 0 50 100
100

75

50

25

0

25

50

75

100

(b) Python

Figure 22: Analysis of embeddings for code snippets from the DeCo-Multi dataset. We visualize embeddings
obtained using the CodeLlama 7B model. While embeddings are clearly distinguishable between humans and LLMs,
there is little distinction among LLMs.

27

K Linguistic Analysis935

Tables 7 and 8 respectively show the results of linguistic analysis for the DeCo-Multi dataset and the936

results of linguistic analysis for the DeCo-Multi dataset after removing natural language comments.937

Table 8 reveals that excluding the case of Java, human-written code snippets have the lowest density and938

the lowest average log-perplexity across all languages.939

Finding. Regardless of the presence of natural language comments, code snippets authored by
humans generally exhibit lower density values and lower average log-perplexity values compared to
code snippets authored by LLMs.

C Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 21,003 19,394 16,924 18,125 17,188

Avg. Length 245.66 184.63 163.89 175.36 155.43
Density 18.70 22.98 22.59 22.61 24.19

Avg. Log-Perplexity 0.49 0.51 0.50 0.54 0.55

C++ Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 18,056 16,980 15,925 16,361 14,841

Avg. Length 200.60 163.05 155.22 156.30 136.81
Density 23.37 27.04 26.64 27.18 28.17

Avg. Log-Perplexity 0.48 0.55 0.51 0.53 0.54

Java Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 62,998 59,817 57,077 54,332 50,465

Avg. Length 221.68 173.96 168.37 159.59 137.92
Density 19.02 23.01 22.69 22.78 24.49

Avg. Log-Perplexity 0.42 0.45 0.44 0.47 0.47

Python Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 98,985 91,574 91,162 87,627 81,044

Avg. Length 234.12 175.17 181.14 176.15 148.77
Density 21.84 27.01 26.00 25.70 28.15

Avg. Log-Perplexity 0.66 0.64 0.63 0.68 0.65

Table 7: Linguistic analysis on the DeCo-Multi dataset. We can see that, overall, code snippets written by humans
have lower density values and smaller average log-perplexity values compared to those written by LLMs.

28

C Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 15,215 16,193 14,492 14,651 14,224

Avg. Length 287.95 285.15 269.91 257.91 239.67
Density 11.56 12.42 11.74 12.43 12.98

Avg. Log-Perplexity 0.38 0.40 0.40 0.41 0.43

C++ Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 14,725 15,201 14,117 14,131 13,487

Avg. Length 285.19 139.10 253.71 257.48 240.78
Density 13.41 28.38 14.45 14.25 14.54

Avg. Log-Perplexity 0.38 0.51 0.39 0.39 0.40

Java Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 53,513 55,362 52,468 49,592 48,638

Avg. Length 147.68 145.19 144.92 136.74 131.39
Density 24.25 25.52 24.23 24.27 24.77

Avg. Log-Perplexity 0.42 0.46 0.44 0.47 0.47

Python Human ChatGPT Gemini-Pro WizardCoder DeepSeek-Coder
Vocabulary Size 81,587 83,115 80,915 76,989 75,772

Avg. Length 147.45 142.30 140.04 132.77 130.84
Density 28.59 30.18 29.85 29.96 29.92

Avg. Log-Perplexity 0.59 0.62 0.60 0.63 0.63

Table 8: Linguistic analysis on the DeCo-Multi dataset after removing natural language comments. We can see
that, overall, code snippets written by humans have lower density values and smaller average log-perplexity values
compared to those written by LLMs.

29

L Impact of Natural Language Comments940

Table 9 presents the results of the analysis on the impact of natural language comments in predicting941

the author of a given code snippet. Both the OpenAI Detector and the ChatGPT Detector experience942

significant performance degradation when natural language comments are removed. This indicates that943

natural language comments are an important feature in classifying the author of a code snippet. Figure 23944

displays the confusion matrices of model predictions for the test split of the DeCo-Multi dataset after945

removing natural language comments (overall results for four programming languages).946

Finding. In the task of predicting the author of a given code snippet, natural language comments are
an important feature.

NL OpenAI Detector ChatGPT Detector
Macro F1 Accuracy Macro F1 Accuracy

C O 36.53 37.18 26.91 32.08
X 27.79 (↓ 8.74%p) 29.78 (↓ 7.40%p) 18.62 (↓ 8.29%p) 27.06 (↓ 5.02%p)

C++ O 34.35 36.40 31.98 35.17
X 24.64 (↓ 9.71%p) 28.40 (↓ 8.00%p) 19.27 (↓ 12.71%p) 25.22 (↓ 9.95%p)

Java O 35.94 38.10 36.64 37.76
X 31.77 (↓ 4.17%p) 33.86 (↓ 4.24%p) 28.06 (↓ 8.58%p) 31.86 (↓ 5.90%p)

Python O 35.38 39.06 28.45 34.57
X 21.66 (↓ 13.72%p) 27.02 (↓ 12.04%p) 21.17 (↓ 7.28%p) 27.54 (↓ 7.03%p)

Overall O 35.55 37.68 30.99 34.89
X 26.46 (↓ 9.09%p) 29.76 (↓ 7.92%p) 21.78 (↓ 9.21%p) 27.92 (↓ 6.97%p)

Table 9: We analyze the impact of natural language comments in the task of identifying the authors of code snippets.
We report the average performance of experiments conducted with five different seeds.

30

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder

Tr
ue

 la
be

l

0.25 0.34 0.06 0.10 0.24

0.22 0.38 0.08 0.09 0.23

0.10 0.26 0.35 0.09 0.20

0.23 0.31 0.09 0.13 0.24

0.22 0.22 0.08 0.11 0.37 0.10

0.15

0.20

0.25

0.30

0.35

(a) OpenAI Detector

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder
Tr

ue
 la

be
l

0.20 0.44 0.09 0.04 0.23

0.18 0.49 0.09 0.05 0.19

0.07 0.32 0.35 0.08 0.18

0.17 0.39 0.14 0.07 0.23

0.19 0.32 0.11 0.04 0.34 0.1

0.2

0.3

0.4

(b) ChatGPT Detector

Hum
an

Cha
tGPT-

3.5

Gem
ini-

Pro

Wiza
rdC

od
er

Dee
pS

ee
k-C

od
er

Predicted label

Human

ChatGPT-3.5

Gemini-Pro

WizardCoder

DeepSeek-Coder

Tr
ue

 la
be

l

0.43 0.18 0.05 0.12 0.23

0.40 0.26 0.05 0.10 0.20

0.26 0.11 0.34 0.12 0.17

0.38 0.13 0.10 0.15 0.23

0.37 0.13 0.07 0.13 0.31 0.1

0.2

0.3

0.4

(c) CodeBERT

Figure 23: Confusion matrices of model predictions for the test split of the DeCo-Multi dataset after removing
natural language comments. These provide overall results for the four programming languages.

31

	Introduction
	Related Work
	Datasets for Detecting Machine-Generated Text
	Methods for Detecting Machine-Generated Text
	Methods for Detecting Machine-Generated Code Snippet

	DeCo Dataset
	Human-Written Code Snippets Collection
	LLM-Generated Code Snippets Construction
	Data Filtering and Cleaning
	Data Annotation

	Experimental Settings
	Task Definition
	Binary Detection Methods for Task 1
	Classification Models for Task 2
	Evaluation Metrics
	Implementation Details

	Experimental Results
	LLM-Generated Code Detection
	Code Generator Classification

	Analysis
	Linguistic Analysis
	Impact of Natural Language Comments

	Conclusion
	Prompt for Code Generation via LLMs
	Characteristics of LLMs during Code Generation
	Types of Errors that Occur During Code Generation Using LLMs
	Data Filtering and Cleaning
	Examples of DeCo-Binary Benchmark
	Similarity Between Code Snippets Written by Various Generators
	Details on Binary Detection Methods
	Experimental Results of Task 2
	Confusion Matrices for the Experimental Results of Task 2
	Embedding Analysis
	Linguistic Analysis
	Impact of Natural Language Comments

