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Abstract

Simultaneous gradient updates are widely used in multi-agent learning. However, this
method introduces non-stationarity from the perspective of each agent due to the co-
evolution of other agents’ policies. To address this issue, we consider best-response dy-
namics, where only one agent updates its policy at a time. We theoretically show that
with best-response dynamics, convergence results from single-agent reinforcement learning
extend to Markov potential games (MPGs). Moreover, building on the concepts of price of
anarchy and smoothness from normal-form games, we aim to find policies in MPGs that
achieve optimal cooperation and provide the first known suboptimality guarantees for policy
gradient variants under the best-response dynamics. Empirical results demonstrate that the
best-response dynamics significantly improves cooperation across policy gradient variants in
classic and more complex games.

1 INTRODUCTION

The framework of multi-agent sequential decision making is often formulated as (variants of) Markov games
(MGs) (Shapley, 1953). This paper focuses on Markov potential games (MPGs) (Macua et al., 2018; Leonar-
dos et al., 2021; Zhang et al., 2021), a subclass of MGs that is extended from the notion of (normal-form)
potential game (Monderer & Shapley, 1996; Roughgarden, 2016) and incorporates as an important special
case the fully cooperative MGs where all agents share the same reward, making them applicable to real-world
scenarios like multi-robot coordination (Corke et al., 2005), traffic control (Chu et al., 2019), and power grid
management (Callaway & Hiskens, 2010).

Nash policy is perhaps the most well-known MG solution concept, where every agent selects its actions
independently of any other given the state and reaches an equilibrium by playing a best response to all
others. MPGs often model problems where outcomes of high social welfare, measured by the sum of all
agents’ values, are most desirable. In these scenarios, the solution concept of the Nash policy is inadequate
as it alone does not characterize the quality of agents’ cooperation at equilibrium. The goal of this paper is
to find Nash policies in MPGs that are near-optimal, where the optimality notion is measured by the sum
of all agents’ values.

As MPG is structured by a potential function, where the change in any agent’s value caused by its unilateral
policy change can be quantified by the change in the potential, prior work has been focused on invoking
Simultaneous Gradient Ascent (SGA) to find a Nash policy, where all agents concurrently update their
individual policy parameter in the direction of the gradient on the potential (Monderer & Shapley, 1996;
Roughgarden, 2016; Balduzzi et al., 2018). It is unclear, however, whether the found Nash is likely to
be near-optimal or not. In this paper, we theoretically and empirically compare SGA with an alternative
dynamics, known as the Best-Response (BR) dynamics, and particularly focus on the unilateral BR variant
where only one agent updates its policy at a time to (approximately) optimize its value while fixing all other
agents’ policies. Therefore, Nash found by unilateral BR is likely to be drastically different from those by
SGA. Figure 1 illustrates the benefit of BR over SGA in a matrix game, where, starting from the same
initialization, BR converges to the better Nash while SGA to the worse. Interestingly, our experiments
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Figure 1: Left: Payoff matrix for a two-agent matrix game with binary actions {U, D} and {L, R}. Two
Nash equilibria exist: 1) optimal (U, L), and 2) suboptimal (D, R). Right: Comparison of simultaneous vs.
best-response updates.

in Section 7 will show that BR converges to the better Nash more often than SGA starting from random
initializations. This motivates us to carefully compare the two dynamics.

Specifically, our claims and contributions are:

1) Section 4 develops a unilateral BR dynamics for MPGs where one agent is selected to approximately
compute its best response. This approach contrasts with existing BR variants that rely on immediate
optimal responses, which are impractical to implement.

2) Section 5.1 establishes a convergence rate of unilateral BR to Nash when the agent that would maximally
improve the potential is selected, known as the maximum-gain criterion. This convergence rate is first for BR
to match that of SGA. Moreover, the section establishes asymptotical convergence guarantees of unilateral
BR for both the maximum-gain and the more practical round-robin agent-selection criteria.

3) Section 5.2 considers a MPG smoothness condition by which near-Nash policies are also near-optimal,
leading to Theorem 3 that confirms maximum-gain BR matches SGA in terms of both Nash and optimality
guarantees at convergence and Theorem 4 that suggests the advantage of BR over alternatives like SGA for
deriving near-optimal policies during the updates.

4) Section 6 incorporates unilateral BR into decentralized deep multi-agent reinforcement learning (MARL)
algorithms, where all restrictive assumptions required in the theoretical results are relaxed. Specifically, for
practical implementation, maximum-gain is replaced with the round-robin criterion. Experiments in Section
7 show the effectiveness of the BR-based methods over their SGA counterparts in improving cooperation for
a wide range of problems, from stateless matrix games to stateful and high-dimensional ones.

2 RELATED WORK

Single-agent policy gradient convergence. Agarwal et al. (2019) first established the policy gradient
convergence to global optima in the single-agent setting under tabular softmax parameterization, specifically,
asymptotic convergence of policy gradient ascent, finite-time convergence with log barrier regularization, and
finite-time convergence with natural policy gradient. Mei et al. (2020) later established finite-time conver-
gence of (regularized) policy gradient ascent under tabular softmax parameterization, with a convergence
rate depending on a problem-specific variable. This problem-specific variable in some sense is necessary, as
Li et al. (2021) show that the softmax policy gradient can take exponential time to converge.

Policy gradient convergence in MPGs. Extending Agarwal et al. (2019) from the single-agent setting,
Leonardos et al. (2021) and Zhang et al. (2021) both established finite-time convergence of projected gradient
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ascent under tabular direct parameterization to near-Nash policies in MPGs. Fox et al. (2022) established
the asymptotic convergence of the natural policy gradient to Nash policies in MPGs. Zhang et al. (2022)
established finite-time convergence of gradient ascent under tabular softmax parameterization to near-Nash
policies in MPGs. Sun et al. (2023) has shown that the policy gradient method converges at a rate O(1/ϵ),
which is the same as the one in the single-agent setting. However, these prior works do not quantify the
performance of the convergent Nash policies.

Near-optimality bounds in normal-form games. Mirrokni & Vetta (2004) initiated the discussion on
the importance of suboptimality, known as price of anarchy (PoA), beyond Nash equilibria. Roughgarden
(2015) defined the smoothness of (normal-form) games and then established the first PoA bounds for near-
Nash equilibria in smooth games. Roughgarden (2015) provided PoA bounds for the maximum-gain best-
response dynamics in smooth (normal-form) potential games.

BR dynamics. Best-response (BR) dynamics is a foundational topic extensively studied in game theory
(Gilboa & Matsui, 1991; Matsui, 1992; Hofbauer & Sigmund, 2003; Marden, 2012; Cortés & Martínez, 2015;
Swenson et al., 2018). These studies focus on BR dynamics with immediate optimal responses, where agents
concurrently compute optimal strategies assuming fixed policies for others. While this approach offers strong
theoretical guarantees, it faces two key challenges: 1) non-stationarity due to simultaneous updates, and 2)
the high computational cost of solving single-agent RL problems (where each agent treats others as part of
the environment) to compute optimal responses. In this work, we propose a promising but underexplored
approach that addresses these challenges by updating one agent at a time to avoid non-stationarity and
approximating the optimal response through a fixed number of gradient-based updates, thereby reducing
computational overhead. This method is also simpler to implement in deep MARL compared to the existing
prior works on teammate modeling (Tian et al., 2019; Jaques et al., 2019; Papoudakis et al., 2021; Yuan et al.,
2022; Wang et al., 2022; Aghajohari et al., 2024; Jiang et al., 2024), which addressed the non-stationarity by
estimating other agents’ actions and computing BR-related statistics, such as critic values, for concurrent
updates. However, these approaches often suffer from estimation errors which exacerbate non-stationarity.
In contrast, our alternative updates one agent at a time based on simple criteria, such as cyclic order,
turning each update into a single-agent problem without requiring estimation of others’ behaviors. There
are additional related works on BR in potential games by Swenson et al. (2018); Marden (2012); Maheshwari
et al. (2022), with a detailed comparison with ours in the Appendix B.

3 PRELIMINARIES

We consider a Markov game (MG) ⟨N , S, A, P, r⃗, γ, µ⟩ with N agents indexed by i ∈ N = {1, . . . , N},
state space S, action space A = A1 × · · · × AN , transition function P : S × A → ∆(S), reward functions
r⃗ = {ri}i∈N with ri : S ×A → [0, ∞) being nonnegative for each i ∈ N , discount factor γ ∈ [0, 1), and initial
state distribution µ ∈ ∆(S). Our theoretical results in Sections 4 and 5 assume full observability, i.e., each
agent observes the state s ∈ S, and this assumption will be relaxed for our practical algorithm and empirical
study in Sections 6 and 7. Under full observability, we consider product policies, π : S → ×i∈N ∆(Ai),
that is factored as the product of individual policies πi : S → ∆(Ai), π(a|s) =

∏
i∈N πi(ai|s). Define the

discounted return for agent i from time step t as Gi
t =

∑∞
l=0 γlri

t+l, where ri
t := ri(st, at) is the reward at

time step t for agent i. For agent i, product policy π = (π1, . . . , πN ) induces a value function defined as
V i

π(st) = Est+1:∞,at:∞∼π[Gi
t|st], action-value function Qi

π(st, at) = Est+1:∞,at+1:∞∼π[Gi
t|st, at], and advantage

function Ai
π(st, at) = Qi

π(st, at) − V i
π(st). Following policy π, agent i’s cumulative reward starting from

s0 ∼ µ is denoted as V i
π(µ) := Es0∼µ[V i

π(s0)]. It will be useful to define the (unnormalized) discounted state
visitation measure by following policy π after starting in s0 ∼ µ: dπ

µ(s) := Es0∼µ [
∑∞

t=0 γtPrπ(st = s|s0)]
where Prπ(st = s|s0) is the probability that st = s after starting at state s0 and following π thereafter.

We focus on the MG subclass of Markov potential games (MPGs) (Macua et al., 2018; Leonardos et al.,
2021; Zhang et al., 2021) as defined in Definition 1, which is extended from the notion of (normal-form)
potential game and also incorporates as a special case the fully cooperative MGs where all agents share the
same reward function.
Definition 1 (Markov potential game). A Markov game is called a Markov potential game (MPG) if
there exists a potential function ϕ : S × A → R such that for any agent i, any pair of product policies
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(πi, π−i), (π̄i, π−i), and any state s to be considered as the initial state, we have: letting ϕt := ϕ(st, at), the
total potential function Φπ(s) := Es0=s, s1:∞,a0:∞∼π [

∑∞
t=0 γtϕ(st, at)] ,

V i
π̄i,π−i(s) − V i

πi,π−i(s) = Φπ̄i,π−i(s) − Φπi,π−i(s) (1)

We also define Φπ(µ) := Es0∼µ[Φπ(s0)].

We focus on the solution concepts of Nash policy and ϵ-best response:
Definition 2 (ϵ-Nash policy and ϵ-best response). The Nash-gap of a product policy π is defined as

Nash-gapi(π) := maxπ̄i V i
π̄i,π−i(µ) − V i

π(µ),
Nash-gap(π) := maxi Nash-gapi(π).

Policy π is ϵ-Nash if Nash-gap(π) ≤ ϵ. For agent i, πi is its ϵ-best response if Nash-gapi(π) ≤ ϵ.

While the notions of Nash and best response define a equilibrium where no individual agents would deviate
unilaterally, we are also interested in the cooperation quality of a policy defined by an optimality notion that
lower bounds the ratio between the values summed over all agents and the largest summed values achieved
by any product policy. Note that it is sound to consider the ratio because we have required the rewards to
be nonnegative.

Definition 3 (δ-optimal policy). Policy π is δ-optimal if Vπ(µ)
maxπ̄ Vπ̄(µ) ≥ δ where Vπ(s) :=

∑
i V i

π(s).

4 DYNAMICS IN MPGs

We consider the product policy parameterized per agent. Denoting agent i’s policy parameter as θi, the
product policy is therefore parameterized as πθ =

(
π1

θ1 , . . . , πN
θN

)
where θ = (θ1, . . . , θN ) consists of all

agents’ policy parameters. We will abbreviate Φπθ
and V i

πθ
as Φθ and V i

θ , respectively. By dynamics, we
mean the process in which all agents initialize their policy parameters as θ0 = (θ1

0, . . . , θN
0 ) and update them

at iterations t = 0, 1, . . ., generating a sequence of product policies parameterized by (θt)t≥0. We will focus
on two classic families of dynamics, the Simultaneous Gradient Ascent and the Best-Response dynamics.

Simultaneous Gradient Ascent (SGA). In SGA (Singh et al., 2000; Zhang & Lesser, 2010; Balduzzi
et al., 2018; Wang et al., 2019; Schäfer & Anandkumar, 2019), every agent simultaneously updates its policy
parameter by taking a direction with a certain learning rate:

(SGA) θi
t+1 = θi

t + ηgi(θt) ∀ i (2)

where we are restricted to 1) update direction gi(θt) being dependent only on the policy at the current
iteration and 2) learning rate η being a constant.
The update direction is often chosen to improve the agent’s value. We will consider two common choices for
the update direction that aims to improve the agent’s value: the policy gradient (PG)

(PG) gi(θt) = ∇θi V i
θt

(µ) = ∇θi Φθt (µ) ∀ i (3)

where the second equality is due to the potential function structure Eq. equation 1, which implies ∇θiV i
θ (s) =

∇θiΦθ(s) for any state s, and the natural policy gradient (NPG)

(NPG) gi(θt) = (F i
θt

)†∇θi V i
θt

(µ) = (F i
θt

)†∇θi Φθt (µ) ∀ i (4)

where X† is the Moore–Penrose inverse of a matrix X and F i
θ is the Fisher information matrix for agent i

under product policy πθ:

F i
θ = E

s∼d
πθ
µ ,ai∼πi(s)

[
∇θi log πi

θi (ai|s)∇θi log πi
θi (ai|s)⊤]

.
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Best response (approximate and unilateral). In the Best-Response (BR) dynamics (Cesa-Bianchi &
Lugosi, 2006; Roughgarden, 2016; Rajeswaran et al., 2020), instead of taking an incremental improvement
step, an agent optimizes its policy parameter assuming all other agents are fixed. In practice, the best
response can be approximated using a large number of gradient steps. Formally, we set a constant number of
K iterations for an agent to approximate its best response starting at iteration t = lK for l = 0, 1, 2, . . .. For
some t = lK, an agent i sets θ̃i

t,0 = θi
t and performs iterations k = 1, ..., K to approximate its best response:

(Approximate BR) θ̃i
t,k = θ̃i

t,k−1 + ηgi
(
θ̃i,−i

t,k−1

)
(5)

where θ̃i,−i
t,k−1 =

{
θ̃i

t,k−1, θ−i
t

}
includes agent i’s parameter during the K iterations while fixing the parameters

of other agents at t = lK. Instead of updating all agents’ parameters to their (approximate) best response,
for every K iterations indexed by l, we select only one agent i∗

l ∈ N to perform its BR update, resulting in
what is referred to as unilateral BR (Roughgarden, 2016):

(Unilateral BR) θ
i∗
l

t+k = θ̃
i∗
l

t,k, θi
t+k = θi

t for i ̸= i∗
l . (6)

Note this BR variant is both unilateral and approximate, which is the variant this paper focuses on. We
consider two criteria to determine i∗

l . Maximum gain chooses the agent that would maximally improve the
total potential:

i∗
l = arg max

i

(
Φ

θ̃
i,−i
t,K

(µ) − Φθt (µ)
)
. (7)

Round robin updates the agents in a cyclic manner:

i∗
l = 1 + (l mod N) . (8)

5 CONVERGENCE ANALYSIS

It is known that SGA converges to Nash policies (Zhang et al., 2022), yet the convergence guarantees of
BR in MPGs have been understudied. In this section, we establish guarantees for approximate BR with
maximum-gain updates converging to Nash policies, with a rate that matches that of SGA. Further, we link
near-Nash policies to near-optimal policies in MPGs with certain smoothness conditions, which enables us
provide a suboptimality guarantee that is unique to maximum-gain BR. In this entire section, we make the
following two assumptions: one for the discounted state visitation distribution to be strictly positive and the
other for the potential to be bounded:
Assumption 1. dπ

µ(s) > 0 for any π and s.

Assumption 1 is standard in prior work (Agarwal et al., 2019; Zhang et al., 2021). A sufficient condition is
that µ(s) > 0 for all s ∈ S, ensuring all states are reachable.
Assumption 2. The potential function ϕ is bounded, such that the total potential function Φ is bounded
as Φmin ≤ Φπ(s) ≤ Φmax ∀s, π.

5.1 Convergence of BR to Nash

We first establish guarantees for maximum-gain BR converging to Nash policies. This result extends the
single-agent counterparts with the following reasoning. Suppose we aim to converge to a ϵ-Nash policy. We
can set K large enough, such that every agent’s inner loop update (indexed by k in Eq. equation 5) achieves
at least ϵ

2 -best-response. Therefore, if no agent’s improvement in their local value or, equivalently, in the
total potential function as computed in Eq. equation 5 is larger than ϵ

2 , then the product policy is already
an ϵ-Nash policy; otherwise, we can significantly improve the total potential function such that the total
number updates can be bounded. This is formally stated below:
Lemma 1 (Proof in Appendix C.1). Suppose for some ϵ, η, p > 0, all agents achieve at least ϵ

2 -best response
within K = O

( 1
ϵp

)
iterations of Eq. equation 5 . Then, the maximum-gain approximate BR of Eq. (5,6,7)

converges to an ϵ-Nash policy θT with T = O
( Φmax−Φmin

ϵp+1

)
.
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Lemma 1 is applicable to any policy parameterization. In the following, we focus on the specific case of
tabular softmax policy parameterization. Individual policies (π1, . . . , πN ) are independently parameterized
in a softmax tabular form from the global state. For each agent i, its policy is parameterized by θi ={

θi
s,ai ∈ R : s ∈ S, ai ∈ Ai

}
as:

πi
θi(ai|s) = exp

(
θi

s,ai

)/∑
āi∈Ai exp

(
θi

s,āi

)
. (9)

Prior work has established convergence rates for single-agent tabular softmax policy parameterization, par-
ticularly for both PG (Mei et al., 2020) and NPG (Agarwal et al., 2019). For PG, the rate is given by
K = O

( 1
c(1−γ)6ϵ

)
, where c is a constant dependent on the single-agent Markov decision process (MDP) and

the initialization. For simplicity, we abuse the notation and assume the existence of a small constant c that
provides a lower bound for c across any MDP reduced from MPGs by the best-response dynamics. For NPG,
the convergence rate is K = O

(
1

(1−γ)2ϵ

)
. These single-agent convergence results can be utilized by Lemma

1 to establish convergence rates for MPGs:
Theorem 1 (Proof in Appendix C.2). With K ≥ 2

c(1−γ)6ϵ iterations of Eq. equation 5 of PG update
equation 3 and η = (1 − γ)3/8, the maximum-gain approximate BR of Eq. (5,6,7) converges to an ϵ-Nash
policy θT with T = O

(
Φmax−Φmin
c(1−γ)6ϵ2

)
. With K ≥ 4

(1−γ)2ϵ iterations of Eq. equation 5 of NPG update (cf.
Eq. equation 4) with η = (1 − γ2)log|A|, the maximum-gain approximate BR of Eq. (5,6,7) converges to an
ϵ-Nash policy θT with T = O

(
Φmax−Φmin

(1−γ)2ϵ2

)
.

Theorem 1 establishes the same convergence rate for both maximum-gain best-response PG and NPG as for
PG- and NPG-based SGA in Zhang et al. (2022), which relies on the strong assumption that each agent’s
policy converges asymptotically. In practice, maximum-gain is difficult to realize: it requires centralized per-
agent gain evaluation, accurate value/advantage estimates, and tight synchronization; it also scales poorly
as the number of agents grows. Theorem 1 further requires a large K to guarantee sufficient inner-loop gain,
which is often impractical. Below we show that approximate PG-BR converges asymptotically for any fixed
K, under both maximum-gain equation 7 and round-robin equation 8.
Theorem 2 (Proof in Appendix C.3). With an arbitrary number of inner-loop iterations K and a sufficiently
small learning rate η (e.g., η = (1−γ)3/8), the PG-based unilateral approximate BR dynamics of Eq. (3,5,6)
converges asymptotically to a Nash policy for both maximum-gain equation 7 and round-robin equation 8.

Our proof uses monotonic improvement to show that, under both greedy maximum-gain and cyclic round-
robin selection, the potential function converges. This convergence implies a zero-gradient state, hence a
Nash equilibrium by the single-agent asymptotic-optimality result of Agarwal et al. (2019), which applies
here because best response reduces the MPG to a single-agent MDP for the updating agent.

5.2 Suboptimality in Smooth MPGs

Linking Nash to optimality via smoothness. We ultimately aim to find near-optimal policies (cf.
Definition 3). Inspired by prior work in normal-form games (Roughgarden, 2016), Definition 4 extends the
notion of smoothness in normal-form games to Markov games:
Definition 4 (Smooth MG). A Markov game is (α, β)-smooth if

∑
i∈N V i

π̄i,π−i(s) ≥ αVπ̄(s) − βVπ(s) for
any s and any pair of product policies π, π̄, where α, β are nonnegative.

Intuitively, in a smooth Markov game, the externality imposed by one agent on the value of the others is
limited. Therefore, we conjecture that a sufficient condition is that both the transition and reward functions
of the Markov game are “smooth”, which are verified as a proposition in Appendix C.4. In Section 7, we
will give two examples of smooth MGs that are involved in our experiments.

As an extension from Roughgarden (2016), we have Theorem 3 stating that near-Nash policies in smooth
MGs are near-optimal. To ease presentation, we describe the result for ϵ-ratio-Nash policies as the near-Nash
notion:
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Definition 5 (ϵ-ratio-Nash policy). Policy π = (π1, . . . , πN ) is an ϵ-ratio-Nash policy if, for any agent i,
maxπ̄i V i

π̄i,π−i(µ) ≤ 1
1−ϵ V i

π(µ).

Theorem 3 (Proof in Appendix C.5). In an (α, β)-smooth MG, any ϵ-ratio-Nash policy is (1−ϵ)α
1+(1−ϵ)β -optimal.

Suboptimality guarantees for maximum-gain BR in smooth MPGs. With Theorem 3 in place,
we have established a guarantee for maximum-gain BR to converge to near-optimal policies: maximum-gain
BR converges to near-Nash policies by Theorems 1 and 2, and if the MPG is smooth then the policies at
convergence are also near-optimal by Theorem 3 Note such an optimality guarantee applies to any dynamics
that finds near-Nash policies. It does not distinguish the BR from SGA because, at convergence, the
suboptimality guarantee is irrespective of the dynamics. Also, the rate of convergence to near-Nash is of the
same order for the two dynamics, both at O(1/ϵ2).

We now establish another suboptimality guarantee that is unique to BR, which is inspired by the counterpart
in smooth (normal-form) potential games (Roughgarden, 2015) that bounds the number of highly suboptimal
policies generated from the maximum-gain ϵ-ratio-best-response dynamics: Update the maximum-gain agent
to its best response until product policy π is ϵ-ratio-Nash. Below, we make an assumption that also appears
in the normal-form game setting and state the result. Our proof technique resembles its counterpart in
the normal-form game setting, where a critical step is to use the MPG’s smoothness and Assumption 3 to
establish that any policy in the sequence, whether how suboptimal it is, will induce significant increase in
the potential function, and therefore the number of highly suboptimal policies can be bounded because of
the boundedness of the potential function.
Assumption 3. We have 0 < Φπ(s) ≤ Vπ(s) for any product policy π and any state s.
Theorem 4 (Proof in Appendix C.6). Consider an (α, β)-smooth MPG where Assumption 3 holds. Let σ > 0
be a constant for analysis. For the sequence of maximum-gain ϵ-ratio-best-response policies π0, . . . , πT , the
number of policies therein that are not α

(1+β)(1+σ) -optimal is at most

logρ (Φmax/Φ0) − T logρ (1/(1 − ϵ)) (10)

where ρ = (1 − ϵ)(1 + σ(1 + β)/N) and Φ0 := Φπ0(µ).

As BR dynamics (5,6,7) is an instance of maximum-gain approximate BR, Theorem 4 directly leads to a
corollary that establishes a suboptimality guarantee for it, with details in Appendix C.7.

Theorem 4 does not provided an improved suboptimality guarantee at convergence: as σ → 0, the subop-
timality coefficient α

(1+β)(1+σ) → α
1+β , matching that from Theorem 3 at convergence (ϵ = 0). However,

while Theorem 3 states about near-optimality at convergence, Theorem 4 bounds the number of highly sub-
optimal during the updates by maximum-gain BR and therefore suggests faster than alternatives like SGA:
if the number of highly suboptimal policies specified in Eq. equation 10 is small, then πt can converge to
near-optimality well before the last iterate.

6 PRACTICAL ALGORITHMS

The theoretical results on BR dynamics for MPGs in Section 5 rely on restrictive assumptions, including
tabular policy parameterization, exact value function computation and maximum-gain coordination that
would require centralized planning, and full state observability. However, the round-robin BR equation 8
offers a decentralized approach, making it highly practical for real-world applications. Unlike centralized
methods that require global coordination, round-robin BR ensures that each agent updates independently
in a sequential manner, further enhancing scalability and feasibility in multi-agent systems. Our empirical
study (Section 7) demonstrates how round-robin BR can be incorporated into decentralized algorithms like
DDPG (Lillicrap et al., 2015) and DreamerV2 (Hafner et al., 2021), enabling partial observability, neural
network parameterization, and sample-based online learning. By setting K = 1 for BR variants to ensure
fair comparison with SGA-based algorithms, we show that even this extreme choice leads to significant
performance improvements.
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7 EXPERIMENTS

The theoretical results show that BR matches (but is not superior to) SGA in terms of near-optimality
guarantees at convergence. This prompts us evaluate them empirically here. Our evaluation begins with
the tabular softmax setting with exact gradients where we compare maximum-gain BR against SGA, in
an effort to reveal the difference between them that the theories did not reveal. Our results show that
BR achieves better cooperation in most but all scenarios, which are consistent with our theoretical results.
For complex scenarios where exact gradients and maximum gains are infeasible, we use round-robin BR for
sample-based decentralized deep MARL algorithms. These algorithms with SGA are believe to be ineffective
for cooperation, and people haven been relying on extensive centralization (e.g., centralized critic) to remedy
it. However, we observe significant gains by only making the minimal modification of BR-based updates. It
is the first time where we see good performance of decentralized MARL on those benchmarks.

Environments. We evaluate on four benchmarks below. The first two are fully cooperative smooth MPGs
and the second two are in more challenging partially observable settings.

Matrix game. The two-player stateless matrix game, a classic normal-form game, involves a shared team
reward (payoff matrix in Figure 1), making it a stateless MPG with smoothness (0, β) for any β ≥ 0 (proof
in Appendix D.1).

Coordination game. We generalize stateful coordination games with global observability (Zhang et al., 2021)
to N = 2, 3, 5 players. The state and action spaces are defined as S = S1 × · · · × SN and A = A1 × · · · × AN ,
where local states and actions Si, Ai = {0, 1}. The team reward, detailed in Appendix E.2, incentivizes
agents to align their local states. Each agent’s state transition is defined by P (si = 0 | ai = 0) = 1 − ϵ and
P (si = 0 | ai = 1) = ϵ, with ϵ = 0.1. This is a (α, β)-smooth MPG, satisfying αVmax = (1 + β)Vmin (proof
in Appendix D.2).

MPE. We use two MPE (Lowe et al., 2017) tasks: Cooperative Navigation (N = 6) and Predator and Prey
(N = 6), with agent-specific reward modifications. In Cooperative Navigation, rewards depend on covering
assigned landmarks and penalizing individual collisions. In Predator and Prey, rewards are based on each
agent’s distance to its nearest prey and the prey it captures. Cooperative Navigation becomes approximately
an MPG when collision penalties are ignored, particularly after agents learn to avoid collisions.

SMAC. We consider three SMAC tasks (Samvelyan et al., 2019): the heterogeneous tasks 2s_vs_1sc and
2s3z_vs_2s3z, and the homogeneous task 3m, where a group of allied agents fights against enemy agents.
All three selected tasks have team reward and thus are MPG instances.

Baselines. For matrix and coordination games, we use the tabular softmax policy in Eq. (9) with PG-SGA
and NPG-SGA as baselines, alongside their maximum-gain BR variants, PG-BR and NPG-BR, where the
best performed K is selected from {1, 5, 10, 30, 50}. In complex environments, where exact gradients and
maximum-gain BR are infeasible, we adopt round-robin BR with K = 1. For MPE, we use decentralized
MADDPG (DecDDPG) (Lowe et al., 2017) and its round-robin BR variant, DecDDPG-BR. For SMAC,
we extend DreamerV2 (Hafner et al., 2021) to DecDreamer for decentralized training and execution, with
round-robin BR variant for world model updates denoted as DecDreamer-BR. The implementation details
are in Appendix E.1.

Results on Matrix Game. The right side of Figure 1 starts with the initial policy parameters θ0 =
[θ0

U , θ0
D] = [0, 0] and θ1 = [θ1

L, θ1
R] = [−2, 0]. We compare the performance of PG-BR (K = 50) with the

baseline PG, using exact gradients with different initial policies. Specifically, we divide the probability values
of both π0

θ0(a0 = U) and π1
θ1(a1 = L) into 20 equally spaced intervals over the range (0,1), resulting in 400

initial policies. Since each probability has only one degree of freedom, we fix both θ0
D and θ1

R at 0, so that θ0
U

and θ1
L form a bijective map with the corresponding probabilities. As shown in Figure 2, PG-BR converges

to the ϵ-optimal policy for 83.5% of initial policies (blue and green points), outperforming the SGA’s 72%
(blue points), with ϵ = 0.001. Similarly, NPG-BR achieves 83.5% convergence (blue and green points),
surpassing the NPG-based SGA’s 76% (blue points). Notably, with both PG and NPG, no initial policies
lead to optimal SGA and suboptimal BR convergence, highlighting BR’s advantage over SGA.
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Figure 2: Each point represents the convergent policy types learned with SGA (πSGA) vs. BR (πBR), shown
as [type(πSGA), type(πBR)], where the type of each convergent policy is either Optimal or Suboptimal (Nash).
In the matrix game, 83.5% of initializations converge to optimal with both PG-BR (K = 50) and NPG-BR
(K = 50), compared to 72.0% with PG and 76.0% with NPG. No points are [Optimal, Suboptimal].

Table 1: Optimal convergence rates (%) vs. K (400 seeds).

K = 1 K = 5 K = 10 K = 30 K = 50

PG 71.0% 73.0% 78.0% 83.5% 83.5%
NPG 75.0% 80.5% 82.5% 83.5% 83.5%

Effect of K. Table 1 shows the performance of (N)PG-BR in the matrix game with different K. The results
confirm that larger K leads to better joint policies.

Results on Coordination Game. Table 2 shows that when converging to ϵ-Nash with ϵ = 0.1, the POA
for PG-BR is higher than that of PG for N = 2 and N = 5, but lower for N = 3. For NPG-BR, the POAs
are consistently higher than those of NPG across all N = 2, 3, 5.

Effect of K. Figure 3 shows the best-response learning dynamics for different values of K. The results
indicate that for PG-BR, larger K leads to a higher POA for N = 2, consistent with the findings in the
matrix game with also N = 2, while the POA remains relatively stable for larger numbers of agents N = 3
and N = 5. For NPG-BR, intermediate values of K perform best: K = 5 yields the highest POAs for N = 2
and N = 3, while K = 30 is optimal for N = 5.

Results on MPE. Figure 4(top) shows that DecDDPG performs better when learned with round-robin
BR compared to SGA in both Cooperative Navigation (N = 6) and Predator and Prey (N = 6). This
demonstrates that best-response dynamics can also be effective in more complex scenarios without exact
gradient computation.

Table 2: POA on Coordination Game (meanstd. err. over 10 seeds).

N PG NPG PG-BR NPG-BR
2 0.910.03 0.920.03 0.920.03 0.960.02
3 0.890.02 0.890.02 0.870.02 0.910.02
5 0.880.02 0.890.02 0.890.02 0.920.02

9
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Figure 3: Effectiveness of K in the coordination game.
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Figure 4(bottom) illustrates trajectories from policies learned via SGA and BR using 30% of training samples
in Predator and Prey (N = 6), where episode rewards are similar but begin to differ. In DecDDPG, agents 3
and 4 and agents 1 and 6 overlap, indicating conflicts. DecDDPG-BR demonstrates improved cooperation:
agents 1, 2, and 5 pursue Prey 1, while agents 2 and 4 focus on Prey 2.

Results on SMAC. Figure 5(top) shows that the model-based, decentralized, and sample-based algorithm
DecDreamer-BR outperforms its SGA counterpart, DecDreamer. This holds true for the heterogeneous tasks
2s_vs_1sc and 2s3z_vs_2s3z, and the homogeneous task 3m. These results suggest that in decentralized
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Figure 5: Top: Learning curves on SMAC. Bottom: Visualization of DecDreamer and DecDreamer-BR
policies in 2s_vs_1sc. Allies and enemies are highlighted in blue and red dashed circles, respectively.

settings, best-response dynamics can make the environment more stable, leading to better world model learn-
ing, which ultimately benefits model-based algorithms. As shown in the Figure 5(bottom), in 2s_vs_1sc, the
policy learned by DecDreamer directs the allies to approach and attack the enemy with minimal movement,
resulting in the loss of the controlled allies. In contrast, the policy learned by DecDreamer-BR leads the
allies to attack the enemy with more dynamic movements, successfully defeating the enemy.

8 CONCLUSION

We motivated unilateral BR dynamics in MPGs and proved that the maximum-gain BR variant converges
to a Nash equilibrium, with optimality guarantees in smooth MPGs. While the theoretical guarantees for
BR largely match those for SGA, we empirically show the broad applicability and advantage of BR in
improving cooperation in the classical domains of matrix games and coordination games, as well as in high-
dimensional tasks solved by decentralized deep MARL. The theoretical results in this paper do not confirm
that maximum-gain BR is superior to SGA in terms of improving cooperation at convergence. Note that our
empirical results show that, in a few cases (e.g., coordination game with N = 3), SGA indeed finds better
cooperation at convergence, and this suggests our theoretical claim is the best one can hope unless further
assumptions/conditions are made in favor of BR. Another future direction is to establish finite-time rates
and suboptimality bounds for round-robin BR, as our current result gives only asymptotic convergence.
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A Appendix

B Additional Related Work on BR Dynamics in Potential Games

Below we provide a detailed comparison with closely related works on BR in the context of potential games,
including the ones by Swenson et al. (2018); Marden (2012) in classic game theory and the one by Maheshwari
et al. (2022) in deep MARL.

Swenson et al. (2018); Marden (2012) consider BR dynamics with immediate optimal responses, whereas
our work focuses on unilateral best-response dynamics, where a single agent adjusts its policy incrementally
through a fixed number of gradient-based updates to approximate the best-response dynamics. This ap-
proach is more practical to implement, especially in the deep MARL setting. Furthermore, Swenson et al.
(2018) considers only stateless settings, whereas our work addresses stateful settings with state transitions.
Marden (2012) studies state-based potential games, which are stateful with transitions and possess a po-
tential structure. However, state-based potential games are a simplification of the broader class of Markov
games by assuming a discount factor γ = 0, resulting in agents learning myopically to maximize utility at
the current timestep. In contrast, our work considers Markov games with general discount factors. This
distinction allows us to analyze Nash equilibria as responses to the value (or sum of discounted utilities) over
all future timesteps, rather than focusing on static equilibrium concepts that respond only to the utility at
the current timestep.

Our work introduces a general framework (Lemma 1) that reduces MARL to single-agent reinforcement
learning (RL) for analyzing unilateral BR dynamics. By contrast, Swenson et al. (2018) and Marden (2012)
consider BR dynamics with immediate optimal responses and utilize classical game-theoretic tools for proofs,
without establishing a connection to the single-agent setting.

Maheshwari et al. (2022) also consider Markov potential games (MPGs), as does our work. However, Ma-
heshwari et al. (2022), while mentioning best-response dynamics for context and to relate its contributions
to the broader literature, does not directly employ BR. Instead, it adopts policy gradient-based independent
learning, focusing on decentralized updates and convergence to Nash equilibria without explicitly utilizing
best-response dynamics.

Moreover, prior work by Swenson et al. (2018); Marden (2012); Maheshwari et al. (2022) focus solely on the
convergence to Nash equilibria, without quantifying the performance of the resulting equilibria. Our work
advances the field by defining the novel concepts of smooth Markov games and Price of Anarchy (PoA) which

14

https://openreview.net/forum?id=2t7CkQXNpuq
https://ojs.aaai.org/index.php/AAAI/article/view/21179
https://arxiv.org/abs/2202.00872


Under review as submission to TMLR

are generalized from the stateless normal form games in a natural way. Using these tools, we establish PoA
bounds for unilateral BR in MPGs. Additionally, Swenson et al. (2018) assumes convexity or monotonicity of
the potential function to derive convergence rate results, whereas Markov games involve nonconvex objectives,
necessitating fundamentally different analyses. In contrast, Marden (2012) and Maheshwari et al. (2022) lack
convergence rate results entirely. Finally, Swenson et al. (2018) and Marden (2012) are purely theoretical in
their study of BR dynamics and do not explore its integration with Deep MARL for practical applications.
In contrast, our work investigates this combination in more complex environments such as MPE and SMAC.
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C Proofs

C.1 Proof of Lemma 1

Consider the K iterations of Eq. equation 5 that begin at t = lK.

Case 1: θt is not an ϵ-Nash policy, by definition there exists some i such that its Nash-gapi(θt) > ϵ.
Because it is assumed that i achieves at least ϵ

2 -best response, we have Nash-gapi
(
θ̃i,−i

t,K

)
≤ ϵ

2 . The potential
game structure in Eq. equation 1 therefore implies that the improvement in potential is at least ϵ

2 , i.e.,
Φθ̃i,−i

t,K
(µ)−Φθt(µ) > ϵ

2 . Since i∗
l is chosen by the maximum-gain criterion in Eq. equation 7, the improvement

in potential by selecting i = i∗
l is also at least ϵ

2 , i.e., Φθt+K
(µ) − Φθt

(µ) > ϵ
2 .

Case 2: In the other case where θt is already an ϵ-Nash policy, by the same reasoning above the improvement
in potential is no larger than ϵ

2 , and therefore we can halt the updates at t and return an ϵ-Nash policy.

The above analysis implies that the potential is improved by at least ϵ
2 every K iterations until an ϵ-Nash

policy is found at T with T = O
( Φmax−Φmin

ϵp

)
· 2

ϵ .

C.2 Proof of Theorem 1

The choice of K guarantees ϵ
2 -best response with the η required in the corresponding single-agent setting,

and therefore the results follow directly from Lemma 1.

C.3 Proof of Theorem 2

The proof first establishes the convergence of the potential function, which holds for both selection criteria,
and then shows that this convergence implies a Nash policy in each case.

First, regardless of whether the agent is selected via maximum-gain or round-robin, each step involves a single
agent updating its policy. This reduces the problem to a single-agent MDP. As per Lemma C.2 in Agarwal
et al. (2019), a policy gradient update with a sufficiently small learning rate guarantees that the selected
agent’s value function increases monotonically. Due to the potential game structure, the total potential
function Φ also increases monotonically. Given Assumption 2, which guarantees a bounded potential, the
Monotone Convergence Theorem ensures that the sequence of potential function values {Φθt

} converges to
a finite limit, Φ∗.

The convergence of the potential function implies that the improvement gained at each update step must
approach zero. We now show this leads to a Nash policy for each criterion:

Maximum-Gain Criterion: By definition, this criterion selects the agent offering the largest possible im-
provement at each step. Since this maximum improvement must go to zero for the potential function to
converge, it follows that the potential improvement for every agent must also go to zero. This implies that
as t → ∞, ∀i, ∇θi

t
Φθ(µ) → 0.

Round-Robin Criterion: This criterion ensures every agent is updated infinitely often. Let {θt} have a limit
point θ∗. The vanishing improvements imply that the gradient of the agent being updated must be zero at
the limit. Assume for contradiction that at θ∗, the gradient for some agent j is non-zero (∇θj Φθ∗(µ) ̸= 0).
By the continuity of the gradient, an update for agent j in the neighborhood of θ∗ would yield a non-trivial
improvement. The round-robin schedule guarantees agent j will be updated within this neighborhood,
contradicting that all improvements must vanish. Therefore, the gradient for every agent must be zero at
any limit point.

In both cases, the algorithm converges to a state where the gradient with respect to every agent’s parameters
is zero. For any agent i, the problem reduces to a single-agent MDP when other agents −i are treated as part
of the environment. By the single-agent result, Theorem 5.1 from Agarwal et al. (2019), when ∇θi

t
Φθ(µ) = 0,

agent i behaves optimally in the reduced single-agent MDP, which means that ∀ i, Nash-gapi(πt) = 0.
Consequently, as t → ∞, the joint policy πt converges to a Nash policy, as defined by the Nash equilibrium
condition.
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C.4 Proposition 1

Proposition 1 (Sufficient condition for smooth MGs). The reward functions {ri}i∈N of a Markov game
is said to be (λ, µ)-smooth if λrπ̄(s) ≤

∑
i∈N ri

π̄i,π−i(s) ≤ µrπ(s) for any state s and any pair of product
policies π and π̄, where ri

π(s) := Ea∼π(s)[ri(s, a)], rπ(s) :=
∑

i ri
π(s), and (λ, µ) are nonnegative. Letting

Mπ := (I − γPπ)−1, the transition function P of a Markov game is said to be (κ, ν)-smooth if Mπ̄i,π−ir ≥
κMπ̄r − νMπr for any r ∈ R|S| and any pair of product policies π, π̄ with nonnegative (κ, ν). For a Markov
game, if its reward functions are (λ, µ)-smooth and its transition function is (κ, ν)-smooth, then the Markov
game is (α = κλ, β = µν)-smooth.

Proof. We can establish ∑
i V i

π̄i,π−i(s) =
∑

i Mπ̄i,π−iri
π̄i,π−i

≥
∑

i κMπ̄ri
π̄i,π−i − νMπri

π̄i,π−i

=κMπ̄

∑
i ri

π̄i,π−i − νMπ

∑
i ri

π̄i,π−i

≥κMπ̄λrπ̄ − µMπµrπ = κλVπ̄ − µνVπ

where the two inequalities are due to the smoothness of the transition function and the reward functions,
respectively, which completes the proof.

C.5 Proof of Theorem 3

Consider setting π̄ = π∗ in Definition 4 where π∗ is a policy that achieves the optimal joint value. We have∑
i

V i
π(s) ≥

∑
i

(1 − ϵ)V i
πi

∗,π−i(s) ≥ (1 − ϵ) (αVπ∗(s) − βVπ(s))

where the first inequality is by the definition of π being ϵ-ratio-Nash and the second inequality is by the
definition of smooth Markov game. Rearranging the terms completes the proof.

C.6 Proof of Theorem 4

We abbreviate V i
π(µ) as V i

π and Vπ(µ) as Vπ. For any policy πt, define δi(πt) := V i
πi

∗,π−i
t

− V i
πt

and ∆(πt) :=∑
i δi(πt). We now have

Vπt
=

∑
i

V i
πt

=
∑

i

(
V i

πi
∗,π−i

t

− δi(πt)
)

≥ αVπ∗ − βVπt
− ∆(πt)

where the inequality is due to the (α, β)-smoothness of the MPG, which implies

Vπt
≥ α

1 + β
Vπ∗ − 1

1 + β
∆(πt). (11)

For a policy πt that is not α
(1+β)(1+σ) -optimal, we have

∆(πt) ≥ αVπ∗ − (1 + β)Vπt
>(1 + β)(1 + σ)Vπt

− (1 + β)Vπt

=σ(1 + β)Vπt
≥ σ(1 + β)Φt

where the first inequality is directly from inequality equation 11, the second inequality due to that πt is a
bad policy, the third due to the assumption that Φπ(s) ≤ Vπ(s). Therefore, for the maximum-gain agent
chosen to update from t to t + 1, the increase in its local value is at least σ(1+β)

N Φt since ∆(πt) =
∑

i δi(πt).
Due to the characteristic of Φ in Eq. equation 1, we have Φt+1 − Φt ≥ σ(1+β)

N Φt, i.e.,

Φt+1 ≥ (1 + σ(1 + β)/N) Φt. (12)
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After updating a πt that is α
(1+β)(1+σ) -optimal, Φ increases by a ratio of at least 1

1−ϵ :

Φt+1 − Φt

Φt
=

V i
πt+1

− V i
πt

Φt
=

Vπt+1 − Vπt

Φt
≥

Vπt+1 − Vπt

Vπt

>
1

1 − ϵ
− 1.

Let m and T − m be the number of bad and good policies in the sequence, respectively. We then have
Φ0

(
1 + σ(1+β)

N

)m (
1

1−ϵ

)T −m

≤ Φmax, which implies equation 10 and concludes the proof.

C.7 Corollary 1

Corollary 1 (Suboptimality bound of maximum-gain approximate (N)PG-BR in smooth MPGs). Consider
a (α, β)-smooth MPG where Assumption 3 holds. Let π∗ be an optimal policy and σ > 0 be a constant for
analysis. For the sequence of policies π0, . . . , πT generated from the maximum-gain approximate BR with
Eq. (5,6,7) with PG update equation 3 with K ≥ 2

c(1−γ)6ϵ or with NPG update equation 4 with K ≥ 4
(1−γ)2ϵ .

the number of policies therein that are not α
(1+β)(1+σ) -optimal is at most

logρ (Φmax/Φ0) − T logρ (1 + ϵ

2(1 − γ) ) (13)

where ρ =
(
1 + σ(1 + β)/N

)/(
1 + ϵ

2(1−γ)
)
.

Proof. Similar to the proof of Theorem 4, we can obtain inequality equation 12 for a bad πt, and for a good
πt, the ϵ/2 increase per iteration, which is guaranteed by the choice of K, implies

Φt+1 − Φt

Φt
=

V i
πt+1

− V i
πt

Φt
=

Vπt+1 − Vπt

Φt
≥

Vπt+1 − Vπt

Vπt

>
ϵ/2

1 − γ
.

Let m and T − m be the number of bad and good policies in the sequence, respectively. We then have

Φ0

(
1 + σ(1 + β)

N

)m (
1 + ϵ

2(1 − γ)

)T −m

≤ Φmax,

which implies equation 13 and concludes the proof.
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D Smoothness of Toy Examples

D.1 The Matrix Game

To satisfy the smoothness condition in definition (4), it is sufficient to have

Vmin + Vmin ≥ α(Vmax + Vmax) − β(Vmin + Vmin)

−→ 2Vmin ≥ 2αVmax

−→ α ≤ Vmin

Vmax
= 0

Since α is nonnegative, we can have α ≥ 0 as a sufficient condition for the smoothness of this MPG.

D.2 The Coordination Game

By Proposition 1, to prove Coordination Game is a smooth Markov game, it is sufficient to show the transition
and reward smoothness.

D.2.1 Reward smoothness in the coordination game.

In Coordination Game, we know that all agents share a team reward which only depends on state, i.e.,

∀i, j, s, a, a′, ri(s, a) = rj(s, a′)
−→∀s, π, π′, rπ′(s) = rπ(s) =

∑
i ri

π(s)

To satisfy ∀s, π, π′, λrπ′(s) ≤
∑

i ri
πi

′ ,π−i(s) ≤ µrπ(s), it suffices to have

λrπ(s) ≤
∑

i ri
π(s) ≤ µrπ(s) ⇐⇒ λ ≤ 1 ≤ µ (14)

D.2.2 Transition smoothness in the coordination game

To have ∀s, π, π′, Mπi
′ ,π−ir ≥ κMπ′r − νMπr, it suffices to have

Vmin ≥ κVmax − νVmin −→ κ

1 + ν
≤ Vmin

Vmax
(15)

, where Vmax and Vmin are the largest and smallest values given any joint policy in Coordination Game.

Coordination game is therefore (α = κλ, β = µν)-smooth, with constraints (14) and (15). For the subop-
timality bound of 0-ratio-Nash policy below, we choose the λ = µ = 1 and κ

1+ν = Vmin
Vmax

which satisfy the
constraints. Therefore, it is a (α, β)-smooth MPG for any α, β satisfy αVmax = (1 + β)Vmin.
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E Experiment Details

E.1 Implementation Details

For decentralized DDPG, each agent parameterizes its policy and a critic that approximates its action-value
function, both with neural networks and from its partial observations. Between update iterations, all agents
take action to finish an episode, after which each agent updates its own replay buffer that stores recent
transitions. Within each iteration, an agent is selected based on the round-robin criterion equation 8, and
only that agent updates its parameters by sampling transitions from its replay buffer and taking the gradient
step, following standard DDPG practice.

For decentralized DreamerV2, which is a model-based algorithm, each agent in addition parameterizes and
learns a world model (from its local observations and actions).Each agent has its own replay buffer and
round-robin BR is similarly integrated into the DreamerV2 practice.

E.2 Pseudocode for the Reward Function of Coordination Game

Algorithm 1 Calculate the team reward for N agents in state s

1: if (N = 2) or (N = 3) then
2: difference_bound = 1
3: else
4: difference_bound = 2
5: end if
6: if abs(s.count("0") − s.count("1")) ≤ difference_bound then
7: if s.count("0") < s.count("1") then
8: reward = 1
9: else

10: reward = 0
11: end if
12: else if s.count("0") > s.count("1") then
13: reward = 3
14: else
15: reward = 2
16: end if
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E.3 Hyperparameters

Table 3: Hyperparameters for the Matrix Game

Hyperparameter Value
γ (discount factor) 0
η 0.01

Table 4: Hyperparameters for Coordination Game

Hyperparameter Value
γ (discount factor) 0.95
µ (initial state distribution) Uniform
ϵ 0.1
η 0.01
#seeds 10

Table 5: Hyperparameters for MPE

Hyperparameter Value
Episode length 25
Number of training episodes 40000
Discount factor 0.95
Batch size from replay buffer 1024
Actor’s learning rate 1e-4
Actor network architecture oi-FC(128)-ReLU-FC(128)-ReLU-FC(|Ai|)
Critic’s learning rate 1e-3
Critic network architecture Concat(oi, ai)-FC(128)-ReLU-FC(128)-ReLU-FC(1)
Optimizer for both actor and critic Adam
#episodes per evaluation 200
#seeds 5

oi is the local observation for agent i.
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Table 6: Hyperparameters for SMAC

Hyperparameter Value
Number of training epochs for the model 5
Number of training epochs for the actor and critic 4
Number of sampled rollouts 40
Sequence Length 20
Rollout Length 15
Buffer capacity 250000
Batch size 2000
Model’s learning rate 3e-4
Actor’s learning rate 1e-6
Actor network architecture Statei-FC(256)-Normalize-ReLU-FC(256)-

Normalize-ReLU-FC(9)- Normalize-OneHotCategorical
Critic’s learning rate 1e-4
Critic network architecture Statei-FC(256)-Normalize-ELU-FC(256)-

Normalize-ELU-FC(1)-Normalize
Optimizer for both actor and critic Adam
Entropy coefficient 0.01
Entropy annealing 0.99998
Gradient clipping norm 20
#seeds 10

Statei contains the latent state and embedding for agent i. Hyperparameters not listed are consistent with
those in Venugopal et al. (2023).
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E.4 Computing Resources

We implement our code in PyTorch and run our experiments on NVIDIA Tesla V100 GPUs and NVIDIA
A100 GPUs.
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