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Abstract

Distilling large, unstructured text into a struc-
tured, condensed form such as tables is an open
research problem in Natural Language Process-
ing. Prior approaches address this task through
additional parameters in the Transformer’s at-
tention mechanism. This paper presents Gener-
ative Tables (gTBLS), a two-stage, parameter-
efficient solution to automatically construct
structured tables from text. The first stage
infers table structure (row and column head-
ers) from the text, and the second stage for-
mulates questions and fine-tunes a causal lan-
guage model to answer them. gTBLS improves
prior approaches by up to 21% in BERTScore
on the table content generation task of the
E2E, WikiTableText, WikiBio, and Rotowire
datasets with 66% fewer parameters.

1 Introduction

An important challenge in Natural Language Pro-
cessing is summarization, distilling large, unstruc-
tured texts into a condensed form while preserving
factual consistency. There has been substantial
work summarizing news articles, medical informa-
tion, and conversational dialogue (Nallapati et al.,
2016; See et al., 2017; Shang et al., 2018; Joshi
et al., 2020; Chen and Yang, 2020). However, these
efforts focus on transforming unstructured text into
shorter yet unstructured forms. Compiling unstruc-
tured knowledge sources into structured forms such
as tables remains an open research problem.
Organizing information into tables provides sev-
eral advantages compared to unstructured para-
graphs (Tang et al., 2023). Tabular information
is more efficient, utilizing row and column headers
to reduce redundancy. Additionally, the structured
presentation simplifies the task of comparing differ-
ent sources of information, especially when dealing
with quantitative data. However, manually creating
tables from text is time-consuming and error-prone.
Driven by the success of Large Language Mod-
els (LLMs) on sequence-to-sequence natural lan-
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112 - 88 on Sunday. Oklahoma City has won six straight games, making a
defining run following the return of their stars Kevin Durant and Russell
Westbrook to the lineup two weeks ago. Their win over the Suns was a
drubbing that allowed the Thunder to play their starters limited minutes.
Oklahoma City shot 48 percent from the field, but where they truly
dominated the game was on the glass, collecting 63 rebounds compared to
the Suns' 40 rebounds. The Suns also couldn't keep the Thunder off the free
- throw line, allowing them to put up 30 free points at the charity stripe.
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Figure 1: Overview of Generative Tables (gTBLS).
g¢TBLS uses a two stage, parameter-efficient approach
to condense textual information into structured tables.

guage tasks, recent work explored the automatic
generation of structured knowledge from unstruc-
tured text (Wu et al., 2022; Pietruszka et al., 2022).
A primary challenge in this automatic table gener-
ation task lies in ensuring their syntactic validity.
Every row and column in a table must contain the
same number of cells, with row and column head-
ers delineating relationships between cells. Prior
work addresses this constraint by including addi-
tional parameters like row and column relation
embeddings (Wu et al., 2022) or positional bias
(Pietruszka et al., 2022).

In contrast, we propose Generative Tables
(gTBLS) !, a novel, two-stage, parameter-efficient
approach to condense unstructured textual informa-
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tion into structured tables. The first stage infers
table structure (row and column headers) from text.
The second stage uses the generated headers to for-
mulate questions. A causal language model is then
fine-tuned to answer these questions using the tex-
tual paragraph as evidence. An overview of gTBLS
is provided in Figure 1. gTBLS achieves similar or
better performance than previous approaches while
using up to 66% fewer parameters on the E2E, Wik-
iTableText, WikiBio, and Rotowire datasets.

Section 2 presents an overview of related work
that addresses the challenge of generating struc-
tured content from textual paragraphs. Section 3
describes our novel approach, which frames table
generation as conditional question answering. Sec-
tion 4 describes the dataset, experimental proce-
dure, and results. We conclude the paper in Sec-
tion 5 and outline limitations in Section 6.

2 Related Work

Early research on tabular generation focused on
discriminative techniques. Branavan et al. (2007)
used a tree-based method to infer a table of con-
tents from documents, while Aramaki et al. (2009)
treated tabular generation as a multi-label classifi-
cation problem, with predefined headers.

More recent neural approaches for table genera-
tion have utilized Generative Adversarial Networks
(GANSs) to synthesize tabular data from existing
datasets (Xu and Veeramachaneni, 2018; Park et al.,
2018; Chen et al., 2019). Similarly, research in
generating structured information, like knowledge
graphs and entities from text, has also been ex-
plored (Hakkani-Tiir et al., 2013; Luan et al., 2018;
Deng et al., 2021; Lu et al., 2022).

Recent work directly addressing text-to-table
generation includes (Wu et al., 2022), (Pietruszka
et al., 2022), and (Tang et al., 2023). Wu et al.
(2022) proposed modifying the Transformer de-
coder’s attention mechanism, incorporating row
and column relation embeddings to capture header
and non-header cell relationships. Pietruszka et al.
(2022) utilize learnable bias parameters to encode
relative cell positions. Finally, Tang et al. (2023)
employed structure-aware instruction-tuning to
fine-tune LLMs to generate tables.

In contrast, our approach, gTBLS, uses a two-
stage process splitting the task into table structure
construction and table content generation to cap-
ture inter-cell relationships and adhere to tabular
constraints while maintaining parameter efficiency.

3 Table Generation as Question
Answering

The foundation of Generative Tables (gTBLS) is
a two-stage approach to table generation that dis-
entangles structure generation and information re-
trieval. While LLMs have demonstrated success
on text generation and information retrieval inde-
pendently, utilizing them to generate structured
knowledge is more complex. Rows and columns
impose structure requirements during inference.
LLM-based methods that generate tables sequen-
tially (e.g., row-by-row or column-by-column) face
a critical challenge: the number of cells generated
in the initial row or column determines the structure
of the entire table. Failing to adhere to these con-
straints results in structurally invalid tables. gTBLS
addresses this issue by first employing a Table Con-
struction stage to identify row and column headers
from natural language text to construct an empty
table with headers. Then, the Table Content Gen-
eration stage uses the identified headers to fill cell
contents with synthetically generated QA pairs, en-
suring the validity of all generated tables. The
process is described in Figure 1.

Table Construction: In this stage, gTBLS uti-
lizes a causal language model to generate row and
column headers. During training, the model ex-
tracts row and column headers from ground-truth
tables. These headers are concatenated sequentially
and separated by a <SEP> token. The Table Con-
struction stage is framed as conditional text genera-
tion, where the causal language model is fine-tuned
to generate the concatenated header sequence con-
ditioned on the textual paragraph. During inference,
the model generates a sequence of headers based
solely on the textual input.

Table Content Generation: This stage syn-
thetically generates QA fine-tuning pairs over the
skeleton of the Table constructed in the previous
stage. Using the generated rows and columns from
above, gTBLS formulates a question, the answer
to which is the cell content. A separate question is
formulated for each combination of row and col-
umn header in the format ‘What is the {Column
value} for {Row value}?’. For example, given the
row header ‘Suns’ and the column header ‘Wins’,
the formulated question is “What is the number of
Wins for Suns?’. A LLM is fine-tuned to answer
this question using the textual input as evidence.



Dataset Model Header Cell Non-Header Cell p
atase °% | F1 | BERTScore | F1 | BERTScore | —o&m®
i Wuetal | 99.63| 99.88 |97.94| 9857 406M
oTBLS |99.63| 99.85 [98.11| 99.46 247TM
L Wuetal | 7816 | 95.68 |62.71| 80.74 406M
WikiTableText | rpi s 17134 | 9290 | 6534 9350 | 247M
Wikibio | Wuetal. | 80.52 | 9260 | 69.71|  76.56 406M
¢TBLS [7533| 9250 |65.75| 92.53 247TM

Table 1: Comparison between the performance of Generative Tables (gTBLS) and the prior state of the art introduced
by Wu et al. (2022). gTBLS uses almost 40% fewer parameters than Wu et al. (2022)

Dataset Model Row Header Column Header Non-Header Cell Params
F1 | BERTScore | F1 | BERTScore | F1 ‘ BERTScore

Rotowire Wu et al. | 94.97 97.51 86.02 89.05 86.31 90.80 406M

Tez:rvn STable | 94.97 97.80 88.90 88.70 84.70 90.30 737TM

gTBLS | 94.95 97.79 82.89 94.99 86.38 96.37 247TM

Rotowire Wuetal. | 92.31 93.71 87.78 94.41 86.83 88.97 406M

Plaver STable | 93.50 95.10 88.10 94.50 84.50 90.40 737TM

Y gTBLS | 88.68 95.07 83.76 96.02 84.42 95.03 247TM

Table 2: Comparison between prior approaches Wu et al. (2022), STable (Pietruszka et al., 2022), and gTBLS.
Rotowire is a more challenging dataset since tables contain multiple rows and columns when compared to the
datasets in Table 1 which contain multiple rows but only a single column.

4 Experimental Results

4.1 Text-to-Table Datasets

Wau et al. (2022) propose four datasets for the text-
to-table task by inverting datasets created for the
dual problem of generating textual descriptions
from tables. Each dataset consists of textual para-
graphs and paired tabular information summarizing
content in the text.

The E2E dataset (Novikova et al., 2017) con-
cerns restaurant descriptions, requiring summariza-
tion of information into tables with descriptors
like restaurant name, customer rating, and location.
WikiTableText (Bao et al., 2018), sourced from
Wikipedia, consists of natural language descrip-
tions generated from tabular data across various
topics. WikiBio (Lebret et al., 2016) comprises
introductions of individuals from Wikipedia along-
side tabular summaries extracted from the same
page’s information box. Rotowire (Wiseman et al.,
2017) presents NBA game reports and two sepa-
rate tables summarizing team and player statistics.
While E2E, WikiTableText, and WikiBio contain
tables with multiple rows and a single column, Ro-
towire is a more challenging dataset with multi-row,

multi-column tables, necessitating strict adherence
to equal cell counts across rows and columns.

4.2 Procedure

Training: We fine-tune FlanT5-base (Chung et al.,
2022) separately for Table Construction and Table
Content Generation. All experiments fine-tune for
10 epochs with AdamW (Loshchilov and Hutter)
and a learning rate of 5e-5 on 8 Nvidia A40 GPUs.
Evaluation: We report F1 and BERTScore. The
F1 score is the harmonic mean of precision and re-
call of predicted cells compared to the ground truth.
We ignore cells with empty content in this compu-
tation. BERTScore (Zhang* et al., 2020) measures
token similarity between candidate and reference
sentences through contextual embeddings, and cap-
tures semantic similarity. A detailed description of
these metrics is available in (Wu et al., 2022).

4.3 Results

Tables 1 and 2 present a comparative analysis of
the performance of gTBLS with Text-to-Table (Wu
et al., 2022) and STable (Pietruszka et al., 2022)
representing the current state-of-the-art (SoTA). Ta-
ble 1 displays results on the E2E, WikiTableText,



Dataset Header F1 Cell F1 Error Rate
Seq2Seq | gTBLS | Seq2Seq | gTBLS | Seq2Seq | gTBLS
E2E 99.60 99.63 97.94 98.11 0.0% 0.0%
WikiTableText 69.71 71.34 66.61 65.34 0.6% 0.0%
Wikibio 76.36 75.33 63.51 65.75 1.64% 0.0%
Rotowire Team 57.84 88.92 51.18 86.38 30.9% 0.0%
Rotowire Player 26.34 86.22 12.80 84.42 | 57.28% 0.0%

Table 3: Comparison of F1 scores between sequence to sequence baseline and gTBLS

Dataset gTBLS-TC | Ground Truth-TC
E2E 98.11 98.50
WikiTableText 65.34 70.73
Wikibio 65.67 77.06
Rotowire Team 72.27 95.18
Rotowire Player 52.75 88.15

Table 4: Comparison between gTBLS’ Content Genera-
tor using row and column headers generated by gTBLS’
Table Constructor (TC) versus ground-truth (F1 scores)

and WikiBio datasets. Table 2 shows results with
Rotowire Team and Rotowire Player datasets.

For Table Construction (Header Cell) in Table 1,
despite employing nearly 40% fewer parameters
and having half the context length, gTBLS achieves
an F1 score that matches the SoTA for the E2E
dataset and is within 9% and 6.5% (relative) on the
WikiTableText and Wikibio datasets, respectively.
On these same datasets, gTBLS is within 3% on
WikiTableText with BERTScore and achieves par-
ity for the other two.

For Table Content Generation (Non-Header Cell)
in Table 1, gTBLS outperforms the SoTA in all
three datasets in BERTScore (1%, 16%, and 21%
improvements across E2E, WikiTableText, and
Wikibio, respectively) and improves F1 on two
of the three datasets. For context, Text-to-Table’s
BART-large (Lewis et al., 2020) backbone employs
406M parameters and a context length of 1024,
whereas gTBLS uses 247M parameters and a con-
text length of 512.

Table 2 presents results on the Rotowire Team
and Player datasets. The Rotowire datasets present
a more difficult challenge for table generation
than E2E, WikiTableText, and WikiBio due to
the more complex table structure containing mul-
tiple rows and columns. For Table Construction
(Row/Column Header), gTBLS outperforms the
SoTA on BERTScore by 7.1% and 1.6% (relative)
on Rotowire Team and Player, respectively, and

achieves competitive F1 scores (within 5%) of the
SoTA STable (Pietruszka et al., 2022) while us-
ing almost 66% fewer parameters. For Table Con-
tent Generation (Non-Header Cell), gTBLS outper-
forms the SoTA by 5-6% on BERTScore and is
within 2.7% on F1.

In Table 3, we compare gTBLS with a sequence-
to-sequence approach that models table generation
as conditional generation of a flattened table rep-
resentation. The ‘I’ token separates column values
and a <NEWLINE> tag separates rows. We report
the mean of row and column header F1s for the Ro-
towire datasets. gTBLS achieves up to a 2.3% and
3.5% relative improvement in F1 scores for Table
Construction and Table Content Generation tasks,
respectively. Notably, on the Rotowire datasets,
gTBLS excels, consistently generating valid tables
while the sequence-to-sequence approach exhibits
an error rate exceeding 50% on the Rotowire Player
dataset. gTBLS ensures the reliability of all gener-
ated tables through its two-stage process.

Finally, Table 4 evaluates gTBLS’ Content Gen-
erator. The F1 score for Table Content Genera-
tion using ground-truth headers surpasses that with
generated headers, representing the upper bound
assuming ideal header generation.

5 Conclusion

This paper introduces Generative Tables (gTBLS),
a parameter-efficient approach to generate tables
from text. gTBLS uses a two-stage process, first
constructing a tabular structure using a causal lan-
guage modeling objective followed by question
answering to fill in the content. A key advantage
of the two-stage approach is that all tables gener-
ated by gTBLS are valid without requiring post-
processing. gTBLS improves prior approaches by
up to 21% in BERTScore and achieves overall par-
ity in F1 on the table content generation task of
the E2E, WikiTableText, WikiBio, and Rotowire
datasets with 66% fewer parameters.



6 Limitations

The gTBLS method, though effective as a
parameter-efficient approach for table generation
from text, presents unresolved challenges. First,
its performance is limited by the context length
of the utilized models, leading to the omission of
header and cell information from later parts of the
source text. Additionally, its reliance on generating
question-answer pairs from row and column head-
ers restricts it to tables with a direct header-cell
correlation. Complex table structures, like head-
ers spanning multiple rows or columns, remain a
challenge. Moreover, gTBLS is optimized for gen-
erating dense tables, where cell content directly cor-
responds to the text. This study excludes cells with-
out matching text information to align with evalua-
tion frameworks proposed by prior work. However,
future approaches could explore generating sparse
tables, potentially incorporating unknown <UNK>
tokens as needed.
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