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ABSTRACT

Diffusion models offer a powerful means of capturing the manifold of realistic
protein structures, enabling rapid design for protein engineering tasks. However,
existing approaches observe critical failure modes when precise constraints are
necessary for functional design. To this end, we present a constrained diffusion
framework for structure-guided protein design, ensuring strict adherence to func-
tional requirements while maintaining precise stereochemical and geometric feasi-
bility. The approach integrates proximal feasibility updates with ADMM decom-
position into the generative process, scaling effectively to the complex constraint
sets of this domain. We evaluate on challenging protein design tasks, includ-
ing motif scaffolding and vacancy-constrained pocket design, while introducing a
novel curated benchmark dataset for motif scaffolding in the PDZ domain. Our
approach achieves state-of-the-art, providing perfect satisfaction of bonding and
geometric constraints with no degradation in structural diversity.

1 INTRODUCTION

Diffusion models have revolutionized protein engineering with notable successes demonstrated in
the design of protein monomers, assemblies, and protein binders against biomolecular targets (Wat-
son et al., 2023). In many cases, predefined binding or catalytic motifs are introduced into designed
proteins via motif scaffolding but there are no guarantees that the generated backbones will accu-
rately include the motif (Trippe et al., 2022; Didi et al., 2023). Furthermore, the motifs are typically
pre-defined as structural fragments, rather than more physically-based (e.g. hydrogen bonds to cho-
sen target residues), which narrows the accessible design space (Song et al., 2024). Negative space
constraints (e.g. tunnels for substrate access and product egress), while a ubiquitous feature of nat-
urally evolved proteins such as enzymes, are not readily incorporated in current generative protein
models. These obstacles restrict the scope of design goals accessible to current methods.

These limitations highlight the broader challenge of designing structured objects under strict feasi-
bility. Many existing approaches augment diffusion models through constraint guidance (Ho et al.,
2020; Ho & Salimans, 2022). For example, Gruver et al. (2023) inject soft constraints into discrete
sequence prediction for protein design through gradient-based guidance; however, while guidance
approaches result in increased feasibility rates, they fail to consistently provide constraint adherent
outputs. Others adopt post-processing optimizations which more rigorously target the constraint
set. However, these methods rely on either simplifications of the highly nonconvex constraint set
(e.g., matching an existing ligand template) or result in samples falling outside the data manifold
(Bergues et al., 2025; Christopher et al., 2024). A more effective approach is to inject constraint into
the generative process, e.g., by projecting intermediate states back to the feasible set (Christopher
et al., 2024). Yet projecting noisy states early in the sampling process has been show to disrupt the
diffusion trajectory, potentially biasing samples (Blanke et al., 2025).

To resolve this tension, this paper proposes to view constrained diffusion through the lens of stochas-
tic proximal methods. To enable strict constraint enforcement throughout the diffusion process,
while removing the need to project at earlier noisy states, we introduce a framework which applies
final-state corrections. Proximal steps are applied to a predicted clean posterior, rather than on a
noisy intermediate state, and the feasible clean state is then renoised to steer the sampling trajectory
along the data manifold, while converging to exact feasibility at the terminal state. A schematic
illustration of the proposed scheme is provided in Figure 1.
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Figure 1: Illustration of our stochastic proximal sampling for structured-constrained protein design.

Contributions. This paper makes five key contributions: (1) It introduces a stochastic proximal
method for constrained diffusion feasibility; (2) based on this view, it proposes a consensus-based
ADMM scheme that separates local stereochemistry from sparse global couplings; (3) it provides a
theoretical analysis characterizing the convergence to the constraint set and provides arguments for
why final-state projection is preferred over per-step projections; (4) it demonstrates the efficacy of
the approach on challenging protein design tasks with nonconvex constraints, including global topol-
ogy (e.g., chain closure, ligand binding feasibility) and local stereochemistry (bond lengths, angles,
and chirality), achieving perfect constraint satisfaction and providing state-of-the-art performance;
(5) it introduces a novel curated benchmark for protein motif scaffolding in PDZ domains, providing
the first systematic standard for constrained diffusion methods in modular domain engineering.

2 SETTINGS AND BACKGROUND

The goal of de novo protein design is to generate three-dimensional representations which satisfy
physical plausibility and functional requirements, such as protein motif scaffolding, binder design,
and monomer generation. This task is fundamentally constrained by the physics and chemistry of
proteins, where bond geometries must be preserved, chains must remain connected, and higher-level
properties such as specific inter-chain interactions or interface complementarity must be realized.

Diffusion-based protein backbone generation. Let pdata denote the unknown distribution of clean
molecular structure representations x0 ∈ Rd (e.g., atomic coordinates). Consider a constrained
feasibility set C ⊂ Rd, encoding physical and geometric constraints, seeking to sample from the
target distribution

pC(x0) ∝ pdata(x0)1{x0 ∈ C}, (⋆)

where 1{x0 ∈ C} is an indicator function on C. To achieve this, a diffusion model learns to recon-
struct samples from the data distribution pdata by coupling a forward noising Markov chain with a
learned reverse denoising chain (Song et al., 2020; Ho et al., 2020).

Forward process. Diffusion models construct a Markov chain {xt}Tt=0 starting from x0 ∼ pdata.
At each step, Gaussian noise is added according to a fixed variance schedule {αt}Tt=0. This process
admits a closed-form marginal distribution, q(xt | x0) = N

(√
ᾱt x0, (1 − ᾱt)I

)
, where ᾱt =∏t

s=1(1− αs). As t → T , the distribution converges to an isotropic Gaussian q(xT ) ≈ N (0, I).

Reverse process. A generative model learns to approximate the reverse dynamics, sampling xt−1

given xt. Since the true reverse kernel q(xt−1 | xt) is intractable, a neural network xθ(xt, t) is
introduced to parameterize this transition. At inference, the learned reverse transitions are applied
iteratively, gradually denoising a random Gaussian vector xT ∼ N (0, I) into a clean structure x0.
Standard sampling processes will result in outputs distributed approximately as pdata, while our
underlying goal is instead to generate outputs distributed in pC . Generating from pC , requires the
sampling procedure to be modified to incorporate constraints, as discussed in the next section.

3 CHALLENGES WITH CONSTRAINED DIFFUSION

As previously noted, diffusion models natively learn to reconstruct samples from an unconstrained
data distribution pdata, which is misaligned with the true goal for constrained generation described
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by Equation (⋆). In other domains, this gap is often addressed by formulating constrained sampling
as an optimization problem, and recent work has extended this perspective to diffusion models by
proposing a general framework for inference-time constrained generation (Christopher et al., 2024).
The approach can be viewed as a sequential optimization problem:

min
{xt}T

t=0

T∑
t=0

ℓt(xt,x0) s.t. xt ∈ C ∀t (1)

where the single stage cost ℓt(xt,x0) := − log p(xt | x0), and the constraint set C captures geo-
metric or structural feasibility. Enforcing these constraints typically involves applying a projection
operator ΠC(xt) = argminy∈C ∥y − xt∥22 after each reverse diffusion step. This is appealing be-
cause it embeds feasibility directly into the generative process; however, enforcing strict projections
at every step raises two domain-specific challenges:

1. As observed by Blanke et al. (2025), projections on intermediate states introduces statistical
biases. This arises as intermediate samples concentrate near constraint boundaries. This issue
has also been reported for soft guidance schemes, where increased weight on the guidance terms
tends to disrupt the diffusion trajectory and degrading performance (Dhariwal & Nichol, 2021;
Nichol & Dhariwal, 2021; Ho & Salimans, 2022).

2. Additionally, intermediate feasibility requires projecting highly noisy states onto complex, non-
convex constraints, which can result in solutions trapped in local minima (Pardalos & Vavasis,
1991; Boyd & Vandenberghe, 2004), disrupting the diffusion performance while simultaneously
limiting the efficacy of feasibility updates.

Imposing constraints precisely on noisy samples may be reasonable under convexity assumptions,
where the theoretical provisions apply, but within protein generation settings characterized by non-
convex constraints, it is necessary to develop inference-time strategies which do not fundamentally
rely on xt ∈ C. In the next section, we present our proposed method, designed intentionally with
this principle in mind.

4 REVERSE DIFFUSION AS PROXIMAL OPTIMIZATION

To effectively sample constraint compliant outputs x0 ∼ pdata(x0)1{x0 ∈ C} (Equation (⋆)), we
design an inference-time method that converges to C, where the terminal distribution π0 minimizes
KL(π0 | pC). Under this framing, a single reverse step of a diffusion sampler is viewed as an opti-
mization problem in which the denoiser provides a data-driven “anchor”, and feasibility is enforced
by penalizing the distance to the constraint set.

Since pdata is only available through a denoiser, the reverse process is realized incrementally. Each
state t of the reverse diffusion is composed of three stages: (1) predict the clean structure x̂t

0 from
the current noisy state xt, (2) correct this prediction by a proximal operator proxηt,g that enforces
feasibility, and (3) renoise the corrected clean structure with the forward kernel, denoted FWD(·, ε),
to obtain the next noisy sample. The procedure is outlined in Figure 1 and summarized as:

xt
predict−−−→ x̂t

0

prox−−→ x̃t
0

FWD−−−→ xt−1.

This modus operandi has strong theoretical properties as discussed in Section 6. First, a description
of each step is detailed.

1. Clean state prediction. In protein design applications, it is common to employ an x0-prediction
parameterization. This design is intentional, as it enables adaptation from pretrained folding mod-
els like RoseTTFold, reusing their architectures and learned weights for initialization (Baek et al.,
2021). At reverse time t ∈ T, . . . , 0 the model takes a noisy latent xt and predicts a clean structure,

xθ(xt, t) = x̂t
0

providing an approximation of the final state. As t → 0, predictions improve in accuracy as noise
signal reduces. The availability of the predictor xθ is convenient as its output can be leveraged in
our next step to restore feasibility.

2. Feasibility step (proximal projection). Next, feasibility requirements are applied on the pre-
dicted clean state. A feasible estimate is produced through a proximal map:

x̃t
0 = proxηt,g(x̂

t
0) := argmin

x

1

2ηt
∥x− x̂t

0∥2 + g(x) (2)

3
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where ηt > 0 is a step size determined by the degree of trust in the denoiser’s prediction at step t
and g : R3×d → R1 is a feasibility potential.

A natural first choice would be to take g as the indicator function of the feasible set. However, this
would require exact projections onto a potentially nonconvex set, which can be ill-defined when x̂t

0
lies far from C. To avoid instability, the hard indicator is replaced by its Moreau envelope (Boyd &
Vandenberghe, 2004), yielding the smooth penalty

g(x) =
λt

2
distC(x)

2 with λt > 0 (3)

where distC is a distance metric from the feasible set (e.g., in SE(3), it could be infy∈C ∥x − y∥).
The parameter λt > 0 plays the role of an inverse smoothing radius: as λt → ∞ the penalty enforces
exact feasibility, and for finite λt it softly biases toward C.

3. Forward renoising. Having obtained a feasible estimate, the next step reintroduces noise by
sampling from the forward marginal at t− 1 conditioned on the corrected clean sample x̃t

0:
xt−1 = FWD(x̃t

0, ε) =
√
ᾱt−1x̃

t
0 + σt−1ε (4)

with ε ∼ N (0, I). This guarantees that, conditioned on x̃t
0, the marginal of xt−1 matches the

forward diffusion at time step t− 1. Note that as σt → 0 and ᾱt → 1, the Markov chain terminates
at a clean x0 = x̃1

0. If g acts as in indicator function, exact feasibility is recovered, while otherwise
x0 becomes arbitrarily close to C as λt increases.

Selecting the schedule. It is instructive to connect the proximal subproblem (Equation (2)) to prob-
abilistic reasoning. By modeling the network’s clean error at step t as Gaussian with variance ηtI:

p(x0 | xt) ∝ exp
(
− 1

2ηt
∥x0 − x̂t

0∥2
)

then interpreting the penalty g as a soft prior of the form ∝ exp{−g(x0)}, Equation (2) computes
the per-step MAP estimate x̃t

0 of the clean state. The subsequent renoising step, Equation (4),
reinstantiates the correct stochasticity for the reverse chain while anchoring it to constraint set C.

Because σ2
t shrinks over time, it is natural to schedule λt to grow, so that feasibility becomes domi-

nant only when the model’s x̂t
0 is accurate. Similarly, if ηt = σ2

t−1 the trust weight can be directly
connected to the diffusion variance, and the clean proximal problem remains on the same scale.

This predict-prox-renoise step is the stochastic analogue of a proximal gradient step. As elaborated
in Section 6, the predict-prox-renoise cycle both respects the diffusion dynamics and guarantees
convergence to feasible terminal states.

5 DECOUPLING GLOBAL TOPOLOGY FROM LOCAL GEOMETRY VIA ADMM

The constraint set C captures a strong coupling between local stereochemical variables and global
variables governing topology and long-range residue interactions. Because residues that are far apart
in sequence may lie adjacent in the folded structure, enforcing global constraints thus necessitates
coordinated updates that can significantly impact nearby stereochemisty. For instance, we observe
that applying non-covalent bond constraints on a β-strand can cause the associated residues to shift
substantially, degrading the fidelity of this local geometry (Budyak et al., 2024). These interdepen-
dencies make the proximal step computationally complex. However, the presence of these separable
local and global constraints confers structure to the problem and thus presents an opportunity to
exploit it, enabling the use of decomposition approaches.

Consider that a feasible point can be equivalently represented as x ∈ Clocal ∩ Cglobal. The local
constraints Clocal capture properties that are applicable in all backbone design tasks (e.g., adherence
to stereochemical bond lengths and angles between consecutive atoms and residues). The global
constraints Cglobal are problem-specific functionals: for example, in our first experiment, this con-
straint set defines bond lengths and angles between specific non-neighboring residues, characterizing
non-covalent bonds which are necessary for protein-ligand pocket design.

Following this intuition, the feasibility potential is decomposed as g(x) = glocal(x) + gglobal(x),
where

glocal(x) =
λt

2
distClocal

(x)2, gglobal(x) =
λt

2
distCglobal

(x)2

4
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and glocal, gglobal : Rn → R ∪ {+∞}. These functions are proximable; squared distance penalties
are adopted, which are treated as indicator functions when λt → ∞. Hence, our proximal update is
reframed as:

Π(x̂t
0) := argmin

x

1

2ηt
∥x− x̂t

0∥2 + glocal(x)︸ ︷︷ ︸
=:F (x)

+ gglobal(x)︸ ︷︷ ︸
:=G(x)

.

Crucially, we define the local block F to include the distance-to-denoiser term so that the local step
both repairs stereochemistry and stays close to x̂t

0, while the global block G focuses on long-range
feasibility. We solve this by a consensus ADMM on

min
y,z

F (y) +G(z) s.t. y = z, (5)

with scaled dual variable u and penalty ρ > 0. This leads to the proximal splitting form of ADMM
(Douglas–Rachford) (Parikh et al., 2014), with the update

yk+1 := proxρk,F (y
k − uk), (6a)

zk+1 := proxρk,G(z
k + uk), (6b)

uk+1 := uk + yk+1 − zk+1 (6c)

where k is an iteration counter and y0 = z0 = x̂t
0 ∈ R3×d. Here y and z are two copies of

the backbone, associated with F and G respectively, and the dual variable u accumulates their
mismatch. At convergence the iterates satisfy y = z, recovering the minimizer of F + G; in
practice it is only necessary to take a single sweep per diffusion step, but warm-starting across steps
ensures the two copies remain close.

These updates can, thus, be interpreted as applying ADMM to the consensus problem, where the dual
variable u carries forward residuals between local and global feasibility corrections. In practice, this
is implemented by minimizing the associated augmented Lagrangian. For clarity, we present only
the proximal form here but detail the explicit augmentented Lagrangian in Appendix G.

6 THEORETICAL ANALYSIS

Now, we show that the samples generated by the proposed stochastic proximal method come with
feasibility guarantees. In the following we assume that the constraint set C is prox-regular and defer
all proofs in Appendix H.

We start by providing a bound on the feasibility guarantees attained by the generated final sample.
Theorem 6.1. Consider a feasibility potential g(x) = λt

2 distC(x)2 defined as in Equation 2. Then,
the proximal minimizer x̃0 satisfies:

distC(x̃0)︸ ︷︷ ︸
feasibility

≤ 1√
2λtηt

distC(x̂0) (7)

The inequality shows that the proximal step contracts the violation by (2λtηt)
−1/2, guiding the

reverse process towards the constraint set. Then, as t → 0 and λtηt → ∞, the corrected iterate
converges arbitrarily close to the constraint set.

The following result provides rationale for how to schedule λt.
Theorem 6.2. Let K be a finite number such that E

[
distC(x̂t, t)

2
]
≤ K for all t, then choosing

λt =
ct
ηt

with a non decreasing ct yields:

E
[
distC(x̃

t
0)

2
]
≤ K

2ct
and hence E

[
distC(x̃0)

2
]
≤ K

2c1
(8)

As a consequence, tightening ct towards the end guarantees decreasing expectation over the viola-
tions, leading to arbitrary small terminal violations. Note also that taking g1 as the identity function
over the constraint set C gives exact feasibility.

Beyond these quantitative feasibility bounds, the per-step proximal subproblem needs to be well-
posed. In particular, the question becomes whether a (possibly local) minimizer of the proximal
mapping exists under the modeling assumptions.

5
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Theorem 6.3. Consider the proximal subproblem

proxηt,g(x) =
1

2ηt
∥x− x̂t

0∥2 + λt

2 distC(x)
2,

with ηt, λt > 0 and C ⊂ R3×n nonempty and closed. Then:

1. Existence. proxηt,g is continuous and coercive, hence attains a global minimizer for every x̂t
0.

In particular, argmin proxηt,g ̸= ∅.
2. Local uniqueness. If x̂t

0 lies within the prox-regularity neighborhood of C, then the projection
ΠC(x̂t

0) is single-valued. Moreover, if proxηt,g is strongly convex in a neighborhood of ΠC(x̂t
0),

then the proximal minimizer is unique within that neighborhood.

The analysis shows that feasibility improves monotonically as λt tightens relative to ηt, while the
proximal subproblem remains well-posed due to the quadratic distance term. In practice, this pro-
vides principled guidelines for selecting schedules which balance denoiser trust against constraint
enforcement. The next section demonstrates that the theoretical foundations translate to tangible
performance improvements in protein backbone design.

7 EXPERIMENTS

We conduct our evaluation on two key tasks for protein motif scaffolding in the PDZ domain and
vacancy-constrained pocket design for unconditional generations, described in more details in Sec-
tions 7.1 and 7.2.

Baselines. The comparison includes state-of-the-art structure-based design methods incorporating
constraint conditioning. We use RFDiffusion (Watson et al., 2023) as the underlying backbone
across all baselines and our method, although we note that any method evaluated could be extended
to other backbone structure diffusion models (Yim et al., 2023; Cutting et al., 2025). RFDiffusion is
selected, as it’s considered a state-of-the-art approach for the tasks considered in this work:

1. Standard Diffusion: RFDiffusion conditioned on relevant motifs or structures, as it is often used
in practice.

2. Recentering of Mass Guidance: RFDiffusion with conditioning to bias the generation towards
a particular Cartesian coordinate where bond interactions or cavity-defining residues enforce
constraint satisfying formations (Braun et al., 2024). Conditioning is fine-tuned to find the lowest
average constraint violation per sample prior to beginning experiments (see Appendix B).

3. Constraint-Guided Diffusion (CGD): RFDiffusion with constraint-based guidance Sequential
Monte Carlo sampling (Lee et al., 2025). This SOTA method uses importance sampling with a
guided rate matrix to define weights and periodic resampling based on constraint violations.

Metrics. The following metrics are adopted to evaluate the performance of our method:

1. Constraint Satisfaction: The percentage of samples satisfying all domain-specific constraints.
For Section 7.1, we verify presence of the described hydrogen-bond pairing of the backbone
through DSSP (Kabsch & Sander, 1983), while Section 7.2 computes constraints via Cartesian
coordinate bounds.

2. Structure Realism: Percentage of samples containing secondary structures within constrained
regions while maintaining general backbone realism (e.g., β-sheets remain less than ten residues,
inter-residue distances and angles are preserved).

3. Usable Percentage: Percentage of samples passing above conditions for Structure Realism
and Constraint Violation. Indicates frequency of generating a structure that satisfies physical
plausibility and functional requirements.

4. Radius of Gyration: Average radius of gyration across generated backbones, measuring the
overall spatial compactness of the structure. Lower values typically correspond to more compact,
globular folds, while higher values indicate extended or unfolded conformations.

5. Diversity: Percentage of samples which are both useable and satisfy a minimum root mean
squared error between all other samples (2 Å). Higher diversity indicates better coverage of pos-
sible structure.

Additionally, we note that further details on all experimental setups are provided in Appendix B.
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Figure 2: Visualization of randomly selected samples generated by (a) our proximal method and by
(b) Standard RFDiffusion on our introduced PDZ domain benchmark.

7.1 PDZ DOMAIN: NON-COVALENT BONDS

Antibodies are widely used in molecular biology to target specific proteins, but their large size and
extracellular restriction limit their utility, particularly in intracellular contexts. In addition, their
binding interfaces, often mediated by flexible loop regions, pose challenges for computational de-
sign. As an alternative, biology employs small modular protein domains (e.g., WW, SH2, SH3, PH,
and PDZ), which provide more designable binding modes. PDZ domains, for instance, recognize
unstructured C-terminal motifs of partner proteins, typically through β-sheet–like hydrogen bond
contacts. These interactions are generally weak and promiscuous, serving primarily in protein lo-
calization. To enhance affinity and specificity, Huang et al. (2009) engineered concatenated PDZ
fusions with other small domains, demonstrating improved performance. Protein diffusion mod-
els extend this concept by enabling conditioning on both PDZ domains and their peptide ligands,
thereby facilitating the de novo design of concatenated architectures.

Dataset construction. To benchmark constrained diffusion for PDZ engineering, we collected all
resolved PDZ/PDZ binding motif (PBM) complexes from the RCSB Protein Data Bank (Berman
et al., 2000). Seventy-two structures were initially retrieved and manually curated to remove entries
with unresolved regions or peptides too short for recognition, yielding fifty-two usable complexes.
To expand the existing PDZ domain in a reliable way to make additional contacts with the target
PBM, the N- and C-termini had to be rearranged. Each structure was processed to reposition ter-
mini closer to the bound peptide by introducing a cut in a loop adjacent to the ligand, trimming the
original termini, and applying vanilla RFDiffusion to in-paint the resulting gap. Candidate back-
bones were filtered to exclude chain breaks and non–β-sheet pairings. Sequences for the redesigned
regions were generated using ProteinMPNN, followed by structure prediction with AlphaFold2. Pre-
dicted models were retained only if they satisfied stringent criteria: (i) self-consistency RMSD to the
RFDiffusion backbone <2.5 Å, (ii) mean pLDDT >90, and (iii) peptide RMSD <2.0 Å. After filter-
ing, 31 high-confidence PDZ designs remained for benchmarking. While all 31 structures are valid
targets for this approach, six of them (PDB IDs: 2AWW, 2G2L, 4JOG, 6UBH, 6Y9O, 8CN3) con-
tain short peptide ligands or peptides with geometrically restrictive residues such as prolines. These
structures remain in the benchmark set, but they are distinguished in the results as having poor-posed
ligands. More details are provided in Appendix C. This benchmark for constrained diffusion is also
a novel contribution of this work.

Task description. Given a target PDZ domain and its peptide ligand, the objective is to design an
additional domain concatenated to the PDZ that contributes new stabilizing contacts with the pep-
tide. This requires satisfying global inter-chain constraints. Specifically, because the peptide forms
β-sheet-like contacts with the PDZ domain, we aim to create a complementary set of β-sheet-like in-
teractions on the opposite face of the peptide using the engineered concatenated domain. Constraints
are enforced to ensure valid bond lengths and angles, while also ensuring local stereochemisty is pre-
served. Success is evaluated by the metrics aforementioned, where global feasibility is defined by
ideal bond lengths (2.9± 0.2 Å), C=O· · ·N angles (155± 10◦), and Cα-N· · ·O (120± 10◦).

Results. Table 1 provides results on the PDZ benchmark comparing our constrained diffusion ap-
proach (visualized in Figure 2 (a)) to the baseline methods. Notably, across nearly one hundred
thousand samples generated for the three baselines, not one sample perfectly satisfied the bonding
distance and angle constraints. The baselines frequently generate incorrect secondary structures, as
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RFDiffusion
Ours

Standard Recenter CGD

Constraint Satisfaction (%) [↑] 0.0 0.0 0.0 100.0
Structure Realism (%) [↑] (32.0) (18.7) (38.2) 21.0
Usable Percentage (%) [↑] 0.0 0.0 0.0 21.0
Radius of Gyration (Å) [↓] (13.6) (13.2) (16.2) 12.4

Diversity (%) [↑] N/A N/A N/A 18.8

Table 1: Comparison to structure-based design baselines, Standard (Watson et al., 2023), Recenter
(Braun et al., 2024), and CGD (Lee et al., 2025), and ours, for the PDZ domain. Results reported
across 31,000 samples for each baseline, highlighting best and second best results. Parentheses
indicate when statistics are computed over unusable structures.

illustrated in Figure 2 (b), making it implausible that generations will effectively bind with the pep-
tide ligand. While recentering and CGD perform well in terms of the local geometric requirements
captured by the structure realism measurement, they are unable to cope with the global requirement
of non-covalent bonding between the PDZ backbone continuation and the peptide ligand, as reflect
by the constraint satisfaction rates. While constraint-guided diffusion satisfies the bond distance
constraints for some generations, it is never able to generate residues which appropriately meet the
angle requirements. Importantly, the baselines yield no usable generations for any of the 31 struc-
tures in the benchmark. In contrast, our method achieves state-of-the-art results, generating usable
structures in 21.0% of total generations (and up to 83.0% for well-posed ligands), markedly outper-
forming the existing baselines. In addition to observing perfect constraint satisfaction, we outper-
form all methods substantially in radius of gyration and diversity metrics. These results highlight
the unique ability of our approach to handle both local stereochemical properties while enforcing
global functional constraints, providing a vastly more viable approach to protein engineering under
specific property requirements and design constraints.

7.2 MOLECULE ENCAPSULATION: VACANCY CONSTRAINTS

Several recent approaches have improved the usefulness of diffusion-based protein generation with
the integration of all-atom models and catalytic site scaffolding (Krishna et al., 2024; Ahern et al.,
2025; Braun et al., 2024). A key remaining limitation is precise spatial control over where new
structure is placed. Adjusting the diffusion origin can help, but explicit user control over inclu-
sion/exclusion volumes would better enable tasks such as shaping small-molecule pockets, peptide-
binding grooves, or membrane-embedded features. For example, Braun et al. (2024) approximated
pocket formation by inserting a placeholder α-helix to occupy volume during generation and delet-
ing it afterward. Generalizing this idea to geometric volume constraints, hard inclusion masks and
forbidden regions, could provide finer control and higher success rates in targeted protein design.

Task description. Given a fixed spatial environment defined by a rectangular box with an internal
conical exclusion zone, the goal is to design protein backbones which fall exclusively in this noncon-
vex region while preserving the local geometries and secondary structures. Feasible structures are
characterized by all atoms falling within the defined box (20 Å× 40 Å× 40 Å), while simultaneously
avoiding the exclusion zone introduced by the displacement (visualized in Figure 3).

(a) Standard (b) Recentering (c) Constraint-Guided (d) Ours

Figure 3: Visualization of randomly selected samples for the molecule encapsulation experiment;
green parts of the structure fall within feasible regions, while the red parts violate the constraints.

Results. Figure 3 provides a visualization of representative samples from each baseline. Standard
diffusion and recentering of mass guidance perform similarly in this domain, yielding realistic struc-
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RFDiffusion
Ours

Standard Recenter CGD Recenter + CGD

Constraint Satisfaction (%) [↑] 0.0 0.0 21.6 27.4 100.0
Structure Realism (%) [↑] (100.0) (100.0) 96.1 93.8 97.8
Usable Percentage (%) [↑] 0.0 0.0 20.5 24.2 97.8
Radius of Gyration (Å) [↓] (15.2) (14.3) 23.9 26.6 14.8

Diversity (%) [↑] N/A N/A 20.5 24.2 97.8

Table 2: Comparison to structure-based design baselines: Standard (Watson et al., 2023), Recenter
(Braun et al., 2024), and CGD (Lee et al., 2025), and ours, for molecule encapsulation. Results
reported across 4000 samples, highlighting best and second best results. Parentheses indicate when
statistics are computed over unusable structures.

tures but failing to satisfy the functional requirements in any out of 1000 samples generated for each.
We observe slightly different failure modes: standard diffusion generally violates the box constraint,
while recentering more often violates the vacancy constraint. The recentering is effective at keep-
ing the structures inside the box, but it cannot capture the exclusion zone. Table 2 reports much
stronger performance for constraint-guided diffusion, especially when augmented with recentering,
which generates feasible samples 27.4% of the time, resulting in 24.2% usable samples. However,
it is worth noting that the qualitative performance suffers, as the radius of gyration is much higher
than other baselines. This is often indicative of structures which contain unfolded conformations,
ultimately undermining structural stability and realism. In comparison, our method reports perfect
constraint satisfaction, producing 4× as many usable samples as the nearest baseline, with an im-
pressive 97.8% success rate. Furthermore, it maintains radii of gyration comparable to standard
diffusion, indicating the generated samples combine structural plausibility, compactness, and fold
coverage.

8 RELATED WORK

While existing de novo protein structure design models produce plausible generations, as we have
shown in this paper, sampled protein backbones frequently violate inter-atomic bond lengths, angles,
or chain closure requirements, often necessitating the generation of tens of thousands of candidates
to obtain a handful of viable designs (e.g., Watson et al. 2023; Sappington et al. 2024). Although
backbone generators such as RFDiffusion (Watson et al., 2023; Ahern et al., 2025) provide major
advances in functional conditioning, outputs still require post hoc filtering to ensure stereochemical
correctness, and current pipelines continue to rely heavily on rejection sampling. Recent models
such as Genie 2 and OriginFlow further illustrate the growing interest in diffusion and flow-based
approaches for backbone generation (Lin et al., 2024; Yan et al., 2025); however, these methods
exhibit similar limitations, with generated backbones often violating global constraints and requiring
substantial downstream filtering.

Training-time methods have been proposed to address these issues by embedding structural con-
straints into generative models (Eguchi et al., 2022; Lutz et al., 2023). However, because protein
design requires task-specific constraints, a model trained on one constraint set does not generalize,
making broad applicability impractical without retraining. Furthermore, training-time approaches
typically provide only distributional guarantees, biasing samples on average rather than ensuring
per-sample feasibility. Models such as ReQFlow (Yue et al., 2025) and FoldFlow-2 (Huguet et al.,
2024) provide valuable tools, but likewise do not directly enforce hard geometric constraints, instead
incorporating them as soft biases.

Inference-time approaches have emerged as a strong alternative, enforcing per-sample compliance
and removing the need for model retraining. Diffusion guidance methods were first introduced for
soft constraint imposition but are fundamentally limited, offering only probabilistic bias rather than
guaranteed adherence to the constraint set (Ho & Salimans, 2022). While these techniques have im-
proved performance for protein backbone generation, with models such as Chroma (Ingraham et al.,
2023) leveraging conditioning on specific substructures, as we have shown in our experiments, they
are often ineffective in providing consistent constraint satisfaction. Overcoming these limitations
requires generative models which can effectively integrate these constraints into the design process,
as presented in this work.
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9 CONCLUSION

Motivated by the significant challenge of integrating functional design constraints into protein en-
gineering tasks, this paper present a constrained diffusion framework for structure-guided design.
By applying proximal feasibility updates with ADMM decomposition, the approach couples local
stereochemical property enforcement with global utility requirements. To assess the quality of ex-
isting solutions as compared to the methodology presented in this paper, the work introduces a novel
curated benchmark for protein motif scaffolding in PDZ domains, providing the first standard for
constrained diffusion methods in modular domain engineering. Evaluation reports state-of-the-art
results across motif scaffolding and vacancy-constrained pocket design, illustrating the ability of
this approach to generate high quality proteins which adhere to precise domain-centric constraints.
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ETHICS STATEMENT

This work develops methods for constrained generative modeling in protein design. Our method im-
proves feasibility in backbone design tasks, which holds significant potential to accelerate existing
protein engineering pipelines. To mitigate risks of potential misuse, this paper restricts evaluation to
safe, publicly available structural benchmarks, curated from the Protein Data Bank. All implemen-
tations follow standard open science practices, ensuring safe and transparent research

REPRODUCIBILITY STATEMENT

The code and benchmark are released in the supplementary material along with instructions to guide
the reproduction of the results presented in this paper. Methodological details are described exten-
sively in the paper and accompanying appendix. Section 7, Appendix B, Appendix F describe the
specific constraints, hyperparameters, models, and hardware used for evaluation pipelines.
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A LIMITATIONS AND FUTURE WORK

In scientific domains such as protein engineering, exact constraint satisfaction is essential for both
physical realism (local constraints) and functional utility (global constraints). However, it is valu-
able to acknowledge several important trade-offs associated with the adoption of constrained meth-
ods. First, enforcing feasibility inherently introduces increased computational complexity. Sampling
from pC is a fundamentally harder task than sampling from pdata, especially under the assumption of
hard constraint satisfaction, as reflected in reported runtimes (Appendix F). While runtime is worth
considering, especially as the method scales, it is important to note that when sampling from pC , our
approach offers the most efficient runtime, providing much better performance than the current re-
jection sampling paradigm. Although not applicable in our experimental settings, if sampling from
pdata is sufficient, it is not computationally tractable to adopt constrained diffusion methods.

As second caveat concerns theoretical assumptions. Our analysis assumes prox-regularity of the
constraint set to provide formal guarantees. This condition is standard in proximal theory, but it may
not apply for highly nonconvex constraints encountered in protein design tasks. In such cases, con-
vergence guarantees do not explicitly apply, and solutions are instead justified empirically. However,
the development of formal guarantees for nonconvex constraint sets remains an open and largely un-
explored direction, as existing optimization theory cannot provide guarantees for general nonconvex
sets.

Finally, while our experimental evaluation illustrates state-of-the-art performance on two highly
nontrivial and practically significant protein engineering problems, it necessarily leaves many other
design challenges open for future exploration. The problems we consider already capture central
difficulties in enforcing exact feasibility under realistic structural and functional constraints, making
them representative of some of the hardest settings encountered in practice. Extensions such as plac-
ing global constraints on higher-level properties (e.g., polarity of specific regions in the structure)
or imposing specific formation constraints on secondary structures (e.g., controlling the radius of a
β-barrel) are complimentary next steps. We view these as exciting opportunities for future work,
with the present study establishing a critical foundation for handling such broader classes of design
challenges.
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Task u0 cT c1 T Diffusion schedule
PDZ Domain 0.0 finite (≈ tol. 3.0 Å) ∞ 45 linear in t, from ᾱ0 ≈ 1 to ᾱT ≈

∏
t(1− 7e−2); SO(3): 1.5→2.5; σ ∈ [0.02, 1.5]

Molecule Encapsulation 0.0 ∞ ∞ 50 linear in t, from ᾱ0 ≈ 1 to ᾱT ≈
∏

t(1− 7e−2); SO(3): 1.5→2.5; σ ∈ [0.02, 1.5]

Table 3: Experiment hyperparameters.

B EXPERIMENTAL DETAILS

All hyperparameters are reported in Table 3. Both tasks use RFDiffusion defaults: T = 50 steps,
linear β schedule from 10−2 to 0.07, SO(3) schedule 1.5–2.5, coordinate scaling 0.25, and Gaus-
sian noise σ ∈ [0.02, 1.5]. Proximal multipliers ct tighten from cT (finite) to c1 = ∞ across the
trajectory. Other hyperparameters λ and η can be derived by Theorem 6.2.

B.1 PDZ DOMAIN: NON-COVALENT BONDS

The evaluation is conducted across our newly introduced dataset, including 31 distinct PDZ struc-
tures. For each structure, we generate 1000 samples with each of the baselines, yielding a total
of 31,000 designed proteins. From these generations, we assess the overall performance of each
method, leveraging PyRosetta to conduct the final evaluation of the generations (Chaudhury et al.,
2010).

Recenter of Mass Guidance. Prior to running the evaluation, we search the local space surround-
ing the peptide ligand to empirically optimize the selected center of mass. We generate ten samples
for each selected point in space, providing representative data for the performance on different con-
ditioning. Selection is determined based on the lowest average constraint violation (capturing angles
and bond lengths between the peptide ligand and the sampled generations). After completing this
search, this center of mass is used for all runs on the particular motif.

Constraint-Guided Diffusion. Adopting the Sequential Monte Carlo conditioning proposed by
Lee et al. (2025), we set the sample weighting via the constraint violation of the clean predicted
state x̂t

0. For the evaluation, we fix the number of particles P = 200, as this seems to balance po-
tential performance and overall runtime. We adopt a multinomial resampling function and introduce
an inverse temperature parameter, β, which controls the sharpness of the resampling distribution.
Candidate weights are computed as

wi ∝ exp

(
−β

(
ci −min

j
sj
))

where ci denotes the score of constraint violation i. Earlier in the diffusion process, β = 30 remains
high, keeping the resampling fairly stochastic, but we lower this β = 1 as t → 0 to improve selection
for the final state and increase the likelihood of non-covalent bonds forming.

Constrained Diffusion (Ours). As described in Section 5, our projection is implemented through
an ADMM derived decomposition. We assign y to be consecutive residues which fall between the
start and end of the bonding points on the peptide ligand. For instance, if the peptide has six covalent
bonding sites, y is composed of five residues. In this case, O–N and N–O bonds are placed on the
first, third, and fifth residues. Then, z is composed of the linker preceding y (typically six residues),
and the chain continuation following y (typically 60-100 residues). Additionally, we note that our
approach leverages constraint guidance for this experiment, as our approach is complementary to
these guidance methods.

B.2 MOLECULE ENCAPSULATION: VACANCY CONSTRAINTS

For this setting, we evaluate across 1000 samples for each of the baselines. We use a fixed box of
size 20 Å× 40 Å× 40 Å, centering the apex of the cone 5 Å above the bottom face of the box, with
a half-angle of 25◦. As we identify that many baseline samples violate only the width constraints of
the box (40 Å× 40 Å), which is not integral to the application, we do not report these violations in
our evaluation provided in Figure 2.
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Recenter of Mass Guidance. The center of mass is positioned at the center of the box, encour-
aging the sample to (1) remain inside of the box and (2) maximize contact with the cone shaped
vacancy. Similar to the previous setting, the guidance is tuned on a small set of sample prior to
generating outputs for evaluation; however, for this experiment the center of mass is fixed during
tuning, only searching over the guidance strength parameter.

Constraint-Guided Diffusion. We adopt an identical setup for the constraint guidance as de-
scribed for the PDZ domain, but leveraging an identical constraint violation measure:

g(x) = inf
y∈C

∥x− y∥2

which captures the sum of the distance of each atom from the feasible region. We similarly adopt
a particle count of P = 200, and follow an identical schedule to the previous experiment for the
inverse temperature.

Constrained Diffusion (Ours). In this setting, all atomic positions are subject to the global con-
straints, making y = x, removing the need for explicit variable splitting in this setting. While we
note that the vacancy constraint is indeed nonconvex, the projection operator can be represented in
closed form, as it is composed of simple convex shapes; this alleviates concerns surrounding the
tractability of the projection operator, which is the primary motivation for decoupling global and
local requirements. To preserve local geometric properties and secondary structures, we extend
this operator by enforcing rigid-body consistency on secondary structure segments, while adjoining
linker regions are adjusted to absorb residual displacements. This construction ensures that the pro-
jection both satisfies global constraints and maintains local stereochemical integrity. Additionally,
we note that our approach leverages constraint guidance and recentering of mass for this experiment,
as our approach is complementary to these guidance methods.

Additional Results. To supplement the results reported in the paper, we include additional anal-
ysis of the secondary structure preservation rates for samples generated by each baseline and by
our method. This metric quantifies the percentage of residues assigned to a canonical secondary
structure state in the relaxed models. Higher values indicate improved preservation of fold-level
features.

RFDiffusion
Ours

Standard Recenter CGD

Secondary Structure (%) 80.8 82.5 83.5 85.0

Table 4: Secondary structure preservation across design methods.

In addition to the primary metrics reported in the main text, we assess the structural plausibility of
generated designs using a secondary structure preservation metric. This measure is assessed using
PyRosetta to determine the percentage of residues which fall in helix, sheet, or turn conformations in
the relaxed structures (Chaudhury et al., 2010). As shown in Table 4, our method achieves the high-
est secondary structure frequency, suggesting that the model maintains global fold characteristics
more reliably than the baselines.

C DATASET CONSTRUCTION

Details for the filtering are included in Figure 4. For every candidate structure per target PDZ-PBM
loop closure, AlphaFold models were constructed. To determine the confidence of each model,
predicted Local Distance Difference Test (pLDDT) was collect. The cutoff for pLDDT for a viable
loop closure was set to >90 (top left). The former N- and C- termini form a β-sheet pairing, to
conserve this, a filter of >60% of the residues being β-sheet was used (top right). ProteinMPNN
was used to generate potential sequences that conform to generated backbones for the in-painted
region. After having AlphaFold predict the structure given the new sequence, RMSD was measured
between the generated backbone and the predicted structure. A cutoff of <2.5Å was used (bottom
left). To ensure the peptide was not interfered with after predicting the new structure with AlphaFold,
a stringent cutoff of <1Å RMSD was used (bottom right)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Dataset filtering details expanded.

D COMPARISON TO PROJECTED DIFFUSION MODELS

As discussed in Section 3, prior work on constrained generative sampling has proposed Projected
Diffusion Models (Christopher et al., 2024). These models augment the sampling process by im-
posing a projection onto the feasible set after each diffusion step. While theoretical guarantees have
been derived for convex constraint sets, and empirical observations have illustrated that these prop-
erties hold for certain nonconvex sets, the paper has argued critical limitations for step-then-project
approaches when applied to challenging settings as explored in this work. This section presents
empirical justification of these aforementioned claims.

Projected Diffusion Model
Ours

Local + Global Global

Constraint Satisfaction (%) 0.0 (Failed to Converge) 100.0 100.0
Structure Realism (%) N/A 0.0 97.8
Usable Percentage (%) 0.0 0.0 97.8
Radius of Gyration (Å) N/A (13.1) 14.8

Diversity (%) N/A N/A 97.8

Table 5: Comparison to Projected Diffusion Models on the Molecule Encapsulation setting.

The results in Table 5 reaffirm the limitations of integrating intermediate projection steps when
working with high-dimensional data subject to complex nonconvex constraints. While in this setting
it was possible to exactly satisfy the global constraints, the resulting structures are unusable, with
high concentrations of atoms placed on the edges of the box and cone boundaries. When also
enforcing the local constraints explicitly, the projection operator never converged on any samples or
timesteps.
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E HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the robustness of our method to hyperparameter choices, we performed two ablation stud-
ies: (1) varying constraint weight schedule λ, and (2) varying the number of ADMM iterations per
diffusion step. All experiments were conducted on the PDZ domain design target 6ubh, a well-posed
example from our benchmark set suited to constrained generation.

λ = 10
t λ = 100

t λ = 1000
t λ = inf

Constraint Satisfaction (%) 100.0 100.0 100.0 100.0
Structure Realism (%) 80.0 100.0 100.0 90.0
Usable Percentage (%) 80.0 100.0 100.0 90.0
Radius of Gyration (Å) 10.58 10.53 10.56 10.34

Diversity (%) 80.0 100.0 100.0 90.0

Table 6: Ablation over constraint-weight schedules λ on PDZ domain sample 6ubh.

As illustrated by Table 6, increasing the initial weight of λT yields improvements in structural real-
ism and usable sample percentage. This trend aligns with the interpretation that stricter constraint
enforcement at early timesteps guides the diffusion trajectory toward the feasible manifold, improv-
ing geometric quality. However, increasing this too strictly, results in over constraining early states,
analogous to placing an overly large weight on the diffusion-guidance terms as discussed in Section
3.

ADMM = 1 ADMM = 2 ADMM = 3

Constraint Satisfaction (%) 100.0 100.0 100.0
Structure Realism (%) 80.0 70.0 40.7
Usable Percentage (%) 80.0 70.0 40.7
Radius of Gyration (Å) 10.58 10.72 11.24

Diversity (%) 80.0 70.0 40.7

Table 7: Ablation on the number of ADMM iterations per diffusion step.

The next analysis centers on determining the optimal number of ADMM iterations per diffuson
step. As described in Section 5, a single ADMM sweep per diffusion step is sufficient in practice.
In fact, the ablation suggests that multiple iterations degrade quality. The failure case that emerges
over additional ADMM iterations is actually always tied to the formation of a β-sheet across the
binding sites; additional iterations do not result in local stereochemical properties breaking, but the
analysis suggests that they do lower the liklihood of secondary structure conformations. This is
because a higher wieght is placed on the ADMM optimization than the diffusion updates, leading to
feasible generations but not ones which fall closely on the data manifold. Furthermore, we note that
additional ADMM steps also become impractical because adding these iterations scales the runtime
nearly linearly.

F RUNTIME

Benchmarks were run on a single slice of an NVIDIA A100 Multi-Instance GPU (MIG) to effi-
ciently parallelize sampling across available hardware. We posit that overall runtimes could be
improved by scaling the available resources, but this is beyond the scope of this study; for instance,
both constraint-guided diffusion and our approach could be significantly parallelized to increase
efficiency, as they operate over up to P = 200 particles. Note that reducing P will accelerate per-
formance, providing a tunable trade-off between speed and performance. Hence, we expect that
if resource constraints could be ignored, these methods could be accelerated by multiple orders of
magnitude.

Our method provides the best runtimes per usable sample. In protein design experiments, this is a
more important metric than raw runtime, as only usable samples are relevant when considering over-
all performance. Hence, under the assumption that functional requirements are necessary, which is
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Standard Recenter CGD Ours

PDZ Domain

Time Per Usable Sample (min) ∞ ∞ ∞ 935.2

Molecule Encapsulation

Time Per Usable Sample (min) ∞ ∞ 142.4 98.4

Table 8: Reported runtimes on both settings. Analysis considers the average time per usable sample.

specifically the applications this work targets, the proposed method is indeed the most computa-
tionally efficient!

G ADMM

This section expands the discussion of the ADMM formulation introduced in Section 5. Begin by
recalling the consensus formulation of our proximal update:

proxF+G(y, z) := argmin
y,z

F (y) +G(z) s.t. y = z

where F includes the data anchor term and local feasibility requirements, and G encodes global
feasibility.

F (y) =
1

2ηt
∥y − x̂t

0∥2 +
λt

2
distClocal

(y)2

G(z) =
λt

2
distCglobal

(z)2

Recall that the consensus initialization y0 = z0 = x̂t
0 ∈ R3×n, which aligns the start of the iterates

with the denoiser’s prediction.

Classical ADMM results (see Parikh et al. 2014) guarantee convergence to a minimizer of F + G
under convexity assumptions. In our case, convexity does not strictly hold, but in practice this
algorithm is often effectively applied to nonconvex settings, achieving feasible solutions.

The formulation yields the augmented Lagrangian, introducing the dual variable u and a penalty
parameter ρ:

Lρ(y, z,u) = F (y) +G(z) + u⊤(y − z) + ρ
2∥y − z∥2

Then, expanding the ADMM updates introduced in Equation (6) yields:

yk+1 = argmin
y

F (y) + ρk

2 ∥y − zk + uk∥2

zk+1 = argmin
z

G(z) + ρk

2 ∥yk+1 − z + uk∥2

uk+1 = uk + yk+1 − zk+1

These updates are equivalent to the proximal splitting form presented in Section 5, with proxF
realized by the y-update and proxG by the z-update. The dual variable u accumulates the resid-
ual mismatch between the two copies, driving them toward consensus. At convergence, y = z,
recovering the minimizer of F +G.

H COMPLETE PROOFS

Proof of Theorem 6.1. Claim: distC(x̃t
0) ≤ 1√

λtηt
distC(x̂t

0)

Lemma H.1. Let ϕ(z) = 1
2ηt

∥z− x̂t
0∥2+ λt

2 distC(z)2. By optimality of x̂t
0, ϕ(x̃t

0) ≤ ϕ
(
ΠC(x̂t

0)
)
.

Lemma H.1 holds as the minimizer’s objective value can’t exceed the value at any feasible point, in
particular at the projection of x̂t

0.
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Then, expanding from the lemma:

1
2ηt

∥x̃t
0 − x̂t

0∥+ λt

2 distC(x̃
t
0)

2 ≤ 1
2ηt

∥ΠC(x̂
t
0)− x̂t

0∥+ λt

2 distC
(
ΠC(x̂

t
0)
)2

Since λt

2 distC
(
ΠC(x̂t

0)
)2

= 0, this term can then be omitted.

1
2ηt

∥x̃t
0 − x̂t

0∥+ λt

2 distC(x̃
t
0)

2 ≤ 1
2ηt

∥ΠC(x̂
t
0)− x̂t

0∥

Dropping the non-negative first term gives:
λt

2 distC(x̃
t
0)

2 ≤ 1
2ηt

∥ΠC(x̂
t
0)− x̂t

0∥

or equivalently

distC(x̃
t
0) ≤ 1√

λtηt
distC(x̂

t
0)

Proof of Theorem 6.2. Claim: E
[
distC(x0)

2
]
≤ K

2c1

Begin by assuming E
[
distC(x̂t

0)
2
]
≤ K, and the schedule is defined such that λt =

ct
ηt

.

By Theorem 6.1, it is known that

distC(x̃
t
0) ≤ 1√

2λtηt
distC(x̂

t
0)

and thus, on the squared expectation

E
[
distC(x̃

t
0)

2
]
≤ 1

2λtηt
E
[
distC(x̂

t
0)

2
]
.

Then, by our assumption,
E
[
distC(x̃

t
0)

2
]
≤ 1

2λtηt
K = K

2λtηt

Substituting our schedule λt =
ct
ηt

yields:

E
[
distC(x̃

t
0)

2
]
≤ K

2ct

By applying Corollary 6.2 at time t = 1:

E
[
distC(x0)

2
]
≤ K

2c1

Thus, if the schedule of ct is decreasing, the expected violation converges as t → 0.

Proof of Theorem 6.3. Claim: Existence of a local solution for the proximal mapping.

Existence: proxηt,g is continuous and coercive, hence attains a global minimizer for every x̂t
0. In

particular, argmin proxηt,g ̸= ∅.

First, assume ηt, λt > 0, C ⊂ R3×n nonempty, closed. For ease of notation:

Φt(x) =
1

2ηt
∥x− x̂t

0∥2 +
λt

2
distC(x)

2

Since the distance from the constraint set is strictly non-negative,

Φt(x) ≥ 1
2ηt

∥x− x̂t
0∥2 = 1

2ηt
∥x∥2 + 1

2ηt
⟨x, x̂t

0⟩+ 1
2ηt

∥x̂t
0∥2.

Since the term ∥x∥ → ∞ as x → ∞, Φ is Φ.

Φ is also lower semicontinuous since (i) the quadratic anchor term 1
2ηt

∥x− x̂t
0∥2 is continuous, and

(ii) the squared distance to the closed set is lower semicontinuous and finite everywhere.
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Since Φ is coercive and lower semicontinuous, it obtains a global minimum.

argminΦt ̸= ∅

Local uniqueness. If x̂t
0 lies within the prox-regularity neighborhood of C, then the projection

ΠC(x̂t
0) is single-valued. Moreover, if proxηt,g is strongly convex in a neighborhood of ΠC(x̂t

0),
then the proximal minimizer is unique within that neighborhood.

Now, assume C is prox-regular at all points in a neighborhood X of x⋆ = ΠC(x̂t
0). Prox-regularity

then implies:

• Single valued projection. The projection ΠC(·) is single valued and Lipschitz on the
neighborhood U ⊂ X .

• Smooth distance function. Thus, distC(·)2 is C1 on U with gradient:

∇
(

1
2 distC(x)

2
)

= x−ΠC(x), x ∈ U .

Let U be small enough that the above holds and x̂t
0 ∈ U . Consider Φt restricted to U . Its gradient is

∇Φt(x) =
1
ηt
(x− x̂t

0) + λt

(
x−ΠC(x)

)
, x ∈ U ,

and its (generalized) Hessian can be bounded below using the Jacobian of ΠC . In particular, since
ΠC is nonexpansive in U ,

⟨∇2Φt(x) v, v⟩ ≥ 1
ηt
∥v∥2 + λt⟨(I −DΠC(x))v, v⟩ ≥ 1

ηt
∥v∥2,

for all v and almost every x ∈ U . Thus Φt is locally µ-strongly convex on U with µ = 1/ηt > 0.

Local strong convexity implies a unique critical point in U , hence a unique local minimizer of Φt

in U . Since Φt is coercive with at least one global minimizer, and x̂t
0 is in the prox-regularity

neighborhood so the minimizer lies in U , the proximal minimizer is unique in that neighbor-
hood.
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