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Abstract
Distilling large, unstructured text into a struc-001
tured, condensed form such as tables is an open002
research problem in Natural Language Process-003
ing. Prior approaches address this task through004
additional parameters in the Transformer’s at-005
tention mechanism. This paper presents Gener-006
ative Tables (gTBLS), a two-stage, parameter-007
efficient solution to automatically construct008
structured tables from text. The first stage009
infers table structure (row and column head-010
ers) from the text, and the second stage for-011
mulates questions and fine-tunes a causal lan-012
guage model to answer them. gTBLS improves013
prior approaches by up to 21% in BERTScore014
on the table content generation task of the015
E2E, WikiTableText, WikiBio, and Rotowire016
datasets with 66% fewer parameters.017

1 Introduction018

An important challenge in Natural Language Pro-019

cessing is summarization, distilling large, unstruc-020

tured texts into a condensed form while preserving021

factual consistency. There has been substantial022

work summarizing news articles, medical informa-023

tion, and conversational dialogue (Nallapati et al.,024

2016; See et al., 2017; Shang et al., 2018; Joshi025

et al., 2020; Chen and Yang, 2020). However, these026

efforts focus on transforming unstructured text into027

shorter yet unstructured forms. Compiling unstruc-028

tured knowledge sources into structured forms such029

as tables remains an open research problem.030

Organizing information into tables provides sev-031

eral advantages compared to unstructured para-032

graphs (Tang et al., 2023). Tabular information033

is more efficient, utilizing row and column headers034

to reduce redundancy. Additionally, the structured035

presentation simplifies the task of comparing differ-036

ent sources of information, especially when dealing037

with quantitative data. However, manually creating038

tables from text is time-consuming and error-prone.039

Driven by the success of Large Language Mod-040

els (LLMs) on sequence-to-sequence natural lan-041

Figure 1: Overview of Generative Tables (gTBLS).
gTBLS uses a two stage, parameter-efficient approach
to condense textual information into structured tables.

guage tasks, recent work explored the automatic 042

generation of structured knowledge from unstruc- 043

tured text (Wu et al., 2022; Pietruszka et al., 2022). 044

A primary challenge in this automatic table gener- 045

ation task lies in ensuring their syntactic validity. 046

Every row and column in a table must contain the 047

same number of cells, with row and column head- 048

ers delineating relationships between cells. Prior 049

work addresses this constraint by including addi- 050

tional parameters like row and column relation 051

embeddings (Wu et al., 2022) or positional bias 052

(Pietruszka et al., 2022). 053

In contrast, we propose Generative Tables 054

(gTBLS) 1, a novel, two-stage, parameter-efficient 055

approach to condense unstructured textual informa- 056

1Our code will be released with the camera-ready version
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tion into structured tables. The first stage infers057

table structure (row and column headers) from text.058

The second stage uses the generated headers to for-059

mulate questions. A causal language model is then060

fine-tuned to answer these questions using the tex-061

tual paragraph as evidence. An overview of gTBLS062

is provided in Figure 1. gTBLS achieves similar or063

better performance than previous approaches while064

using up to 66% fewer parameters on the E2E, Wik-065

iTableText, WikiBio, and Rotowire datasets.066

Section 2 presents an overview of related work067

that addresses the challenge of generating struc-068

tured content from textual paragraphs. Section 3069

describes our novel approach, which frames table070

generation as conditional question answering. Sec-071

tion 4 describes the dataset, experimental proce-072

dure, and results. We conclude the paper in Sec-073

tion 5 and outline limitations in Section 6.074

2 Related Work075

Early research on tabular generation focused on076

discriminative techniques. Branavan et al. (2007)077

used a tree-based method to infer a table of con-078

tents from documents, while Aramaki et al. (2009)079

treated tabular generation as a multi-label classifi-080

cation problem, with predefined headers.081

More recent neural approaches for table genera-082

tion have utilized Generative Adversarial Networks083

(GANs) to synthesize tabular data from existing084

datasets (Xu and Veeramachaneni, 2018; Park et al.,085

2018; Chen et al., 2019). Similarly, research in086

generating structured information, like knowledge087

graphs and entities from text, has also been ex-088

plored (Hakkani-Tür et al., 2013; Luan et al., 2018;089

Deng et al., 2021; Lu et al., 2022).090

Recent work directly addressing text-to-table091

generation includes (Wu et al., 2022), (Pietruszka092

et al., 2022), and (Tang et al., 2023). Wu et al.093

(2022) proposed modifying the Transformer de-094

coder’s attention mechanism, incorporating row095

and column relation embeddings to capture header096

and non-header cell relationships. Pietruszka et al.097

(2022) utilize learnable bias parameters to encode098

relative cell positions. Finally, Tang et al. (2023)099

employed structure-aware instruction-tuning to100

fine-tune LLMs to generate tables.101

In contrast, our approach, gTBLS, uses a two-102

stage process splitting the task into table structure103

construction and table content generation to cap-104

ture inter-cell relationships and adhere to tabular105

constraints while maintaining parameter efficiency.106

3 Table Generation as Question 107

Answering 108

The foundation of Generative Tables (gTBLS) is 109

a two-stage approach to table generation that dis- 110

entangles structure generation and information re- 111

trieval. While LLMs have demonstrated success 112

on text generation and information retrieval inde- 113

pendently, utilizing them to generate structured 114

knowledge is more complex. Rows and columns 115

impose structure requirements during inference. 116

LLM-based methods that generate tables sequen- 117

tially (e.g., row-by-row or column-by-column) face 118

a critical challenge: the number of cells generated 119

in the initial row or column determines the structure 120

of the entire table. Failing to adhere to these con- 121

straints results in structurally invalid tables. gTBLS 122

addresses this issue by first employing a Table Con- 123

struction stage to identify row and column headers 124

from natural language text to construct an empty 125

table with headers. Then, the Table Content Gen- 126

eration stage uses the identified headers to fill cell 127

contents with synthetically generated QA pairs, en- 128

suring the validity of all generated tables. The 129

process is described in Figure 1. 130

Table Construction: In this stage, gTBLS uti- 131

lizes a causal language model to generate row and 132

column headers. During training, the model ex- 133

tracts row and column headers from ground-truth 134

tables. These headers are concatenated sequentially 135

and separated by a <SEP> token. The Table Con- 136

struction stage is framed as conditional text genera- 137

tion, where the causal language model is fine-tuned 138

to generate the concatenated header sequence con- 139

ditioned on the textual paragraph. During inference, 140

the model generates a sequence of headers based 141

solely on the textual input. 142

Table Content Generation: This stage syn- 143

thetically generates QA fine-tuning pairs over the 144

skeleton of the Table constructed in the previous 145

stage. Using the generated rows and columns from 146

above, gTBLS formulates a question, the answer 147

to which is the cell content. A separate question is 148

formulated for each combination of row and col- 149

umn header in the format ‘What is the {Column 150

value} for {Row value}?’. For example, given the 151

row header ‘Suns’ and the column header ‘Wins’, 152

the formulated question is ‘What is the number of 153

Wins for Suns?’. A LLM is fine-tuned to answer 154

this question using the textual input as evidence. 155
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Dataset Model
Header Cell Non-Header Cell

Params
F1 BERTScore F1 BERTScore

E2E
Wu et al. 99.63 99.88 97.94 98.57 406M
gTBLS 99.63 99.85 98.11 99.46 247M

WikiTableText
Wu et al. 78.16 95.68 62.71 80.74 406M
gTBLS 71.34 92.90 65.34 93.50 247M

Wikibio
Wu et al. 80.52 92.60 69.71 76.56 406M
gTBLS 75.33 92.50 65.75 92.53 247M

Table 1: Comparison between the performance of Generative Tables (gTBLS) and the prior state of the art introduced
by Wu et al. (2022). gTBLS uses almost 40% fewer parameters than Wu et al. (2022)

Dataset Model
Row Header Column Header Non-Header Cell

Params
F1 BERTScore F1 BERTScore F1 BERTScore

Rotowire
Team

Wu et al. 94.97 97.51 86.02 89.05 86.31 90.80 406M
STable 94.97 97.80 88.90 88.70 84.70 90.30 737M
gTBLS 94.95 97.79 82.89 94.99 86.38 96.37 247M

Rotowire
Player

Wu et al. 92.31 93.71 87.78 94.41 86.83 88.97 406M
STable 93.50 95.10 88.10 94.50 84.50 90.40 737M
gTBLS 88.68 95.07 83.76 96.02 84.42 95.03 247M

Table 2: Comparison between prior approaches Wu et al. (2022), STable (Pietruszka et al., 2022), and gTBLS.
Rotowire is a more challenging dataset since tables contain multiple rows and columns when compared to the
datasets in Table 1 which contain multiple rows but only a single column.

4 Experimental Results156

4.1 Text-to-Table Datasets157

Wu et al. (2022) propose four datasets for the text-158

to-table task by inverting datasets created for the159

dual problem of generating textual descriptions160

from tables. Each dataset consists of textual para-161

graphs and paired tabular information summarizing162

content in the text.163

The E2E dataset (Novikova et al., 2017) con-164

cerns restaurant descriptions, requiring summariza-165

tion of information into tables with descriptors166

like restaurant name, customer rating, and location.167

WikiTableText (Bao et al., 2018), sourced from168

Wikipedia, consists of natural language descrip-169

tions generated from tabular data across various170

topics. WikiBio (Lebret et al., 2016) comprises171

introductions of individuals from Wikipedia along-172

side tabular summaries extracted from the same173

page’s information box. Rotowire (Wiseman et al.,174

2017) presents NBA game reports and two sepa-175

rate tables summarizing team and player statistics.176

While E2E, WikiTableText, and WikiBio contain177

tables with multiple rows and a single column, Ro-178

towire is a more challenging dataset with multi-row,179

multi-column tables, necessitating strict adherence 180

to equal cell counts across rows and columns. 181

4.2 Procedure 182

Training: We fine-tune FlanT5-base (Chung et al., 183

2022) separately for Table Construction and Table 184

Content Generation. All experiments fine-tune for 185

10 epochs with AdamW (Loshchilov and Hutter) 186

and a learning rate of 5e-5 on 8 Nvidia A40 GPUs. 187

Evaluation: We report F1 and BERTScore. The 188

F1 score is the harmonic mean of precision and re- 189

call of predicted cells compared to the ground truth. 190

We ignore cells with empty content in this compu- 191

tation. BERTScore (Zhang* et al., 2020) measures 192

token similarity between candidate and reference 193

sentences through contextual embeddings, and cap- 194

tures semantic similarity. A detailed description of 195

these metrics is available in (Wu et al., 2022). 196

4.3 Results 197

Tables 1 and 2 present a comparative analysis of 198

the performance of gTBLS with Text-to-Table (Wu 199

et al., 2022) and STable (Pietruszka et al., 2022) 200

representing the current state-of-the-art (SoTA). Ta- 201

ble 1 displays results on the E2E, WikiTableText, 202
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Dataset
Header F1 Cell F1 Error Rate

Seq2Seq gTBLS Seq2Seq gTBLS Seq2Seq gTBLS

E2E 99.60 99.63 97.94 98.11 0.0% 0.0%
WikiTableText 69.71 71.34 66.61 65.34 0.6% 0.0%

Wikibio 76.36 75.33 63.51 65.75 1.64% 0.0%
Rotowire Team 57.84 88.92 51.18 86.38 30.9% 0.0%
Rotowire Player 26.34 86.22 12.80 84.42 57.28% 0.0%

Table 3: Comparison of F1 scores between sequence to sequence baseline and gTBLS

Dataset gTBLS-TC Ground Truth-TC

E2E 98.11 98.50
WikiTableText 65.34 70.73

Wikibio 65.67 77.06
Rotowire Team 72.27 95.18
Rotowire Player 52.75 88.15

Table 4: Comparison between gTBLS’ Content Genera-
tor using row and column headers generated by gTBLS’
Table Constructor (TC) versus ground-truth (F1 scores)

and WikiBio datasets. Table 2 shows results with203

Rotowire Team and Rotowire Player datasets.204

For Table Construction (Header Cell) in Table 1,205

despite employing nearly 40% fewer parameters206

and having half the context length, gTBLS achieves207

an F1 score that matches the SoTA for the E2E208

dataset and is within 9% and 6.5% (relative) on the209

WikiTableText and Wikibio datasets, respectively.210

On these same datasets, gTBLS is within 3% on211

WikiTableText with BERTScore and achieves par-212

ity for the other two.213

For Table Content Generation (Non-Header Cell)214

in Table 1, gTBLS outperforms the SoTA in all215

three datasets in BERTScore (1%, 16%, and 21%216

improvements across E2E, WikiTableText, and217

Wikibio, respectively) and improves F1 on two218

of the three datasets. For context, Text-to-Table’s219

BART-large (Lewis et al., 2020) backbone employs220

406M parameters and a context length of 1024,221

whereas gTBLS uses 247M parameters and a con-222

text length of 512.223

Table 2 presents results on the Rotowire Team224

and Player datasets. The Rotowire datasets present225

a more difficult challenge for table generation226

than E2E, WikiTableText, and WikiBio due to227

the more complex table structure containing mul-228

tiple rows and columns. For Table Construction229

(Row/Column Header), gTBLS outperforms the230

SoTA on BERTScore by 7.1% and 1.6% (relative)231

on Rotowire Team and Player, respectively, and232

achieves competitive F1 scores (within 5%) of the 233

SoTA STable (Pietruszka et al., 2022) while us- 234

ing almost 66% fewer parameters. For Table Con- 235

tent Generation (Non-Header Cell), gTBLS outper- 236

forms the SoTA by 5-6% on BERTScore and is 237

within 2.7% on F1. 238

In Table 3, we compare gTBLS with a sequence- 239

to-sequence approach that models table generation 240

as conditional generation of a flattened table rep- 241

resentation. The ‘|’ token separates column values 242

and a <NEWLINE> tag separates rows. We report 243

the mean of row and column header F1s for the Ro- 244

towire datasets. gTBLS achieves up to a 2.3% and 245

3.5% relative improvement in F1 scores for Table 246

Construction and Table Content Generation tasks, 247

respectively. Notably, on the Rotowire datasets, 248

gTBLS excels, consistently generating valid tables 249

while the sequence-to-sequence approach exhibits 250

an error rate exceeding 50% on the Rotowire Player 251

dataset. gTBLS ensures the reliability of all gener- 252

ated tables through its two-stage process. 253

Finally, Table 4 evaluates gTBLS’ Content Gen- 254

erator. The F1 score for Table Content Genera- 255

tion using ground-truth headers surpasses that with 256

generated headers, representing the upper bound 257

assuming ideal header generation. 258

5 Conclusion 259

This paper introduces Generative Tables (gTBLS), 260

a parameter-efficient approach to generate tables 261

from text. gTBLS uses a two-stage process, first 262

constructing a tabular structure using a causal lan- 263

guage modeling objective followed by question 264

answering to fill in the content. A key advantage 265

of the two-stage approach is that all tables gener- 266

ated by gTBLS are valid without requiring post- 267

processing. gTBLS improves prior approaches by 268

up to 21% in BERTScore and achieves overall par- 269

ity in F1 on the table content generation task of 270

the E2E, WikiTableText, WikiBio, and Rotowire 271

datasets with 66% fewer parameters. 272
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6 Limitations273

The gTBLS method, though effective as a274

parameter-efficient approach for table generation275

from text, presents unresolved challenges. First,276

its performance is limited by the context length277

of the utilized models, leading to the omission of278

header and cell information from later parts of the279

source text. Additionally, its reliance on generating280

question-answer pairs from row and column head-281

ers restricts it to tables with a direct header-cell282

correlation. Complex table structures, like head-283

ers spanning multiple rows or columns, remain a284

challenge. Moreover, gTBLS is optimized for gen-285

erating dense tables, where cell content directly cor-286

responds to the text. This study excludes cells with-287

out matching text information to align with evalua-288

tion frameworks proposed by prior work. However,289

future approaches could explore generating sparse290

tables, potentially incorporating unknown <UNK>291

tokens as needed.292
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