Data-Efficient Pipeline for Offline Reinforcement
Learning with Limited Data

Allen Nie* Yannis Flet-Berliac Deon R. Jordan
William Steenbergen Emma Brunskill

Department of Computer Science
Stanford University
*anie@stanford.edu

Abstract

Offline reinforcement learning (RL) can be used to improve future performance by
leveraging historical data. There exist many different algorithms for offline RL, and
it is well recognized that these algorithms, and their hyperparameter settings, can
lead to decision policies with substantially differing performance. This prompts
the need for pipelines that allow practitioners to systematically perform algorithm-
hyperparameter selection for their setting. Critically, in most real-world settings,
this pipeline must only involve the use of historical data. Inspired by statistical
model selection methods for supervised learning, we introduce a task- and method-
agnostic pipeline for automatically training, comparing, selecting, and deploying
the best policy when the provided dataset is limited in size. In particular, our
work highlights the importance of performing multiple data splits to produce more
reliable algorithm-hyperparameter selection. While this is a common approach
in supervised learning, to our knowledge, this has not been discussed in detail
in the offline RL setting. We show it can have substantial impacts when the
dataset is small. Compared to alternate approaches, our proposed pipeline outputs
higher-performing deployed policies from a broad range of offline policy learning
algorithms and across various simulation domains in healthcare, education, and
robotics. This work contributes toward the development of a general-purpose
meta-algorithm for automatic algorithm-hyperparameter selection for offline RL.

1 Introduction

Offline/batch reinforcement learning has the potential to learn better decision policies from existing
real-world datasets on sequences of decisions made and their outcomes. In many of these settings,
tuning methods online is infeasible and deploying a new policy involves time, effort and potential
negative impact. Many of the existing datasets for applications that may benefit from offline RL may
be fairly small in comparison to supervised machine learning. For instance, the MIMIC intensive care
unit dataset on sepsis that is often studied in offline RL has 14k patients (Komorowski et al., 2018),
the number of students frequently interacting with an online course will often range from hundreds to
tens of thousands (Bassen et al., 2020), and the number of demonstrations collected from a human
operator manipulating a robotic arm is often on the order of a few hundred per task (Mandlekar
et al., 2018). In these small data regimes, recent studies (Mandlekar et al., 2021; Levine et al.,
2020) highlight that with limited data, the selection of hyperparameters using the training set is often
challenging. Yet hyperparameter selection also has a substantial influence on the resulting policy’s
performance, particularly when the algorithm leverages deep neural networks.

One popular approach to address this is to learn policies from particular algorithm-hyperparameter
pairs on a training set and then use offline policy selection, which selects the best policy given a
validation set (Thomas et al., 2015a, 2019; Paine et al., 2020; Kumar et al., 2021). However, when

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Data Compare Considers Considers

Common Practices Non-é\r/{srkov Efficient Across Evaluation Training
(re-train) OPL Variation Variation
Policy selection (1 split)
Internal Objective / TD-Error
(Thomas et al., 2015b, 2019) (depends) X x X X
OPE methods
(Komorowski et al. (2018);
Paine et al. (2020) (depends) X v X X
OPE + BCa Val.
(Thomas et al., 2015p) (depends) X v v x
BVFT
(Xie and Jiang, 2021) X X X X X
BVFT + OPE
(Zhang and Jiang, 2021) X X o o X
Q-Function Workflow
(Kumar et al., 2021) X v X X X
Ours: A; selection (multi-split)
Cross-Validation v v v v v
Repeated Random v v v % %

Subsampling

Table 1: A summary of commonly used approaches for choosing a deployment policy from a fixed
offline RL dataset. We define Data Efficient as: the approach assumes the algorithm can be re-trained
on all data points; (depends) as: depends on whether the underlying OPL or OPE methods make
explicit Markov assumption or not.

the dataset is limited in size, this approach can be limited: (a) if the validation set happens to have
no or very few good/high-reward trajectories, then trained policies cannot be properly evaluated;
(b) if the training set has no or very few such trajectories, then no good policy behavior can be
learned through any policy learning algorithm; and (c) using one fixed training dataset is prone to
overfitting the hyperparameters on this one dataset and different hyperparameters could be picked
if the training set changes. One natural solution to this problem is to train on the entire dataset and
compare policy performance on the same dataset, which is often referred to as the internal objective
approach. In Appendix A.1 we conduct a short experiment using D4RL where this approach fails due
to the common issue of Q-value over-estimation (Fujimoto et al., 2019).

There has been much recent interest in providing more robust methods for offline RL. Many rely on
the workflow just discussed, where methods are trained on one dataset and Offline Policy Evaluation
(OPE) is used to do policy selection (Su et al., 2020; Paine et al., 2020; Zhang and Jiang, 2021; Kumar
et al., 2021; Lee et al., 2021; Tang and Wiens, 2021; Miyaguchi, 2022). Our work highlights the
impact of a less studied issue: the challenge caused by data partitioning variance. We first motivate
the need to account for train/validation partition randomness by showing the wide distribution of
OPE scores the same policy can obtain on different subsets of data or the very different performing
policies the same algorithm and hyperparameters can learn depending on different training set
partitions. We also prove a single partition can have a notable failure rate in identifying the best
algorithm-hyperparameter to learn the best policy.

We then introduce a general pipeline for algorithm-hyperparameters (AH) selection and policy de-
ployment that: (a) uses repeated random sub-sampling (RRS) with replacement of the dataset to
perform AH training, (b) uses OPE on the validation set, (c) computes aggregate statistics over the
RRS splits to inform AH selection, and (d) allows to use the selected AH to retrain on the entire dataset
to obtain the deployment policy. Though such repeated splitting is common in supervised learning, its
impact and effect have been little studied in the offline RL framework. Perhaps surprisingly, we show
that our simple pipeline leads to substantial performance improvements in a wide range of popular
benchmark tasks, including DARL (Fu et al., 2020) and Robomimic (Mandlekar et al., 2021).

2 Related work

Offline Policy Learning (OPL). In OPL, the goal is to use historical data from a fixed behavior
policy 7, to learn a reward-maximizing policy in an unknown environment (Markov Decision Process,
defined in Section 3). Most work studying the sampling complexity and efficiency of offline RL (Xie
and Jiang, 2021; Yin et al., 2021) do not depend on the structure of a particular problem, but empirical
performance may vary with some pathological models that are not necessarily Markovian. Shi et al.
(2020) have precisely developed a model selection procedure for testing the Markovian hypothesis
and help explain different performance on different models and MDPs. To address this problem, it is
inherently important to have a fully adaptive characterization in RL because it could save considerable
time in designing domain-specific RL solutions (Zanette and Brunskill, 2019). As an answer to a
variety of problems, OPL is rich with many different methods ranging from policy gradient (Liu et al.,
2019), model-based (Yu et al., 2020; Kidambi et al., 2020), to model-free methods (Siegel et al., 2020;
Fujimoto et al., 2019; Guo et al., 2020; Kumar et al., 2020) each based on different assumptions on
the system dynamics. Practitioners thus dispose of an array of algorithms and corresponding hyperpa-
rameters with no clear consensus on a generally applicable evaluation tool for offline policy selection.

Offline Policy Evaluation (OPE). OPE is concerned with evaluating a target policy’s performance
using only pre-collected historical data generated by other (behavior) policies (Voloshin et al., 2021).
Each of the many OPE estimators has its unique properties, and in this work, we primarily consider
two main variants (Voloshin et al., 2021): Weighted Importance Sampling (WIS) (Precup, 2000) and
Fitted Q-Evaluation (FQE) (Le et al., 2019). Both WIS and FQE are sensitive to the partitioning
of the evaluation dataset. WIS is undefined on trajectories where the target policy does not overlap
with the behavior policy and self-normalizes with respect to other trajectories in the dataset. FQE
learns a Q-function using the evaluation dataset. This makes these estimators very different from
mean-squared errors or accuracy in the supervised learning setting — the choice of partitioning will
first affect the function approximation in the estimator and then cascade down to the scores they
produce.

Offline Policy Selection (OPS). Typically, OPS is approached via OPE, which estimates the expected
return of candidate policies. Zhang and Jiang (2021) address how to improve policy selection in
the offline RL setting. The algorithm builds on the Batch Value-Function Tournament (BVFT) (Xie
and Jiang, 2021) approach to estimating the best value function among a set of candidates using
piece-wise linear value function approximations and selecting the policy with the smallest projected
Bellman error in that space. Previous work on estimator selection for the design of OPE methods
include Su et al. (2020); Miyaguchi (2022) while Kumar et al. (2021); Lee et al. (2021); Tang and
Wiens (2021); Paine et al. (2020) focus on offline hyperparameter tuning. Kumar et al. (2021) give
recommendations on when to stop training a model to avoid overfitting. The approach is exclusively
designed for Q-learning methods with direct access to the internal Q-functions. On the contrary,
our pipeline does policy training, selection, and deployment on any offline RL method, not reliant
on the Markov assumption, and can select the best policy with potentially no access to the internal
approximation functions (black box). We give a brief overview of some OPS approaches in Table 1.

3 Background and Problem Setting

We define a stochastic Decision Process M = (S, A, T, r,~), where S is a set of states; A is a set
of actions; 7' is the transition dynamics (which might depend on the full history); r is the reward
function; and v € (0, 1) is the discount factor. Let 7 = {s;, a;, s}, 7; } £, be the trajectory sampled
from 7 on M. The optimal policy 7 is the one that maximizes the expected discounted return
V(m) = Ernp, [G(7)] where G(7) = 3,2 7' and py is the distribution of 7 under policy 7. For
simplicity, in this paper we assume policies are Markov 7 : S — A, but it is straightforward to
consider policies that are a function of the full history. In an offline RL problem, we take a dataset:
D = {r;}}_,, which can be collected by one or a group of policies which we refer to as the behavior
policy 7, on the decision process M. The goal in offline/batch RL is to learn a decision policy 7 from
a class of policies with the best expected performance V'™ for future use. Let A; to denote an AH pair,
i.e. an offline policy learning algorithm and its hyperparameters and model architecture. An offline
policy estimator takes in a policy 7. and a dataset D, and returns an estimate of its performance:

V . 1II x D — R. In this work, we focus on two popular Offline Policy Evaluation (OPE) estimators:
Importance Sampling (IS) (Precup, 2000) and Fitted Q-Evaluation (FQE) (Le et al., 2019) estimators.
We refer the reader to Voloshin et al. (2021) for a more comprehensive discussion.

True Rewar;:_ﬂsl.:’;ﬁ @ P-MDP AH-63 H . . ‘ : l4+
True Rewardpig%PA P-MDP AH-49 .

True Rewardes 18 ?—EEH MBS-QI AH-23

True Rewarde-4 62 = MBS-Ql AH-13 e[t

True Reward:-gk,al% “ED"‘T BC AH-8 %

BC
True Reward=-13.26 } } -+ BC AH-4 %

-30 -20 -10 0 10 20 30 40 50 =20 -15 -10 -5 0

Policy

OPE Estimates on 10 Partitions True Reward of Policy trained on 10 Partitions
(a) (b)

Figure 1: True performance and evaluation of 6 A; pairs on the Sepsis-POMDP (N=1000) domain. (a)
shows the OPE estimations and (b) shows the variation in terms of true performance. The variations
are due to the different AH pairs of the policies but also to the sensitivity to the training/validation splits.

4 The Challenge of Offline RL A; Selection

An interesting use-case of offline RL is when domain experts have access to an existing dataset
(with potentially only a few hundred trajectories) about sequences of decisions made and respective
outcomes, with the hope of leveraging the dataset to learn a better decision policy for future use.
In this setting, the user may want to consider many options regarding the type of RL algorithm
(model-based, model-free, or direct policy search), hyperparameter, or deep network architecture to
use.

Automated algorithm selection is important because different A4; (different AH pairs) may learn
very diverse policies, each with significantly different performance V. Naturally, one can expect
that various algorithms lead to diverse performance, but using a case-study experiment on a sepsis
simulator (Oberst and Sontag, 2019), we observe in Figure 1(b) that the sensitivity to hyperparameter
selection is also substantial (cf. different average values in box plots for each method). For example,
MBS-QI (Liu et al., 2020) learns policies ranging from over -12 to -3 in their performance, depending
on the hyperparameters chosen.

Precisely, to address hyperparameter tuning, past work often relies on executing the learned policies
in the simulator/real environment. When this is not feasible, as in many real-world applications,
including our sepsis dataset example, where the user may only be able to leverage existing historical
data, we have no choice but to rely on off-policy evaluation. Prior work (Thomas et al., 2015b;
Farajtabar et al., 2018; Thomas et al., 2019; Mandlekar et al., 2021) have suggested doing so using a
hold-out method, after partitioning the dataset into training and validation sets.

Unfortunately, the partitioning of the dataset itself may result in substantial variability in the training
process (Dietterich, 1998). We note that this problem is particularly prominent in offline RL where
high-reward trajectories are sparse and affect both policy learning and policy evaluation. To explore
this hypothesis, we consider the influence of the train/validation partition in the same sepsis domain,
and we evaluate the trained policies using the Weighted Importance Sampling (WIS) (Precup, 2000)
estimator. Figure 1(a) shows the policies have drastically different OPE estimations with sensitivity
to randomness in the dataset partitioning. We can observe the same phenomena in Figure 1(b) with
largely different true performances depending on the dataset splitting for most of the policies .A;. This
is also illustrated on the left sub-figure of Figure 4 where in the case where a single train-validation
split is used, an A; that yields lower-performing policies will often be selected over those that yield
higher-performing policies when deployed.

4.1 Repeated Experiments for Robust Hyperparameter Evaluation in Offline RL

We now demonstrate why it is important to conduct repeated random sub-sampling on the dataset in
offline RL. Consider a finite set of .J offline RL algorithms .A. Let the policy produced by algorithm
A; on training dataset D be 7, its estimated performance on a validation set V7, and its true
(unknown) value be V™. Denote the true best resulting policy as m;« = argmax; V'™ and the
corresponding algorithm 4. Let the best policy picked based on its validation set performance as
Tj. = argmax; V7 and the corresponding algorithm AJA»*.

Theorem 1. There exist stochastic decision processes and datasets such that (i) using a single
train/validation split procedure that selects an algorithm-hyperparameter with the best performance

on the validation dataset will select a suboptimal policy and algorithm with significant finite prob-
ability, P(ﬂ'j* # mj+) > C, with corresponding substantial loss in performance O(Vinaz), and, in
contrast, (ii) selecting the algorithm-hyperparameter with the best average validation performance
across Ny train/validation splits will select the optimal algorithm and policy with probability 1:
imp, o0 P(m5. =7+) — 1.

Proof Sketch. Due to space constraints we defer the proof to Appendix A.3. Briefly, the proof
proceeds by proof by example through constructing a chain-like stochastic decision process and
considers a class of algorithms that optimize over differing horizons (see e.g. Jiang et al. (2015);
Cheng et al. (2021); Mazoure et al. (2021)). The behavior policy is uniformly random meaning
that trajectories with high rewards are sparse. This means there is a notable probability that in a
single partition of the dataset, the resulting train and/or validation set may not contain a high reward
trajectory, making it impossible to identify that a full horizon algorithm, and resulting policy, is
optimal.

In the proof and our experiments, we focus on when the training and validation sets are of equal
size. If we use an uneven split, such as 80/20%, the failure probability can further increase if only a
single partition of the dataset is used. We provide an illustrative example in the Appendix. Note that
Leave-one-out Cross-Validation (LooCV) will also fail in our setting if we employ, as we do in our
algorithm, WIS, because as a biased estimator, WIS will return the observed return of the behavior
policy if averaging over a single trajectory, independent of the target policy to be evaluated. We
explain this further in Appendix A.11.

5 SSR: Repeated Random Sampling for A; Selection and Deployment

In this paper, we are interested in the following problem: If offline RL training and evaluation are
very sensitive to the partitioning of the dataset, especially in small data regimes, how can we reliably
produce a final policy that we are confident is better than others and can be reliably deployed in
the real-world?

Instead of considering the sensitivity to data partition as an inherent obstacle for offline policy
selection, we view this as statistics to leverage for .A; selection. We propose a general pipeline: Split
Select Retrain (SSR) (of which we provide a pseudo-code in Algorithm 1, Appendix A.4) to reliably
optimize for a good deployed policy given only: an offline dataset, an input set of AH pairs and an
off-policy evaluation (OPE) estimator. This deployment approach leverages the random variations
created by dataset partitioning to select algorithms that perform better on average using a robust
hyperparameter evaluation approach which we develop below.

First, we split and create different partitions of the input dataset. For each train/validation split,
each algorithm-hyperparameter (AH) is trained on the training set and evaluated using the input
OPE method to yield an estimated value on the validation set. These estimated evaluations are then
averaged, and the best AH pair (A*) is selected as the one with the highest average score. Now the
last step of the SSR pipeline is to re-use the entire dataset to train one policy 7* using .A*.

Repeated Random Sub-sampling (RRS). As Theorem 1 suggests, one should ensure a sufficient
amount of trajectories in the evaluation partition to lower the failure rate C. We propose to create RRS
train-validation partitions. This approach has many names in the statistical model selection literature,
such as Predictive Sample Reuse Method (Geisser, 1975), Repeated Learning-Test Method (Burman,
1989) or Monte-Carlo Cross-Validation (Dubitzky et al., 2007). It has also been referred to as
Repeated Data Splitting (Chernozhukov et al., 2018) in the heterogeneous treatment effect literature.
We randomly select trajectories in D and put them into into two parts: ~ RU3in
and RValid, We repeat this splitting process K times to generate paired datasets:
(Rirain pyalid) (pirain - pyalidy " (Rirain " pyalid) “We compute the generalization performance
estimate as follows:

1

Gans, = 7 D [VIARE™); R m
k

M=

1

A key advantage of overlap partitioning is that it maintains the size of the validation dataset as K
increases. This might be favorable since OPE estimates are highly dependent on the state-action
coverage of the validation dataset — the more data in the validation dataset, the better OPE estimators
can evaluate a policy’s performance. As K — oo, RRS approaches the leave-p-out cross-validation

(CV), where p denotes the number of examples in the validation dataset. Since there are (Z) possible

selections of p data points out of n in our dataset, it is infeasible to use exact leave-p-out CV when
p > 2, but a finite K can still offer many advantages. Indeed, Krzanowski and Hand (1997) point
out that leave-p-out estimators will have lower variance compared to leave-one-out estimators, which
is what the more commonly used M-fold cross-validation method converges to when M = n — 1.
We discuss more in Appendix A.2.

6 Experiments

In this section, we answer the following questions: (a) how does the pipeline SSR-RRS compare to
other methods? (b) does the proposed pipeline for .4; selection and policy deployment allow us to
generate the best policy trained on the whole dataset? (c) does re-training on the whole dataset (data
efficiency) generate better policies than policies trained on half of the dataset when A; is selected
by the pipeline? In addition, we conduct two ablation studies to answer to: what number of splits
should we use for SSR-RRS, and what is the impact of dataset size on the pipeline results?

6.1 Task/Domains

The experimental evaluation involves a variety of real-world and simulated domains, ranging from
tabular settings to continuous control robotics environments. We evaluate the performance of SSR in
selecting the best algorithm regardless of task domains and assumptions on task structure. We conduct
experiments on eight datasets (Figure 2) from five domains (details in Appendix A.14), which we give
a short description below, and use as many as 540 candidate AH pairs for the Sepsis POMDP domain.

()

@ 5

Intravenous

Fluid Vasopressor

Figure 2: Illustrations from left to right of the D4RL, Robomimic, TutorBot and Sepsis domains.

Sepsis. The first domain is based on the simulator and work by Oberst and Sontag (2019) and revolves
around treating sepsis patients. The goal of the policy for this simulator is to discharge patients
from the hospital. In this domain, we experiment on two tasks: Sepsis-MDP and Sepsis-POMDP, a
POMDP version of Sepsis-MDP.

TutorBot. The second domain includes a TutorBot simulator that is designed to support 3-5th grade
elementary school children in understanding the concept of volume and engaging them while doing
so. An online study was conducted using a policy-gradient-based RL agent, which interacted with
about 200 students. We took the observations from this online study and built a simulator that reflects
student learning progression, combined with some domain knowledge.

Robomimic. Robomimic (Mandlekar et al., 2021) is composed of various continuous control
robotics environments with suboptimal human data. We use the Can-Paired and Transport dataset
composed of 200 mixed-quality human demonstrations. Mandlekar et al. (2021) attempted to use the
RL objective loss on a 20% split validation set to select the best AH pair, but reported that the selected
AH did not perform well in the simulator, which makes this task an interesting testbed for our pipeline.

D4RL. D4RL (Fu et al., 2020) is an offline RL standardized benchmark designed and commonly used
to evaluate the progress of offline RL algorithms. We use 3 datasets (200k samples each) with different
qualities from the Hopper task: hopper-random from a randomly initialized policy, hopper-medium
from a policy trained to approximately 1/3 the performance of a policy trained to completion with
SAC ("expert"), and hopper-medium-expert from a 50-50 split of medium and expert data.

6.2 Baselines

One-Split OPE. The simplest method to train and verify an algorithm’s performance without access
to any simulator is to split the data into a train Dy,,;, and valid set Dy,1iq. All policies are trained

) _ imi Robomimic
Sepsis-POMDP N=1000 Sepsis-POMDP Sepsis-MDp ~ Robomimic - EF0m M
ows o Ne1000 N=200 Can-Paired P
L 8 : N=200 N=200
5 6.57 ° o8
R Nested CV 5 03
E 0.5
-4 OPE + 4.30 -4 04
_5 4 Bootstrapped Val. C.ross L 6 o4
g f_"ﬁ Validation 2.20 2.40 % s 03
g 2 1.70 BVFTOK;;H ; . 03
5 0.36 ~E e o
E_J__ O - - 0.2
5 ! ! i, 01 01
E -2 =L il -16
4 <-3 <-3 50% 100% 50% 100% 0750 100% *% 0% 100%
T Qo &L 0o e
CHERNRY < O
FE R P AT AT P T R b
&’%Qé’@ TV CCLFE S P ®
o)

(a)

Figure 3: (a) We first compare our proposed pipeline to various other policy selection approaches in
the Sepsis POMDP task. Our approach SSR-RRS 5-split consistently obtains policies that on average
perform close to the optimal policy, significantly outperforming other approaches. (b) We investigate
the importance of re-training in the small (N=200) to medium (N=1000) data regime. We show the true
reward obtained by all policies from all AH pairs either trained on 50% of the data or 100% of the data.
95% confidence intervals are depicted as error bars. Most policies achieve higher rewards when trained
on more data, even more so when the dataset is small or when tasks are more difficult (Robomimic).

on the same training set and evaluated on the same valid set. As we explained before, this method has
the high potential of overfitting the chosen hyperparameter for one data partition — it might pick the
best policy, but does not guarantee we can use the same hyperparameter to re-train on the full dataset.

OPE on Bootstrapped Val. Bootstrapping is a popular re-sampling technique that estimates pre-
diction error in supervised learning models (Efron, 1983, 1986). The idea of using bootstrapping
for OPE estimate is first utilized in HCOPE (Thomas et al., 2015b). Compared to the one-split
method and the SSR pipeline, bootstrapping trains all policies on the same training dataset, and only
considers variations in the validation set by creating bootstrapped samples. We refer to the considered
Bias-corrected accelerated (BCa) bootstrap method as BCa in the experiments.

Cross-Validation (CV). One other natural alternative of repeated experiment validation is the popular
M-fold Cross-Validation method (Stone, 1974). M-fold CV constructs a non-overlapping set of
trajectories from the original dataset. For example, a 5-fold CV will train a policy on 80% of data
and evaluate the policy on 20% of data, as it divides the dataset into 5 non-overlapping partitions.
However, as we increase the number of splits M, which allows us to train/test our algorithms under
more data split variations, each non-overlapping set D,,, becomes smaller. When M = n — 1, M-fold
CV becomes leave-one-out CV (LooCV). In this extreme case, many OPE estimators will not work
properly, as we have shown in Appendix A.3. We further investigate a variant of M-fold CV called
Nested M-fold CV (Nested CV), which repeats the M-fold non-overlapping partitioning K times.
This procedure is computationally very expensive. Considering the fairness of comparison and
computational efficiency, we only evaluate K x 2-fold CV.

OPE with BVFT. Batch Value Function Tournament is the closest competitor to our method, which
is a meta-algorithm for hyperparameter-free policy selection (Xie and Jiang, 2021; Zhang and Jiang,
2021). For a set of Q-value functions, BVFT makes pairwise comparisons of each (tournament-style)
to select the best out of the entire set based on the BVFT-Loss. Compared to our method, BVFT
incurs O(J?) comparison given .J AH pairs, practically infeasible for large .J. The original BVFT can
only compare Q-functions, therefore only usable with OPL that directly learns Q-functions. Zhang
and Jiang (2021) offers an extension to BVFT by using BVFT to compare between FQEs, therefore
allowing BVFT to be OPL-agnostic. We adopt the two strategies recommended by the paper. Given J
AH pairs and B FQEs, strategy 1 compares J x B FQE’s Q-functions jointly (7 x FQE) and strategy
2 compares B FQEs within each AH and pick the best FQE as the estimate of the AH’s value estimate
(m + FQE). We discuss more in Appendix A.6 (calculations) and A.7 (time complexity).

6.3 Training and Evaluation

Offline Policy Learning. In the following, we outline a variety of Offline RL algorithms used in the
evaluation of the SSR pipeline to demonstrate the generality of our approach and that it can reliably

Internal

I Algorithms .
Category gorithms Q-function
. . BC (Pomerleau, 1991)
Imitation Learning b ~pNN (Mandlekar et al., 2018) X
. BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
Conservative Model-Free Q (Fuj). CQL () v
IRIS (Mandlekar et al., 2020)
Policy Gradient POIS (Metelli et al., 2018), BC+POIS (ours), BC+mini-POIS (ours) X
Offline Model-Based MOPO (Yu et al., 2020), P-MDP (ours) v
Table 2: List of AH we are comparing in our experiments.
One-Split OPE SSR RRS-2 SSR RRS-5
beminipg_exp_18- W ™} 100 10 #} NoDiff
bcminil exp 9- W L | | e T] *
Pg_exp_t +
bcq_exp_17 [| 80 }
0 *
bcq_exp_23- | - | | - n +
mbsqi_exp_29 60 g
mbsqi_exp_5 - -0 *
mbsqi_exp_71- - : f, e -} SSRRRS-5 (50% Data)
mbsqi_exp_80- | |] | 2 2 D“" M | SSRRRS-2(50% Data)
mdp_exp_18- Picked OPE with One Split (50% Data)
mdp,_exp_39 20 Policy 4 SSRRRS-5(100% Data)
-30 * SSR RRS-2 (100% Data)
mdp_exp_48- » OPE with One Split (100% Data)
T epietisuicisns mimegiatieatit memgmadieasy 0 el T
" True Performance *" " Jrue Performance """ rue Performance N=200 N=1000 N=5000

Low performing
policies

High performing
policies

(a) (b)

Figure 4: (a) We show the effect of choosing K (the number of train/valid splits) for SSR-RRS.
We ablate K and run the simulation 500 times. The heatmaps shows the frequency at which each
policy is chosen by our method and its final performance in the environment. In this experiment,
SSR-RRS chooses over 540 AH pairs. As we can see, when the number of splits K is larger, SSR-RRS
consistently pick better policies. (b) In the Sepsis-POMDP domain, we show that as the number of
trajectories (IV) in the offline dataset increases, data partitioning becomes less important. Though
RRS still outperforms the 1-split policy selection.

produce the optimal final policy using the selected AH pair. This marks a departure from workflows
designed for specific algorithms, such as Kumar et al. (2021). We experiment with popular offline RL
methods (see Table 2 and we provide algorithmic and hyperparameter details in Table A.2). Offline
Policy Evaluation. We use WIS estimators for the tabular and discrete action domains: Sepsis and
TutorBot. We use FQE for continuous action domains: Robomimic and D4RL. For each task, with a
given dataset, we use the splitting procedure described in Section 5 to generate the partitioning. We
describe how we compute the results for each figure in Appendix A.13.

7 Results

A; Selection Comparison. In Figure 3(a), we compare five approaches (One-Split OPE, BCa,
BVFT-FQE, CV, and SSR-RRS) on the Sepsis-POMDP domain with 1000 patients. For each approach,
we compute a score per AH pair, and select the best algorithm according to each. For fairness in
comparison, all selected .A; are re-trained on the full dataset and we report the final performance
in the real environment. As expected, One-Split OPE performed the worst. Surprisingly, using
the lower bound of bootstrapped (BCa (LB)) confidence interval also does not allow to pick good
policies, LB being perhaps too conservative. We see that CV 2-fold and CV 5-fold do not perform
well either. CV 2-fold does not allow enough repetition and CV 5-fold makes the validation set size
too small. We observe clearly that SSR-RRS 5-split performs the best and selected policies that are
on average very close to the optimal policy’s performance. BVFT-FQE relies on FQE, which is a
misspecified model on the Sepsis domain and difficult to optimize given the small dataset size; hence
it does not select good policies in Sepsis. However, in Robomimic Can-Paired and D4RL Hopper,
BVFT-FQE is able to pick good policies, albeit not significantly better or worse than other methods,
and still worse than SSR-RRS 5-split in the mixed (more realistic) “medium-expert” dataset. We show
more analysis of BVFT compared to our method in the Appendix. Table 3 aggregates the results
for all the considered domains in our study. Our approach SSR-RRS 5-split is distinctly able to more
consistently select policies that, once deployed, perform close to the optimal policy across all tasks.

Re-trained BVFT-FQE BVFT-FQE SSR SSR Optimal

onfull dataset ~7wxFQE 7+FQE V2 €V RRS2 RRS5 Policy

Robomimic:
Can-Paired 0.65 0.71 0.72 0.72 0.71 0.73 0.75
Transport 0.21 0.0 0.42 0.42 0.62 0.70 0.74
D4RL (Hopper):
random 321.75 317.72 325.37 325.37 324.92 325.37 325.37
medium 934.71 1227.81 1227.81 130453 1296.87 1304.54 1392.93
medium-expert 2677.93 2677.93 2530.04 2530.04 3481.34 3657.80 3657.80
Sepsis:

MDP (n=200) — -19.32 -10.26 -20.32 -13.01 -7.85 -1.94
POMDP (n=1000) — -1.92 0.74 -1.92 2.40 6.75 7.86
TutorBot:

POMDP (n=200) — — 1.34 1.19 1.30 1.38 1.43

Table 3: Comparison of the performance obtained by a policy deployed using the SSR pipeline vs.
using 1-split policy selection approaches on a wide range of application domains. Cells = average
true return. We note that (7 x FQE) is very computationally expensive when we search through a
large AH space (in Sepsis and TutorBot), therefore we exclude them.

The Benefits of Re-training Policies Selected with SSR. In Figure 3(b), we plot the true reward of
a selected policy A; when only trained on 50% of the dataset (the training set) compared to when
trained on 100% of the dataset. As expected, in the small data regime, every single trajectory matters.
Policies trained on the full dataset significantly outperform policies trained only on half of it. This
experiment provides strong evidence in favor of AH selection (done with RRS on the full dataset) over
policy selection (done on the training set) in offline RL.

The Impact of Number of Repeats for SSR-RRS. The proposed pipeline SSR-RRS has a hyperparam-
eter K for the number of repeated data splitting. In Figure 4(a), we show the true performance of the
policy that is being selected by SSR-RRS with K = 1, 2, 5 by running 500 simulations with heatmaps
on the frequency of each policy is selected. We observe that when K = 1 (equivalent to the One-Split
OPE method), policies are picked quite uniformly; many of which are performing poorly. When
K =5, higher-performing policies are selected much more frequently. From Table 3, we conclude
that ' = 5 generally works well across various domains. Naturally, the number of split K will be
chosen in line with the computing budget available; K = 5 appears to be a reasonable choice.

The Impact of Dataset Size. Finally, we investigate to which extent the proposed pipeline is nec-
essary when the dataset size is sufficiently large. We use the Sepsis-POMDP domain with 200, 1000,
and 5000 patients. We show the best policies that are most frequently selected by our approach in Fig-
ure 4(b). Unsurprisingly, policies trained on larger datasets perform better. In the 200-patient dataset,
having SSR-RRS S-split is crucial in picking the best policy, as most policies perform quite poorly.
The gap between different approaches becomes smaller with 1000 patients, and even smaller when
there are 5000 patients in the dataset. However, it is worth noting that even in the large dataset regime
(N=5000), SSR-RRS still outperforms the One-Split OPE method in selecting the best algorithm.

Additional Analysis. Our method SSR-RRS can also be used to select hyperparameters for a single
algorithm, as we demonstrate in Appendix A.9. One might also wonder how sensitive is SSR-
RRS pipeline to the choice of OPE method used inside the pipeline. OPE methods are known to
significantly vary in accuracy for different domains, and unsurprisingly, using a reasonable OPE
method for the domain is important (see Appendix A.8). Note that the OPE estimators we use in our
results are very popular ones, and it is possible to use standard approaches, though additional benefits
may come from using even better OPE methods. Finally, related to this question, one might wonder
if particular OPE methods might be biased towards certain OPL algorithms which make similar
assumptions (such as assuming a Markov structure): interestingly in preliminary experiments, FQE
estimators did not seem to give FQI algorithms higher performance estimations (see Appendix A.10).

8 Discussion and Conclusion

We presented SSR, a pipeline for training, comparing, selecting and deploying offline RL policies in
a small data regime. The approach performs automated AH selection with a robust hyperparameter

evaluation process using repeated random sub-sampling. SSR allows to consistently and reliably
deploy best-performing policies thanks to jointly avoiding overfitting on a single dataset split and
being data efficient in re-using the whole dataset for final training. We prove that a single split has a
high failure rate of discovering the optimal AH because of reward sparsity. We have demonstrated its
strong empirical performance across multiple and various challenging domains, including real-world
applications where AH tuning cannot be performed online.

There exist many interesting areas for future work. The proposed offline RL pipeline assumes the
user/practitioner has selected a particular OPE method. OPE is an important subarea of its own
and different approaches have different bias/variance tradeoffs. Recent work on automated model
selection algorithms for OPE (Su et al., 2020; Lee et al., 2021) are a promising approach for producing
good internal estimators. A second issue is that while our approach aims to produce a high-performing
policy, it does not also produce an accurate estimate of this policy since the entire dataset is used at
the end for training. An interesting issue is whether cross-splitting (Chernozhukov et al., 2016) or
other methods could be used to compute reliable estimators as well as perform policy optimization.

9 Acknowledgment

Research reported in this paper was supported in part by a Hoffman-Yee grant, NSF grant #2112926
and the DEVCOM Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196
(ARL IoBT CRA). The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S.Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein. We
would like to thank Jonathan N. Lee, Henry Zhu, Matthew Jorke, Tong Mu, Scott Fleming, and Eric
Zelikman for discussions.

References

Bassen, J., Balaji, B., Schaarschmidt, M., Thille, C., Painter, J., Zimmaro, D., Games, A., Fast, E.,
and Mitchell, J. C. (2020). Reinforcement learning for the adaptive scheduling of educational
activities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pages 1-12.

Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the
repeated learning-testing methods. Biometrika, 76(3):503-514.

Cheng, C.-A., Kolobov, A., and Swaminathan, A. (2021). Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J.
(2016). Double/debiased machine learning for treatment and causal parameters. arXiv preprint
arXiv:1608.00060.

Chernozhukov, V., Demirer, M., Duflo, E., and Fernandez-Val, 1. (2018). Generic machine learning
inference on heterogeneous treatment effects in randomized experiments, with an application to
immunization in india. Technical report, National Bureau of Economic Research.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning
algorithms. Neural computation, 10(7):1895-1923.

Dubitzky, W., Granzow, M., and Berrar, D. P. (2007). Fundamentals of data mining in genomics and
proteomics. Springer Science & Business Media.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation.
Journal of the American statistical association, 78(382):316-331.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American
statistical Association, 81(394):461-470.

Farajtabar, M., Chow, Y., and Ghavamzadeh, M. (2018). More robust doubly robust off-policy
evaluation. In International Conference on Machine Learning, pages 1447-1456. PMLR.

10

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052-2062. PMLR.

Futoma, J., Hughes, M. C., and Doshi-Velez, F. (2020). Popcorn: Partially observed prediction
constrained reinforcement learning. arXiv preprint arXiv:2001.04032.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American
statistical Association, 70(350):320-328.

Gilpin, A. R. (1993). Table for conversion of kendall’s tau to spearman’s rho within the context of
measures of magnitude of effect for meta-analysis. Educational and psychological measurement,
53(1):87-92.

Guo, Y., Feng, S., Le Roux, N., Chi, E., Lee, H., and Chen, M. (2020). Batch reinforcement learning
through continuation method. In International Conference on Learning Representations.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of effective planning horizon
on model accuracy. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 1181-1189. Citeseer.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. (2020). Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810-21823.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., and Faisal, A. A. (2018). The artificial
intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature
medicine, 24(11):1716-1720.

Krzanowski, W. and Hand, D. (1997). Assessing error rate estimators: the leave-one-out method
reconsidered. Australian Journal of Statistics, 39(1):35-46.

Kumar, A., Singh, A., Tian, S., Finn, C., and Levine, S. (2021). A workflow for offline model-free
robotic reinforcement learning. In 5th Annual Conference on Robot Learning.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191.

Le, H., Voloshin, C., and Yue, Y. (2019). Batch policy learning under constraints. In International
Conference on Machine Learning, pages 3703—3712. PMLR.

Lee, J. N., Tucker, G., Nachum, O., and Dai, B. (2021). Model selection in batch policy optimization.
arXiv preprint arXiv:2112.12320.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Liao, P., Greenewald, K., Klasnja, P., and Murphy, S. (2020). Personalized heartsteps: A reinforce-
ment learning algorithm for optimizing physical activity. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(1):1-22.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2019). Off-policy policy gradient with
stationary distribution correction. In Globerson, A. and Silva, R., editors, Proceedings of the
Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July
22-25, 2019, volume 115 of Proceedings of Machine Learning Research, pages 1180-1190. AUAI
Press.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2020). Provably good batch reinforcement
learning without great exploration. Advances in neural information processing systems, 33.

Mandlekar, A., Ramos, F., Boots, B., Savarese, S., Fei-Fei, L., Garg, A., and Fox, D. (2020).
Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 4414-4420. IEEE.

11

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu,
Y., and Martin-Martin, R. (2021). What matters in learning from offline human demonstrations for
robot manipulation. In 5th Annual Conference on Robot Learning.

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M., Tung, A., Gao, J., Emmons, J., Gupta, A.,
Orbay, E., et al. (2018). Roboturk: A crowdsourcing platform for robotic skill learning through
imitation. In Conference on Robot Learning, pages 879-893. PMLR.

Mazoure, B., Mineiro, P., Srinath, P., Sedeh, R. S., Precup, D., and Swaminathan, A. (2021).
Improving long-term metrics in recommendation systems using short-horizon reinforcement
learning. arXiv preprint arXiv:2106.00589.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. (2018). Policy optimization via importance
sampling. Advances in Neural Information Processing Systems, 31.

Miyaguchi, K. (2022). A theoretical framework of almost hyperparameter-free hyperparameter
selection methods for offline policy evaluation. arXiv preprint arXiv:2201.02300.

Oberst, M. and Sontag, D. (2019). Counterfactual off-policy evaluation with gumbel-max structural
causal models. In International Conference on Machine Learning, pages 4881-4890. PMLR.

Owen, A. B. (2013). Monte carlo theory, methods and examples.

Paine, T. L., Paduraru, C., Michi, A., Gulcehre, C., Zolna, K., Novikov, A., Wang, Z., and de Fre-
itas, N. (2020). Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88-97.

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80.

Shi, C., Wan, R., Song, R., Lu, W., and Leng, L. (2020). Does the markov decision process fit the
data: Testing for the markov property in sequential decision making. In International Conference
on Machine Learning, pages 8807-8817. PMLR.

Siegel, N., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T., Hafner,
R., Heess, N., and Riedmiller, M. (2020). Keep doing what worked: Behavior modelling priors for
offline reinforcement learning. In International Conference on Learning Representations.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodological), 36(2):111-133.

Su, Y., Srinath, P., and Krishnamurthy, A. (2020). Adaptive estimator selection for off-policy
evaluation. In International Conference on Machine Learning, pages 9196-9205. PMLR.

Tang, S. and Wiens, J. (2021). Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. In Machine Learning for Healthcare Conference, pages 2-35.
PMLR.

Thomas, P. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 2139-2148. PMLR.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015a). High confidence policy improvement.
In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 2380-2388, Lille,
France. PMLR.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015b). High confidence policy improvement.
In International Conference on Machine Learning, pages 2380-2388. PMLR.

Thomas, P. S., Castro da Silva, B., Barto, A. G., Giguere, S., Brun, Y., and Brunskill, E. (2019).
Preventing undesirable behavior of intelligent machines. Science, 366(6468):999-1004.

12

Voloshin, C., Le, H. M., Jiang, N., and Yue, Y. (2021). Empirical study of off-policy policy evaluation
for reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Xie, T. and Jiang, N. (2021). Batch value-function approximation with only realizability. In
International Conference on Machine Learning, pages 11404-11413. PMLR.

Yin, M., Bai, Y., and Wang, Y.-X. (2021). Near-optimal offline reinforcement learning via double
variance reduction. Advances in neural information processing systems, 34.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based offline policy optimization. Advances in Neural Information Processing Systems,
33:14129-14142.

Zanette, A. and Brunskill, E. (2019). Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304-7312. PMLR.

Zhang, S. and Jiang, N. (2021). Towards hyperparameter-free policy selection for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 34.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7 and Section 8.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.1
and Section A.3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 4.1 and
Section A.3.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mentary Material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sections 6, A.14, A.16, A.17, A.18 and A.19

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A] Open-source

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

