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ABSTRACT

Offline safe reinforcement learning (OSRL) considers the problem of learning
reward-maximizing policies for a pre-defined cost constraint from a fixed dataset.
This paper proposes a simple and effective approach referred to as Constraint-
aware Reward (Re)Labeling (CARL), that can be wrapped around existing offline
RL algorithms. CARL is an iterative approach that alternates between two steps
for each sampled batch of data to ensure state-action-wise safety constraints. First,
update cost evaluation function using an off-policy evaluation procedure. Sec-
ond, update policy using relabeled rewards (assign large penalty) for state-action
pairs which are detected unsafe based on cost estimates. CARL is a minimal-
ist approach, doesn’t introduce any additional hyperparameters, and allows us
to leverage strong off-the-shelf offline RL algorithms to solve OSRL problems.
Experimental results on the DSRL benchmark tasks demonstrate that CARL re-
liably enforces safety constraints under small cost budgets, while achieving high
rewards. The code is available at https://anonymous.4open.science/
r/CARL-6F11.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success across diverse domains, from game
playing (Silver et al., 2016) to robotic control (Siekmann et al., 2021). However, in safety-critical
applications such as healthcare, autonomous systems, and industrial control, online exploration
poses unacceptable risks. Offline reinforcement learning addresses this limitation by learning poli-
cies exclusively from pre-collected datasets without any additional interaction with the environment
(Levine et al., 2020). However, in safety-critical domains, it is insufficient to focus on maximizing
rewards alone and policies must also respect explicit safety constraints during deployment.

This double requirement motivates offline safe reinforcement learning (OSRL), where agents must
simultaneously maximize expected returns while satisfying user-specified cost budgets or safety
constraints. OSRL inherits fundamental challenges from both offline RL and safe RL: handling
distributional shift from fixed datasets, and ensuring that the policy behavior remains within safety
constraints after deployment. This problem becomes especially challenging under tight cost budgets,
where even small cost constraint violations may be unacceptable.

As explained in the related work section, prior approaches for OSRL typically employ constrained
optimization frameworks. These approaches rely on dual-gradient updates, Lagrangian multipliers,
or policy regularization techniques (Polosky et al., 2022; Lee et al., 2022; Xu et al., 2022b). While
theoretically principled, such methods introduce substantial algorithmic complexity. They are also
often brittle in practice and require careful tuning, introducing instability, or collapsing to overly
conservative solutions when the cost budget is small (Zheng et al., 2024).

This paper develops a novel approach referred to as Constraint-aware Reward (Re)Labeling (CARL)
to solve OSRL problems. There are two key innovations behind CARL. First, we formulate an
unconstrained policy optimization problem to enforce state-action-wise safety constraints. This for-
mulation naturally motivates an iterative policy improvement algorithm that doesn’t require tuning
Lagrange multipliers. Second, we develop a simple iterative method that can be wrapped around
offline RL algorithms with batch updates. It alternates between two steps for each sampled batch
of data: update cost evaluation function using an off-policy evaluation procedure and update policy
using relabeled rewards (assigns a large penalty) for state-action pairs whose cost-to-go estimates
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violate cost constraint. CARL is a minimalist method requiring no additional hyperparameters,
leveraging off-the-shelf offline RL algorithms to effectively address OSRL problems.

The main findings from our evaluation of CARL on DSRL benchmark tasks (Liu et al., 2024) are
as follows. First, CARL produces safe policies with high returns on most tasks and outperforms
prior methods on a greater number of tasks. Second, CARL achieves excellent performance for the
challenging setting of small cost budgets. Third, when trained only on unsafe trajectories, CARL
remarkably learns safe policies. Finally, CARL achieves good performance with different offline
RL algorithms.

Contributions. The key contribution of this paper is the development and evaluation of the
Constraint-aware Reward Relabeling approach for OSRL problems. Specific contributions include:

• Formulation of an unconstrained optimization problem for state-action-wise safety con-
straints.

• Development of the iterative constraint-aware reward relabeling (CARL) method that can
be wrapped around existing offline RL algorithms.

• Experimental evaluation of the proposed CARL algorithm on DSRL benchmark tasks to
demonstrate its strong effectiveness over state-of-the-art methods.

2 PROBLEM SETUP

We consider the problem of offline reinforcement learning under safety constraints, modeled using
the Constrained Markov Decision Process (CMDP) framework. A CMDP is defined by the tuple
(S,A, P, r, c, γ, µ0), where S and A denote the state and action spaces, respectively; P : S × A ×
S → [0, 1] represents the unknown stochastic transition dynamics; r : S × A → R is the reward
function; c : S × A → [0, Cmax] is a non-negative cost function; γ ∈ (0, 1) is the discount factor;
and µ0 is the initial state distribution.

Let π : S → A represent a policy that maps states to actions. Given π and µ0, we can define a
distribution over trajectories τ = {(st, at, rt, ct)}Tt=1 generated by rolling out π from initial states
drawn from µ0. We define

V π
r (s) = Eτ∼π

[
T∑

t=1

γtrt | s1 = s

]
, Qπ

r (s, a) = Eτ∼π[V
π
r (s′) | s1 = s, a1 = a]

to be the standard reward state- and action-value functions. Similarly V π
c (s) and Qπ

c (s, a) denote
the cost state- and ation-value functions respectively. In the offline setting, the agent has access
only to a static dataset D = {(si, ai, ri, ci, s′i)}ni=1 collected from one or more unknown behavior
policies, without further interaction with the environment.

The goal of offline safe RL (OSRL) is to learn a policy from the given offline dataset D that maxi-
mizes the expected return while satisfying a given cost constraint:

max
π

Es∼µ0 [V
π
r (s)] subject to V π

c ≤ κ, (1)

where κ ≥ 0 is a user-specified safety cost threshold (also referred to as a cost budget or limit).

Tight cost limits (i.e., small κ values) present an especially demanding regime where many existing
OSRL methods falter. In such safety-critical settings, such as autonomous driving, robotics, or in-
dustrial control, even minor constraint violations can be unacceptable. Common approaches based
on constrained optimization or dual updates tend to be brittle, requiring careful tuning and often re-
sulting in unstable or overly conservative policies. Our goal is to develop a minimalist approach that
can be wrapped around existing offline RL methods to solve OSRL problems under the challenging
setting of small cost budgets.

3 RELATED WORK

Online Safe RL. Safety in online RL has been widely studied (Garcıa & Fernández, 2015; Gu et al.,
2024; Wachi et al., 2024). In this setting, the agent interacts with the environment while adher-
ing to safety constraints. A common mechanism is penalty-based control, shaping the reward as
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r′ = r−λ · c. While simple, fixed penalties introduce a sensitive trade-off between reward and con-
straint satisfaction, and often require extensive tuning; e.g., RCPO (Tessler et al., 2018) and Safety
Gym (Ray et al., 2019) include baselines with fixed λ values, with main results based on adaptive
Lagrangian updates. ROSARL formalizes penalty selection via the “minmax penalty” (Tasse et al.,
2023). Within this penalty-based family, Sauté RL (Sootla et al., 2022) augments the state with a
safety budget, and MASE (Wachi et al., 2023) casts online safe exploration as a generalized prob-
lem that combines uncertainty quantification with a reset action to prevent violations during training.
Recent work also targets adaptability under changing constraints, e.g., constraint-conditioned value
function approximation (Yao et al., 2023).

Offline RL. Offline reinforcement learning focuses on learning policies purely from fixed datasets
without additional interaction with the environment (Levine et al., 2020; Figueiredo Prudencio et al.,
2024). A key challenge in this setting is distributional shift between the behavior policy and the
learned policy. Approaches addressing this include value estimation regularization (Fujimoto & Gu,
2021; Kostrikov et al., 2022; Kumar et al., 2019; Lyu et al., 2022; Yang et al., 2022), generative or
sequential modeling (Janner et al., 2021; Wang et al., 2022), and uncertainty-aware learning (An
et al., 2021; Bai et al., 2022). Some techniques utilize Q-function based action selection via filtering
and reweighting, including SfBC and IDQL (Chen et al., 2023; Hansen-Estruch et al., 2023). Other
methods constrain policy updates using divergence measures (Wu et al., 2020; Jaques et al., 2020;
Wu et al., 2022), or leverage advances in model-based RL (Kidambi et al., 2020; Yu et al., 2020;
Rigter et al., 2022) and imitation learning (Xu et al., 2022a).

Offline Safe RL. OSRL extends the offline RL setting to include user-defined cost constraints (Liu
et al., 2024). Many OSRL methods rely on constrained optimization, often using Lagrangian relax-
ation (Xu et al., 2022b; Lee et al., 2022; Polosky et al., 2022), or exploiting convexity assumptions in
cost and reward trade-offs (Zhang et al., 2024). However, they often require solving interdependent
optimization problems and are prone to instability, particularly under strict cost limits.

Beyond constrained optimization, several recent methods propose alternative strategies. FISOR
(Zheng et al., 2024) enforces safety via diffusion models to select only feasible actions and is the
only method designed to handle the challenging setting of small cost budgets. TraC (Gong et al.,
2025) introduces a trajectory-based classification method for safe policy learning. Latent safety
modeling was also explored in (Koirala et al., 2024). LSPC employs a conditional VAE to encode
conservative safety constraints into a latent space and perform reward optimization via advantage-
weighted regression in that space. CAPS (Chemingui et al., 2025) switches between pre-trained
policies to adapt to different test-time cost constraints. (Guo et al., 2025) propose a constraint-
conditioned actor-critic (CCAC) method that explicitly models the relationship between state-action
distributions and constraints, to improve generalization to unseen cost thresholds.

Diffusion-based generative models have also gained traction for OSRL. TREBI (Lin et al., 2023)
employs trajectory-level diffusion sampling guided by safety classifiers, while other works adapt
models such as Decision Transformer (Chen et al., 2021) and Diffuser (Janner et al., 2022) to the
constrained setting (Liu et al., 2023; Lin et al., 2023). While powerful, these methods often require
additional architectural components, hyperparameter tuning, or auxiliary optimization targets.

The overall goal of this paper is to address two key limitations of prior work. First, there is very
little work on OSRL under small cost budgets. FISOR produces safe policies in this regime, but
it achieves low reward. Second, Lagrangian based constrained policy optimization methods are
typically unstable in practice resulting in poor performance. The proposed constraint-aware reward
relabeling approach is minimalist, can be wrapped around offline RL algorithms.

4 STATE-ACTION-WISE CONSTRAINTS FOR SAFETY

This section first describes an alternative formulation which enforces safety for all states and theo-
retically shows that its solution also solves the original problem which enforces safety constraint in
expectation. Next, we provide the sketch of an iterative policy improvement approach that is most
natural to solve our formulation and forms the basis for our proposed algorithm.

Formulation for state-action-wise safety. Solving the constrained MDP in Equation (1) often
involves reformulating it as an unconstrained optimization problem via the Lagrangian method.
Although this reformulation offers a principled approach, it requires an intricate tuning of the La-
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grangian multiplier, where the final performance is sensitive to it. To overcome this challenge, we
consider a stronger formulation that aims to ensure constraint satisfaction for all state-action pairs a
policy will encounter which is particularly beneficial when the cost limit κ is small.

max
π

V π
r subject to Qπ

c (s, π(s)) ≤ κ, ∀s. (2)

where the max operator over value functions considers V1 ≤ V2 if V1(s) ≤ V2(s), ∀s. The above
pointwise constraints ensure that we enforce safety across all states and actions that the policy will
select, not simply over the expected value of the cost function as in the optimization problem from
Equation (1). A solution to the optimization problem in Equation (2), if it exists, immediately yields
a solution to the problem in Equation (1), but not vice versa.

The point-wise constraints formulation offers various benefits. First, to a certain extent, the point-
wise constraint should be a preferred solution to many real-world applications that require safety. It
requires that, no matter where we start within the system, the expected cumulative cost will be within
the safety threshold. On the other hand, the problem in Equation (1) only requires that a policy is
safe in the expectation with respect to the initial state and action. This might not be desirable. In
the deployment of safe RL for real safety-critical applications, we are often in a one-shot setting,
instead of performing repeated experiments. In such a case, only the solution for Equation (2) but
not from Equation (1) guarantees safety every time during deployment.

Second, and most importantly, the point-wise constraints allow us to turn the offline constrained RL
problem into an unconstrained optimization problem where it is free of tuning Lagrangian multipli-
ers. Additionally, this unconstrained optimization naturally motivates a simple iterative algorithm
that allows us to leverages powerful off-the-shelf solvers. Let us consider the following problem:

max
π

V π
rπ where rπ(s, a) := 1{Qπ

c (s,a)≤κ} · r(s, a)− 1{Qπ
c (s,a)>κ}Vmax (3)

with Vmax = Rmax/(1 − γ) being the maximum possible infinite-horizon value. We show in the
Theorem below that it suffices to solve the unconstrained optimization in Equation (3).

Theorem 1. Assume there exists a solution to Problem (2). Then a policy π∗ is an optimal solution
to Problem (2) if and only if it is an optimal solution to the unconstrained optimization in (3).

Proof. Consider any safe policy π according to the constraint in Problem (2). By definition we
know that for each state s, Qπ

c (s, π(s)) ≤ κ. This means that for any state-action pair (st, at) along
a trajectory τ generated by π, we have r(st, at) = rπ(st, at). Thus, for any safe policy π we have
V π
r = V π

rπ . To complete the proof we show that any solution to Problem (3) must be safe.

Let π̃∗ be a solution to Problem (2). Let π∗ be a solution to Problem (3). We will show
that π∗ must satisfy the point-wise safety, i.e., Qπ∗

c (s, π∗(s)) ≤ κ,∀s. Indeed, assume that
Qπ∗

c (s, π∗(s)) > κ for some s. Then, rπ∗(s, π∗(s)) = −Vmax. Thus, V π∗

rπ∗ (s) = −Vmax +

Eπ∗,P [
∑∞

t=1 γ
trπ∗(st, at)] < 0 < V π̃∗

r (s) = V π̃∗

rπ̃∗ (s), where the last equality follows from the
safety of π̃∗. This contradicts that π∗ is an optimal policy to Problem (3). Thus, Qπ∗

c (s, π∗(s)) ≤
κ, ∀s and hence is safe according to Problem (2). □

Sketch of an Iterative Policy Improvement Algorithm. Motivated by the classical policy iter-
ation method, we can design a policy iteration variant to solve the unconstrained optimization in
Equation (3) as summarized below:

πt
offline policy evaluation−→ Qπt

c

reward relabeling−→ rπt

offline policy optimization−→ πt+1 (4)

The goal of this iterative method is to improve utility and safety trade-offs of the policy incrementally
from one iteration to the next. Specifically, in each iteration t, given the current policy πt, we
estimate the cost function Qπt

c using an offline policy evaluation (OPE) solver. Next, we compute
the reshaped reward rπt

based on Qπt
c . Finally, we perform offline policy optimization (OPO)

by calling an offline RL algorithm with the reward-relabeled offline data (s, a, rπt
, s′) to obtain

a improved policy πt+1. Building on this general principle, we describe a concrete algorithmic
approach next.
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5 CARL: CONSTRAINT-AWARE REWARD RELABELING

Our solution approach is based on designing a wrapper around any batch-update offline RL algo-
rithm. In particular, batch update algorithms can be described via batch update rules, where AOPE

denotes an offline policy evaluation update rule, and AOPO an offline policy optimization update
rule. Each accepts a mini-batch B = {(si, ai, ri, s′i)} and performs:

Q′ ← AOPE(Q, π,B), (π′, Q′)← AOPO(π,Q,B),

allowing iterative improvement by repeatedly sampling batches from a given offline training dataset.
Most state-of-the-art offline RL algorithms—e.g., TD3-BC, IQL—can be expressed in this form.
The goal is to wrap these existing update functions so that, given a safe offline RL problem in the
form of a training dataset D and a cost budget κ, the resulting policy π maximizes reward while
satisfying the safety constraint.

Below we first describe the motivation for our approach, followed by the algorithmic details.

5.1 ACTION FILTER MOTIVATION

To motivate our approach, consider a finite MDP with discrete states and actions. We can view
applying the iteration in Equation 4 to this MDP as integrating an action filter into a standard uncon-
strained solver (e.g., policy iteration): given the current policy π, estimate its cost-to-go Qπ

c (s, a),
and remove from the MDP all actions whose cost-to-go exceeds the budget κ. Solving this reduced
MDP yields a new policy π′, and the process can be repeated, always starting each iteration with the
full action set. Across iterations, actions previously removed may be reintroduced if they become
safe, and safe actions may be removed if they become unsafe.

While intuitive, this process can be unstable. The root cause is that after each policy update, the
cost-to-go function can change drastically, causing the set of filtered actions to vary arbitrarily from
one iteration to the next.

One way to mitigate this instability is to update the policy and cost-to-go gradually, so that they
track each other closely throughout the optimization process. In the discrete MDP setting, this
might mean updating only for a small batch of states at each iteration. Below we extend this idea to
the more general setting of continuous state and action offline safe RL.

5.2 FILTERING VIA BATCH REWARD RELABELING

In continuous domains with function approximation, “removing” an individual unsafe action is ill-
posed: we instead want to suppress an entire neighborhood of similar actions. A simple way to
achieve this is via the reward relabeling approach implicit in Problem (3) where we replace the
reward for any state–action pair predicted to be unsafe with a maximally negative constant. Function
approximation then naturally generalizes this penalty to nearby actions, discouraging them without
needing to identify and prune them explicitly.

We use a simple approach to integrate reward relabeling and batch-update offline RL. Specifically,
given the current Q-cost function Qπ

c under the current policy π, we define the constraint-aware
reward relabeling rule for a transition (s, a, r, s′) as:

CARL(s, a, r, s′) =

{
(s, a, r, s′), if Qπ

c (s, a) ≤ κ,

(s, a,−Vmax, s
′) otherwise,

(5)

Performing batch updates where rewards in each batch are relabeled naturally avoids actions cur-
rently considered unsafe and, by generalization, actions similar to them.

The generic batch reward relabeling loop alternates between the following two steps:

1. Cost evaluation: M iterations of OPE updates on (s, a, c, s′) to refine Qπ
c .

2. Policy optimization: K iterations of OPO updates on CARL(s, a, r, s′) given by 5.

5
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Algorithm 1 Constraint-aware Reward Relabeling (CARL)

Require: Offline dataset D, budget κ, backbone updates AOPE,AOPO, batch size m
1: Init cost critic Qc, policy π, and reward critic Qr

2: while not converged do
3: Sample mini-batch {(si, ai, ri, ci, s′i)}mi=1 ⊂ D
4: Qc ← AOPE

(
Qc, π, {(si, ai, ci, s′i)}mi=1

)
5: (π,Qr)← AOPO

(
π,Qr, {CARL(si, ai, ri, s′i)}mi=1

)
6: end while
7: return π

Figure 1: Oscillatory Performance of AntRun: re-
ward (left) and cost (right) across training steps with
a cost limit of 40.

Intuitively, large M and K let Qc and π
change substantially between phases. Thus,
as described above for discrete MDPs, this
can cause severe oscillations: the algorithm
alternates between unsafe, high-reward poli-
cies and overly conservative safe policies,
never exploring the many safe policies with
high reward. Figure 1 illustrates an imple-
mentation based on TD3BC where we ob-
serve this oscillation for a standard bench-
mark problem AntRun.

To address this instability, a natural stabilizing choice is to keep M and K small so that Qc and π
track each other closely. The most extreme case, M = K = 1, suggests a simple wrapper with
no additional hyperparameters beyond the base OPE and OPO algorithms. Each iteration involves
sampling a mini-batch B followed by:

Update Qπ
c with B −→ Relabel B via Equation 5 −→ Update π with relabeled B.

The pseudo-code for this incremental variant called is shown in Algorithm 1. Despite the mini-
malism, we find that M = K = 1 consistently results in state-of-the-art performance. Further,
while one can treat K and M as hyperparameters, we have not found values that consistently out-
perform CARL across benchmarks. Because the CARL algorithm modifies only the reward before
passing data to the backbone, it inherits the underlying offline RL algorithms’ sample efficiency and
out-of-distribution handling.

While setting K = M = 1 greatly reduces drift compared to using large values of K and M , theo-
retical convergence guarantees are unclear. Formally analyzing whether K = M = 1 converges—
possibly under assumptions on the MDP class, dataset coverage, or backbone stability—is an open
problem. Empirically, we find the method to be stable across all tested benchmarks and initializa-
tions, and achieving significantly better performance than state-of-the-art offline safe RL methods.

Summary of CARL’s advantages. Our proposed CARL approach has the following advantages.

• It can be wrapped around existing offline RL algorithms to effectively solve offline safe RL
problems as we demonstrate in our experiments.

• It is a minimalist approach which doesn’t introduce any additional hyperparameters.

6 EXPERIMENTS AND RESULTS

6.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate CARL across a variety of offline safe reinforcement learning tasks
using the DSRL benchmark suite (Liu et al., 2024), which offers standardized datasets with di-
verse safety constraints. Our evaluation mainly spans both the Bullet-based environments (Car-Run,
Drone-Circle etc.), as well as broader generalization through additional tasks drawn from Safety-
Gymnasium (Ray et al., 2019; Ji et al., 2024). The combined benchmark suite includes diverse tasks
spanning a range of difficulty levels and safety complexities.

6
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Evaluation Protocol. Consistent with DSRL standards, we report two core metrics: normalized
cumulative reward and normalized cumulative cost. For a task T , if rmax(T ) and rmin(T ) represent
the maximum and minimum observed cumulative rewards, the normalized reward for a policy π is
computed as:

Rnorm =
Rπ − rmin(T )

rmax(T )− rmin(T )
, Cnorm =

Cπ

κ
.

where Cπ is the policy’s cumulative cost and κ is the cost threshold. A policy is considered safe
if Cnorm ≤ 1. This formulation differs from alternative evaluations in CCAC (Guo et al., 2025)
that normalize rewards only using trajectories satisfying the cost budget κ. Instead, we follow the
standard DSRL evaluation protocol, which uses the full reward range per task. Our main results use
stringent thresholds of κ = 5 and κ = 10 to test performance in highly constrained scenarios. Each
policy is tested over 20 episodes and averaged over three random seeds.

Baselines. We compare CARL against a range of state-of-the-art OSLR methods. BC-Safe is
a behavior cloning baseline that trains on trajectories satisfying a predefined cost threshold. CPQ
(Xu et al., 2022b) penalizes out-of-distribution actions and updates Q-values using only safe transi-
tions. COptiDICE (Lee et al., 2022) addresses safety via stationary distribution correction. CDT
(Liu et al., 2023) uses a decision transformer to learn policies conditioned on reward and cost en-
abling test-time constraint adaptation. CAPS (Chemingui et al., 2025) also supports test-time con-
straint handling by switching among multiple pre-trained policies. FISOR (Zheng et al., 2024) is
a diffusion-based approach that directly optimizes for feasibility to produce zero-violation policies.
Finally, we include CCAC (Guo et al., 2025), a recent method that leverages a constraint-conditioned
actor-critic framework augmented with generative modeling and out-of-distribution (OOD) detec-
tion to enable adaptive and safe policy learning under varying constraint thresholds.

Our results use CARL as a wrapper around TD3-BC, with fitted-Q evaluation (FQE) employed for
off-policy evaluation (Le et al., 2019). Implementation details are available in the Appendix.

6.2 RESULTS AND DISCUSSION

CARL vs. Baselines. Table 1 compares CARL with a suite of offline safe RL baselines across 19
DSRL tasks. Performance is reported in terms of normalized reward (higher is better) and normal-
ized cost (lower is better, with values ≤ 1 indicating constraint satisfaction) under low budgets of
5 or 10. For the main results, we set the penalty using Rmax = max(s,a,r,·) r from the offline data
instead of Vmax; an ablation with the larger penalty Vmax is included in Table 3 in the appendix.
Remarkably, CARL is the only method that satisfies the cost constraint across all Bullet tasks. It
is also safe on 8 out of 11 in the more challenging SafetyGym tasks. While other methods such as
CAPS, FISOR, or CCAC manage to remain safe on a few tasks, none of them achieve the same level
of consistency for safety. Importantly, CARL’s safety does not come at the expense of reward perfor-
mance. CARL consistently ranks as the best or second-best safe method in terms of reward. While
other baselines occasionally achieve higher returns, the top-performing method varies across tasks
and fails to consistently satisfy the cost constraint, unlike CARL which maintains stricter safety in
most of the tasks.

These results demonstrate that CARL strikes a strong balance between reward maximization and
constraint satisfaction, without requiring special reward shaping, risk-sensitive training objectives,
or task-specific tuning. Its consistent safety and competitive performance across tasks and cost
budgets highlight its robustness and suitability for safety-critical settings.

Backbone Offline RL Algorithm. CARL can be wrapped around any off-the-shelf offline RL
algorithm without modifying the method’s loss, targets, or regularizers. Our main results use TD3-
BC (Fujimoto & Gu, 2021) as the backbone. To test generality, we also evaluate CARL with IQL
(Kostrikov et al., 2022), which differs significantly in design. TD3-BC is an actor–critic method that
queries the current policy to generate target actions and applies behavior cloning regularization on
the actor. In contrast, IQL estimates Q-values purely from dataset actions and optimizes the policy
separately via advantage-weighted regression, without querying the policy during value learning.

As shown in Table 2, CARL maintains safety and achieves comparable rewards under both back-
bones. This indicates that our relabeling in Equation 5 is agnostic to the underlying backbone,
confirming that CARL generalizes effectively across offline RL algorithms.

7
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Table 1: CARL main results for normalized rewards and costs. The normalized cost threshold is 1
(κ = 5 or 10). The ↑ symbol denotes that higher rewards are better. The ↓ symbol denotes that
lower costs (up to threshold 1) are better. Each cell shows reward or cost with standard deviation.
Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe result (Cnorm ≤ 1).

Tasks BC Safe CPQ COptiDICE CDT CAPS CCAC FISOR CARL

Bullet Gym Tasks: κ = 5

BallRun Reward ↑ 0.16±0.11 0.09±0.26 0.53±0.10 0.27±0.09 0.07±0.05 0.31±0.01 0.09±0.07 0.28±0.02
Cost ↓ 4.50±3.38 2.20±2.88 10.83±1.68 2.57±3.23 0.00±0.00 0.00±0.00 1.28±1.70 0.00±0.00

CarRun Reward ↑ 0.92±0.01 0.93±0.01 0.91±0.04 0.99±0.00 0.97±0.00 1.82±0.84 0.74±0.01 0.97±0.00
Cost ↓ 0.26±0.23 0.20±0.18 0.00±0.00 0.90±0.34 0.11±0.17 24.57±20.94 0.00±0.00 0.02±0.03

DroneRun Reward ↑ 0.41±0.23 0.29±0.11 0.68±0.01 0.58±0.00 0.41±0.06 0.50±0.08 0.31±0.04 0.36±0.12
Cost ↓ 1.62±1.73 2.35±4.08 15.02±0.10 0.07±0.07 5.70±3.08 16.29±9.35 2.52±1.10 0.30±0.52

AntRun Reward ↑ 0.56±0.02 0.03±0.05 0.61±0.01 0.70±0.03 0.53±0.13 0.03±0.10 0.43±0.02 0.36±0.09
Cost ↓ 1.15±0.47 0.05±0.08 3.26±1.39 1.66±0.24 2.03±2.17 0.00±0.00 0.27±0.15 0.60±0.41

BallCircle Reward ↑ 0.45±0.03 0.56±0.10 0.71±0.01 0.61±0.17 0.33±0.02 0.47±0.38 0.32±0.05 0.69±0.03
Cost ↓ 1.21±0.23 1.11±1.92 9.41±0.69 2.03±1.39 0.01±0.02 10.19±17.65 0.00±0.00 0.33±0.23

CarCircle Reward ↑ 0.31±0.06 0.71±0.02 0.49±0.01 0.71±0.01 0.40±0.03 0.70±0.01 0.37±0.02 0.69±0.01
Cost ↓ 1.57±0.07 0.00±0.00 10.82±1.28 1.58±0.57 0.03±0.03 1.61±0.51 0.00±0.00 0.00±0.00

DroneCircle Reward ↑ 0.50±0.01 -0.21±0.04 0.26±0.02 0.55±0.01 0.36±0.02 0.43±0.04 0.48±0.01 0.53±0.02
Cost ↓ 1.22±0.31 0.70±0.41 3.68±0.51 1.14±0.06 0.00±0.00 0.06±0.07 0.17±0.15 0.00±0.00

AntCircle Reward ↑ 0.40±0.02 0.00±0.00 0.18±0.02 0.45±0.05 0.33±0.05 0.49±0.07 0.24±0.02 0.60±0.01
Cost ↓ 4.72±0.87 0.00±0.00 17.40±0.36 6.59±1.42 0.00±0.00 0.02±0.03 0.04±0.08 0.02±0.03

Safety Gym Tasks: κ = 10

CarCircle1 Reward ↑ 0.27±0.09 -0.03±0.07 0.68±0.05 0.53±0.07 0.42±0.04 0.32±0.10 0.69±0.03 0.46±0.03
Cost ↓ 3.82±1.01 10.17±7.26 20.70±1.15 8.58±2.04 2.79±1.04 21.96±4.14 10.52±0.10 4.15±0.83

CarCircle2 Reward ↑ 0.37±0.06 0.46±0.05 0.75±0.02 0.61±0.04 0.38±0.14 0.57±0.01 0.63±0.02 0.45±0.05
Cost ↓ 6.90±2.62 2.41±3.95 26.40±2.30 13.12±2.59 4.15±5.07 16.85±4.07 12.78±1.97 1.57±1.38

CarGoal1 Reward ↑ 0.20±0.09 0.67±0.07 0.40±0.03 0.62±0.04 0.27±0.00 0.82±0.06 0.42±0.07 0.26±0.04
Cost ↓ 0.40±0.12 4.41±0.46 2.50±0.36 3.12±0.69 1.15±0.10 5.27±0.92 1.70±0.58 0.92±0.55

CarGoal2 Reward ↑ 0.14±0.02 0.53±0.14 0.21±0.10 0.42±0.06 0.11±0.06 0.91±0.02 0.05±0.01 0.13±0.03
Cost ↓ 1.45±0.60 15.09±1.91 3.01±1.45 5.34±1.25 2.05±2.23 15.80±1.04 0.50±0.71 1.77±0.51

PointCircle1 Reward ↑ 0.30±0.11 0.46±0.04 0.87±0.01 0.54±0.01 0.31±0.05 0.57±0.08 0.43±0.05 0.52±0.01
Cost ↓ 0.26±0.24 0.73±1.20 19.16±0.38 0.54±0.61 0.94±1.53 6.65±3.51 14.93±4.24 0.04±0.07

PointCircle2 Reward ↑ 0.42±0.07 0.44±0.05 0.85±0.01 0.59±0.02 0.44±0.06 0.03±0.75 0.76±0.05 0.55±0.01
Cost ↓ 2.10±0.37 1.20±1.28 29.36±1.23 2.05±0.93 0.10±0.09 3.99±4.30 18.02±4.17 0.91±1.46

PointGoal1 Reward ↑ 0.22±0.02 0.55±0.11 0.49±0.02 0.63±0.08 0.30±0.09 0.74±0.03 0.64±0.03 0.06±0.06
Cost ↓ 0.91±0.42 3.33±1.68 5.27±0.91 2.97±0.82 1.45±0.74 3.90±0.50 5.38±1.05 0.09±0.11

PointGoal2 Reward ↑ 0.18±0.01 0.25±0.13 0.41±0.06 0.46±0.08 0.19±0.04 0.78±0.05 0.31±0.07 0.13±0.05
Cost ↓ 1.81±0.72 5.34±1.33 5.68±0.48 5.57±0.81 1.02±0.22 15.51±5.75 1.67±1.32 0.81±0.31

AntVelo Reward ↑ 0.92±0.03 -1.01±0.00 1.00±0.01 0.97±0.02 0.88±0.05 -1.01±0.00 0.89±0.01 0.99±0.01
Cost ↓ 0.33±0.19 0.00±0.00 11.82±5.56 0.59±0.02 0.21±0.07 0.00±0.00 0.00±0.00 0.43±0.11

HalfCheetahVelo Reward ↑ 0.86±0.01 0.67±0.05 0.63±0.02 0.98±0.00 0.86±0.01 0.91±0.04 0.89±0.01 0.96±0.01
Cost ↓ 0.30±0.13 8.56±6.19 0.00±0.00 0.65±0.34 0.27±0.06 0.97±0.12 0.00±0.00 0.14±0.09

SwimmerVelo Reward ↑ 0.46±0.07 0.20±0.20 0.59±0.07 0.66±0.01 0.45±0.06 0.06±0.25 -0.02±0.05 0.21±0.19
Cost ↓ 0.80±0.19 2.82±4.19 16.80±7.39 1.26±0.50 2.17±2.91 0.91±1.57 0.23±0.20 0.00±0.00

Table 2: Comparison of TD3BC and IQL across Bullet Safety Gym and Velocity tasks. Each cell
shows reward (↑) or cost (↓) with standard deviation. Bold: safe agents (Cnorm ≤ 1).

Method CarRun DroneRun CarCircle DroneCircle AntVelocity HalfCheetahVelo

TD3BC Reward ↑ 0.97±0.00 0.36±0.12 0.69±0.01 0.53±0.02 0.99±0.01 0.96±0.01
Cost ↓ 0.02±0.03 0.30±0.52 0.00±0.00 0.00±0.00 0.43±0.11 0.14±0.09

IQL Reward ↑ 0.96±0.01 0.46±0.03 0.68±0.01 0.35±0.02 0.97±0.01 0.92±0.02
Cost ↓ 0.12±0.14 0.71±1.06 0.08±0.10 0.00±0.00 0.38±0.09 0.26±0.40

Evaluation Across Varying Cost Limits. While our main results are for the strict cost thresholds (κ
equals 5 or 10) representative of safety-critical settings, we also evaluate CARL under more relaxed
safety constraints: cost limits of 20 and 40 for Bullet tasks, and 40 and 80 for Safety Gym tasks,
following the setup introduced in DSRL. Based on the results shown in Table 1, the safest baseline
methods after CARL are FISOR, CAPS, CPQ, and CCAC. However, FISOR is trained solely to
minimize cost and does not adapt to different cost limits. CPQ, while safe in some tasks, achieves
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very low rewards in two of the safe results. Therefore, for the varying cost limit analysis, we focus
our comparison on CAPS and CCAC, both of which show better balance for safety and reward
performance.

Figures 2 show that CARL improves rewards as the cost budget increases, while keeping normalized
costs within the safety threshold (≤ 1). On the challenging CarCircle2 task, all methods are unsafe
at budget 10. When the budget rises to 40 or 80, CARL attains both safety and higher rewards,
whereas CAPS and CCAC remain unsafe (Table 4, Appendix). This demonstrates CARL’s ability
to exploit larger budgets where other methods fail.

Figure 2: Results for CARL with varying cost budget limits on three
tasks: rewards vs. cost budget (left) and costs vs. cost budget (right).

Training Only on Unsafe
Trajectories. We perform
an ablation where we train
CARL using either the full
dataset, or only unsafe tra-
jectories (those with cumu-
lative cost exceeding the
threshold (κ = 5 or 10)).

Figures 3 shows results for
training with only unsafe
trajectories (blue). CARL
generates 60 trajectories
per task (20 from each of
the three seeds), shown in red. Despite the absence of safe training examples, these trajectories
remain within the cost threshold (dashed line) while achieving strong rewards. In BALLCIRCLE,
CARL attains rewards around 600–650, enforcing safety with little loss in rewards. In ANTVE-
LOCITY, it reaches near-optimal rewards of ∼3000 while staying safe, combining strict constraint
satisfaction with top-level performance. In ANTCIRCLE, CARL shifts trajectories into the safe zone
while still reaching rewards up to 300+, comparable to the best unsafe cases near the boundary,
showing that meaningful reward performance can be retained under strict safety. Overall, these
results highlight CARL’s ability to recover safe and competitive behavior from purely unsafe data
through reward relabeling: transforming unsafe dataset trajectories into safe ones and shifting be-
havior into the feasible region without substantial loss in rewards.

Figure 3: Results for CARL-generated trajectories (red) when trained on unsafe data, compared
against unsafe dataset trajectories (blue) on three representative tasks.

We also evaluate a naive hard-filtering variant (Appendix Table 6), which removes unsafe transitions
entirely, and find that it fails on nearly all tasks, underscoring the importance of CARL’s reward
relabeling rather than simple data exclusion.

7 SUMMARY

This paper introduces an embarrassingly simple framework for solving offline safe reinforcement
learning (OSRL). It reformulates the OSRL problem into an unconstrained optimization problem
that requires no tuning of Lagrangian multipliers when compared to the vast majority of the pre-
vious methods. This framework allows us to naturally leverage powerful off-the-shelf offline RL
algorithms and advances directly to effectively solve OSRL problems via constraint-aware reward
relabeling. Experimental results on the DSRL benchmark demonstrate the remarkably strong per-
formance of the proposed framework compared to state-of-the-art OSRL methods.
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Reproducibility Statement. We include full implementation details in Appendix C, including
hyperparameters and training settings. All datasets used are publicly available. An anonymous link
to the source code is provided in the abstract to support reproducibility of our experiments.
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A EXTENDED RELATED WORK DISCUSSION

A recurring theme across safe reinforcement learning is the idea of discouraging unsafe actions
through penalties, though the way those penalties are implemented differs across methods. In the
online setting, MASE (Wachi et al., 2023) integrates uncertainty quantification with an emergency
stop: if no action can be certified safe, the episode is halted and a large penalty is applied. Sauté RL
Sootla et al. (2022) also relies on penalties but does so through a state augmentation mechanism:
each state is paired with a remaining safety budget, and once the budget runs out, the trajectory
transitions into an absorbing unsafe state with a per task tuned large penalty. This budget-based
reformulation means that penalties are not just added externally but become part of the dynamics,
shaping exploration as the agent trains. In both approaches, penalties are tightly coupled with the
exploration process, ensuring that unsafe behavior is discouraged while the agent is still gathering
data.

CARL operates under a different contract. In the offline setting, trajectories are fixed in advance:
there is no opportunity to terminate episodes at will, and unsafe trajectories cannot simply be avoided
during training. The evaluation of a policy must account for the costs accumulated across complete
episodes, regardless of whether individual transitions are safe or not. This creates a distinctive
challenge: unsafe transitions are often plentiful in available datasets, and discarding them reduces
coverage, while treating them naively may compromise deployment safety. CARL addresses this
challenge by transforming unsafe transitions into useful training signal. Rather than filtering or
generating alternative trajectories, it directly relabels rewards with large penalties whenever the cost
critic predicts that a safety budget would be violated. This allows learning to leverage the entire
dataset, including unsafe portions, while still driving the learned policy toward safe behavior.

Placed in the broader landscape of offline safe RL, this perspective contrasts with approaches that
construct explicit feasibility regions Zheng et al. (2024), rely on constraint-conditioned genera-
tive models (Guo et al., 2025), or employ diffusion-based feasibility shaping (Yao et al., 2024).
Those methods introduce additional modeling complexity to estimate which actions are permissible.
CARL, in comparison, emphasizes a minimalist path: penalties are imposed through direct reward
relabeling, and the resulting relabeled dataset can be handled by any strong offline RL backbone.
Empirically, this strategy proves effective even in challenging regimes such as small cost budgets or
datasets composed entirely of unsafe trajectories. In such settings, the ability to repurpose unsafe
data as penalized signal is particularly advantageous, as it avoids both the brittleness of feasibility
approximations and the conservatism of discarding large parts of the dataset.

From this viewpoint, the contribution of CARL is not a departure from the penalty-based philosophy
shared across safe RL, but rather a demonstration that in the offline regime, the most straightforward
instantiation of that philosophy, reward relabeling informed by cost estimates,can be both robust and
broadly applicable. This observation highlights that in certain cases, simplicity in how penalties are
enforced may offer a more reliable path to safety than more sophisticated mechanisms.

B ADDITIONAL RESULTS

B.1 PENALTY MAGNITUDE ABLATION: Rmax VS. Vmax

Table 3 compares CARL trained with two penalty magnitudes: Rmax, the maximum single-step
reward in the dataset, and Vmax = Rmax/(1− γ), the maximum possible discounted return. Using
Rmax produces a smaller penalty and thus a less aggressive correction, while Vmax enforces harsher
penalties. The results confirm this intuition: CARL with Vmax remains safe in most tasks but often
at the cost of lower rewards compared to the Rmax variant. For instance, rewards drop from 0.69
→ 0.50 in CARCIRCLE and 0.60→ 0.40 in ANTCIRCLE, while in DRONECIRCLE (0.53→ 0.02)
and ANTVELOCITY (0.99 → 0.38) the decline is particularly severe. Nevertheless, even under
the stricter Vmax penalty, CARL outperforms other baselines: it remains safe in far more tasks, and
when safe, its performance is frequently the best or second-best (e.g., BALLCIRCLE, POINTGOAL2,
SWIMMERVELOCITY). Overall, Rmax provides the best trade-off between safety and reward, and
has the added advantage of not depending on the discount factor γ, thereby avoiding sensitivity to
this extra hyperparameter.
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Table 3: CARL results with Vmax vs. Rmax penalties, reported with normalized rewards and costs.
The normalized cost threshold is 1 (κ = 5 or 10). ↑ indicates higher is better (reward); ↓ indicates
lower is better (cost, with values ≤ 1 considered safe). Each cell shows the mean with standard
deviation. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe performance.

Tasks CPQ CDT CAPS CCAC FISOR CARL CARL Vmax

Bullet Gym Tasks: κ = 5

BallRun Reward ↑ 0.09±0.26 0.27±0.09 0.07±0.05 0.31±0.01 0.09±0.07 0.28±0.02 0.29±0.01
Cost ↓ 2.20±2.88 2.57±3.23 0.00±0.00 0.00±0.00 1.28±1.70 0.00±0.00 0.67±1.15

CarRun Reward ↑ 0.93±0.01 0.99±0.00 0.97±0.00 1.82±0.84 0.74±0.01 0.97±0.00 0.97±0.02
Cost ↓ 0.20±0.18 0.90±0.34 0.11±0.17 24.57±20.94 0.00±0.00 0.02±0.03 1.92±2.49

DroneRun Reward ↑ 0.29±0.11 0.58±0.00 0.41±0.06 0.50±0.08 0.31±0.04 0.36±0.12 0.37±0.03
Cost ↓ 2.35±4.08 0.07±0.07 5.70±3.08 16.29±9.35 2.52±1.10 0.30±0.52 0.08±0.14

AntRun Reward ↑ 0.03±0.05 0.70±0.03 0.53±0.13 0.03±0.10 0.43±0.02 0.36±0.09 0.30±0.20
Cost ↓ 0.05±0.08 1.66±0.24 2.03±2.17 0.00±0.00 0.27±0.15 0.60±0.41 0.82±1.37

BallCircle Reward ↑ 0.56±0.10 0.61±0.17 0.33±0.02 0.47±0.38 0.32±0.05 0.69±0.03 0.59±0.01
Cost ↓ 1.11±1.92 2.03±1.39 0.01±0.02 10.19±17.65 0.00±0.00 0.33±0.23 0.00±0.00

CarCircle Reward ↑ 0.71±0.02 0.71±0.01 0.40±0.03 0.70±0.01 0.37±0.02 0.69±0.01 0.50±0.03
Cost ↓ 0.00±0.00 1.58±0.57 0.03±0.03 1.61±0.51 0.00±0.00 0.00±0.00 0.00±0.00

DroneCircle Reward ↑ -0.21±0.04 0.55±0.01 0.36±0.02 0.43±0.04 0.48±0.01 0.53±0.02 0.02±0.15
Cost ↓ 0.70±0.41 1.14±0.06 0.00±0.00 0.06±0.07 0.17±0.15 0.00±0.00 0.39±0.53

AntCircle Reward ↑ 0.00±0.00 0.45±0.05 0.33±0.05 0.49±0.07 0.24±0.02 0.60±0.01 0.40±0.01
Cost ↓ 0.00±0.00 6.59±1.42 0.00±0.00 0.02±0.03 0.04±0.08 0.02±0.03 0.00±0.01

Safety Gym Tasks: κ = 10

PointCircle1 Reward ↑ 0.46±0.04 0.54±0.01 0.31±0.05 0.57±0.08 0.43±0.05 0.52±0.01 0.51±0.02
Cost ↓ 0.73±1.20 0.54±0.61 0.94±1.53 6.65±3.51 14.93±4.24 0.04±0.07 0.16±0.14

PointCircle2 Reward ↑ 0.44±0.05 0.59±0.02 0.44±0.06 0.03±0.75 0.76±0.05 0.55±0.01 0.41±0.07
Cost ↓ 1.20±1.28 2.05±0.93 0.10±0.09 3.99±4.30 18.02±4.17 0.91±1.46 0.01±0.02

PointGoal1 Reward ↑ 0.55±0.11 0.63±0.08 0.30±0.09 0.74±0.03 0.64±0.03 0.06±0.06 0.00±0.04
Cost ↓ 3.33±1.68 2.97±0.82 1.45±0.74 3.90±0.50 5.38±1.05 0.09±0.11 0.10±0.11

PointGoal2 Reward ↑ 0.25±0.13 0.46±0.08 0.19±0.04 0.78±0.05 0.31±0.07 0.13±0.05 0.14±0.06
Cost ↓ 5.34±1.33 5.57±0.81 1.02±0.22 15.51±5.75 1.67±1.32 0.81±0.32 0.56±0.21

AntVelo Reward ↑ -1.01±0.00 0.97±0.02 0.88±0.05 -1.01±0.00 0.89±0.01 0.99±0.01 0.38±0.15
Cost ↓ 0.00±0.00 0.59±0.02 0.21±0.07 0.00±0.00 0.00±0.00 0.43±0.11 0.01±0.01

HalfCheetahVelo Reward ↑ 0.67±0.05 0.98±0.00 0.86±0.01 0.91±0.04 0.89±0.01 0.96±0.01 0.80±0.06
Cost ↓ 8.56±6.19 0.65±0.34 0.27±0.06 0.97±0.12 0.00±0.00 0.14±0.09 0.03±0.02

SwimmerVelo Reward ↑ 0.20±0.20 0.66±0.01 0.45±0.06 0.06±0.25 -0.02±0.05 0.21±0.19 0.20±0.12
Cost ↓ 2.82±4.19 1.26±0.50 2.17±2.91 0.91±1.57 0.23±0.20 0.00±0.00 0.07±0.12

B.2 EXTRA COST LIMITS

While our main results emphasize strict cost thresholds (κ = 5, 10), we also investigate performance
under more relaxed safety budgets: cost limits of 20 and 40 for Bullet tasks, and 40 and 80 for
Safety Gym tasks, following the DSRL setup. This analysis addresses a natural concern: since
CARL penalizes unsafe transitions harshly, one might expect it to perform well only under tight
constraints, but to underutilize more generous budgets. Table 4 shows that this is not the case.
CARL continues to adapt effectively to larger budgets, often outperforming more the sophisticated
methods of CAPS and CCAC.

We evaluate across 16 tasks in total, 8 from Bullet and 8 from Safety Gym, each under two cost
limits, yielding 32 evaluations. Among these, CARL is the best performer in 16 cases, CAPS in 13,
and CCAC in 4. CARL is unsafe only twice (both in BALLCIRCLE), whereas CAPS is unsafe in 7
cases and CCAC fails in 20.

In the Bullet tasks with larger budgets (κ = 20, 40), CARL continues to adapt effectively despite
its simple penalty mechanism. On BALLRUN, CARL consistently produces safe policies, whereas
CAPS and CCAC violate the cost threshold. In ANTCIRCLE, all methods remain safe, but CARL
achieves the highest rewards across both budgets. The only exception is BALLCIRCLE, where CARL
attains high rewards but fails to satisfy the safety constraint. Importantly, across the remaining
15 out of 16 tasks, CARL maintains safety while matching or exceeding baseline rewards. This
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Table 4: CARL results under larger cost constraints. Each cell shows the mean with standard devia-
tion. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents. Blue bold: best safe performance.

Environment Cost 20 Cost 40

CAPS CCAC CARL CAPS CCAC CARL

BallRun Reward ↑ 0.17±0.09 0.30±0.02 0.16±0.14 0.36±0.08 0.61±0.06 0.32±0.14
Cost ↓ 1.41±0.79 0.25±0.43 0.44±0.45 1.17±0.12 1.13±0.13 0.75±0.32

CarRun Reward ↑ 0.98±0.00 1.81±0.82 0.97±0.00 0.98±0.00 1.82±0.78 0.97±0.00
Cost ↓ 0.20±0.21 6.39±4.79 0.02±0.02 0.21±0.26 3.35±2.10 0.03±0.02

DroneRun Reward ↑ 0.51±0.01 0.46±0.11 0.54±0.04 0.51±0.04 0.44±0.09 0.52±0.05
Cost ↓ 0.46±0.07 6.34±0.75 0.44±0.60 0.32±0.13 1.53±0.39 0.80±0.86

AntRun Reward ↑ 0.65±0.03 0.03±0.09 0.55±0.06 0.69±0.03 0.05±0.07 0.46±0.31
Cost ↓ 1.00±0.36 0.00±0.00 0.98±0.26 0.91±0.15 0.01±0.02 0.86±0.80

BallCircle Reward ↑ 0.69±0.01 0.52±0.42 0.76±0.01 0.80±0.01 0.58±0.47 0.85±0.03
Cost ↓ 0.64±0.01 3.19±4.53 1.16±0.11 0.82±0.01 1.93±1.98 1.12±0.09

CarCircle Reward ↑ 0.71±0.04 0.72±0.01 0.73±0.01 0.75±0.01 0.78±0.00 0.74±0.02
Cost ↓ 0.71±0.02 0.95±0.14 0.16±0.15 0.86±0.00 0.82±0.06 0.60±0.34

DroneCircle Reward ↑ 0.57±0.00 0.40±0.07 0.55±0.01 0.62±0.00 0.17±0.11 0.65±0.03
Cost ↓ 0.73±0.02 0.85±0.06 0.01±0.02 0.87±0.02 0.66±0.06 0.83±0.12

AntCircle Reward ↑ 0.40±0.01 0.56±0.07 0.61±0.05 0.52±0.03 0.59±0.02 0.67±0.03
Cost ↓ 0.09±0.05 0.55±0.25 0.02±0.02 0.35±0.02 0.95±0.23 0.10±0.04

Cost 40 Cost 80

CarCircle1 Reward ↑ 0.47±0.03 0.48±0.12 0.43±0.02 0.63±0.03 0.46±0.10 0.56±0.02
Cost ↓ 0.90±0.29 4.32±1.12 0.01±0.02 1.14±0.06 2.61±0.39 0.07±0.04

CarCircle2 Reward ↑ 0.44±0.10 0.54±0.05 0.53±0.02 0.54±0.09 0.58±0.02 0.59±0.02
Cost ↓ 1.08±1.03 2.36±2.14 0.42±0.17 1.09±0.73 1.82±0.58 0.80±0.29

CarGoal1 Reward ↑ 0.31±0.04 0.84±0.02 0.33±0.01 0.40±0.06 0.84±0.02 0.41±0.06
Cost ↓ 0.45±0.16 1.32±0.14 0.27±0.10 0.22±0.06 0.58±0.09 0.21±0.02

CarGoal2 Reward ↑ 0.17±0.06 0.94±0.05 0.13±0.04 0.24±0.04 0.91±0.05 0.15±0.06
Cost ↓ 0.85±0.05 4.31±1.17 0.29±0.05 0.35±0.10 2.06±0.46 0.18±0.07

PointCircle1 Reward ↑ 0.51±0.02 0.65±0.08 0.55±0.02 0.56±0.02 0.68±0.06 0.56±0.01
Cost ↓ 0.88±0.35 2.51±0.92 0.22±0.11 0.70±0.20 1.62±0.33 0.24±0.12

PointCircle2 Reward ↑ 0.51±0.02 -0.28±0.71 0.56±0.04 0.61±0.03 -0.30±0.71 0.60±0.01
Cost ↓ 0.75±0.07 1.11±1.09 0.21±0.09 1.02±0.21 0.77±0.67 0.30±0.08

PointGoal1 Reward ↑ 0.50±0.06 0.72±0.05 0.09±0.04 0.51±0.06 0.67±0.16 0.21±0.04
Cost ↓ 0.53±0.18 1.12±0.16 0.06±0.08 0.34±0.06 0.63±0.07 0.04±0.02

PointGoal2 Reward ↑ 0.34±0.06 0.80±0.03 0.15±0.01 0.49±0.07 0.78±0.08 0.30±0.07
Cost ↓ 0.76±0.10 3.95±0.75 0.24±0.02 0.58±0.11 2.00±0.17 0.18±0.04

demonstrates that CARL not only enforces safety under strict budgets but also scales to more relaxed
thresholds without collapsing into overly conservative behavior.

In the Safety Gym tasks, CARL’s robustness is equally evident. In the particularly challenging
CARCIRCLE2 task, all methods are unsafe at κ = 10 (main paper, Table 1), yet when the budget
is relaxed to 40 or 80, CARL achieves both safety and competitive rewards (0.53 at cost 0.42 for
κ = 40; 0.59 at cost 0.80 for κ = 80). By contrast, CAPS and CCAC remain unsafe even under
the larger budgets, failing to adjust effectively. Similar improvements are visible in the other tasks,
where CARL consistently satisfies safety while delivering best or competitive rewards, while both
baselines oscillate between unsafe operation and lower rewards.

Overall, these results highlight that CARL is not limited to low-cost regimes: even though it employs
a simple, strong penalty on unsafe transitions, it adapts gracefully as cost budgets grow. CARL
demonstrates both strict constraint satisfaction in safety-critical regimes and flexibility in leveraging
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more permissive budgets, an essential property for practical deployment across environments with
varying safety requirements.

B.3 UNSAFE TRAJECTORIES TRAINING DATA.

Table 5 reports CARL’s performance when trained either on only unsafe trajectories (Non Safe) or
on the full dataset (All) (κ = 5 or 10). In both cases, CARL reliably recovers safe agents (cost
≤ 1), but access to the full dataset generally improves the reward–cost trade-off. For example, in
DRONECIRCLE and ANTCIRCLE, using all data raises rewards (0.47 → 0.53 and 0.53 → 0.60)
while further lowering costs. In ANTVELOCITY, CARL achieves nearly maximal reward (0.99)
under both conditions, but with much lower cost when trained on all data (0.27 vs. 0.43). A notable
case is CARCIRCLE, where CARL already finds safe solutions from unsafe-only data, yet including
safe trajectories eliminates residual cost variance. Overall, this ablation shows that while CARL
can recover safety even from unsafe-only datasets, leveraging the full dataset strengthens safety
guarantees and yields the best safe performance (bold).

Table 5: CARL results with only unsafe trajectories data. Each cell shows reward (↑) or cost (↓).
Bold: safe agents (Cnorm ≤ 1). Blue bold: best safe performance.

Data BallCircle CarCircle DroneCircle AntCircle PointGoal1 PointGoal2 AntVelocity SwimmerVelo

Non Safe Reward ↑ 0.67±0.04 0.69±0.01 0.47±0.00 0.53±0.08 0.03±0.03 0.13±0.06 0.99±0.00 0.17±0.02
Cost ↓ 0.31±0.11 0.03±0.06 0.02±0.04 0.02±0.02 0.19±0.14 0.85±0.20 0.27±0.03 0.06±0.10

All Reward ↑ 0.69±0.03 0.69±0.01 0.53±0.02 0.60±0.01 0.06±0.06 0.13±0.05 0.99±0.01 0.21±0.19
Cost ↓ 0.33±0.23 0.00±0.00 0.00±0.00 0.02±0.03 0.09±0.11 0.81±0.32 0.43±0.11 0.00±0.00

B.4 HARD-FILTERING TRANSITIONS

In this variant of CARL, each sampled batch is passed through the cost critic, and transitions whose
predicted cost-to-go exceeds the threshold (κ = 5) are entirely removed from training. No reward
relabeling is applied, so the agent learns from a reduced dataset. While this naive filtering strategy
enforces a strict notion of safety during training, it discards transitions that provide valuable learning
signals or partial recovery paths. As a result, policies trained with hard filtering generalize poorly
and typically violate constraints at deployment, since they only optimize the original reward signal
over a limited state space. Table 6 shows that this approach succeeds in only one out of eight
tasks and otherwise breaches the cost threshold severely (e.g., cost 16.53 in DRONERUN, 20.52 in
ANTCIRCLE). By contrast, CARL achieves safe performance across all tasks with good rewards.
These results highlight that CARL’s effectiveness lies not in discarding unsafe data, but in relabeling
rewards with penalties, which preserves dataset coverage and enables safe, high-reward policies.

Table 6: CARL results compared to the Hard Filter variant. Each cell shows reward (↑) or cost (↓)
with standard deviation. Bold: safe agents (Cnorm ≤ 1). Gray: unsafe agents.

Environment Hard Filter CARL

reward ↑ cost ↓ reward ↑ cost ↓
BallRun 0.58±0.46 11.38±6.60 0.28±0.02 0.00±0.00
CarRun 0.97±0.00 0.10±0.16 0.97±0.00 0.02±0.03
DroneRun 0.55±0.19 16.53±14.32 0.36±0.12 0.30±0.52
AntRun 0.47±0.14 4.44±2.15 0.36±0.09 0.60±0.41
4.44 2.15 BallCircle 0.70±0.02 2.41±1.61 0.69±0.03 0.33±0.23
CarCircle 0.72±0.01 1.06±0.94 0.69±0.01 0.00±0.00
DroneCircle 0.63±0.01 7.79±1.16 0.53±0.02 0.00±0.00
AntCircle 0.68±0.03 20.52±2.06 0.60±0.01 0.02±0.03
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(a) Bullet-Safety-Gym environments. (b) Safety-Gymnasium environments.

Figure 4: Visualizations of benchmark environments.

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENT DESCRIPTIONS

To evaluate safe offline reinforcement learning (RL) approaches, we employ a range of environments
constructed on different simulation platforms, each customized for particular agents and control
tasks.

Bullet-Safety-Gym Gronauer (2022): This benchmark suite leverages the PyBullet physics engine
and features four distinct agents: Ball, Car, Drone, and Ant. It supports two main tasks: Run
and Circle. In the Run scenario, agents must traverse a corridor marked by virtual safety boundaries.
While these boundaries are non-colliding, crossing them results in a penalty. Speed regulation is also
enforced; going beyond a specified threshold leads to further penalties. The Circle task challenges
agents to move in a clockwise direction along a circular trajectory. Here, staying closer to the outer
edge at higher speeds earns greater rewards, but leaving the designated safe area results in penalties.
Visual examples of these scenarios are shown in Figure 4 (a).

Safety-Gymnasium Ray et al. (2019); Ji et al. (2024): Built on the Mujoco simulator, Safety-
Gymnasium presents a diverse set of environments designed for exploring safety-related behaviors.
The Car agent can engage in several tasks, including Circle and Goal, each offered in two levels
of complexity. These tasks require the agent to reach specific objectives while navigating around
hazards. In the Goal task, the agent moves toward designated goal positions that change after each
success. The Circle task involves following a green circular track while avoiding the outer region,
which incurs penalties. Figure 4 (b) displays visualizations of these environments. The bench-
mark also introduces velocity-restricted tasks for agents like Ant, HalfCheetah, and Swimmer. In
the Velocity task, agents coordinate limb movements to advance forward while respecting velocity
constraints.

C.2 CARL HYPERPARAMETERS

Table 7 outlines the hyperparameter settings applied in various environments (BulletGym and Safe-
tyGym) for CARL, highlighting shared configurations including cost limits, training durations, and
neural network architecture details. For the IQL results, training is conducted with the IQL tau
hyperparameter set to 0.7.
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Table 7: CARL hyperparameters.

General Parameters BulletGym SafetyGym
Cost limit 5 10
Training steps 200000 400000

AntRun, DroneRun 300000 –
discount γ 0.99
Batch size 512
Cost Critic hidden size 256, 256
Cost Critic learning rate 3e-4
seeds 10, 20, 30

TD3BC parameters
Policy noise 0.2
Policy noise clip (0.5, 0.5)
Policy update frequency 2
α 2.5
Optimizer Adam
Actor, Critic learning rate 3e-4
Actor, Critic hidden size 256, 256

C.3 COMPUTATIONAL RESOURCES AND TRAINING TIME:

Experiments were run on a system equipped with an NVIDIA A40 GPU (48GB memory). When
running without any competing workloads, training a single task for one random seed takes approx-
imately 31 minutes per 200k update steps.
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