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Abstract

Ensuring model calibration is critical for reliable
prediction, yet popular distribution-free methods
such as histogram binning and isotonic regression
offer only asymptotic guarantees. We introduce a
unified framework for Venn and Venn-Abers cali-
bration that extends Vovk’s approach beyond bi-
nary classification to a broad class of prediction
problems defined by generic loss functions. Our
method transforms any perfectly in-sample cali-
brated predictor into a set-valued predictor that,
in finite samples, outputs at least one marginally
calibrated point prediction. These set predictions
shrink asymptotically and converge to a condition-
ally calibrated prediction, capturing epistemic un-
certainty. We further propose Venn multicalibra-
tion, a new approach for achieving finite-sample
calibration across subpopulations. For quantile
loss, our framework recovers group-conditional
and multicalibrated conformal prediction as spe-
cial cases and yields novel prediction intervals
with quantile-conditional coverage.

1. Introduction
Calibration is essential for ensuring that machine learn-
ing models produce reliable predictions and enable robust
decision-making across diverse applications. Model cali-
bration aligns predicted probabilities with observed event
frequencies and predicted quantiles with the specified pro-
portion of outcomes. Recent work formalizes calibration
as the alignment of predictions with elicitable properties
defined through minimization of an expected loss, thereby
generalizing traditional notions of mean and quantile cali-
bration (Noarov and Roth, 2023). In safety-critical sectors
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Figure 1. Prediction bands capturing epistemic uncertainty in the
calibration of point predictions generated by our proposed methods
with a squared error loss.

such as healthcare, it is crucial to ensure that model-driven
decisions are reliable under minimal assumptions (Mandi-
nach et al., 2006; Veale et al., 2018; Vazquez and Facelli,
2022; Gohar and Cheng, 2023). Point calibrators, which
map a single model prediction to a single calibrated pre-
diction (e.g., histogram binning and isotonic regression),
can provide distribution-free calibration conditional on the
calibration data. However, their guarantees are asymptotic,
achieving zero calibration error only in the limit, and their
performance may degrade in finite samples.

To address these limitations, set calibrators transform a sin-
gle model prediction into a set of calibrated point predic-
tions, explicitly capturing epistemic uncertainty in the cali-
bration process. This class of methods includes Venn and
Venn-Abers calibration (Vovk et al., 2003; Vovk and Petej,
2012; van der Laan and Alaa, 2024) for classification and
regression, and Conformal Prediction (CP) for quantile re-
gression and predictive inference (Vovk et al., 2005). Set cal-
ibrators provide prediction sets with finite-sample marginal
calibration guarantees, while these sets generally converge
asymptotically to conditionally calibrated point predictions.
For example, Venn calibration produces a set of calibrated
probabilities, and conformal prediction generates a set of
calibrated quantiles (from which an interval can be derived),
ensuring that at least one prediction in the set is perfectly
calibrated marginally over draws of calibration data.

Our Contributions. We introduce a unified framework for
Venn and Venn-Abers calibration, generalizing Vovk and
Petej (2012) to a broad class of prediction tasks and loss
functions. This framework extends point calibrators, e.g.,
histogram binning and isotonic regression, to produce pre-
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diction sets with finite-sample marginal and large-sample
conditional calibration guarantees to capture epistemic un-
certainty. We further propose Venn multicalibration, en-
suring finite-sample calibration across subpopulations. For
quantile regression, we show that Venn calibration corre-
sponds to a novel CP procedure with quantile-conditional
coverage, and that multicalibrated conformal prediction
(Gibbs et al., 2023) is a special case of Venn multicalibra-
tion, unifying and extending existing calibration methods.
Our approach enables the construction of set calibrators and
set multicalibrators from point calibration algorithms for
generic loss functions (Noarov and Roth, 2023).

2. Preliminaries for loss calibration
2.1. Notation

We consider the problem of predicting an outcome Y ∈ Y
from a context X ∈ X , where Z := (X,Y ) is drawn
from an unknown distribution P := PXPY |X , on which
we impose no distributional assumptions. Let f : X → Y
denote a predictive model trained to minimize a loss func-
tion (f(x), z) 7→ ℓ(f(x), z) using a machine learning al-
gorithm on training data. For example, ℓ(f(x), z) could
be the squared error loss {y − f(x)}2 or the (1 − α)-
quantile loss 1{y ≥ f(x)}α(y−f(x))+1{y < f(x)}(1−
α)(f(x) − y). We assume access to a calibration dataset
Cn = {(Xi, Yi)}ni=1 of n i.i.d. samples drawn from the
same distribution P , independent from the training data.
Throughout this work, we treat the model f as fixed, implic-
itly conditioning on its training process.

2.2. Defining calibration for general losses

Machine learning models, such as neural networks and
gradient-boosted trees, are powerful predictors but often
produce biased point predictions due to model misspecifi-
cation, distribution shifts, or limited data (Zadrozny and
Elkan, 2001; Niculescu-Mizil and Caruana, 2005; Bella
et al., 2010; Guo et al., 2017; Davis et al., 2017). To ensure
reliable decision-making, we seek calibrated models (Roth,
2022; Silva Filho et al., 2023). Informally, calibration means
that the predictions are optimal conditional on the prediction
itself, so they cannot be improved by applying a transfor-
mation to reduce the loss. Formally, a model f is perfectly
ℓ-calibrated if (Noarov and Roth, 2023; Whitehouse et al.,
2024)

EP [ℓ(f(X), Z)] = inf
θ
EP [ℓ(θ(f(X)), Z)], (1)

where the infimum is taken over all one-dimensional trans-
formations θ : R → R of f . Perfect calibration implies
that f(x) = argminc∈R EP [ℓ(c, Z) | f(X) = f(x)] for
all x ∈ X . We assume that the loss ℓ is smooth, such
that ℓ-calibration is equivalent to satisfying the first-order

conditions (Whitehouse et al., 2024):

EP [∂ℓ(f(X), Z) | f(X) = f(x)] = 0 for all x ∈ X , (2)

where ∂ℓ(f(x), y) := d
dη ℓ(η, y) |η=f(x) denotes the partial

derivative of ℓ with respect to its first argument f(x).

In regression, with ℓ taken as the squared error loss, f is
perfectly calibrated if EP [Y | f(X) = f(x)] = f(x) for
all x ∈ X (Lichtenstein et al., 1977; Gupta et al., 2020), a
property also known as self-consistency (Flury and Tarpey,
1996). This property addresses systematic over- or under-
estimation and ensures that f(X) is a conditionally unbiased
proxy for Y in decision making. In binary classification,
calibration ensures that the score f(X) can be interpreted
as a probability, making decision rules such as assigning
label 1 when f(X) > 0.5 valid on average, since P (Y =
1 | f(X) > 0.5) > 0.5 (Silva Filho et al., 2023).

For a model f̂ , which depends randomly on the calibration
set Cn, we define two types of calibration: marginal and con-
ditional (Vovk, 2012). A random model f̂ is conditionally
(perfectly) ℓ-calibrated if it is calibrated conditional on the
data Cn: EP [∂ℓ(f̂(X), Z) | f̂(X), Cn] = 0 almost surely.
The model f̂ is marginally ℓ-calibrated if it is calibrated
marginally over Cn: E[∂ℓ(f̂(X), Z) | f̂(X)] = 0, where E
is taken over the randomness in both (X,Y ) and Cn.

2.3. Post-hoc calibration via point calibrators

Models trained for predictive accuracy often require post-
hoc calibration, typically using an independent calibration
dataset or, in some cases, the training data (Gupta and Ram-
das, 2021). Post-hoc methods treat prediction and calibra-
tion as distinct tasks, each optimized for a different yet com-
plementary objective. Since perfect calibration is unattain-
able in finite samples, the goal of calibration is to obtain a
model f̂ with minimal calibration error relative to a chosen
metric, such as the conditional ℓ2 calibration error Calℓ2(f̂),
defined as (Whitehouse et al., 2024):∫ {

EP [∂ℓ(f̂(X), Z) | f̂(X) = f̂(x), Cn]
}2

dPX(x).

A point calibrator, following van der Laan et al. (2023)
and Gupta et al. (2020), is a post-hoc procedure that learns
a transformation θn : R → R of a black-box model f
from Cn such that: (i) θn(f(X)) is well-calibrated with low
calibration error, and (ii) θn(f(X)) remains comparably
predictive to f(X) in terms of the loss ℓ. Common point
calibrators include Platt scaling (Platt et al., 1999; Cox,
1958), histogram binning (Zadrozny and Elkan, 2001), and
isotonic calibration (Zadrozny and Elkan, 2002).

A calibrated predictor can be constructed from Cn by learn-
ing the calibrator θn via minimizing the empirical risk
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Generalized Venn and Venn-Abers Calibration∑n
i=1 ℓ(θ(f(Xi)), Zi). For regression, this involves regress-

ing outcomes {Yi}ni=1 on predictions {f(Xi)}ni=1 (Mincer
and Zarnowitz, 1969). If θn accurately estimates the con-
ditional calibration function minθ EP [ℓ(θ(f(X)), Z) | Cn],
the predictor is well-calibrated by the tower property. This
approach is not distribution-free and typically requires cor-
rect model specification. Methods like kernel smoothing and
Platt scaling impose smoothness or parametric assumptions
on the calibration function (Jiang et al., 2011).

2.4. Distribution-free calibration via histogram binning

A simple class of distribution-free calibration methods is
histogram binning, such as uniform mass (quantile) binning
(Gupta et al., 2020; Gupta and Ramdas, 2021). Here, the
prediction space f(X ) is partitioned into K bins {Bk}Kk=1

in an outcome-agnostic manner, often by taking quantiles of
the predictions {f(Xi)}ni=1 in Cn. The binning calibrator
θn is a step function obtained via histogram regression:

θn(t) := min
c∈R

n∑
i=1

1{f(Xi) ∈ Bk(t)}ℓ(c, Zi),

where k(t) indexes the bin containing t ∈ f(X ). For the
squared error loss, θn(t) is the empirical mean of the out-
comes {Yi : i ∈ [n], f(Xi) ∈ Bk(t)} within the bin Bk(t).
The histogram regression property ensures that the resulting
calibrated model f∗

n := θn ◦ f is in-sample ℓ–calibrated
(van der Laan et al., 2024b), meaning that, for each x ∈ X ,

n∑
i=1

1{f∗
n(Xi) = f∗

n(x)}∂ℓ(f∗
n(x), Zi) = 0, (3)

implying that its empirical risk cannot be improved by any
transformation of its predictions.

in-sample calibration does not guarantee good out-of-
sample calibration or predictive performance. With a max-
imal partition K = n, perfect in-sample calibration leads
to overfitting, resulting in poor out-of-sample performance.
Conversely, with a minimal partition K = 1, the model is
well-calibrated but poorly predictive, yielding a constant
predictor minc∈R

∑n
i=1 ℓ(c, Zi). This illustrates a trade-

off: too few bins reduce predictive power, while too many
increase variance and degrade calibration. Histogram bin-
ning asymptotically provides conditionally calibrated pre-
dictions, with the conditional ℓ2 calibration error satisfying
Calℓ2(f∗

n) = Op

(
K log(n/K)

n

)
(Whitehouse et al., 2024).

Thus, tuning of K, for example via cross-validation, is cru-
cial to balance calibration and predictiveness.

3. Generalized Venn calibration framework
3.1. Venn calibration for general losses

Suppose we are interested in obtaining an ℓ-calibrated pre-
diction f(Xn+1) for an unseen outcome Yn+1 from a new
context Xn+1, where (Xn+1, Yn+1) is drawn from P and
independent of the calibration data Cn. Let Aℓ be any point
calibration algorithm that takes a model f and calibration
data Cn and outputs a refined model f∗

n := Aℓ(f, Cn) that
is in-sample ℓ–calibrated in the sense of (3). For example,
Aℓ(f, Cn) could be defined as θn ◦ f , where θn is learned
using an outcome-agnostic histogram binning method, such
as uniform mass binning, or an outcome-adaptive method,
such as a regression tree or isotonic regression. We assume
that the algorithm Aℓ processes input data exchangeably,
ensuring the calibrated predictor is invariant to permutations
of the calibration data.

Distribution-free binning-based point calibrators, like his-
togram binning and isotonic regression, achieve perfect
in-sample calibration on calibration data but may exhibit
poor conditional calibration in finite samples, attaining
population-level calibration only asymptotically. To ad-
dress this, Vovk et al. (2003) proposed Venn calibration for
binary classification, which transforms point calibrators into
set calibrators that ensure finite-sample marginal calibration
while retaining conditional calibration asymptotically.

In this section, we extend Venn calibration to general pre-
diction tasks defined by loss functions. We demonstrate
that Venn calibration can be applied to any point calibra-
tor that achieves perfect ℓ-in-sample calibration to ensure
finite-sample marginal calibration. Unlike traditional point
calibrators, which produce a single calibrated prediction
for each context, Venn calibration generates a prediction
set that is guaranteed to contain a marginally perfectly ℓ-
calibrated prediction. This set reflects epistemic uncertainty
by covering a range of possible calibrated predictions, each
of which remains asymptotically conditionally ℓ-calibrated.
A prominent example is Venn-Abers calibration, which uses
isotonic regression as the underlying point calibrator (Vovk
and Petej, 2012; Toccaceli, 2021; van der Laan and Alaa,
2024).

Our generalized Venn calibration procedure is detailed in
Alg. 1. A distinctive aspect of Venn calibration is that it
adapts the model f specifically for the given context Xn+1,
unlike point calibrators, which produce a single calibrated
model intended to be (asymptotically) valid across all con-
texts. For a given context Xn+1, the algorithm iteratively
considers imputed outcomes y ∈ Y for Yn+1 and applies
the calibrator Aℓ to the augmented dataset Cn ∪ {(Xn+1, y)}.
This process yields a set of point predictions:

fn,Xn+1(Xn+1) := {f (Xn+1,y)
n (Xn+1) : y ∈ Y}.
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When the outcome space Y is continuous, Alg. 1 may be
computationally infeasible to execute exactly and can in-
stead be approximated by discretizing Y . Nonetheless, the
range of the prediction set fn,x(x) can often be computed
by iterating over the extreme points {ymin, ymax} of Y .

Algorithm 1 Venn loss calibration
Require: Calibration data Cn = {(Xi, Yi)}ni=1, model f , context

x ∈ X , loss calibrator Aℓ.

1: for each y ∈ Y do
2: augment dataset: C(x,y)

n := Cn ∪ {(x, y)};
3: calibrate model: f (x,y)

n := Aℓ(f, C(x,y)
n );

4: end for
5: set fn,x(x) := {f (x,y)

n (x) : y ∈ Y};
Ensure: prediction set fn,x(x).

To establish the validity of Venn calibration, we impose
the following conditions, which ensure that the data are
exchangeable — a common assumption in conformal pre-
diction (Vovk et al., 2005), particularly satisfied when the
data are i.i.d — and that the derivative of the loss has a finite
second moment.

C1) Exchangeability: {(Xi, Yi)}n+1
i=1 are exchangeable.

C2) Finite variance: E[{∂ℓ(f∗
n+1(Xn+1), Zn+1)}2] < ∞.

C3) Perfect in-sample calibration:
∑n+1

i=1 1{f∗
n+1(Xi) =

f∗
n+1(x)}∂ℓ(f∗

n+1(Xi), Zi) = 0 almost surely for
each x ∈ X .

The finite-sample validity of the Venn calibration proce-
dure can be established through an oracle procedure that
assumes knowledge of the unseen outcome Yn+1. In this
oracle procedure, a perfectly in-sample ℓ-calibrated pre-
diction f∗

n+1(Xn+1) := Aℓ(f, C∗
n+1)(Xn+1) is obtained by

calibrating f using Aℓ on the oracle-augmented calibra-
tion set C∗

n+1 := Cn ∪ {(Xn+1, Yn+1)}. By leveraging
exchangeability, the in-sample calibration of the oracle pre-
diction f∗

n+1(Xn+1) ensures marginal perfect ℓ-calibration,
such that E[∂ℓ(f∗

n+1(Xn+1), Zn+1) | f∗
n+1(Xn+1)] = 0

almost surely. Since the oracle prediction is, by construc-
tion, contained in the Venn prediction set fn,Xn+1

(Xn+1),
we conclude the following theorem.

Theorem 3.1 (Marginal calibration of Venn prediction).
Under C1-C3, the Venn prediction set fn,Xn+1

(Xn+1)
contains the marginally perfectly ℓ-calibrated prediction,
f∗
n+1(Xn+1) = f

(Xn+1,Yn+1)
n , which satisfies

E
[{

E[∂ℓ(f∗
n+1(Xn+1), Zn+1) | f∗

n+1(Xn+1)]
}2

]
= 0.

In order to satisfy C3, Algorithm 1 should be applied with a
binning-based calibrator Aℓ that achieves perfect in-sample

calibration, such as uniform mass binning, a regression tree,
or isotonic regression. Importantly, this condition does not
impose restrictions on how the bins are selected, allowing
pre-specified and data-adaptive binning schemes. While the
choice of binning calibrator does not affect the marginal
perfect calibration guarantee in Theorem 3.1, it influences
both the width of the Venn prediction set and the conditional
calibration of the point predictions. In general, using a
point calibrator that ensures conditionally well-calibrated
predictions, such as histogram binning with appropriately
tuned bins or isotonic calibration, is recommended.

For example, in the regression setting with squared error
loss, Theorem 3.1 ensures that the set fn,Xn+1

(Xn+1) con-
tains f∗

n+1(Xn+1) = E[Yn+1 | f∗
n+1(Xn+1)]. However,

using histogram binning with one observation per bin re-
sults in fn,Xn+1

(Xn+1) = Y , an uninformative set that
poorly reflects conditional calibration despite including
f∗
n+1(Xn+1) = Yn+1. In contrast, using a single bin pro-

duces a set containing the marginally perfectly calibrated
prediction f∗

n+1(Xn+1) =
1

n+1

∑n+1
i=1 Yi, where each pre-

diction is close to the sample mean 1
n

∑n
i=1 Yi, ensuring

conditional calibration but resulting in poor predictiveness.

Suppose that Aℓ(f, Cn ∪ {x, y}) outputs a transformed
model θ(x,y)n ◦ f , where θ

(x,y)
n is learned using an outcome-

agnostic or outcome-adaptive binning calibrator, such as
quantile binning or a regression tree. The following theo-
rem shows that each calibrated model f (x,y)

n = θ
(x,y)
n ◦ f ,

used to construct the Venn prediction set, is asymptotically
conditionally calibrated, provided the calibration data are
i.i.d. and the number of bins in the calibrator θ(x,y)n does
not grow too quickly.

C4) Independence: {(Xi, Yi)}n+1
i=1 are i.i.d.

C5) Boundedness: ess supz′=(x′,y′) |∂ℓ(θ
(x,y)
n (f(x′)), z′)|

and ess supx′ |θ(x,y)n (x′)| are bounded by a constant
M < ∞.

C6) Lipschitz derivative: There exists L < ∞ such that
|∂ℓ(η1, z)− ∂ℓ(η2, z)| ≤ L|η1 − η2| for all z, η1, η2.

C7) Finite number of bins: θ
(x,y)
n is piecewise constant

taking at most k(n) < ∞ values.

Theorem 3.2 (Conditional calibration of Venn cal-
ibration). Under C4-C7, we have Calℓ2(f

(x,y)
n ) =

Op(
k(n) log(n/k(n))

n ).

For stable point calibrators, as the calibration set size n
increases, the Venn prediction set narrows and converges to
a single perfectly ℓ-calibrated prediction (Vovk and Petej,
2012). In large-sample settings, where standard point cali-
brators perform reliably, the Venn prediction set becomes
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narrow, closely resembling a point prediction. In contrast,
in small-sample settings, where overfitting can undermine
the reliability of point calibrators such as histogram binning
and isotonic calibration, the Venn prediction set widens,
reflecting increased uncertainty about the true calibrated
prediction (Johansson et al., 2023). Consequently, Venn
calibration improves the robustness of the point calibration
procedure Aℓ by explicitly representing uncertainty through
a set of possible calibrated predictions.

3.2. Isotonic and Venn-Abers calibration

Venn calibration can be applied with any loss calibrator Aℓ

that provides in-sample calibrated predictions. While his-
togram binning requires pre-specifying the number of bins,
isotonic calibration (Zadrozny and Elkan, 2002; Niculescu-
Mizil and Caruana, 2005) addresses this limitation by adap-
tively determining bins through isotonic regression, a non-
parametric method for estimating monotone functions (Bar-
low and Brunk, 1972). Instead of fixing K in advance,
isotonic calibration selects bins by minimizing an empir-
ical MSE criterion, ensuring the calibrated predictor is a
non-decreasing monotone transformation of the original pre-
dictor. Isotonic calibration allows the number of bins to
grow with sample size, ensuring good calibration while pre-
serving predictive performance. van der Laan et al. (2023)
show that, in the context of treatment effect estimation, the
conditional ℓ2 calibration error of isotonic calibration for
i.i.d. data asymptotically satisfies Calℓ2(f∗

n) = Op(n
−2/3).

Algorithm 2 Venn-Abers loss calibration
Require: Calibration data Cn = {(Xi, Yi)}ni=1, model f , loss ℓ,

context x ∈ X .

1: for each y ∈ Y do
2: augment dataset: C(x,y)

n := Cn ∪ {(Xn+1, Yn+1) := (x, y)};
3: calibrate model using generalized isotonic regression:

θ
(x,y)
n := argminθ∈Θiso

∑
i∈C(x,y)

n
ℓ(θ(f(Xi)), Zi).

f
(x,y)
n := θ

(x,y)
n ◦ f .

4: end for
5: set fn,x(x) := {f (x,y)

n (x) : y ∈ Y};
Ensure: prediction set fn,x(x).

In this section, we propose Venn-Abers calibration for gen-
eral loss functions, a special instance of Venn calibration
that employs isotonic regression as the underlying point
calibrator, thereby generalizing the original procedure for
classification and regression (Vovk and Petej, 2012; van der
Laan and Alaa, 2024). Our generalized Venn-Abers calibra-
tion procedure is outlined in Alg. 2. Isotonic regression is
a stable algorithm, meaning small changes in the training
set do not significantly affect the solution, ensuring that the
Venn-Abers prediction set converges to a point prediction as
the sample size grows (Caponnetto and Rakhlin, 2006; Bous-

quet and Elisseeff, 2000). Consequently, the Venn-Abers
prediction set inherits the marginal calibration guarantee of
Venn calibration, while each point prediction in the set is
conditionally calibrated in large samples.

Let fn,Xn+1(Xn+1) denote the Venn-Abers prediction set
obtained by applying Alg. 2 with x = Xn+1. The following
theorem follows directly from Theorem 3.1.

Theorem 3.3 (Marginal calibration of Venn-Abers). Un-
der C1 and C2, the Venn prediction set fn,Xn+1(Xn+1)
contains the marginally perfectly ℓ-calibrated prediction,
f∗
n+1(Xn+1) := f

(Xn+1,Yn+1)
n , which satisfies

E
[{

E[∂ℓ(f∗
n+1(Xn+1), Zn+1) | f∗

n+1(Xn+1)]
}2

]
= 0.

The following theorem establishes that each isotonic cali-
brated model f (x,y)

n used to construct the Venn-Abers pre-
diction set is asymptotically conditionally calibrated.

C8) Best predictor of gradient has finite variation: There
exists an B < ∞ such that t 7→ EP [∂ℓ(f

(x,y)
n (X), Y ) |

f(X) = t, Cn] has total variation norm that is almost
surely bounded by B.

Theorem 3.4 (Conditional calibration of Venn-Abers). Un-
der C4-C6, and C8, we have Calℓ2(f

(x,y)
n ) = Op(n

−2/3).

This theorem generalizes the distribution-free conditional
calibration guarantees for isotonic calibration of van der
Laan et al. (2023) and van der Laan et al. (2024a) for regres-
sion and inverse probabilities to general losses.

Computational considerations. As discussed in van der
Laan and Alaa (2024), the main computational cost of Alg. 2
lies in the isotonic calibration step for each y ∈ Y . Iso-
tonic regression (Barlow and Brunk, 1972) can be efficiently
computed using xgboost (Chen and Guestrin, 2016) with
monotonicity constraints. Similar to Full CP (Vovk et al.,
2005), Alg. 2 may be infeasible for non-discrete outcomes,
but it can be approximated by iterating over a finite subset
of Y with linear interpolation for f (x,y)

n (x). Like Full and
multicalibrated CP (Gibbs et al., 2023), this algorithm must
be applied separately for each context x ∈ X . Since the
algorithms depend on x ∈ X only through its prediction
f(x), we can approximate the outputs for all x ∈ X by
running each algorithm on a finite set of x ∈ X correspond-
ing to a finite grid over the one-dimensional output space
f(X ) = {f(x) : x ∈ X} ⊂ R. Moreover, both algorithms
are fully parallelizable across both the input context x ∈ X
and the imputed outcome y ∈ Y . In our implementation, we
use nearest neighbor interpolation in the prediction space
to impute outputs for each x ∈ X . In our experiments with
sample sizes ranging from n = 5000 to 40000, quantile
binning of both f(X ) and Y into 200 equal-frequency bins
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enables execution of Algorithm 2 with squared error and
quantile loss across all contexts in minutes, with negligible
approximation error.

3.3. Venn multicalibration for finite-dimensional classes

Standard calibration ensures that predicted outcomes can-
not be improved by any transformation of the predictions,
making them optimal on average for contexts with the same
predicted value. However, this aggregate guarantee can
mask systematic errors within subgroups. Multicalibration
extends standard calibration by enforcing calibration within
specified subpopulations, ensuring fairness and reliability
across groups (Jung et al., 2008; Roth, 2022; Noarov and
Roth, 2023; Deng et al., 2023; Haghtalab et al., 2023). In
this section, we introduce Venn multicalibration, a general-
ization of Venn calibration that provides calibration guar-
antees across multiple subpopulations. This approach pro-
duces prediction sets that contain a perfectly multicalibrated
prediction in finite samples. Our work enables the exten-
sion of existing methods for pointwise multicalibration with
generic loss functions to set-valued calibration (Noarov and
Roth, 2023; Deng et al., 2023; Haghtalab et al., 2023).

We say a model f̂ is marginally perfectly ℓ-multicalibrated
with respect to a function class G if the following holds:

E
[
∂

∂t
ℓ((f̂ + tg)(Xn+1), Zn+1) |t=0

]
= 0 for all g ∈ G,

(4)

where the expectation is taken over (Xn+1, Yn+1) as well
as randomness of f̂ . Assuming the order of integration and
differentiation can be exchanged, this condition implies that

E
[
ℓ(f̂(Xn+1), Zn+1)

]
= min

g∈G
E
[
ℓ((f̂ + g)(Xn+1), Yn+1)

]
.

In other words, the loss ℓ(f̂(Xn+1), Zn+1) incurred for the
new data point cannot be improved in expectation by adjust-
ing the calibrated model f̂ using functions from G.

Multicalibration for classification and regression requires
that (Hébert-Johnson et al., 2018; Kim et al., 2019):

E
[
g(Xn+1){Yn+1 − f̂(Xn+1)}

]
= 0 for all g ∈ G. (5)

The function g ∈ G is sometimes viewed to as a represen-
tation of covariate shift. When g is nonnegative, it follows
that Eg[f̂(Xn+1)] = Eg[Yn+1], where the weighted expec-
tation is defined as Eg[f̂(Xn+1)] = E

[
g(Xn+1)

E[g(Xn+1)]
f̂(Xn+1)

]
.

For example, when G = {x 7→ 1(x ∈ B) : B ∈ B} consists
of all set indicators for (possibly intersecting) subgroups
in B, multicalibration implies that the model f̂(Xn+1) is
calibrated for Yn+1 within each subgroup, meaning that
E[Yn+1 | Xn+1 ∈ B] = E[f̂(Xn+1) | Xn+1 ∈ B].

Algorithm 3 Venn loss multicalibration
Require: Calibration data Cn = {(Xi, Yi)}ni=1, model f , loss ℓ,

context x ∈ X , function class F .

1: for each y ∈ Y do
2: augment dataset: C(x,y)

n := Cn ∪ {(Xn+1, Yn+1) := (x, y)};
3: multicalibrate model using offset loss minimization:

g
(x,y)
n := argming∈G

∑
i∈C(x,y)

n
ℓ(f(Xi) + g(Xi), Zi).

f
(x,y)
n := f + g

(x,y)
n .

4: end for
5: set fn,x(x) := {f (x,y)

n (x) : y ∈ Y};
Ensure: prediction set fn,x(x).

For a finite-dimensional function class G, we propose Venn
multicalibration for a generic loss function ℓ in Algo-
rithm 3. For mean multicalibration with squared error loss,
this algorithm can be computed efficiently using the Sher-
man–Morrison formula to update linear regression solutions
with new data points (Shermen and Morrison, 1949; Yang
et al., 2023). This formula has previously been used for
efficient computation of leave-one-out (e.g., Jackknife) pre-
dictions by applying rank-one updates to the inverse Gram
matrix, thereby enabling fast updates to the least-squares
solution without retraining on each leave-one-out subset.
Under monotonicity of y 7→ f

(x,y)
n , the range of the Venn

prediction set fn,x(x) can be computed by iterating over the
extreme points {ymin, ymax} of Y .

The following theorem establishes that the prediction set
fn,Xn+1(Xn+1) in Alg. 3 contains the ℓ-multicalibrated
prediction f∗

n+1(Xn+1), where f∗
n+1 := f

(Xn+1,Yn+1)
n .

C9) In-sample multicalibration:
∑n+1

i=1
∂
∂tℓ((f

∗
n+1 +

tg)(Xi), Zi) |t=0= 0 almost surely for each g ∈ G.

Theorem 3.5 (Perfect calibration of Venn multicalibration).
Under C1 and C9, the Venn prediction set fn,Xn+1

(Xn+1)
contains the marginally perfectly calibrated prediction
f∗
n+1(Xn+1) = f

(Xn+1,Yn+1)
n (Xn+1), which satisfies

E
[
∂

∂t
ℓ((f∗

n+1 + tg)(Xn+1), Zn+1) |t=0

]
= 0, ∀g ∈ G.

In the special case where ℓ is the squared error loss, the next
corollary shows that Venn prediction sets contain a perfectly
multicalibrated regression prediction, as defined in (5).

Corollary 3.6 (Regression Venn Multicalibration). Sup-
pose that ℓ(f(x), z)) is {y − f(x)}2. Under C1
and C2, the Venn prediction set fn,Xn+1

(Xn+1) con-
tains the perfectly multicalibrated prediction, denoted
as f∗

n+1(Xn+1) := f
(Xn+1,Yn+1)
n (Xn+1), which satisfies

E
[
g(Xn+1){Yn+1 − f∗

n+1(Xn+1)}
]
= 0 for all g ∈ G.
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4. Applications to conformal prediction
4.1. Conformal prediction via Venn quantile calibration

Conformal prediction (CP) (Vovk et al., 2005) is a flexi-
ble approach for predictive inference that can be applied
post-hoc to any black-box model. It constructs prediction
intervals Ĉn(Xn+1) that are guaranteed to cover the true
outcome Yn+1 with probability 1 − α. The standard CP
method ensures prediction intervals satisfy the marginal cov-
erage guarantee: P(Yn+1 ∈ Ĉn(Xn+1)) ≥ 1 − α, where
the probability P accounts for the randomness in Cn and
(Xn+1, Yn+1). In this section, we show how our general-
ized Venn calibration framework, when combined with the
quantile loss, enables the construction of perfectly calibrated
quantile predictions and CP intervals in finite samples.

Let {Si}n+1
i=1 be conformity scores, where Si = S(Xi, Yi)

for some scoring function S . For example, we could set S as
the absolute residual scoring function z 7→ |y−µ(x)|, where
µ predicts y from x. Conformity scores quantify how well
a predicted outcome aligns with the true outcome. Let f :
X → R be a model trained to predict the (1−α) quantile of
the conformity scores. Given f , we can define a conformal
interval for Yn+1 as {y ∈ Y : S((Xn+1, y)) ≤ f(Xn+1)}.
However, this interval does not provide distribution-free
coverage guarantees due to potential miscalibration of f . To
ensure finite-sample coverage, we propose calibrating the
predictor using quantile Venn and Venn-Abers calibration.

For a quantile level α ∈ (0, 1), we denote the quantile loss
ℓα(q, y) by 1(y ≥ q) ·α(y−q)+1(y < q) ·(1−α)(q−y).

Let fn,Xn+1
(Xn+1) = {f (Xn+1,y)

n (Xn+1) : y ∈ Y}
be the Venn quantile prediction set of Sn+1 obtained by
applying Algorithm 2 with the conformal quantile loss
ℓS,α : (f, z) 7→ ℓα(f,S(z)), and let f∗

n+1(Xn+1) be the
perfectly calibrated prediction in this set, where f∗

n+1 :=

f
(Xn+1,Yn+1)
n equals Aℓ(f, {(Xi, Yi)}n+1

i=1 ). The Venn pre-
diction set fn,Xn+1

(Xn+1) induces the Venn CP interval:

Ĉn(Xn+1) := {y ∈ Y : S((Xn+1, y)) ≤ f (Xn+1,y)
n (Xn+1)}

C10) In-sample calibration:
∑n+1

i=1 ℓS,α(Zi, f
∗
n+1) =

minθ
∑n+1

i=1 ℓS,α(Zi, θ ◦ f∗
n+1) .

Theorem 4.1 (Calibration of Venn Quantile Prediction).
Assume C1, C10, and that Si ̸= f∗

n+1(Xi) almost surely
for each i ∈ [n + 1]. Then, the Venn prediction set
fn,Xn+1(Xn+1) contains the marginally perfectly cali-
brated prediction f∗

n+1(Xn+1) = f
(Xn+1,Yn+1)
n (Xn+1),

where P(Sn+1 ≤ f∗
n+1(Xn+1) | f∗

n+1(Xn+1)) = 1− α.

Theorem 4.1 implies that the Venn CP interval Ĉn(Xn+1)
constructed using Venn quantile calibration is perfectly cal-
ibrated in that P(Yn+1 ∈ Ĉn(Xn+1) | f∗

n+1(Xn+1)) =

1− α. This result follows directly from the perfect quantile
calibration of f∗

n+1(Xn+1) because, by definition,

P(Yn+1 ∈ Ĉn(Xn+1) | f∗
n+1(Xn+1))

= P(S((Xn+1, Yn+1)) ≤ f (Xn+1,Yn+1)
n | f∗

n+1(Xn+1))

= P(Sn+1 ≤ f∗
n+1(Xn+1) | f∗

n+1(Xn+1))

= 1− α.

As a consequence, the CP interval satisfies a form of thresh-
old calibration (Jung et al., 2022), meaning its coverage
is valid conditional on the quantile f∗

n+1(Xn+1) used to
define the interval. The law of total expectation implies
that Ĉn(Xn+1) also satisfies the marginal calibration con-
dition P(Sn+1 ≤ f∗

n+1(Xn+1)) = 1 − α. We note
that, without assuming Si ̸= f∗

n+1(Xi) almost surely for
each i ∈ [n + 1], we can still establish the lower bound
P(Yn+1 ∈ Ĉn(Xn+1) | f∗

n+1(Xn+1)) ≥ 1− α using argu-
ments from Gibbs et al. (2023), though we do not pursue
this here for simplicity.

4.2. Conformal prediction as Venn multicalibration

In this section, we show that conformal prediction is a spe-
cial case of Venn multicalibration with the quantile loss.

Suppose Alg. 3 is applied with the conformal quantile loss
(f(x), z) 7→ ℓα(f(x),S(z)), model f , and x := Xn+1, and
let fn,Xn+1

(Xn+1) be the corresponding Venn set predic-
tion. As in Section 4.1, we define the multicalibrated Venn
CP interval as Ĉn(Xn+1) := {y ∈ Y : S((Xn+1, y)) ≤
f
(Xn+1,y)
n (Xn+1)}. This multicalibrated CP interval is iden-

tical to the interval proposed in the conditional CP frame-
work of Gibbs et al. (2023).

The following theorem shows that Venn multicalibration
outputs a prediction set containing a marginally multicali-
brated quantile prediction (Deng et al., 2023), ensuring that
the CP interval is multicalibrated in the sense of Gibbs et al.
(2023).
Theorem 4.2 (Quantile Multicalibration). Assume
C1 holds and Si ̸= f∗

n+1(Xi) almost surely for all
i ∈ [n+ 1]. Then, the Venn prediction set fn,Xn+1

(Xn+1)
contains the perfectly multicalibrated prediction
f∗
n+1(Xn+1) := f

(Xn+1,Yn+1)
n (Xn+1), which satisfies

E
[
g(Xn+1){(1− α)− P(Sn+1 ≤ f∗

n+1(Xn+1) | Xn+1)}
]
=

0 for all g ∈ G.

By definition, Theorem 4.2 implies the multicalibrated cov-
erage of the conformal interval: for all g ∈ G,

E
[
g(Xn+1){(1− α)− P(Yn+1 ∈ Ĉn(Xn+1) | Xn+1)}

]
= 0,

which agrees with Theorem 2 of Gibbs et al. (2023).

As a consequence, the multicalibrated CP framework for
finite-dimensional covariate shifts proposed in Section 2.2
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of Gibbs et al. (2023) can be interpreted as a special case of
Venn multicalibration. Similarly, the standard marginal CP
approach (Vovk et al., 2005; Lei et al., 2018) and Mondrian
(or group-conditional) CP (Vovk et al., 2005; Romano et al.,
2020) are special cases of this algorithm, with G consisting
of constant functions and subgroup indicators, respectively.

5. Numerical experiments
The utility of Venn and Venn-Abers calibration for classi-
fication and regression, as well as Venn multicalibration
with the quantile loss in the context of conformal predic-
tion (CP), has been demonstrated through synthetic and real
data experiments in various works (Vovk and Petej, 2012;
Nouretdinov et al., 2018; Johansson et al., 2019b;a; 2023;
van der Laan and Alaa, 2024; Vovk et al., 2005; Lei et al.,
2018; Romano et al., 2019; Boström and Johansson, 2020;
Romano et al., 2020; Gibbs et al., 2023). In this section, we
evaluate two novel instances of these methods: CP using
Venn-Abers calibration with the quantile loss (Section 4.1)
and Venn multicalibration for regression using the squared
error loss.

5.1. Venn-Abers conformal quantile calibration

We evaluate conformal prediction intervals constructed us-
ing Venn-Abers quantile calibration on real datasets, includ-
ing the Medical Expenditure Panel Survey (MEPS) dataset
(Cohen et al., 2009; MEPS, 2021), as well as the Concrete,
Community, STAR, Bike, and Bio datasets from Romano
et al. (2019), which are available in the cqr package. Each
dataset is split into a training set (50%), a calibration set
(30%), and a test set (20%). We implement Venn-Abers
quantile calibration (VA) using absolute residual error as the
conformity score and train the 1− α quantile model f(·) of
the conformity score using xgboost (Chen and Guestrin,
2016). The baselines include uncalibrated intervals derived
from f(·), a symmetric variant of conformalized quantile
regression (CQR) (Romano et al., 2019), Marginal confor-
mal prediction (CP) (Vovk et al., 2005; Lei et al., 2018), and
Mondrian conformal prediction (VM) (Romano et al., 2020),
with categories based on bins of the estimated 1− α quan-
tiles. VM corresponds to Venn calibration with Mondrian
histogram binning. For direct comparability, all baselines
are based on the absolute residual error score |y − µ(x)|,
where µ(x) is a xgboost predictor of the conditional me-
dian of y, and intervals are thus centered around µ(x).

Averaged over 100 random data splits, Table 1 summarizes
Monte Carlo estimates of marginal coverage, and condi-
tional ℓ1-calibration error (CCE), and average interval width.
For f∗

n, the isotonic calibration of f , the CCE is defined as

EP

[
max{0, P (Y ̸∈ Ĉn(X) | f∗

n(X), Cn)− α} | Cn
]
.

Table 1. Metrics for each dataset: Marginal Coverage, Conditional
Calibration Error (CCE), and Average Width. For CCE, smaller
values are preferred, and the minimum value for each dataset is
bolded. For coverage, values close to 90% are desired, and the
average width is ideally minimized while retaining coverage.

Method Bike Bio Star Meps Conc Com

Marginal Coverage

Uncalibrated 0.81 0.85 0.80 0.86 0.71 0.74
Venn-Abers 0.90 0.90 0.90 0.90 0.90 0.90
CQR 0.90 0.90 0.90 0.90 0.90 0.90
Marginal 0.90 0.90 0.90 0.90 0.90 0.90
VM (5 bin) 0.90 0.90 0.89 0.90 0.89 0.90
VM (10 bin) 0.90 0.90 0.89 0.90 0.88 0.89

Conditional Calibration Error (CCE)

Uncalibrated 0.11 0.088 0.11 0.053 0.20 0.17
Venn-Abers 0.019 0.017 0.024 0.018 0.035 0.028
CQR 0.031 0.020 0.026 0.020 0.037 0.031
Marginal 0.10 0.053 0.020 0.052 0.057 0.058
VM (5 bin) 0.033 0.025 0.023 0.026 0.044 0.030
VM (10 bin) 0.022 0.020 0.028 0.022 0.049 0.030

Average Width

Uncalibrated 83 12 620 2.4 9.4 0.22
Venn-Abers 100 14 780 2.8 17 0.40
CQR 98 14 780 2.7 16 0.38
Marginal 140 15 780 2.9 18 0.46
VM (5 bin) 99 14 770 2.8 16 0.38
VM (10 bin) 100 14 770 2.8 16 0.38

All calibrated methods achieve adequate marginal coverage,
as guaranteed by theory, while the uncalibrated intervals
exhibit poor coverage. VA consistently achieves the low-
est or comparable CCE across datasets, as expected from
Theorems 3.4 and 4.1, outperforming or matching the state-
of-the-art CQR in terms of coverage, CCE, and width. Al-
though VM CP improves with more bins, its CCE remains
higher than that of VA, highlighting the advantage of data-
adaptive binning via isotonic regression.

5.2. Venn mean multicalibration

We evaluate Venn multicalibration for regression with
squared error loss on the same datasets as in the previous
experiment. To our knowledge, there is no prior work on set
multicalibrators, and thus no existing comparators to Algo-
rithm 3. Accordingly, the primary goal of this experiment is
to assess the quality of the set-valued predictions in terms
of (i) their size and (ii) the calibration error of the oracle
multicalibrated prediction that is guaranteed to lie within
the set.

Each dataset is split into a training set (40%), a calibration
set (40%), and a test set (20%). We train the model f using
median regression with xgboost, such that the model is
miscalibrated for the mean when the outcomes are skewed.

8



Generalized Venn and Venn-Abers Calibration

We apply Alg. 3 with G defined as the linear span of an
additive spline basis of the features, aiming for multicali-
bration over additive functions. Specifically, for continuous
features, we generate cubic splines with five knot points,
and for categorical features, we apply one-hot encoding. As
baselines, we consider the uncalibrated model and the point-
calibrated model obtained by adjusting f via offset linear
regression on Cn based on G. All outcomes are rescaled to
lie in [0, 1] for comparability across datasets.

Averaged averaged over 100 random data splits, Table 2 sum-
marizes the sample size (n), feature dimension (p), condi-
tional multicalibration errors for the uncalibrated, point cali-
brated, and oracle Venn-calibrated predictions, and the aver-
age Venn prediction set width. The oracle Venn-calibrated
prediction is the marginally perfectly calibrated prediction
f
(Xn+1,Yn+1)
n+1 necessarily contained in the prediction set.

For a basis {bj(·)}mj=1 of G, the multicalibration error of a
model f̂ is defined as the ℓ2 norm of the test-set in-sample
calibration errors:{

1

ntest

ntest∑
i=1

bj(Xi){Yi − f̂(Xi)} : j ∈ [m]

}
.

This error quantifies how well the model satisfies the multi-
calibration criterion across a rich collection of (potentially
overlapping) subpopulations defined by the functions bj , as
defined in (5). In particular, it captures calibration error
both for discrete subgroups (e.g., based on binary covari-
ates) and for continuous covariates through smooth density
ratio weights.
Table 2. Sample size and feature dimension (n, p), calibration er-
rors for the uncalibrated model, calibrated model, Venn-calibrated
model, and mean prediction set width for each dataset.

Dim. Calibration Error Width
(n, p) Uncal Calibr Venn Venn

Bike (4354, 18) 0.0019 0.0015 0.0015 0.0086
Bio (18292, 9) 0.0073 0.0100 0.0094 0.0100
Star (864, 39) 0.0098 0.0113 0.0078 0.3260
Meps (6262, 139) 0.0032 0.0017 0.0016 0.0088
Conc (412, 8) 0.0077 0.0081 0.0064 0.1430
Comm (797, 101) 0.0099 0.0209 0.0055 0.6650

The oracle Venn-calibrated model consistently achieves
smaller calibration errors than the point-calibrated model
across all datasets and outperforms the uncalibrated model
in all but one dataset. Its improvement is more pronounced
in settings with wider Venn prediction sets, which corre-
spond to smaller effective sample sizes n

p . In these cases,
naive multicalibration is more variable and prone to overfit-
ting. This aligns with expectations, as wider prediction sets
reflect greater uncertainty in the finite-sample calibration of
point-calibrated predictions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Richard E Barlow and Hugh D Brunk. The isotonic re-

gression problem and its dual. Journal of the American
Statistical Association, 67(337):140–147, 1972.

Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and
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A. Code Availability
Python code implementing Venn-Abers and Venn multicalibration methods for both squared error and quantile losses is
available in the VennCalibration package at the following GitHub repository:

https://github.com/Larsvanderlaan/VennCalibration

The repository includes scripts and documentation for reproducing all experiments in this paper.

B. Background on isotonic calibration
Isotonic calibration (Zadrozny and Elkan, 2002; Niculescu-Mizil and Caruana, 2005) is a data-adaptive histogram binning
method that learns the bins using isotonic regression, a nonparametric method traditionally used for estimating monotone
functions (Barlow and Brunk, 1972; Groeneboom and Lopuhaa, 1993). Specifically, the bins are selected by minimizing an
empirical MSE criterion under the constraint that the calibrated predictor is a non-decreasing monotone transformation
of the original predictor. Isotonic calibration is motivated by the heuristic that, for a good predictor f , the calibration
function θP,f should be approximately monotone as a function of f . For instance, when f(·) = EP [Y | X = ·], the
mapping f 7→ θP,f = f is the identity function. Isotonic calibration is distribution-free — it does not rely on monotonicity
assumptions — and, in contrast with histogram binning, it is tuning parameter-free and naturally preserves the mean-square
error of the original predictor (as the identity transform is monotonic) (van der Laan et al., 2023).

For clarity, we focus on the regression case where ℓ denotes the squared error loss. Formally, isotonic calibration takes a
predictor f and a calibration dataset Cn and produces the calibrated model f∗

n := θn ◦ f , where θn : R → R is an isotonic
step function obtained by solving the optimization problem:

θn ∈ argmin
θ∈Θiso

n∑
i=1

{Yi − θ(f(Xi))}2 , (6)

where Θiso denotes the set of all univariate, piecewise constant functions that are monotonically nondecreasing. Following
Groeneboom and Lopuhaa (1993), we consider the unique càdlàg piecewise constant solution to the isotonic regression
problem, which has jumps only at observed values in {f(Xi) : i ∈ [n]}. The first-order optimality conditions of the
convex optimization problem imply that the isotonic solution θn acts as a binning calibrator with respect to a data-adaptive
set of bins determined by the jump points of the step function θn. Thus, isotonic calibration provides perfect in-sample
calibration. Specifically, for any transformation g : R → R, the perturbed step function ε 7→ θn + ε(g ◦ θn) remains
isotonic for all sufficiently small ε such that |ε| supt∈f(X ) |(g ◦ θn)(t)| is less than the maximum jump size of θn, given by
supt∈f(X ) |θn(t)− θn(t−)|. Since θn minimizes the empirical mean square error criterion over all isotonic functions, it
follows that, for each function g : R → R, the following condition holds:

d

dε

1

2

n∑
i=1

{Yi − θn(f(Xi))− εg(θn(f(Xi)))}2
∣∣∣
ε=0

=

n∑
i=1

g(f∗
n(Xi)){Yi − f∗

n(Xi)} = 0.

These orthogonality conditions are equivalent to perfect in-sample calibration. In particular, by taking g as the level set
indicator t 7→ I(t = θn(f(x))), we conclude that the isotonic calibrated predictor f∗

n is in-sample calibrated.

C. Proofs
C.1. Proofs for Venn calibration

Proof of Theorem 3.1. From C3, we know that
n∑

i=1

1{f∗
n+1(Xi) = f∗

n+1(x)}∂ℓ(f∗
n+1(Xi), Zi) = 0.

This condition implies, for every transformation g : R → R, that

n∑
i=1

g(f∗
n+1(Xi))∂ℓ(f

∗
n+1(Xi), Zi) = 0.
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Taking the expectation of both sides, we find that

0 = E

[
n∑

i=1

g(f∗
n+1(Xi))∂ℓ(f

∗
n+1(Xi), Zi)

]

=

n∑
i=1

E
[
g(f∗

n+1(Xi))∂ℓ(f
∗
n+1(Xi), Zi)

]
.

Note that f∗
n+1 is trained on all of C∗

n+1 and is thus invariant to permutations of {(Xi, Yi)}n+1
i=1 . Since {(Xi, Yi)}n+1

i=1 are
exchangeable by C1, it follows that g(f∗

n+1(Xi))∂ℓ(f
∗
n+1(Xi), Zi) is exchangeable over i ∈ [n+ 1]. Thus, the previous

display implies, for every transformation g : R → R, that

0 =

n∑
i=1

E
[
g(f∗

n+1(Xn+1))∂ℓ(f
∗
n+1(Xn+1), Zn+1)

]
0 = E

[
g(f∗

n+1(Xn+1))∂ℓ(f
∗
n+1(Xn+1), Zn+1)

]
0 = E

[
g(f∗

n+1(Xn+1))E[∂ℓ(f∗
n+1(Xn+1), Zn+1) | f∗

n+1(Xn+1)]
]
,

where the final equality follows from the law of total expectation. Taking g such that g(f∗
n+1(x)) =

E[∂ℓ(f∗
n+1(Xn+1), Zn+1) | f∗

n+1(Xn+1) = f∗
n+1(x)], which exists by C2, we conclude that

E
[{

E[∂ℓ(f∗
n+1(Xn+1), Zn+1) | f∗

n+1(Xn+1)]
}2

]
= 0.

Proof of Theorem 3.2 . For a uniformly bounded function class F , let N(ϵ,F , L2(P )) denote the ϵ−covering number (?)
of F with respect to L2(P ) and define the uniform entropy integral of F by

J (δ,F) :=

∫ δ

0

sup
Q

√
logN(ϵ,F , L2(Q)) dϵ ,

where the supremum is taken over all discrete probability distributions Q. For two quantities x and y, we use the expression
x ≲ y to mean that x is upper bounded by y times a universal constant that may only depend on global constants that appear
in our conditions.

We know that θ(x,y)n almost surely belongs to a uniformly bounded function class Fn consisting of 1D functions with at
most k(n) constant segments. Then, Fn has finite uniform entropy integral with J (δ,Fn) ≲ δ

√
k(n) log(1/δ). Define

Ff,n := {θ ◦ f : θ ∈ Fn}. We claim that J (δ,Ff,n) ≲ δ
√

k(n) log(1/δ). This follows since, by the change-of-variables
formula,

J (δ,Ff,n) =

∫ δ

0

sup
Q

√
N
(
ε,Ff,n, ∥ · ∥Q

)
dε

=

∫ δ

0

sup
Q

√
N
(
ε,Fn, ∥ · ∥Q◦f

)
dε

= J (δ,Fn).

where, with a slight abuse of notation, Q ◦ f is the push-forward probability measure for the random variable f(X).

By assumption, we have perfect in-sample calibration: for all g : R → R,

n∑
i=1

g(θ(x,y)n (f(Xi)))∂ℓ(θ
(x,y)
n (f(Xi), Yi)) + g(θ(x,y)n (f(x)))∂ℓ(θ(x,y)n (f(x)), y) = 0.

13
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Take g such that g ◦ θ(x,y)n equals t 7→ EP [∂ℓ(θ
(x,y)
n (f(x)), y) | θ(x,y)n (f(X)) = t, Cn]. Then, denoting γf (θ

(x,y)
n , ·) : x′ 7→

EP [∂ℓ(θ
(x,y)
n (f(x′)), z′) | θ(x,y)n (f(X)) = θ

(x,y)
n (f(x′)), Cn], we find that

n∑
i=1

γf (θ
(x,y)
n , Xi)∂ℓ(θ

(x,y)
n (f(Xi), Yi)) + γf (θ

(x,y)
n , x)∂ℓ(θ(x,y)n (f(x)), y) = 0.

By assumption, γf (θ
(x,y)
n , X)∂ℓ(θ

(x,y)
n (f(x)), y) is uniformly bounded, such that

1

n

n∑
i=1

γf (θ
(x,y)
n , Xi)∂ℓ(θ

(x,y)
n (f(Xi), Yi)) = O(n−1).

Adding and subtracting, we have that

Pnγf (θ
(x,y)
n , ·)∂ℓ(θ(x,y)n (f(·), ·)) = O(n−1)

Pγf (θ
(x,y)
n , ·)∂ℓ(θ(x,y)n (f(·), ·)) + (Pn − P )γf (θ

(x,y)
n , ·)∂ℓ(θ(x,y)n (f(·), ·)) = O(n−1)

P{γf (θ(x,y)n , ·)}2 + (Pn − P )γf (θ
(x,y)
n , ·)∂ℓ(θ(x,y)n (f(·), ·)) = O(n−1),

where, in the final equality, we used that Pγf (θ
(x,y)
n , ·)∂ℓ(θ(x,y)n (f(·), ·)) = P{γf (θ(x,y)n , ·)}2 by the law of total expecta-

tion.

The random quantity we wish to bound by δ̂2nP{γf (θ(x,y)n , ·)}2. Then, the previous display implies

δ̂2n ≤ sup
θ∈Fn:∥γf (θ,·)∥P≤δ̂n

|(Pn − P )γf (θ, ·)∂ℓ(θ(f(·), ·))|+O(n−1).

By boundedness of ∂ℓ(θ(f(·), ·)), ∥γf (θ, ·)∂ℓ(θ(f(·), ·))∥P ≤ K∥γf (θ, ·)∥P for some K < ∞. Thus,

δ̂2n ≤ sup
g∈Gf :∥g∥P≤Kδ̂n

|(Pn − P )g|+O(n−1),

where Gf := {g1g2 : g1 ∈ G1,f , g2 ∈ G2,f} with G1,f := {∂ℓ(θ(f(·), ·)) : θ ∈ Fn} and G2,f := {γf (θ, ·) : θ ∈ Fn}.

We claim that J (δ,Gf ) ≲ J (δ,Fn) ≲ δ
√
k(n) log(1/δ) By assumption, the following Lipschitz condition holds al-

most surely: |∂ℓ(θ1(f(X)), Y )− ∂ℓ(θ2(f(X)), Y )| ≲ |θ1(f(X))− θ2(f(X))| . It follows that J (δ,G1,f ) ≲ J (δ,Ff,n).
Moreover, J (δ,G2,f ) ≲ J (δ,Ff,n), since γf (θ, ·) ∈ Ff,n is a piecewise constant function with at most k(n) constant
segments for each θ ∈ Fn. Therefore, J (δ,Gf ) ≲ J (δ,Ff,n) ≲ J (δ,Fn) and the claim follows.

Define ϕn(δ) := supg∈Gf :∥g∥P≤Kδ |(Pn − P )g|. Then, we can write

δ̂2n ≤ ϕn(δ̂n) +O(n−1).

Applying Theorem 2.1 in Van Der Vaart and Wellner (2011), we have that for any δ satisfying
√
nδ2 ≳ J (δ,Gf ),

E[ϕn(δ)] ≲ n− 1
2J (δ,Gf ).

Consequently, since J (δ,Gf ) ≲ J (δ,Fn) ≲ δ
√
k(n) log(1/δ), it follows that for any δ ≥

√
k(n) log(1/δ)

n ,

E[ϕn(δ)] ≲ δ
√

k(n) log(1/δ)/n.

It can be shown that δ2n := k(n) log(n/k(n)) satisfies the critical inequality δn ≥
√

k(n) log(1/δn)
n , such that the previous

identifies can be applied with δ := δn. Showing the asserted stochastic order, δ̂2n = Op(δ
2
n) with δ2n := k(n) log(n/k(n)),

is equivalent to demonstrating that for all ϵ > 0, there exists a sufficiently large 2S such that

lim sup
n→∞

P(δ−2
n δ̂2n > 2S) < ϵ.
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To this end, we need to show limn→∞ P(δ−2
n δ̂2n > 2S) → 0 as S → ∞. Define the event As :=

{
δ−2
n δ̂2n ∈ (2s, 2s+1]

}
for

each s. Using a peeling argument and Markov’s inequality, we obtain

P
(
δ−2
n δ̂2n > 2S

)
≤

∞∑
s=S

P
(
2s+1 ≥ δ−2

n δ̂2n > 2s
)

≤
∞∑

s=S

P
(
As, δ̂

2
n ≤ ϕn(δ̂n) +O(n−1)

)
≤

∞∑
s=S

P
(
As, δ̂

2
n ≤ ϕn(δ̂n) +O(n−1)

)
≤

∞∑
s=S

P
(
δ2n2

s < δ̂2n ≤ ϕn

(
δn2

s+1
2

)
+O(n−1)

)
≤

∞∑
s=S

P
(
δ2n2

s < ϕn

(
δn2

s+1
2

)
+O(n−1)

)
≤

∞∑
s=S

E
[
ϕn

(
δn2

s+1
2

)]
+O(n−1)

δ2n2
s

≤
∞∑

s=S

n−1/2δn2
s+1
2

√
k(n) log(n/k(n)) +O(n−1)

δ2n2
s

≤
∞∑

s=S

2
s+1
2 +O(1)

2s
→S→∞ 0.

Thus, δ̂2n = Op(δ
2
n) and the result follows.

Proof of Theorem 3.4 . This proof follows from a generalization of the proofs of Theorem 1 for treatment effect calibration
and propensity score calibration in van der Laan et al. (2023) and van der Laan et al. (2024a).

Recall that f (x,y)
n = θ

(x,y)
n ◦ f . Under C8, up to a change of notation, the proof of Lemma 3 establishes that the

map t 7→ EP [∂ℓ(f
(x,y)
n (X), Z) | f (x,y)

n (X) = θ
(x,y)
n (t), Cn] has a total variation norm almost surely bounded by 3B.

Consequently, the function γf (θ
(x,y)
n , ·) : x 7→ EP [∂ℓ(f

(x,y)
n (X), Z) | f (x,y)

n (X) = f
(x,y)
n (x), Cn] is a transformation of f

with a total variation norm almost surely bounded by 3B.

Let FTV denote the space of 1D functions with total variation norm bounded by 3B. Let Fiso denote the space of isotonic
functions that are uniformly bounded, such that the isotonic regression solution θ

(x,y)
n belongs to this set. Note that

J (δ,FTV ) ≲
√
δ and J (δ,Fiso) ≲

√
δ.

Proceeding exactly as in the proof of Theorem 3.2, we can show that the quantity we wish to bound, δ̂2n := P{γf (θ(x,y)n , ·)}2,
satisfies

δ̂2n ≤ sup
θ∈Fn:∥γf (θ,·)∥P≤δ̂n

|(Pn − P )γf (θ, ·)∂ℓ(θ(f(·), ·))|+O(n−1).

By the boundedness of ∂ℓ(θ(f(·), ·)), we have ∥γf (θ, ·)∂ℓ(θ(f(·), ·))∥P ≤ K∥γf (θ, ·)∥P for some K < ∞. Thus,

δ̂2n ≤ sup
g∈Gf :∥g∥P≤Kδ̂n

|(Pn − P )g|+O(n−1),

where Gf := {g1g2 : g1 ∈ G1,f , g2 ∈ G2,f} with G1,f := {∂ℓ(θ(f(·), ·)) : θ ∈ FTV } and G2,f := {γf (θ, ·) : θ ∈ Fiso}.
An argument similar to the proof of Theorem 3.2 shows that J (δ,Gf ) ≲ J (δ,FTV ) + J (δ,Fiso) ≲

√
δ.

The result now follows by applying an argument identical to the proof of Theorem 3.2, where we set δ2n := n−2/3 and use
J (δ,Gf ) ≲

√
δ.
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C.2. Proofs for Venn multicalibration

Proof of Theorem 3.5. By C9, we have almost surely for each g ∈ G that
n+1∑
i=1

∂

∂t
ℓ((f∗

n+1 + tg)(Xi), Zi)

∣∣∣∣
t=0

= 0.

Taking the expectations of both sides above and leveraging C1, we have

E

[
n+1∑
i=1

∂

∂t
ℓ((f∗

n+1 + tg)(Xi), Zi)

∣∣∣∣
t=0

]
= 0,

n+1∑
i=1

E
[
∂

∂t
ℓ((f∗

n+1 + tg)(Xi), Zi)

∣∣∣∣
t=0

]
= 0,

n+1∑
i=1

E
[
∂

∂t
ℓ((f∗

n+1 + tg)(Xn+1), Zn+1)

∣∣∣∣
t=0

]
= 0,

E
[
∂

∂t
ℓ((f∗

n+1 + tg)(Xn+1), Zn+1)

∣∣∣∣
t=0

]
= 0,

as desired.

Proof of Corollary 3.6. This result is a direct consequence of Theorem 3.5, but we provide an independent proof for clarity
and completeness.

Define f∗
n+1 := f

(Xn+1,Yn+1)
n , and note that f∗

n+1(Xn+1) is an element of fn,Xn+1
(Xn+1) by construction. The first-order

optimality conditions of the empirical risk minimizer g(Xn+1,Yn+1)
n imply that, for each g ∈ G,

1

n+ 1

n+1∑
i=1

g(Xi)
{
Yi − f∗

n+1(Xi)
}
= 0.

Taking the expectation of both sides, which we can do by C2, and leveraging C1, we find that

0 =
1

n+ 1

n+1∑
i=1

E
[
g(Xi)

{
Yi − f∗

n+1(Xi)
}]

=
1

n+ 1

n+1∑
i=1

E
[
g(Xn+1)

{
Yn+1 − f∗

n+1(Xn+1)
}]

= E
[
g(Xn+1)

{
Yn+1 − f∗

n+1(Xn+1)
}]

.

C.3. Proofs for conformal prediction

Proof. Proof of Theorem 4.1 Under the assumption that Si ̸= f∗
n+1(Xi) almost surely for all i ∈ [n + 1], it is shown in

Section 2.2 of Gibbs et al. (2023) that the quantile loss is differentiable almost surely. Moreover, its derivative is given by

∂ℓα(f(x), S(z)) = (1− α)− 1{S(x) ≥ f(x)}.

The result now follows by application of Theorem 3.1.

Proof. Proof of Theorem 4.2 Under the assumption that Si ̸= f∗
n+1(Xi) almost surely for all i ∈ [n + 1], it is shown in

Section 2.2 of Gibbs et al. (2023) that the quantile loss is differentiable almost surely. Moreover, its derivative is given by

d

dε
ℓα((f + gε)(x), S(z))

∣∣
ε=0

= g(x) [(1− α)− 1{S(x) ≥ f(x)}] .

The result now follows by application of Theorem 3.5.
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