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Abstract

Normalizing flows are an essential alternative to
GANs for generative modelling, which can be op-
timized directly on the maximum likelihood of the
dataset. They also allow computation of the exact
latent vector corresponding to an image since they
are composed of invertible transformations. How-
ever, the requirement of invertibility of the trans-
formation prevents standard and expressive neural
network models such as CNNs from being directly
used. Emergent convolutions were proposed to con-
struct an invertible 3×3 CNN layer using a pair
of masked CNN layers, making them inefficient.
We study conditions such that 3×3 CNNs are in-
vertible, allowing them to construct expressive nor-
malizing flows. We derive necessary and sufficient
conditions on a padded CNN for it to be invert-
ible. Our conditions for invertibility are simple, can
easily be maintained during the training process.
Since we require only a single CNN layer for ev-
ery effective invertible CNN layer, our approach is
more efficient than emerging convolutions. We also
proposed a new coupling layer for more flexibil-
ity and expressiveness, Quad-coupling. We bench-
mark our approach and show similar performance
results to emergent convolutions while improving
the model’s efficiency. Code available on GitHuba.

ahttps://github.com/Naagar/
Normalizing_Flow_3x3_inv

1 INTRODUCTION

The availability of large datasets has resulted in improved
machine learning solutions for more complex problems.
However, supervised datasets are expensive to create. Hence
unsupervised methods like generative models are increas-
ingly worked on. Generative models that have been pro-

posed can be broadly categorized under Likelihood-based
methods and Generative Adversarial Methods. For example,
an optimization algorithm could directly minimize the for-
mer’s negative log-likelihood of the unsupervised examples.
At the same time, in the latter, the loss function itself is mod-
elled as a discriminator network that is trained alternatively.
Hence likelihood-based methods directly optimize the prob-
ability of examples. In contrast, in GANs, the function being
optimized is implicit and hard to reason about.

An essential type of Likelihood-based Generative models
is normalizing flow-based models. Normalizing flow-based
models transform a latent vector usually sampled from a
continuous distribution like the Gaussian by a sequence
of invertible functions to produce the sample. Hence even
though the latent vector distribution is simple, the sample
distribution could be highly complex, provided we are using
an expressive set of invertible transformations. Also, the
invertibility of the model implies that one can find the exact
latent vector corresponding to an example from a dataset.
All other approaches to generative modelling can compute
the latent vector, for example, only approximately.

The ability of a normalizing flow based model to express
complex real-world data distributions depends on the ex-
pressive power of the invertible transformations used. In
supervised models in vision tasks, complex, multilayered
CNNs with different window sizes are used. CNN’s with
larger window size helps in spatial mixing of information
about the images, resulting in expressive features. Glow
used invertible 1×1 convolutions to build normalizing flow
models Kingma and Dhariwal [2018]. For a 1×1 convolu-
tion (if it is invertible), the inverse is also a 1×1 convolution.
We show that this approach does not generalize to larger
window sizes. In particular, the inverse of an invertible 3×3
convolution necessarily depends on all the feature vector
dimensions, unlike CNNs, which only require local features.

Emerging convolutions proposed a way of inverting convolu-
tions with large window sizes Hoogeboom et al. [2019]. The
inverse is not a convolution and is computed by a linear equa-
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tion system that can efficiently be solved using back sub-
stitution. However, for obtaining an invertible convolution,
they required 2 CNN filters to be applied. Hence for every
effective invertible convolution, they are required to do two
convolutions back to back. We propose a simple approach
using padding of obtaining invertible convolutions, which
only uses a single convolutional filter. Furthermore, we are
able to give a characterization (necessary and sufficient con-
ditions) for the convolutions to be invertible. This allows us
to optimize over the space of invertible convolutions during
training directly. We have compared our method with Emerg-
ing convolution (Hoogeboom et al. [2019]) and Autoregres-
sive convolution (Germain et al. [2015]) in Appendix-C

Main Contributions.

• We give necessary and sufficient conditions for a 3×3
convolution to be invertible by making some modifica-
tions to the padding (see Section 3.1).

• We also propose a more expressive coupling mecha-
nism called Quad-coupling (see Section 3.2).

• We use our characterization and Quad-coupling to train
flow-based models that give samples of similar quality
as previous works while improving upon the run-time
compared to the other invertible 3×3 convolutions pro-
posed (see Section 4).

2 RELATED WORKS

Normalizing flows. A normalizing flow aims to model an
unknown data distribution (Kingma and Dhariwal [2018],
Durkan et al. [2019a,b]), that is, to be able to sample from
this distribution and estimate the likelihood of an element
for this distribution.

To model the probability density of a random variable x,
a normalizing flow apply an invertible change of variable
x = gθ(z) where z is a random variable following a known
distribution for instance z ∼ N (0, Id). Then we can get the
probability of x by applying the change of variable formula

pθ (x) = p (fθ(x))

(∣∣∣∣∂fθ (x)∂xT

∣∣∣∣)

where fθ denotes the inverse of gθ and
∣∣∣∂fθ(x)∂xT

∣∣∣ its Jacobian.

The parameters θ are learned by maximizing the actual
likelihood of the dataset. At the same time, the model is
designed so that the function gθ can be inverted and have its
Jacobian computed in a reasonable amount of time.

Glow. RealNVP defines a normalizing flow composed of
a succession of invertible steps (Dinh et al. [2017]). Each
of these steps can be decomposed into layers steps. Im-
provements for some of these layers where proposed in later

articles (Kingma and Dhariwal [2018], Hoogeboom et al.
[2019]).

Actnorm: The actnorm layer performs an affine transforma-
tion similar to batch normalization. First, its weights are
initialized so that the output of the actnorm layer has zero
mean and unit variance. Then its parameters are learned
without any constraint.

Permutation: RealNVP proposed to use a fixed permutation
to shuffle the channels as the coupling layer only acts on
half of the channels. Later, Kingma and Dhariwal [2018]
replaced this permutation with a 1×1 convolution in Glow.
These can easily be inverted by inverting the kernel. Finally,
Hoogeboom et al. [2019] replaced this 1x1 convolution with
the so-called emerging convolution. These have the same
receptive convolution with a kernel of arbitrary size. How-
ever, they are computed by convolving with two successive
convolutions whose kernel is masked to help the inversion
operation.

Coupling layer: The coupling layer is used to provide flex-
ibility to the architecture. The Feistel scheme (Hoang and
Rogaway [2010]) inspires its design. They are used to build
an invertible layer out of any given function f . Here f is
learn as a convolutional neural network.

y = [y1, y2], y1 = x1, y2 = (x2+f(x1))∗exp(g(x1))

Where we get x1 and x2 by splitting the input x along the
channel axis.

Invertible Convolutional Networks. Complementary to
normalizing flows, there has been some work done design-
ing more flexible invertible networks. For example, Gomez
et al. [2017] proposed reversible residual networks (RevNet)
to limit the memory overhead of backpropagation, while (Ja-
cobsen et al. [2019]) built modifications to allow an explicit
form of the inverse, also studying the ill-conditioning of the
local inverse. Ho et al. [2019] proposed a flow-based model
that is the non-autoregressive model for unconditional den-
sity estimation on standard image benchmarks

Invertible 1×1 Convolution: Kingma and Dhariwal [2018]
proposed the invertible 1×1 convolution replacing fixed per-
mutation (Dinh et al. [2017]) that reverses the ordering of the
channels. Hoogeboom et al. [2019] proposed normalizing
flow method to do the inversion of 1×1 convolution with
doing some padding on the kernel and two distinct auto-
regressive convolutions, which also provide a stable and
flexible parameterization for invertible 1×1 convolutions.

Invertible n×n Convolution: Reformulating n×n convolu-
tion using invertible shift function proposed by Truong et al.
[2019] to decrease the number of parameters and remove the
additional computational cost while keeping the range of the
receptive fields. In our proposed method, there is no need
for the reformulation of standard convolutions. Hoogeboom
et al. [2019] proposed two different methods to produce the



invertible convolutions : (1) Emerging Convolution and (2)
Invertible Periodic Convolutions. Emerging requires two
autoregressive convolutions to do a standard convolution,
but our method requires only one convolution as compare
to the method proposed by Hoogeboom et al. [2019] and
increase the flexibility of the invertible n×n convolution.

3 OUR APPROACH

We propose a novel approach for constructing invertible
3×3 convolutions and coupling layers for normalizing flows.
We propose two modifications to the existing layers used in
previous normalizing flow models:

• convolution layer: instead of using 1×1 convolutions
or emerging convolutions, we propose to use standard
convolutions with a kernel of any size with a specific
padding.

• coupling layer: we propose to use a modified version of
the coupling layer designed to have a bigger receptive
field.

We also show how invertibility can be used to manipulate
images semantically.

3.1 INVERTIBLE 3× 3 CONVOLUTION

We give necessary and sufficient conditions for an arbitrary
convolution with some simple modifications on the padding
to be invertible. Moreover, the inverse can also be computed
by an efficient back substitution algorithm.

Definition 1 (Convolution). The convolution of an input
X with shape H × W × C with a kernel K with shape
k × k × C × C is Y = X ∗ K of shape (H − k + 1) ×
(W − k + 1)× C which is equal to

Yi,j,co =
∑
l,h<k

C∑
ci=1

Ii+l,j+k,ciKl,k,ci,co (1)

.

In this setting, the output Y has a smaller size than the
input to prevent this input is padded before applying the
convolution.

Definition 2 (Padding). Given an image I with shape H ×
W × C, the (t, b, l, r) padding of I is the image Î of shape
(H + t+ b)× (W + l + r)× C defined as

Îi,j,c =

{
Ii−t,j−l,c if i− t < H and j − l < W

0 otherwise
(2)

As zero padding does not add any bias to the input, the
convolution between a padded input Î and a kernelK is still

a linear map between the input and the output. As such, it
can be described as matrix multiplication.

An image I of shape (H,W,C) can be seen as an vector
~I of RH×W×C . In the rest of this paper we will always
use the following basis Ii,j,c = ~Ic+Cj+CHi. For any index
i ≤ HWC, let (iy, ix, ic) denote the indexes that satisfy
~Ii = Iiy,ix,ic . Note that i < j iff (iy, ix, ic) ≺ (jy, jx, jc)
where≺ denotes the lexicographical order over R3. IfC = 1
this means that the pixel (jy, jx) is on the right or below the
pixel (iy, ix).

Definition 3 (Matrix of a convolution.). Let K be a kernel
of shape k × k × C × C. The matrix of a convolution of
kernel K with input X of size H ×W × C with padding
(t, b, l, r) is a matrix describing the linear mapX 7→ X̂ ∗K.

Characterization of invertible convolutions: We con-
sider convolution with top and left padding only. For such
convolutions, we give necessary and sufficient conditions
for it to be invertible. Let K be the kernel of the convolution
with shape 3× 3×N ×N where 3× 3 is the window size,
and N is the number of channels. Note that number of input
channels should be equal to the number of output channels
for it to be invertible.

Lemma 1. Let y = Mx̂,

M is a lower triangular matrix with all diagonal entries
= K3,3

Where the matrix M is which produces the equivalent result
when multiplied with a vectorized input (x̂).

Proof. Consider any entry in the upper right half of M .
That is (i, j) such that i < j according to the ordering
given in the definition of M . Mi,j is nothing but the scalar
weight that needs to be multiplied to the jth pixel of input
when computing ith pixel of the output. The linear equation
relating these two variable is as follows:

yi =

3∑
l=0

3∑
k=0

K3−l,3−kxix−l,iy−k

From this equations follows that if jx > ix or jy > iy then
the ith pixel of the output does not depend on the jth pixel
of the input and thus Mi,j = 0. This also justifies that all
diagonal coefficients of M are equal to K3,3

We first describe our conditions for the case when N = 1.
We prove the following theorem.

Theorem 1 (Characterization for N = 1).

M is invertible iff K3,3 6= 0.



Figure 1: (a).Top: first four is kernel matrix and fifth is input matrix with the standard padding that give the bottom
convolution matrix, Bottom: the convolution matrix corresponding to a convolution with kernel of size 3 applied to an input
of size 4× 4 padded on both sides and with 2 channels. Zero coefficients are drawn in white, other coefficient are drawn
using the same color if they are applied to the same spatial location albeit on different channels. (b) Top: an alternative
padding scheme that results in a block triangular matrix M , Bottom: The matrix corresponding to a convolution with kernel
of size 3 applied to an input of size 4 × 4 padded only on one side and with 2 channels. (c) Top: an masked alternative
padding scheme that results in a triangular matrix M , Bottom: the matrix corresponding to a convolution with kernel of size
3 applied to an input of size 4× 4 padded only on one side and with 2 channel. One of the weight of the kernel is masked.
Note that the equivalent matrix M is triangular.

Proof. The proof of the theorem uses Lemma 1. Since M is
lower triangular, the determinant is nothing but the product
of diagonal entries, which is = Kh∗w

3,3 where h,w is the
dimensions of the input/output image.

At its core, the convolution layer is a linear operation. How-
ever, we have no guarantees regarding it as invertibility. The
result z of the convolution of input x with kernel k can be
expressed as the product as x with a matrix M . When zero-
padding is used around the input so that x and z have the
same shape, the matrix M is not easily invertible because
the determinant of M can be zero (see matrix M in Figure
1(a)).

However, when padding only on two sides (left and top),
the corresponding M is blocked triangular (see Figure 1(b)).
To further ensure invertibility and speed up the inversion
process, we also mask part of the kernel so that the matrix
corresponding to the convolution is triangular, see in Figure
1(c) and for more details which K(n, n) we need to mask
see Appendix-B. In this configuration, the Jacobian of the
convolution can also be easily computed. For further details
of the padding the input, see Appendix-A.

3.2 QUAD-COUPLING

The coupling layer is used to have some flexibility as its
functions can be of any form. However, it only combines
the effects of half channels. To overcome this issue we
designed a new coupling layer inspired from generalized
Feistel (Hoang and Rogaway [2010]) schemes. Instead of

dividing the input x into two blocks we divide it into four
x = [x1, x2, x3, x4] along the feature axis. Then we keep
x1 unchanged and use it to modify the other blocks in an
autoregressive manner (see Figure 2):

y1 =x1 (3)
y2 =(x2 + f1(x1)) ∗ exp(g1(x1)) (4)
y3 =(x3 + f2(x1, x2)) ∗ exp(g2(x1, x2)) (5)
y4 =(x4 + f3(x1, x2, x3)) ∗ exp(g3(x1, x2, x3)) (6)

where (fi)i≤3 and (gi)i≤3 are learned. The output of the
layer is obtained by concatenating the (yi)i≤4.

4 EXPERIMENTAL RESULTS

The architecture is based on Hoogeboom et al. [2019]. We
modified the emerging convolution layer to use our standard
convolution. We also introduced the Quad-coupling layer in
place of the affine coupling layer. Finally, we evaluate the
model on a variety of models and provide images sampled
from the model. For detailed overview of the architecture
see Figure 3.

Training setting: To train the model on Cifar10, we used
the 3 level (L) and depth (D) of 32 and lr 0.001 for the 500
epochs. To train on ImageNet32, L = 3, D = 48, lr 0.001
for the 600 epochs and for ImageNet64, L = 4, D = 48,
lr 0.001 for the 1000 epochs. See Figure 3 for the model
architecture.



Figure 2: The Quad-coupling layer, each input block Xi

has the same spatial dimension as the input X but only
one quarter of the channels. Each of the function f1, f2
and f3 is a 3 layer convolutional network.

⊕
symbolizes

a component-wise addition. The multiplicative actions are
not represented here.

Figure 3: Overview of the model architecture. Left, the flow
modules we propose: containing inv 3× 3 convolution. The
diagram on the right shows the entire model architecture,
where the flow module is now grouped. The squeeze module
reorders pixels by reducing the spatial dimensions by a half,
and increasing the channel depth by four. A hierarchical
prior is placed on part of the intermediate representation
using the split module as in (Kingma and Dhariwal [2018]).
x and z denote input and output. The model has L levels,
and D flow modules per level.

Quantitative results: The Comparison of the perfor-
mance of 3×3 invertible convolution with the emerging con-
volution (Hoogeboom et al. [2019]) for the cifar10 dataset
in Table 1. The performance of our layers was tested on CI-
FAR10 (Krizhevsky et al. [2009]), ImageNet (Russakovsky
et al. [2015]) as well as on the galaxy dataset (Ackermann
et al. [2018]) see Table 2. We also tested our architecture
on networks with a smaller depth (D = 4 or D = 8) see
Table 3 which could be used when computational resources
are limited as their sampling time is much lower. In this
case, using standard convolution and Quad-coupling offers
a more considerable performance improvement than with
bigger models (see Table 3).

Emerging 3×3 Inv. conv Our 3×3 Inv. conv
Affine 3.3851 3.4209
Quad 3.3612 3.3879

Table 1: Comparison of the performance (in bits per dimen-
sion) achieved on the Cifar10 dataset with different coupling
architectures.

Glow Emerging 3× 3 Quad
Cifar10 3.35 3.34 3.3498 3.3471

ImageNet32 4.09 4.09 4.0140 4.0377
ImageNet64 3.81 3.81 3.8946 3.8514

Galaxy — 2.2722 2.2739 2.2591

Table 2: Performance achieved on the Cifar10 and Imagenet
datasets after a limited number of epochs (500 for Cifar10,
600 for ImageNet32,ImageNet64 and 1000 for Galaxy).
Emerging results were obtained by using the code provided
in Hoogeboom et al. [2019], 3× 3 is replacing the emerging
convolutions by our 3× 3 invertible convolutions and Quad
uses Quad-coupling on top of this.

Figure 4: Sample images generated after training on the
cifar dataset.

Sampling Times: We compared our method’s sampling
time (Table 4) against Glow (Kingma and Dhariwal [2018])
and Emerging Convolutions (Hoogeboom et al. [2019]).
Our convolution still requires solving a sequential problem
to be inverted and, as such, need to be inverted on CPU,
unlike Glow that can be inverted while performing all the
computation on GPU. This explains the gap between the
sampling time of our model compared to Glow. However, it
is still roughly two times faster than emerging convolutions;
this comes from the need to solve two inversion problems to
invert one emerging convolution layer. The Quad-coupling
layer does not affect sampling time too much.



Dataset Emerging Ours DepthPerformance Sampling time Performance Sampling time
Cifar10 3.52 2.45 3.49 1.31 4Imagenet32 4.30 4.25
Cifar10 3.47 4.94 3.46 2.76 8Imagenet32 4.20 4.18

Table 3: Performance with smaller networks, when computational resources are limited. The performance is expressed in
bits per dimension and the sampling time is the time in seconds needed to sample 100 images. All networks were trained for
600 epochs.

Figure 5: From left to right : the result obtained when using the network to change hair colour (a), remove glasses (b), and
visage shape (c). For every example, the original image is shown on the left. Fig.(d) here, we can see the result of gradually
modifying the age parameter. The original image is the fourth from the left (middle one).

Glow Emerging 3× 3 Quad
Cifar10 0.58 18.4 9.3 10.8

Imagenet32 0.86 27.6 14.015 16.1
Imagenet64 0.50 160.72 82.04 84.06

Table 4: Time in seconds to sample 100 images. Results
were obtained with Glow running on GPU and the other
methods running on one CPU core.

Interpretability results: To show the interpretability of
our invertible network, we used the Celeba dataset (Liu
et al. [2015]) which provides images of faces and attributes
corresponding to these faces. In Figure 4 are the randomly
generated fake sample images for the cifar10 dataset. The
covariance matrix between the attributes of images in the
dataset and their latent representation indicates how to mod-
ify the latent representation of an image to add or remove
features. Examples of such modifications can be seen in
Figures 5(a, b, c) and 5(d).

5 CONCLUSION

In this paper, we propose a new method for Invertible n×n
Convolution. Coupling layers solve two problems for nor-
malizing flows: they have a tractable Jacobian determinant
and can be inverted in a single pass. We propose a new type
of coupling method, Quad-coupling. Our method shows

consistent improvement over the Emerging convolutions
method, and we only need a single CNN layer for every
effective invertible convolution. This paper shows that we
can invert a convolution with only one effective convolu-
tion, and additionally, the inference time and sampling time
improved notably. We show the inversion of 3×3 convo-
lution and the generalization of the inversion for the n×n
kernel. Furthermore, we demonstrate improved quantitative
performance in terms of log-likelihood on standard image
modelling benchmarks.
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the size of kernels.
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See figure 6.
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Figure 6: Comparison of the speed and utilization of parameters with Autoregressive convolutions (Germain et al. [2015],
Kingma et al. [2016]) and Emerging (Hoogeboom et al. [2019])
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