
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONSTRAINT-AWARE REWARD RELABELING
FOR OFFLINE SAFE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline safe reinforcement learning (OSRL) considers the problem of learning
reward-maximizing policies for a pre-defined cost constraint from a fixed dataset.
This paper proposes a simple and effective approach referred to as Constraint-
aware Reward (Re)Labeling (CARL), that can be wrapped around existing offline
RL algorithms. CARL is an iterative approach that alternates between two steps
for each sampled batch of data to ensure state-action-wise safety constraints. First,
update cost evaluation function using an off-policy evaluation procedure. Sec-
ond, update policy using relabeled rewards (assign large penalty) for state-action
pairs which are detected unsafe based on cost estimates. CARL is a minimal-
ist approach, doesn’t introduce any additional hyperparameters, and allows us
to leverage strong off-the-shelf offline RL algorithms to solve OSRL problems.
Experimental results on the DSRL benchmark tasks demonstrate that CARL re-
liably enforces safety constraints under small cost budgets, while achieving high
rewards. The code is available at https://anonymous.4open.science/
r/CARL-6F11.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success across diverse domains, from game
playing (Silver et al., 2016) to robotic control (Siekmann et al., 2021). However, in safety-critical
applications such as healthcare, autonomous systems, and industrial control, online exploration
poses unacceptable risks. Offline reinforcement learning addresses this limitation by learning poli-
cies exclusively from pre-collected datasets without any additional interaction with the environment
(Levine et al., 2020). However, in safety-critical domains, it is insufficient to focus on maximizing
rewards alone and policies must also respect explicit safety constraints during deployment.

This double requirement motivates offline safe reinforcement learning (OSRL), where agents must
simultaneously maximize expected returns while satisfying user-specified cost budgets or safety
constraints. OSRL inherits fundamental challenges from both offline RL and safe RL: handling
distributional shift from fixed datasets, and ensuring that the policy behavior remains within safety
constraints after deployment. This problem becomes especially challenging under tight cost budgets,
where even small cost constraint violations may be unacceptable.

As explained in the related work section, prior approaches for OSRL typically employ constrained
optimization frameworks. These approaches rely on dual-gradient updates, Lagrangian multipliers,
or policy regularization techniques (Polosky et al., 2022; Lee et al., 2022; Xu et al., 2022b). While
theoretically principled, such methods introduce substantial algorithmic complexity. They are also
often brittle in practice and require careful tuning, introducing instability, or collapsing to overly
conservative solutions when the cost budget is small (Zheng et al., 2024).

This paper develops a novel approach referred to as Constraint-aware Reward (Re)Labeling (CARL)
to solve OSRL problems. There are two key innovations behind CARL. First, we formulate an
unconstrained policy optimization problem to enforce state-action-wise safety constraints. This for-
mulation naturally motivates an iterative policy improvement algorithm that doesn’t require tuning
Lagrange multipliers. Second, we develop a simple iterative method that can be wrapped around
offline RL algorithms with batch updates. It alternates between two steps for each sampled batch
of data: update cost evaluation function using an off-policy evaluation procedure and update policy
using relabeled rewards (assigns a large penalty) for state-action pairs whose cost-to-go estimates

1

https://anonymous.4open.science/r/CARL-6F11
https://anonymous.4open.science/r/CARL-6F11


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

violate cost constraint. CARL is a minimalist method requiring no additional hyperparameters,
leveraging off-the-shelf offline RL algorithms to effectively address OSRL problems.

The main findings from our evaluation of CARL on DSRL benchmark tasks (Liu et al., 2024) are
as follows. First, CARL produces safe policies with high returns on most tasks and outperforms
prior methods on a greater number of tasks. Second, CARL achieves excellent performance for the
challenging setting of small cost budgets. Third, when trained only on unsafe trajectories, CARL
remarkably learns safe policies. Finally, CARL achieves good performance with different offline
RL algorithms.

Contributions. The key contribution of this paper is the development and evaluation of the
Constraint-aware Reward Relabeling approach for OSRL problems. Specific contributions include:

• Formulation of an unconstrained optimization problem for state-action-wise safety con-
straints.

• Development of the iterative constraint-aware reward relabeling (CARL) method that can
be wrapped around existing offline RL algorithms.

• Experimental evaluation of the proposed CARL algorithm on DSRL benchmark tasks to
demonstrate its strong effectiveness over state-of-the-art methods.

2 PROBLEM SETUP

We consider the problem of offline reinforcement learning under safety constraints, modeled using
the Constrained Markov Decision Process (CMDP) framework. A CMDP is defined by the tuple
(S,A, P, r, c, γ, µ0), where S and A denote the state and action spaces, respectively; P : S × A ×
S → [0, 1] represents the unknown stochastic transition dynamics; r : S × A → R is the reward
function; c : S × A → [0, Cmax] is a non-negative cost function; γ ∈ (0, 1) is the discount factor;
and µ0 is the initial state distribution.

Let π : S → A represent a policy that maps states to actions. Given π and µ0, we can define a
distribution over trajectories τ = {(st, at, rt, ct)}Tt=1 generated by rolling out π from initial states
drawn from µ0. We define

V π
r (s) = Eτ∼π

[
T∑

t=1

γtrt | s1 = s

]
, Qπ

r (s, a) = Eτ∼π[V
π
r (s′) | s1 = s, a1 = a]

to be the standard reward state- and action-value functions. Similarly V π
c (s) and Qπ

c (s, a) denote
the cost state- and ation-value functions respectively. In the offline setting, the agent has access
only to a static dataset D = {(si, ai, ri, ci, s′i)}ni=1 collected from one or more unknown behavior
policies, without further interaction with the environment.

The goal of offline safe RL (OSRL) is to learn a policy from the given offline dataset D that maxi-
mizes the expected return while satisfying a given cost constraint:

max
π

Es∼µ0 [V
π
r (s)] subject to V π

c ≤ κ, (1)

where κ ≥ 0 is a user-specified safety cost threshold (also referred to as a cost budget or limit).

Tight cost limits (i.e., small κ values) present an especially demanding regime where many existing
OSRL methods falter. In such safety-critical settings, such as autonomous driving, robotics, or in-
dustrial control, even minor constraint violations can be unacceptable. Common approaches based
on constrained optimization or dual updates tend to be brittle, requiring careful tuning and often re-
sulting in unstable or overly conservative policies. Our goal is to develop a minimalist approach that
can be wrapped around existing offline RL methods to solve OSRL problems under the challenging
setting of small cost budgets.

3 RELATED WORK

Online Safe RL. Safety in online RL has been widely studied (Garcıa & Fernández, 2015; Gu et al.,
2024; Wachi et al., 2024). In this setting, the agent interacts with the environment while adher-
ing to safety constraints. A common mechanism is penalty-based control, shaping the reward as

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

r′ = r−λ · c. While simple, fixed penalties introduce a sensitive trade-off between reward and con-
straint satisfaction, and often require extensive tuning; e.g., RCPO (Tessler et al., 2018) and Safety
Gym (Ray et al., 2019) include baselines with fixed λ values, with main results based on adaptive
Lagrangian updates. ROSARL formalizes penalty selection via the “minmax penalty” (Tasse et al.,
2023). Within this penalty-based family, Sauté RL (Sootla et al., 2022) augments the state with a
safety budget, and MASE (Wachi et al., 2023) casts online safe exploration as a generalized prob-
lem that combines uncertainty quantification with a reset action to prevent violations during training.
Recent work also targets adaptability under changing constraints, e.g., constraint-conditioned value
function approximation (Yao et al., 2023).

Offline RL. Offline reinforcement learning focuses on learning policies purely from fixed datasets
without additional interaction with the environment (Levine et al., 2020; Figueiredo Prudencio et al.,
2024). A key challenge in this setting is distributional shift between the behavior policy and the
learned policy. Approaches addressing this include value estimation regularization (Fujimoto & Gu,
2021; Kostrikov et al., 2022; Kumar et al., 2019; Lyu et al., 2022; Yang et al., 2022), generative or
sequential modeling (Janner et al., 2021; Wang et al., 2022), and uncertainty-aware learning (An
et al., 2021; Bai et al., 2022). Some techniques utilize Q-function based action selection via filtering
and reweighting, including SfBC and IDQL (Chen et al., 2023; Hansen-Estruch et al., 2023). Other
methods constrain policy updates using divergence measures (Wu et al., 2020; Jaques et al., 2020;
Wu et al., 2022), or leverage advances in model-based RL (Kidambi et al., 2020; Yu et al., 2020;
Rigter et al., 2022) and imitation learning (Xu et al., 2022a).

Offline Safe RL. OSRL extends the offline RL setting to include user-defined cost constraints (Liu
et al., 2024). Many OSRL methods rely on constrained optimization, often using Lagrangian relax-
ation (Xu et al., 2022b; Lee et al., 2022; Polosky et al., 2022), or exploiting convexity assumptions in
cost and reward trade-offs (Zhang et al., 2024). However, they often require solving interdependent
optimization problems and are prone to instability, particularly under strict cost limits.

Beyond constrained optimization, several recent methods propose alternative strategies. FISOR
(Zheng et al., 2024) enforces safety via diffusion models to select only feasible actions and is the
only method designed to handle the challenging setting of small cost budgets. TraC (Gong et al.,
2025) introduces a trajectory-based classification method for safe policy learning. Latent safety
modeling was also explored in (Koirala et al., 2024). LSPC employs a conditional VAE to encode
conservative safety constraints into a latent space and perform reward optimization via advantage-
weighted regression in that space. CAPS (Chemingui et al., 2025) switches between pre-trained
policies to adapt to different test-time cost constraints. (Guo et al., 2025) propose a constraint-
conditioned actor-critic (CCAC) method that explicitly models the relationship between state-action
distributions and constraints, to improve generalization to unseen cost thresholds.

Diffusion-based generative models have also gained traction for OSRL. TREBI (Lin et al., 2023)
employs trajectory-level diffusion sampling guided by safety classifiers, while other works adapt
models such as Decision Transformer (Chen et al., 2021) and Diffuser (Janner et al., 2022) to the
constrained setting (Liu et al., 2023; Lin et al., 2023). While powerful, these methods often require
additional architectural components, hyperparameter tuning, or auxiliary optimization targets.

The overall goal of this paper is to address two key limitations of prior work. First, there is very
little work on OSRL under small cost budgets. FISOR produces safe policies in this regime, but
it achieves low reward. Second, Lagrangian based constrained policy optimization methods are
typically unstable in practice resulting in poor performance. The proposed constraint-aware reward
relabeling approach is minimalist, can be wrapped around offline RL algorithms.

4 STATE-ACTION-WISE CONSTRAINTS FOR SAFETY

This section first describes an alternative formulation which enforces safety for all states and theo-
retically shows that its solution also solves the original problem which enforces safety constraint in
expectation. Next, we provide the sketch of an iterative policy improvement approach that is most
natural to solve our formulation and forms the basis for our proposed algorithm.

Formulation for state-action-wise safety. Solving the constrained MDP in Equation (1) often
involves reformulating it as an unconstrained optimization problem via the Lagrangian method.
Although this reformulation offers a principled approach, it requires an intricate tuning of the La-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

grangian multiplier, where the final performance is sensitive to it. To overcome this challenge, we
consider a stronger formulation that aims to ensure constraint satisfaction for all state-action pairs a
policy will encounter which is particularly beneficial when the cost limit κ is small.

max
π

V π
r subject to Qπ

c (s, π(s)) ≤ κ, ∀s. (2)

where the max operator over value functions considers V1 ≤ V2 if V1(s) ≤ V2(s), ∀s. The above
pointwise constraints ensure that we enforce safety across all states and actions that the policy will
select, not simply over the expected value of the cost function as in the optimization problem from
Equation (1). A solution to the optimization problem in Equation (2), if it exists, immediately yields
a solution to the problem in Equation (1), but not vice versa.

The point-wise constraints formulation offers various benefits. First, to a certain extent, the point-
wise constraint should be a preferred solution to many real-world applications that require safety. It
requires that, no matter where we start within the system, the expected cumulative cost will be within
the safety threshold. On the other hand, the problem in Equation (1) only requires that a policy is
safe in the expectation with respect to the initial state and action. This might not be desirable. In
the deployment of safe RL for real safety-critical applications, we are often in a one-shot setting,
instead of performing repeated experiments. In such a case, only the solution for Equation (2) but
not from Equation (1) guarantees safety every time during deployment.

Second, and most importantly, the point-wise constraints allow us to turn the offline constrained RL
problem into an unconstrained optimization problem where it is free of tuning Lagrangian multipli-
ers. Additionally, this unconstrained optimization naturally motivates a simple iterative algorithm
that allows us to leverages powerful off-the-shelf solvers. Let us consider the following problem:

max
π

V π
rπ where rπ(s, a) := 1{Qπ

c (s,a)≤κ} · r(s, a)− 1{Qπ
c (s,a)>κ}Vmax (3)

with Vmax = Rmax/(1 − γ) being the maximum possible infinite-horizon value. We show in the
Theorem below that it suffices to solve the unconstrained optimization in Equation (3).

Theorem 1. Assume there exists a solution to Problem (2). Then a policy π∗ is an optimal solution
to Problem (2) if and only if it is an optimal solution to the unconstrained optimization in (3).

Proof. Consider any safe policy π according to the constraint in Problem (2). By definition we
know that for each state s, Qπ

c (s, π(s)) ≤ κ. This means that for any state-action pair (st, at) along
a trajectory τ generated by π, we have r(st, at) = rπ(st, at). Thus, for any safe policy π we have
V π
r = V π

rπ . To complete the proof we show that any solution to Problem (3) must be safe.

Let π̃∗ be a solution to Problem (2). Let π∗ be a solution to Problem (3). We will show
that π∗ must satisfy the point-wise safety, i.e., Qπ∗

c (s, π∗(s)) ≤ κ,∀s. Indeed, assume that
Qπ∗

c (s, π∗(s)) > κ for some s. Then, rπ∗(s, π∗(s)) = −Vmax. Thus, V π∗

rπ∗ (s) = −Vmax +

Eπ∗,P [
∑∞

t=1 γ
trπ∗(st, at)] < 0 < V π̃∗

r (s) = V π̃∗

rπ̃∗ (s), where the last equality follows from the
safety of π̃∗. This contradicts that π∗ is an optimal policy to Problem (3). Thus, Qπ∗

c (s, π∗(s)) ≤
κ, ∀s and hence is safe according to Problem (2). □

Sketch of an Iterative Policy Improvement Algorithm. Motivated by the classical policy iter-
ation method, we can design a policy iteration variant to solve the unconstrained optimization in
Equation (3) as summarized below:

πt
offline policy evaluation−→ Qπt

c

reward relabeling−→ rπt

offline policy optimization−→ πt+1 (4)

The goal of this iterative method is to improve utility and safety trade-offs of the policy incrementally
from one iteration to the next. Specifically, in each iteration t, given the current policy πt, we
estimate the cost function Qπt

c using an offline policy evaluation (OPE) solver. Next, we compute
the reshaped reward rπt

based on Qπt
c . Finally, we perform offline policy optimization (OPO)

by calling an offline RL algorithm with the reward-relabeled offline data (s, a, rπt
, s′) to obtain

a improved policy πt+1. Building on this general principle, we describe a concrete algorithmic
approach next.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 CARL: CONSTRAINT-AWARE REWARD RELABELING

Our solution approach is based on designing a wrapper around any batch-update offline RL algo-
rithm. In particular, batch update algorithms can be described via batch update rules, where AOPE

denotes an offline policy evaluation update rule, and AOPO an offline policy optimization update
rule. Each accepts a mini-batch B = {(si, ai, ri, s′i)} and performs:

Q′ ← AOPE(Q, π,B), (π′, Q′)← AOPO(π,Q,B),

allowing iterative improvement by repeatedly sampling batches from a given offline training dataset.
Most state-of-the-art offline RL algorithms—e.g., TD3-BC, IQL—can be expressed in this form.
The goal is to wrap these existing update functions so that, given a safe offline RL problem in the
form of a training dataset D and a cost budget κ, the resulting policy π maximizes reward while
satisfying the safety constraint.

Below we first describe the motivation for our approach, followed by the algorithmic details.

5.1 ACTION FILTER MOTIVATION

To motivate our approach, consider a finite MDP with discrete states and actions. We can view
applying the iteration in Equation 4 to this MDP as integrating an action filter into a standard uncon-
strained solver (e.g., policy iteration): given the current policy π, estimate its cost-to-go Qπ

c (s, a),
and remove from the MDP all actions whose cost-to-go exceeds the budget κ. Solving this reduced
MDP yields a new policy π′, and the process can be repeated, always starting each iteration with the
full action set. Across iterations, actions previously removed may be reintroduced if they become
safe, and safe actions may be removed if they become unsafe.

While intuitive, this process can be unstable. The root cause is that after each policy update, the
cost-to-go function can change drastically, causing the set of filtered actions to vary arbitrarily from
one iteration to the next.

One way to mitigate this instability is to update the policy and cost-to-go gradually, so that they
track each other closely throughout the optimization process. In the discrete MDP setting, this
might mean updating only for a small batch of states at each iteration. Below we extend this idea to
the more general setting of continuous state and action offline safe RL.

5.2 FILTERING VIA BATCH REWARD RELABELING

In continuous domains with function approximation, “removing” an individual unsafe action is ill-
posed: we instead want to suppress an entire neighborhood of similar actions. A simple way to
achieve this is via the reward relabeling approach implicit in Problem (3) where we replace the
reward for any state–action pair predicted to be unsafe with a maximally negative constant. Function
approximation then naturally generalizes this penalty to nearby actions, discouraging them without
needing to identify and prune them explicitly.

We use a simple approach to integrate reward relabeling and batch-update offline RL. Specifically,
given the current Q-cost function Qπ

c under the current policy π, we define the constraint-aware
reward relabeling rule for a transition (s, a, r, s′) as:

CARL(s, a, r, s′) =

{
(s, a, r, s′), if Qπ

c (s, a) ≤ κ,

(s, a,−Vmax, s
′) otherwise,

(5)

Performing batch updates where rewards in each batch are relabeled naturally avoids actions cur-
rently considered unsafe and, by generalization, actions similar to them.

The generic batch reward relabeling loop alternates between the following two steps:

1. Cost evaluation: M iterations of OPE updates on (s, a, c, s′) to refine Qπ
c .

2. Policy optimization: K iterations of OPO updates on CARL(s, a, r, s′) given by 5.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Constraint-aware Reward Relabeling (CARL)

Require: Offline dataset D, budget κ, backbone updates AOPE,AOPO, batch size m
1: Init cost critic Qc, policy π, and reward critic Qr

2: while not converged do
3: Sample mini-batch {(si, ai, ri, ci, s′i)}mi=1 ⊂ D
4: Qc ← AOPE

(
Qc, π, {(si, ai, ci, s′i)}mi=1

)
5: (π,Qr)← AOPO

(
π,Qr, {CARL(si, ai, ri, s′i)}mi=1

)
6: end while
7: return π

Figure 1: Oscillatory Performance of AntRun: re-
ward (left) and cost (right) across training steps with
a cost limit of 40.

Intuitively, large M and K let Qc and π
change substantially between phases. Thus,
as described above for discrete MDPs, this
can cause severe oscillations: the algorithm
alternates between unsafe, high-reward poli-
cies and overly conservative safe policies,
never exploring the many safe policies with
high reward. Figure 1 illustrates an imple-
mentation based on TD3BC where we ob-
serve this oscillation for a standard bench-
mark problem AntRun.

To address this instability, a natural stabilizing choice is to keep M and K small so that Qc and π
track each other closely. The most extreme case, M = K = 1, suggests a simple wrapper with
no additional hyperparameters beyond the base OPE and OPO algorithms. Each iteration involves
sampling a mini-batch B followed by:

Update Qπ
c with B −→ Relabel B via Equation 5 −→ Update π with relabeled B.

The pseudo-code for this incremental variant called is shown in Algorithm 1. Despite the mini-
malism, we find that M = K = 1 consistently results in state-of-the-art performance. Further,
while one can treat K and M as hyperparameters, we have not found values that consistently out-
perform CARL across benchmarks. Because the CARL algorithm modifies only the reward before
passing data to the backbone, it inherits the underlying offline RL algorithms’ sample efficiency and
out-of-distribution handling.

While setting K = M = 1 greatly reduces drift compared to using large values of K and M , theo-
retical convergence guarantees are unclear. Formally analyzing whether K = M = 1 converges—
possibly under assumptions on the MDP class, dataset coverage, or backbone stability—is an open
problem. Empirically, we find the method to be stable across all tested benchmarks and initializa-
tions, and achieving significantly better performance than state-of-the-art offline safe RL methods.

Summary of CARL’s advantages. Our proposed CARL approach has the following advantages.

• It can be wrapped around existing offline RL algorithms to effectively solve offline safe RL
problems as we demonstrate in our experiments.

• It is a minimalist approach which doesn’t introduce any additional hyperparameters.

6 EXPERIMENTS AND RESULTS

6.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate CARL across a variety of offline safe reinforcement learning tasks
using the DSRL benchmark suite (Liu et al., 2024), which offers standardized datasets with di-
verse safety constraints. Our evaluation mainly spans both the Bullet-based environments (Car-Run,
Drone-Circle etc.), as well as broader generalization through additional tasks drawn from Safety-
Gymnasium (Ray et al., 2019; Ji et al., 2024). The combined benchmark suite includes diverse tasks
spanning a range of difficulty levels and safety complexities.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Evaluation Protocol. Consistent with DSRL standards, we report two core metrics: normalized
cumulative reward and normalized cumulative cost. For a task T , if rmax(T ) and rmin(T ) represent
the maximum and minimum observed cumulative rewards, the normalized reward for a policy π is
computed as:

Rnorm =
Rπ − rmin(T )

rmax(T )− rmin(T )
, Cnorm =

Cπ

κ
.

where Cπ is the policy’s cumulative cost and κ is the cost threshold. A policy is considered safe
if Cnorm ≤ 1. This formulation differs from alternative evaluations in CCAC (Guo et al., 2025)
that normalize rewards only using trajectories satisfying the cost budget κ. Instead, we follow the
standard DSRL evaluation protocol, which uses the full reward range per task. Our main results use
stringent thresholds of κ = 5 and κ = 10 to test performance in highly constrained scenarios. Each
policy is tested over 20 episodes and averaged over three random seeds.

Baselines. We compare CARL against a range of state-of-the-art OSLR methods. BC-Safe is
a behavior cloning baseline that trains on trajectories satisfying a predefined cost threshold. CPQ
(Xu et al., 2022b) penalizes out-of-distribution actions and updates Q-values using only safe transi-
tions. COptiDICE (Lee et al., 2022) addresses safety via stationary distribution correction. CDT
(Liu et al., 2023) uses a decision transformer to learn policies conditioned on reward and cost en-
abling test-time constraint adaptation. CAPS (Chemingui et al., 2025) also supports test-time con-
straint handling by switching among multiple pre-trained policies. FISOR (Zheng et al., 2024) is
a diffusion-based approach that directly optimizes for feasibility to produce zero-violation policies.
Finally, we include CCAC (Guo et al., 2025), a recent method that leverages a constraint-conditioned
actor-critic framework augmented with generative modeling and out-of-distribution (OOD) detec-
tion to enable adaptive and safe policy learning under varying constraint thresholds.

Our results use CARL as a wrapper around TD3-BC, with fitted-Q evaluation (FQE) employed for
off-policy evaluation (Le et al., 2019). Implementation details are available in the Appendix.

6.2 RESULTS AND DISCUSSION

CARL vs. Baselines. Table 1 compares CARL with a suite of offline safe RL baselines across 19
DSRL tasks. Performance is reported in terms of normalized reward (higher is better) and normal-
ized cost (lower is better, with values ≤ 1 indicating constraint satisfaction) under low budgets of
5 or 10. For the main results, we set the penalty using Rmax = max(s,a,r,·) r from the offline data
instead of Vmax; an ablation with the larger penalty Vmax is included in Table 3 in the appendix.
Remarkably, CARL is the only method that satisfies the cost constraint across all Bullet tasks. It
is also safe on 8 out of 11 in the more challenging SafetyGym tasks. While other methods such as
CAPS, FISOR, or CCAC manage to remain safe on a few tasks, none of them achieve the same level
of consistency for safety. Importantly, CARL’s safety does not come at the expense of reward perfor-
mance. CARL consistently ranks as the best or second-best safe method in terms of reward. While
other baselines occasionally achieve higher returns, the top-performing method varies across tasks
and fails to consistently satisfy the cost constraint, unlike CARL which maintains stricter safety in
most of the tasks.

These results demonstrate that CARL strikes a strong balance between reward maximization and
constraint satisfaction, without requiring special reward shaping, risk-sensitive training objectives,
or task-specific tuning. Its consistent safety and competitive performance across tasks and cost
budgets highlight its robustness and suitability for safety-critical settings.

Backbone Offline RL Algorithm. CARL can be wrapped around any off-the-shelf offline RL
algorithm without modifying the method’s loss, targets, or regularizers. Our main results use TD3-
BC (Fujimoto & Gu, 2021) as the backbone. To test generality, we also evaluate CARL with IQL
(Kostrikov et al., 2022), which differs significantly in design. TD3-BC is an actor–critic method that
queries the current policy to generate target actions and applies behavior cloning regularization on
the actor. In contrast, IQL estimates Q-values purely from dataset actions and optimizes the policy
separately via advantage-weighted regression, without querying the policy during value learning.

As shown in Table 2, CARL maintains safety and achieves comparable rewards under both back-
bones. This indicates that our relabeling in Equation 5 is agnostic to the underlying backbone,
confirming that CARL generalizes effectively across offline RL algorithms.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: CARL main results for normalized rewards and costs. The normalized cost threshold is 1
(κ = 5 or 10). The ↑ symbol denotes that higher rewards are better. The ↓ symbol denotes that
lower costs (up to threshold 1) are better. Each cell shows reward or cost with standard deviation.
Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe result (Cnorm ≤ 1).

Tasks BC Safe CPQ COptiDICE CDT CAPS CCAC FISOR CARL

Bullet Gym Tasks: κ = 5

BallRun Reward ↑ 0.16±0.11 0.09±0.26 0.53±0.10 0.27±0.09 0.07±0.05 0.31±0.01 0.09±0.07 0.28±0.02
Cost ↓ 4.50±3.38 2.20±2.88 10.83±1.68 2.57±3.23 0.00±0.00 0.00±0.00 1.28±1.70 0.00±0.00

CarRun Reward ↑ 0.92±0.01 0.93±0.01 0.91±0.04 0.99±0.00 0.97±0.00 1.82±0.84 0.74±0.01 0.97±0.00
Cost ↓ 0.26±0.23 0.20±0.18 0.00±0.00 0.90±0.34 0.11±0.17 24.57±20.94 0.00±0.00 0.02±0.03

DroneRun Reward ↑ 0.41±0.23 0.29±0.11 0.68±0.01 0.58±0.00 0.41±0.06 0.50±0.08 0.31±0.04 0.36±0.12
Cost ↓ 1.62±1.73 2.35±4.08 15.02±0.10 0.07±0.07 5.70±3.08 16.29±9.35 2.52±1.10 0.30±0.52

AntRun Reward ↑ 0.56±0.02 0.03±0.05 0.61±0.01 0.70±0.03 0.53±0.13 0.03±0.10 0.43±0.02 0.36±0.09
Cost ↓ 1.15±0.47 0.05±0.08 3.26±1.39 1.66±0.24 2.03±2.17 0.00±0.00 0.27±0.15 0.60±0.41

BallCircle Reward ↑ 0.45±0.03 0.56±0.10 0.71±0.01 0.61±0.17 0.33±0.02 0.47±0.38 0.32±0.05 0.69±0.03
Cost ↓ 1.21±0.23 1.11±1.92 9.41±0.69 2.03±1.39 0.01±0.02 10.19±17.65 0.00±0.00 0.33±0.23

CarCircle Reward ↑ 0.31±0.06 0.71±0.02 0.49±0.01 0.71±0.01 0.40±0.03 0.70±0.01 0.37±0.02 0.69±0.01
Cost ↓ 1.57±0.07 0.00±0.00 10.82±1.28 1.58±0.57 0.03±0.03 1.61±0.51 0.00±0.00 0.00±0.00

DroneCircle Reward ↑ 0.50±0.01 -0.21±0.04 0.26±0.02 0.55±0.01 0.36±0.02 0.43±0.04 0.48±0.01 0.53±0.02
Cost ↓ 1.22±0.31 0.70±0.41 3.68±0.51 1.14±0.06 0.00±0.00 0.06±0.07 0.17±0.15 0.00±0.00

AntCircle Reward ↑ 0.40±0.02 0.00±0.00 0.18±0.02 0.45±0.05 0.33±0.05 0.49±0.07 0.24±0.02 0.60±0.01
Cost ↓ 4.72±0.87 0.00±0.00 17.40±0.36 6.59±1.42 0.00±0.00 0.02±0.03 0.04±0.08 0.02±0.03

Safety Gym Tasks: κ = 10

CarCircle1 Reward ↑ 0.27±0.09 -0.03±0.07 0.68±0.05 0.53±0.07 0.42±0.04 0.32±0.10 0.69±0.03 0.46±0.03
Cost ↓ 3.82±1.01 10.17±7.26 20.70±1.15 8.58±2.04 2.79±1.04 21.96±4.14 10.52±0.10 4.15±0.83

CarCircle2 Reward ↑ 0.37±0.06 0.46±0.05 0.75±0.02 0.61±0.04 0.38±0.14 0.57±0.01 0.63±0.02 0.45±0.05
Cost ↓ 6.90±2.62 2.41±3.95 26.40±2.30 13.12±2.59 4.15±5.07 16.85±4.07 12.78±1.97 1.57±1.38

CarGoal1 Reward ↑ 0.20±0.09 0.67±0.07 0.40±0.03 0.62±0.04 0.27±0.00 0.82±0.06 0.42±0.07 0.26±0.04
Cost ↓ 0.40±0.12 4.41±0.46 2.50±0.36 3.12±0.69 1.15±0.10 5.27±0.92 1.70±0.58 0.92±0.55

CarGoal2 Reward ↑ 0.14±0.02 0.53±0.14 0.21±0.10 0.42±0.06 0.11±0.06 0.91±0.02 0.05±0.01 0.13±0.03
Cost ↓ 1.45±0.60 15.09±1.91 3.01±1.45 5.34±1.25 2.05±2.23 15.80±1.04 0.50±0.71 1.77±0.51

PointCircle1 Reward ↑ 0.30±0.11 0.46±0.04 0.87±0.01 0.54±0.01 0.31±0.05 0.57±0.08 0.43±0.05 0.52±0.01
Cost ↓ 0.26±0.24 0.73±1.20 19.16±0.38 0.54±0.61 0.94±1.53 6.65±3.51 14.93±4.24 0.04±0.07

PointCircle2 Reward ↑ 0.42±0.07 0.44±0.05 0.85±0.01 0.59±0.02 0.44±0.06 0.03±0.75 0.76±0.05 0.55±0.01
Cost ↓ 2.10±0.37 1.20±1.28 29.36±1.23 2.05±0.93 0.10±0.09 3.99±4.30 18.02±4.17 0.91±1.46

PointGoal1 Reward ↑ 0.22±0.02 0.55±0.11 0.49±0.02 0.63±0.08 0.30±0.09 0.74±0.03 0.64±0.03 0.06±0.06
Cost ↓ 0.91±0.42 3.33±1.68 5.27±0.91 2.97±0.82 1.45±0.74 3.90±0.50 5.38±1.05 0.09±0.11

PointGoal2 Reward ↑ 0.18±0.01 0.25±0.13 0.41±0.06 0.46±0.08 0.19±0.04 0.78±0.05 0.31±0.07 0.13±0.05
Cost ↓ 1.81±0.72 5.34±1.33 5.68±0.48 5.57±0.81 1.02±0.22 15.51±5.75 1.67±1.32 0.81±0.31

AntVelo Reward ↑ 0.92±0.03 -1.01±0.00 1.00±0.01 0.97±0.02 0.88±0.05 -1.01±0.00 0.89±0.01 0.99±0.01
Cost ↓ 0.33±0.19 0.00±0.00 11.82±5.56 0.59±0.02 0.21±0.07 0.00±0.00 0.00±0.00 0.43±0.11

HalfCheetahVelo Reward ↑ 0.86±0.01 0.67±0.05 0.63±0.02 0.98±0.00 0.86±0.01 0.91±0.04 0.89±0.01 0.96±0.01
Cost ↓ 0.30±0.13 8.56±6.19 0.00±0.00 0.65±0.34 0.27±0.06 0.97±0.12 0.00±0.00 0.14±0.09

SwimmerVelo Reward ↑ 0.46±0.07 0.20±0.20 0.59±0.07 0.66±0.01 0.45±0.06 0.06±0.25 -0.02±0.05 0.21±0.19
Cost ↓ 0.80±0.19 2.82±4.19 16.80±7.39 1.26±0.50 2.17±2.91 0.91±1.57 0.23±0.20 0.00±0.00

Table 2: Comparison of TD3BC and IQL across Bullet Safety Gym and Velocity tasks. Each cell
shows reward (↑) or cost (↓) with standard deviation. Bold: safe agents (Cnorm ≤ 1).

Method CarRun DroneRun CarCircle DroneCircle AntVelocity HalfCheetahVelo

TD3BC Reward ↑ 0.97±0.00 0.36±0.12 0.69±0.01 0.53±0.02 0.99±0.01 0.96±0.01
Cost ↓ 0.02±0.03 0.30±0.52 0.00±0.00 0.00±0.00 0.43±0.11 0.14±0.09

IQL Reward ↑ 0.96±0.01 0.46±0.03 0.68±0.01 0.35±0.02 0.97±0.01 0.92±0.02
Cost ↓ 0.12±0.14 0.71±1.06 0.08±0.10 0.00±0.00 0.38±0.09 0.26±0.40

Evaluation Across Varying Cost Limits. While our main results are for the strict cost thresholds (κ
equals 5 or 10) representative of safety-critical settings, we also evaluate CARL under more relaxed
safety constraints: cost limits of 20 and 40 for Bullet tasks, and 40 and 80 for Safety Gym tasks,
following the setup introduced in DSRL. Based on the results shown in Table 1, the safest baseline
methods after CARL are FISOR, CAPS, CPQ, and CCAC. However, FISOR is trained solely to
minimize cost and does not adapt to different cost limits. CPQ, while safe in some tasks, achieves

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

very low rewards in two of the safe results. Therefore, for the varying cost limit analysis, we focus
our comparison on CAPS and CCAC, both of which show better balance for safety and reward
performance.

Figures 2 show that CARL improves rewards as the cost budget increases, while keeping normalized
costs within the safety threshold (≤ 1). On the challenging CarCircle2 task, all methods are unsafe
at budget 10. When the budget rises to 40 or 80, CARL attains both safety and higher rewards,
whereas CAPS and CCAC remain unsafe (Table 4, Appendix). This demonstrates CARL’s ability
to exploit larger budgets where other methods fail.

Figure 2: Results for CARL with varying cost budget limits on three
tasks: rewards vs. cost budget (left) and costs vs. cost budget (right).

Training Only on Unsafe
Trajectories. We perform
an ablation where we train
CARL using either the full
dataset, or only unsafe tra-
jectories (those with cumu-
lative cost exceeding the
threshold (κ = 5 or 10)).

Figures 3 shows results for
training with only unsafe
trajectories (blue). CARL
generates 60 trajectories
per task (20 from each of
the three seeds), shown in red. Despite the absence of safe training examples, these trajectories
remain within the cost threshold (dashed line) while achieving strong rewards. In BALLCIRCLE,
CARL attains rewards around 600–650, enforcing safety with little loss in rewards. In ANTVE-
LOCITY, it reaches near-optimal rewards of ∼3000 while staying safe, combining strict constraint
satisfaction with top-level performance. In ANTCIRCLE, CARL shifts trajectories into the safe zone
while still reaching rewards up to 300+, comparable to the best unsafe cases near the boundary,
showing that meaningful reward performance can be retained under strict safety. Overall, these
results highlight CARL’s ability to recover safe and competitive behavior from purely unsafe data
through reward relabeling: transforming unsafe dataset trajectories into safe ones and shifting be-
havior into the feasible region without substantial loss in rewards.

Figure 3: Results for CARL-generated trajectories (red) when trained on unsafe data, compared
against unsafe dataset trajectories (blue) on three representative tasks.

We also evaluate a naive hard-filtering variant (Appendix Table 6), which removes unsafe transitions
entirely, and find that it fails on nearly all tasks, underscoring the importance of CARL’s reward
relabeling rather than simple data exclusion.

7 SUMMARY

This paper introduces an embarrassingly simple framework for solving offline safe reinforcement
learning (OSRL). It reformulates the OSRL problem into an unconstrained optimization problem
that requires no tuning of Lagrangian multipliers when compared to the vast majority of the pre-
vious methods. This framework allows us to naturally leverage powerful off-the-shelf offline RL
algorithms and advances directly to effectively solve OSRL problems via constraint-aware reward
relabeling. Experimental results on the DSRL benchmark demonstrate the remarkably strong per-
formance of the proposed framework compared to state-of-the-art OSRL methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We include full implementation details in Appendix C, including
hyperparameters and training settings. All datasets used are publicly available. An anonymous link
to the source code is provided in the abstract to support reproducibility of our experiments.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=Y4cs1Z3HnqL.

Yassine Chemingui, Aryan Deshwal, Honghao Wei, Alan Fern, and Jana Doppa. Constraint-adaptive
policy switching for offline safe reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 15722–15730, 2025.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237–10257, 2024. doi: 10.1109/TNNLS.2023.
3250269.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Javier Garcıa and Fernando Fernández. A comprehensive curvey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Ze Gong, Akshat Kumar, and Pradeep Varakantham. Offline safe reinforcement learning using
trajectory classification. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 39, pp. 16880–16887, 2025.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical
report, mediaTUM, 2022.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories and applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Zijian Guo, Weichao Zhou, Shengao Wang, and Wenchao Li. Constraint-conditioned actor-critic
for offline safe reinforcement learning. In The Thirteenth International Conference on Learning
Representations, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

10

https://openreview.net/forum?id=Y4cs1Z3HnqL
https://openreview.net/forum?id=Y4cs1Z3HnqL


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning
of human preferences in dialog, 2020. URL https://openreview.net/forum?id=
rJl5rRVFvH.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. Journal of Machine Learning Research, 25(285):1–6, 2024.
URL http://jmlr.org/papers/v25/23-0681.html.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21810–21823.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.

Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, and Cody Fleming. Latent safety-constrained
policy approach for safe offline reinforcement learning. arXiv preprint arXiv:2412.08794, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, pp. 3703–3712. PMLR, 2019.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. COptiDICE: Offline constrained reinforcement learning via stationary distribu-
tion correction estimation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=FLA55mBee6Q.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qian Lin, Bo Tang, Zifan Wu, Chao Yu, Shangqin Mao, Qianlong Xie, Xingxing Wang, and Dong
Wang. Safe offline reinforcement learning with real-time budget constraints. In International
Conference on Machine Learning, pp. 21127–21152. PMLR, 2023.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-
ference on Machine Learning, pp. 21611–21630. PMLR, 2023.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe rein-
forcement learning. Journal of Data-centric Machine Learning Research, 2024.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711–1724,
2022.

Nicholas Polosky, Bruno C Da Silva, Madalina Fiterau, and Jithin Jagannath. Constrained of-
fline policy optimization. In International Conference on Machine Learning, pp. 17801–17810.
PMLR, 2022.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082–16097,
2022.

11

https://openreview.net/forum?id=rJl5rRVFvH
https://openreview.net/forum?id=rJl5rRVFvH
http://jmlr.org/papers/v25/23-0681.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=FLA55mBee6Q


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst. Blind bipedal stair
traversal via sim-to-real reinforcement learning. arXiv preprint arXiv:2105.08328, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang,
and Haitham Ammar. Sauté rl: Almost surely safe reinforcement learning using state augmenta-
tion. In International Conference on Machine Learning, pp. 20423–20443. PMLR, 2022.

Geraud Nangue Tasse, Tamlin Love, Mark Nemecek, Steven James, and Benjamin Rosman. Rosarl:
Reward-only safe reinforcement learning. arXiv preprint arXiv:2306.00035, 2023.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Akifumi Wachi, Wataru Hashimoto, Xun Shen, and Kazumune Hashimoto. Safe exploration in rein-
forcement learning: A generalized formulation and algorithms. Advances in Neural Information
Processing Systems, 36:29252–29272, 2023.

Akifumi Wachi, Xun Shen, and Yanan Sui. A survey of constraint formulations in safe reinforcement
learning. arXiv preprint arXiv:2402.02025, 2024.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:34748–34761, 2022.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2020. URL https://openreview.net/forum?id=BJg9hTNKPH.

Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. Advances in Neural Information Processing Systems, 35:4085–
4098, 2022a.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022b.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL: Ro-
bust offline reinforcement learning via conservative smoothing. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=_QzJJGH_KE.

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding
Zhao. Constraint-conditioned policy optimization for versatile safe reinforcement learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=FdtdjQpAwJ.

Yihang Yao, Zhepeng Cen, Wenhao Ding, Haohong Lin, Shiqi Liu, Tingnan Zhang, Wenhao Yu,
and Ding Zhao. Oasis: Conditional distribution shaping for offline safe reinforcement learning.
Advances in Neural Information Processing Systems, 37:78451–78478, 2024.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 14129–14142. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf.

12

https://openreview.net/forum?id=BJg9hTNKPH
https://openreview.net/forum?id=_QzJJGH_KE
https://openreview.net/forum?id=FdtdjQpAwJ
https://openreview.net/forum?id=FdtdjQpAwJ
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haobo Zhang, Xiyue Peng, Honghao Wei, and Xin Liu. Safe and efficient: A primal-dual method
for offline convex cmdps under partial data coverage. Advances in Neural Information Processing
Systems, 37:34239–34269, 2024.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=j5JvZCaDM0.

13

https://openreview.net/forum?id=j5JvZCaDM0
https://openreview.net/forum?id=j5JvZCaDM0


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK DISCUSSION

A recurring theme across safe reinforcement learning is the idea of discouraging unsafe actions
through penalties, though the way those penalties are implemented differs across methods. In the
online setting, MASE (Wachi et al., 2023) integrates uncertainty quantification with an emergency
stop: if no action can be certified safe, the episode is halted and a large penalty is applied. Sauté RL
Sootla et al. (2022) also relies on penalties but does so through a state augmentation mechanism:
each state is paired with a remaining safety budget, and once the budget runs out, the trajectory
transitions into an absorbing unsafe state with a per task tuned large penalty. This budget-based
reformulation means that penalties are not just added externally but become part of the dynamics,
shaping exploration as the agent trains. In both approaches, penalties are tightly coupled with the
exploration process, ensuring that unsafe behavior is discouraged while the agent is still gathering
data.

CARL operates under a different contract. In the offline setting, trajectories are fixed in advance:
there is no opportunity to terminate episodes at will, and unsafe trajectories cannot simply be avoided
during training. The evaluation of a policy must account for the costs accumulated across complete
episodes, regardless of whether individual transitions are safe or not. This creates a distinctive
challenge: unsafe transitions are often plentiful in available datasets, and discarding them reduces
coverage, while treating them naively may compromise deployment safety. CARL addresses this
challenge by transforming unsafe transitions into useful training signal. Rather than filtering or
generating alternative trajectories, it directly relabels rewards with large penalties whenever the cost
critic predicts that a safety budget would be violated. This allows learning to leverage the entire
dataset, including unsafe portions, while still driving the learned policy toward safe behavior.

Placed in the broader landscape of offline safe RL, this perspective contrasts with approaches that
construct explicit feasibility regions Zheng et al. (2024), rely on constraint-conditioned genera-
tive models (Guo et al., 2025), or employ diffusion-based feasibility shaping (Yao et al., 2024).
Those methods introduce additional modeling complexity to estimate which actions are permissible.
CARL, in comparison, emphasizes a minimalist path: penalties are imposed through direct reward
relabeling, and the resulting relabeled dataset can be handled by any strong offline RL backbone.
Empirically, this strategy proves effective even in challenging regimes such as small cost budgets or
datasets composed entirely of unsafe trajectories. In such settings, the ability to repurpose unsafe
data as penalized signal is particularly advantageous, as it avoids both the brittleness of feasibility
approximations and the conservatism of discarding large parts of the dataset.

From this viewpoint, the contribution of CARL is not a departure from the penalty-based philosophy
shared across safe RL, but rather a demonstration that in the offline regime, the most straightforward
instantiation of that philosophy, reward relabeling informed by cost estimates,can be both robust and
broadly applicable. This observation highlights that in certain cases, simplicity in how penalties are
enforced may offer a more reliable path to safety than more sophisticated mechanisms.

B ADDITIONAL RESULTS

B.1 PENALTY MAGNITUDE ABLATION: Rmax VS. Vmax

Table 3 compares CARL trained with two penalty magnitudes: Rmax, the maximum single-step
reward in the dataset, and Vmax = Rmax/(1− γ), the maximum possible discounted return. Using
Rmax produces a smaller penalty and thus a less aggressive correction, while Vmax enforces harsher
penalties. The results confirm this intuition: CARL with Vmax remains safe in most tasks but often
at the cost of lower rewards compared to the Rmax variant. For instance, rewards drop from 0.69
→ 0.50 in CARCIRCLE and 0.60→ 0.40 in ANTCIRCLE, while in DRONECIRCLE (0.53→ 0.02)
and ANTVELOCITY (0.99 → 0.38) the decline is particularly severe. Nevertheless, even under
the stricter Vmax penalty, CARL outperforms other baselines: it remains safe in far more tasks, and
when safe, its performance is frequently the best or second-best (e.g., BALLCIRCLE, POINTGOAL2,
SWIMMERVELOCITY). Overall, Rmax provides the best trade-off between safety and reward, and
has the added advantage of not depending on the discount factor γ, thereby avoiding sensitivity to
this extra hyperparameter.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: CARL results with Vmax vs. Rmax penalties, reported with normalized rewards and costs.
The normalized cost threshold is 1 (κ = 5 or 10). ↑ indicates higher is better (reward); ↓ indicates
lower is better (cost, with values ≤ 1 considered safe). Each cell shows the mean with standard
deviation. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe performance.

Tasks CPQ CDT CAPS CCAC FISOR CARL CARL Vmax

Bullet Gym Tasks: κ = 5

BallRun Reward ↑ 0.09±0.26 0.27±0.09 0.07±0.05 0.31±0.01 0.09±0.07 0.28±0.02 0.29±0.01
Cost ↓ 2.20±2.88 2.57±3.23 0.00±0.00 0.00±0.00 1.28±1.70 0.00±0.00 0.67±1.15

CarRun Reward ↑ 0.93±0.01 0.99±0.00 0.97±0.00 1.82±0.84 0.74±0.01 0.97±0.00 0.97±0.02
Cost ↓ 0.20±0.18 0.90±0.34 0.11±0.17 24.57±20.94 0.00±0.00 0.02±0.03 1.92±2.49

DroneRun Reward ↑ 0.29±0.11 0.58±0.00 0.41±0.06 0.50±0.08 0.31±0.04 0.36±0.12 0.37±0.03
Cost ↓ 2.35±4.08 0.07±0.07 5.70±3.08 16.29±9.35 2.52±1.10 0.30±0.52 0.08±0.14

AntRun Reward ↑ 0.03±0.05 0.70±0.03 0.53±0.13 0.03±0.10 0.43±0.02 0.36±0.09 0.30±0.20
Cost ↓ 0.05±0.08 1.66±0.24 2.03±2.17 0.00±0.00 0.27±0.15 0.60±0.41 0.82±1.37

BallCircle Reward ↑ 0.56±0.10 0.61±0.17 0.33±0.02 0.47±0.38 0.32±0.05 0.69±0.03 0.59±0.01
Cost ↓ 1.11±1.92 2.03±1.39 0.01±0.02 10.19±17.65 0.00±0.00 0.33±0.23 0.00±0.00

CarCircle Reward ↑ 0.71±0.02 0.71±0.01 0.40±0.03 0.70±0.01 0.37±0.02 0.69±0.01 0.50±0.03
Cost ↓ 0.00±0.00 1.58±0.57 0.03±0.03 1.61±0.51 0.00±0.00 0.00±0.00 0.00±0.00

DroneCircle Reward ↑ -0.21±0.04 0.55±0.01 0.36±0.02 0.43±0.04 0.48±0.01 0.53±0.02 0.02±0.15
Cost ↓ 0.70±0.41 1.14±0.06 0.00±0.00 0.06±0.07 0.17±0.15 0.00±0.00 0.39±0.53

AntCircle Reward ↑ 0.00±0.00 0.45±0.05 0.33±0.05 0.49±0.07 0.24±0.02 0.60±0.01 0.40±0.01
Cost ↓ 0.00±0.00 6.59±1.42 0.00±0.00 0.02±0.03 0.04±0.08 0.02±0.03 0.00±0.01

Safety Gym Tasks: κ = 10

PointCircle1 Reward ↑ 0.46±0.04 0.54±0.01 0.31±0.05 0.57±0.08 0.43±0.05 0.52±0.01 0.51±0.02
Cost ↓ 0.73±1.20 0.54±0.61 0.94±1.53 6.65±3.51 14.93±4.24 0.04±0.07 0.16±0.14

PointCircle2 Reward ↑ 0.44±0.05 0.59±0.02 0.44±0.06 0.03±0.75 0.76±0.05 0.55±0.01 0.41±0.07
Cost ↓ 1.20±1.28 2.05±0.93 0.10±0.09 3.99±4.30 18.02±4.17 0.91±1.46 0.01±0.02

PointGoal1 Reward ↑ 0.55±0.11 0.63±0.08 0.30±0.09 0.74±0.03 0.64±0.03 0.06±0.06 0.00±0.04
Cost ↓ 3.33±1.68 2.97±0.82 1.45±0.74 3.90±0.50 5.38±1.05 0.09±0.11 0.10±0.11

PointGoal2 Reward ↑ 0.25±0.13 0.46±0.08 0.19±0.04 0.78±0.05 0.31±0.07 0.13±0.05 0.14±0.06
Cost ↓ 5.34±1.33 5.57±0.81 1.02±0.22 15.51±5.75 1.67±1.32 0.81±0.32 0.56±0.21

AntVelo Reward ↑ -1.01±0.00 0.97±0.02 0.88±0.05 -1.01±0.00 0.89±0.01 0.99±0.01 0.38±0.15
Cost ↓ 0.00±0.00 0.59±0.02 0.21±0.07 0.00±0.00 0.00±0.00 0.43±0.11 0.01±0.01

HalfCheetahVelo Reward ↑ 0.67±0.05 0.98±0.00 0.86±0.01 0.91±0.04 0.89±0.01 0.96±0.01 0.80±0.06
Cost ↓ 8.56±6.19 0.65±0.34 0.27±0.06 0.97±0.12 0.00±0.00 0.14±0.09 0.03±0.02

SwimmerVelo Reward ↑ 0.20±0.20 0.66±0.01 0.45±0.06 0.06±0.25 -0.02±0.05 0.21±0.19 0.20±0.12
Cost ↓ 2.82±4.19 1.26±0.50 2.17±2.91 0.91±1.57 0.23±0.20 0.00±0.00 0.07±0.12

B.2 EXTRA COST LIMITS

While our main results emphasize strict cost thresholds (κ = 5, 10), we also investigate performance
under more relaxed safety budgets: cost limits of 20 and 40 for Bullet tasks, and 40 and 80 for
Safety Gym tasks, following the DSRL setup. This analysis addresses a natural concern: since
CARL penalizes unsafe transitions harshly, one might expect it to perform well only under tight
constraints, but to underutilize more generous budgets. Table 4 shows that this is not the case.
CARL continues to adapt effectively to larger budgets, often outperforming more the sophisticated
methods of CAPS and CCAC.

We evaluate across 16 tasks in total, 8 from Bullet and 8 from Safety Gym, each under two cost
limits, yielding 32 evaluations. Among these, CARL is the best performer in 16 cases, CAPS in 13,
and CCAC in 4. CARL is unsafe only twice (both in BALLCIRCLE), whereas CAPS is unsafe in 7
cases and CCAC fails in 20.

In the Bullet tasks with larger budgets (κ = 20, 40), CARL continues to adapt effectively despite
its simple penalty mechanism. On BALLRUN, CARL consistently produces safe policies, whereas
CAPS and CCAC violate the cost threshold. In ANTCIRCLE, all methods remain safe, but CARL
achieves the highest rewards across both budgets. The only exception is BALLCIRCLE, where CARL
attains high rewards but fails to satisfy the safety constraint. Importantly, across the remaining
15 out of 16 tasks, CARL maintains safety while matching or exceeding baseline rewards. This

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: CARL results under larger cost constraints. Each cell shows the mean with standard devia-
tion. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe performance.

Environment Cost 20 Cost 40

CAPS CCAC CARL CAPS CCAC CARL

BallRun Reward ↑ 0.17±0.09 0.30±0.02 0.16±0.14 0.36±0.08 0.61±0.06 0.32±0.14
Cost ↓ 1.41±0.79 0.25±0.43 0.44±0.45 1.17±0.12 1.13±0.13 0.75±0.32

CarRun Reward ↑ 0.98±0.00 1.81±0.82 0.97±0.00 0.98±0.00 1.82±0.78 0.97±0.00
Cost ↓ 0.20±0.21 6.39±4.79 0.02±0.02 0.21±0.26 3.35±2.10 0.03±0.02

DroneRun Reward ↑ 0.51±0.01 0.46±0.11 0.54±0.04 0.51±0.04 0.44±0.09 0.52±0.05
Cost ↓ 0.46±0.07 6.34±0.75 0.44±0.60 0.32±0.13 1.53±0.39 0.80±0.86

AntRun Reward ↑ 0.65±0.03 0.03±0.09 0.55±0.06 0.69±0.03 0.05±0.07 0.46±0.31
Cost ↓ 1.00±0.36 0.00±0.00 0.98±0.26 0.91±0.15 0.01±0.02 0.86±0.80

BallCircle Reward ↑ 0.69±0.01 0.52±0.42 0.76±0.01 0.80±0.01 0.58±0.47 0.85±0.03
Cost ↓ 0.64±0.01 3.19±4.53 1.16±0.11 0.82±0.01 1.93±1.98 1.12±0.09

CarCircle Reward ↑ 0.71±0.04 0.72±0.01 0.73±0.01 0.75±0.01 0.78±0.00 0.74±0.02
Cost ↓ 0.71±0.02 0.95±0.14 0.16±0.15 0.86±0.00 0.82±0.06 0.60±0.34

DroneCircle Reward ↑ 0.57±0.00 0.40±0.07 0.55±0.01 0.62±0.00 0.17±0.11 0.65±0.03
Cost ↓ 0.73±0.02 0.85±0.06 0.01±0.02 0.87±0.02 0.66±0.06 0.83±0.12

AntCircle Reward ↑ 0.40±0.01 0.56±0.07 0.61±0.05 0.52±0.03 0.59±0.02 0.67±0.03
Cost ↓ 0.09±0.05 0.55±0.25 0.02±0.02 0.35±0.02 0.95±0.23 0.10±0.04

Cost 40 Cost 80

CarCircle1 Reward ↑ 0.47±0.03 0.48±0.12 0.43±0.02 0.63±0.03 0.46±0.10 0.56±0.02
Cost ↓ 0.90±0.29 4.32±1.12 0.01±0.02 1.14±0.06 2.61±0.39 0.07±0.04

CarCircle2 Reward ↑ 0.44±0.10 0.54±0.05 0.53±0.02 0.54±0.09 0.58±0.02 0.59±0.02
Cost ↓ 1.08±1.03 2.36±2.14 0.42±0.17 1.09±0.73 1.82±0.58 0.80±0.29

CarGoal1 Reward ↑ 0.31±0.04 0.84±0.02 0.33±0.01 0.40±0.06 0.84±0.02 0.41±0.06
Cost ↓ 0.45±0.16 1.32±0.14 0.27±0.10 0.22±0.06 0.58±0.09 0.21±0.02

CarGoal2 Reward ↑ 0.17±0.06 0.94±0.05 0.13±0.04 0.24±0.04 0.91±0.05 0.15±0.06
Cost ↓ 0.85±0.05 4.31±1.17 0.29±0.05 0.35±0.10 2.06±0.46 0.18±0.07

PointCircle1 Reward ↑ 0.51±0.02 0.65±0.08 0.55±0.02 0.56±0.02 0.68±0.06 0.56±0.01
Cost ↓ 0.88±0.35 2.51±0.92 0.22±0.11 0.70±0.20 1.62±0.33 0.24±0.12

PointCircle2 Reward ↑ 0.51±0.02 -0.28±0.71 0.56±0.04 0.61±0.03 -0.30±0.71 0.60±0.01
Cost ↓ 0.75±0.07 1.11±1.09 0.21±0.09 1.02±0.21 0.77±0.67 0.30±0.08

PointGoal1 Reward ↑ 0.50±0.06 0.72±0.05 0.09±0.04 0.51±0.06 0.67±0.16 0.21±0.04
Cost ↓ 0.53±0.18 1.12±0.16 0.06±0.08 0.34±0.06 0.63±0.07 0.04±0.02

PointGoal2 Reward ↑ 0.34±0.06 0.80±0.03 0.15±0.01 0.49±0.07 0.78±0.08 0.30±0.07
Cost ↓ 0.76±0.10 3.95±0.75 0.24±0.02 0.58±0.11 2.00±0.17 0.18±0.04

demonstrates that CARL not only enforces safety under strict budgets but also scales to more relaxed
thresholds without collapsing into overly conservative behavior.

In the Safety Gym tasks, CARL’s robustness is equally evident. In the particularly challenging
CARCIRCLE2 task, all methods are unsafe at κ = 10 (main paper, Table 1), yet when the budget
is relaxed to 40 or 80, CARL achieves both safety and competitive rewards (0.53 at cost 0.42 for
κ = 40; 0.59 at cost 0.80 for κ = 80). By contrast, CAPS and CCAC remain unsafe even under
the larger budgets, failing to adjust effectively. Similar improvements are visible in the other tasks,
where CARL consistently satisfies safety while delivering best or competitive rewards, while both
baselines oscillate between unsafe operation and lower rewards.

Overall, these results highlight that CARL is not limited to low-cost regimes: even though it employs
a simple, strong penalty on unsafe transitions, it adapts gracefully as cost budgets grow. CARL
demonstrates both strict constraint satisfaction in safety-critical regimes and flexibility in leveraging

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

more permissive budgets, an essential property for practical deployment across environments with
varying safety requirements.

B.3 UNSAFE TRAJECTORIES TRAINING DATA.

Table 5 reports CARL’s performance when trained either on only unsafe trajectories (Non Safe) or
on the full dataset (All) (κ = 5 or 10). In both cases, CARL reliably recovers safe agents (cost
≤ 1), but access to the full dataset generally improves the reward–cost trade-off. For example, in
DRONECIRCLE and ANTCIRCLE, using all data raises rewards (0.47 → 0.53 and 0.53 → 0.60)
while further lowering costs. In ANTVELOCITY, CARL achieves nearly maximal reward (0.99)
under both conditions, but with much lower cost when trained on all data (0.27 vs. 0.43). A notable
case is CARCIRCLE, where CARL already finds safe solutions from unsafe-only data, yet including
safe trajectories eliminates residual cost variance. Overall, this ablation shows that while CARL
can recover safety even from unsafe-only datasets, leveraging the full dataset strengthens safety
guarantees and yields the best safe performance (bold).

Table 5: CARL results with only unsafe trajectories data. Each cell shows reward (↑) or cost (↓).
Bold: safe agents (Cnorm ≤ 1). Blue bold: best safe performance.

Data BallCircle CarCircle DroneCircle AntCircle PointGoal1 PointGoal2 AntVelocity SwimmerVelo

Non Safe Reward ↑ 0.67±0.04 0.69±0.01 0.47±0.00 0.53±0.08 0.03±0.03 0.13±0.06 0.99±0.00 0.17±0.02
Cost ↓ 0.31±0.11 0.03±0.06 0.02±0.04 0.02±0.02 0.19±0.14 0.85±0.20 0.27±0.03 0.06±0.10

All Reward ↑ 0.69±0.03 0.69±0.01 0.53±0.02 0.60±0.01 0.06±0.06 0.13±0.05 0.99±0.01 0.21±0.19
Cost ↓ 0.33±0.23 0.00±0.00 0.00±0.00 0.02±0.03 0.09±0.11 0.81±0.32 0.43±0.11 0.00±0.00

B.4 HARD-FILTERING TRANSITIONS

In this variant of CARL, each sampled batch is passed through the cost critic, and transitions whose
predicted cost-to-go exceeds the threshold (κ = 5) are entirely removed from training. No reward
relabeling is applied, so the agent learns from a reduced dataset. While this naive filtering strategy
enforces a strict notion of safety during training, it discards transitions that provide valuable learning
signals or partial recovery paths. As a result, policies trained with hard filtering generalize poorly
and typically violate constraints at deployment, since they only optimize the original reward signal
over a limited state space. Table 6 shows that this approach succeeds in only one out of eight
tasks and otherwise breaches the cost threshold severely (e.g., cost 16.53 in DRONERUN, 20.52 in
ANTCIRCLE). By contrast, CARL achieves safe performance across all tasks with good rewards.
These results highlight that CARL’s effectiveness lies not in discarding unsafe data, but in relabeling
rewards with penalties, which preserves dataset coverage and enables safe, high-reward policies.

Table 6: CARL results compared to the Hard Filter variant. Each cell shows reward (↑) or cost (↓)
with standard deviation. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents.

Environment Hard Filter CARL

reward ↑ cost ↓ reward ↑ cost ↓
BallRun 0.58±0.46 11.38±6.60 0.28±0.02 0.00±0.00
CarRun 0.97±0.00 0.10±0.16 0.97±0.00 0.02±0.03
DroneRun 0.55±0.19 16.53±14.32 0.36±0.12 0.30±0.52
AntRun 0.47±0.14 4.44±2.15 0.36±0.09 0.60±0.41
4.44 2.15 BallCircle 0.70±0.02 2.41±1.61 0.69±0.03 0.33±0.23
CarCircle 0.72±0.01 1.06±0.94 0.69±0.01 0.00±0.00
DroneCircle 0.63±0.01 7.79±1.16 0.53±0.02 0.00±0.00
AntCircle 0.68±0.03 20.52±2.06 0.60±0.01 0.02±0.03

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Bullet-Safety-Gym environments. (b) Safety-Gymnasium environments.

Figure 4: Visualizations of benchmark environments.

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENT DESCRIPTIONS

To evaluate safe offline reinforcement learning (RL) approaches, we employ a range of environments
constructed on different simulation platforms, each customized for particular agents and control
tasks.

Bullet-Safety-Gym Gronauer (2022): This benchmark suite leverages the PyBullet physics engine
and features four distinct agents: Ball, Car, Drone, and Ant. It supports two main tasks: Run
and Circle. In the Run scenario, agents must traverse a corridor marked by virtual safety boundaries.
While these boundaries are non-colliding, crossing them results in a penalty. Speed regulation is also
enforced; going beyond a specified threshold leads to further penalties. The Circle task challenges
agents to move in a clockwise direction along a circular trajectory. Here, staying closer to the outer
edge at higher speeds earns greater rewards, but leaving the designated safe area results in penalties.
Visual examples of these scenarios are shown in Figure 4 (a).

Safety-Gymnasium Ray et al. (2019); Ji et al. (2024): Built on the Mujoco simulator, Safety-
Gymnasium presents a diverse set of environments designed for exploring safety-related behaviors.
The Car agent can engage in several tasks, including Circle and Goal, each offered in two levels
of complexity. These tasks require the agent to reach specific objectives while navigating around
hazards. In the Goal task, the agent moves toward designated goal positions that change after each
success. The Circle task involves following a green circular track while avoiding the outer region,
which incurs penalties. Figure 4 (b) displays visualizations of these environments. The bench-
mark also introduces velocity-restricted tasks for agents like Ant, HalfCheetah, and Swimmer. In
the Velocity task, agents coordinate limb movements to advance forward while respecting velocity
constraints.

C.2 CARL HYPERPARAMETERS

Table 7 outlines the hyperparameter settings applied in various environments (BulletGym and Safe-
tyGym) for CARL, highlighting shared configurations including cost limits, training durations, and
neural network architecture details. For the IQL results, training is conducted with the IQL tau
hyperparameter set to 0.7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: CARL hyperparameters.

General Parameters BulletGym SafetyGym
Cost limit 5 10
Training steps 200000 400000

AntRun, DroneRun 300000 –
discount γ 0.99
Batch size 512
Cost Critic hidden size 256, 256
Cost Critic learning rate 3e-4
seeds 10, 20, 30

TD3BC parameters
Policy noise 0.2
Policy noise clip (0.5, 0.5)
Policy update frequency 2
α 2.5
Optimizer Adam
Actor, Critic learning rate 3e-4
Actor, Critic hidden size 256, 256

C.3 COMPUTATIONAL RESOURCES AND TRAINING TIME:

Experiments were run on a system equipped with an NVIDIA A40 GPU (48GB memory). When
running without any competing workloads, training a single task for one random seed takes approx-
imately 31 minutes per 200k update steps.

19


	Introduction
	Problem Setup
	Related Work
	State-Action-wise Constraints for Safety
	CARL: Constraint-aware Reward Relabeling
	Action Filter Motivation
	Filtering via Batch Reward Relabeling

	Experiments and Results
	Experimental Setup
	Results and Discussion

	Summary
	Extended Related work Discussion
	Additional results
	Penalty Magnitude Ablation: R vs. V
	Extra cost limits
	Unsafe trajectories training data.
	Hard-Filtering Transitions

	Experimental Details
	Environment Descriptions
	CARL Hyperparameters
	Computational Resources and Training Time:


