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Abstract

Parameter-efficient fine-tuning (PEFT) can001
bridge the gap between large language mod-002
els (LLMs) and downstream tasks. However,003
PEFT has been proven vulnerable to mali-004
cious attacks. Research indicates that poisoned005
LLMs, even after PEFT, retain the capability to006
activate internalized backdoors when input sam-007
ples contain predefined triggers. In this paper,008
we introduce a novel weak-to-strong unlearning009
algorithm to defend against backdoor attacks010
based on feature alignment knowledge distil-011
lation, named W2SDefense. Specifically, we012
first train a small-scale language model through013
full-parameter fine-tuning to serve as the clean014
teacher model. Then, this teacher model guides015
the large-scale poisoned student model in un-016
learning the backdoor, leveraging PEFT. Theo-017
retical analysis suggests that W2SDefense has018
the potential to enhance the student model’s019
ability to unlearn backdoor features, prevent-020
ing the activation of the backdoor. We conduct021
comprehensive experiments on three state-of-022
the-art large language models and several dif-023
ferent backdoor attack algorithms. Our empiri-024
cal results demonstrate the outstanding perfor-025
mance of W2SDefense in defending against026
backdoor attacks without compromising model027
performance.028

1 Introduction029

Recently, Large Language Models (LLMs) have030

demonstrated remarkable capabilities across var-031

ious domains (Achiam et al., 2023; Zheng et al.,032

2023; Touvron et al., 2023a,b; AI@Meta, 2024;033

Team, 2024). As the number of parameters in034

LLMs increases, full-parameter fine-tuning be-035

comes challenging, which requires substantial com-036

putational resources (Li et al., 2024d). To address037

this issue, a series of parameter-efficient fine-tuning038

(PEFT) algorithms, such as LoRA (Hu et al., 2021),039

p-tuning (Liu et al., 2023), and FourierFT (Gao040

et al., 2024), have been proposed. These PEFT041

methods update only a small number of model pa- 042

rameters, offering an effective alternative to fine- 043

tune LLMs for downstream tasks (Zhang et al., 044

2023b; Kopiczko et al., 2023). 045

Much like a coin has two sides, despite PEFT 046

achieving impressive performance, they are crit- 047

icized for their susceptibility to backdoor at- 048

tacks (Kurita et al., 2020; Xiang et al., 2023; Liu 049

et al., 2024a; Sun et al., 2024). Recent research 050

indicates that if third-party LLMs are implanted 051

with backdoors, these backdoors can still be acti- 052

vated even after PEFT (Zhao et al., 2024b). This 053

is because PEFT does not require updating all pa- 054

rameters of the LLMs, which hardly allows for 055

the forgetting of backdoors, especially compared 056

to full-parameter fine-tuning. As PEFT becomes 057

more widely implemented for fine-tuning LLMs, 058

exploring backdoor attack defense algorithms tai- 059

lored to PEFT is crucial. 060

For the backdoor attack, the fundamental con- 061

cept involves adversaries strategically corrupting 062

the training dataset to internalize malicious func- 063

tionalities within the language model through train- 064

ing (Gan et al., 2022; Long et al., 2024; Zhao et al., 065

2024e). In the model testing phase, when encoun- 066

tering the predefined trigger, the model will con- 067

sistently output content as specified by the adver- 068

saries (Zhao et al., 2023b). Although existing de- 069

fense methods provide a measure of efficacy, they 070

are not without drawbacks that adversely affect 071

their practical applicability. On one hand, the ma- 072

jority of defense algorithms tend to sacrifice the nor- 073

mal performance of the model to achieve enhanced 074

defensive capabilities (Zhang et al., 2022). On the 075

other hand, as the number of model parameters in- 076

creases, defense algorithms based on backdoor un- 077

learning (Wang et al., 2019; Liu et al., 2024b) that 078

rely on full-parameter fine-tuning, which requires 079

substantial computational resources, become more 080

challenging to implement. Therefore, this raises 081

a pertinent question: How can backdoor features 082
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be unlearned without compromising model perfor-083

mance by leveraging PEFT?084

To address the above issues, in this study,085

we propose a novel unlearning algorithm to de-086

fend against backdoor attacks, Weak-to-Strong087

Defense (W2SDefense), which enables a poi-088

soned student model to unlearn backdoors through089

knowledge distillation from a clean teacher model.090

Specifically, we consider a small-scale language091

model, which has been fine-tuned with full-092

parameter, as the clean teacher model. Then to093

guide the poisoned student with this teacher, we094

propose the feature alignment knowledge distil-095

lation. It aligns the features of the student model096

to the teacher model through PEFT, which only097

update a small number of parameters. This en-098

ables the poisoned student model to unlearn back-099

doors with minimal modifications. Thanks to this,100

W2SDefense can enjoy high computational effi-101

ciency and maintain the performance of the student102

models as well. From the perspective of informa-103

tion theory, W2SDefense can optimize the informa-104

tion bottleneck of the student model, facilitating the105

unlearning of backdoor features with only limited106

modifications to the model parameters.107

We construct extensive experiments to inves-108

tigate the efficacy of our W2SDefense method,109

which include three datasets with various attack110

algorithms. In comparison with widely-used de-111

fense methods, our W2SDefense achieves optimal112

defense results without compromising model per-113

formance, while also demonstrating strong robust-114

ness and generalizability. To summarise, our con-115

tributions are as follows:116

• We propose W2SDefense, a novel unlearning al-117

gorithm for defense against backdoor attacks. It118

guides a poisoned LLM to unlearn backdoors119

through feature alignment knowledge distillation120

using PEFT, which defends against backdoor at-121

tacks and maintains computational efficiency. To122

the best of our knowledge, W2SDefense is the123

first backdoor unlearning algorithm using knowl-124

edge distillation and PEFT.125

• We theoretically and empirically demonstrate the126

effectiveness of feature alignment knowledge dis-127

tillation in defense against backdoor attacks. This128

provides a new perspective for defending against129

weight poisoning that uses knowledge distillation130

for model unlearning.131

• This study enriches the understanding of lever-132

aging knowledge distillation for defense against133

backdoor attacks, highlights the significance of 134

establishing comprehensive backdoor unlearning 135

mechanisms within the NLP community, and pro- 136

vides insightful perspectives for ensuring LLM 137

security. 138

2 Preliminary 139

In this section, we present the threat model concern- 140

ing backdoor attacks and defenses, and highlight 141

the potential security vulnerabilities of PEFT. 142

2.1 Threat Model 143

We introduce the problem formulation of threat 144

models on addressing backdoor attacks in text 145

classification, specifically focusing on defending 146

against poisoned weights. Without loss of gen- 147

erality, this formulation can be broadly applica- 148

ble to additional NLP tasks, such as generation 149

and reasoning tasks. Consider a third-party LLM 150

f that has been compromised by a malicious at- 151

tacker through backdoor attacks, which allows the 152

model’s responses to be manipulated by specific 153

triggers (Kurita et al., 2020): 154

∀x∈Dclean
test , f(x) = y; (1) 155

∀x′∈Dpoison
test , f(x′) = yb; (2) 156

where (x, y) ∈ Dclean
test denotes clean test dataset; 157

(x′, yb) ∈Dpoison
test stands for poisoned test dataset; 158

x′ is poisoned test sample that contain specific 159

triggers; yb stands for target label. The motiva- 160

tion of the defenders is to prevent the activation 161

of backdoors, ensuring the secure application of 162

LLMs. Consequently, we assume that the defend- 163

ers have access to the poisoned LLMs f and pos- 164

sess clean training dataset Dclean
train , following (Zhao 165

et al., 2024b). 166

Application Scenarios In the our algorithm, in 167

order to facilitate the poisoned student model’s 168

unlearning of the backdoor, we need to construct 169

the clean teacher model. Following Zhang et al. 170

(2022)’s work, we assume that defenders can down- 171

load clean BERT or GPT-2 from the official repos- 172

itory. Furthermore, research shows that PEFT al- 173

gorithms generally perform poorly in scenarios 174

that require high sample resources compared to 175

full-parameter fine-tuning (Pu et al., 2023). There- 176

fore, the LLM may be poisoned when the victim 177

lacks sufficient computational resources and train- 178

ing samples for full-parameter fine-tuning of LLMs 179

for higher performance, forcing them to outsource 180

the entire training process to the attacker. 181
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Figure 1: Overview of our W2SDefense with weak-to-strong feature alignment knowledge distillation. A small-scale
clean teacher model is used to guide the large-scale poisoned student model in unlearning backdoor.

Objectives In our study, we wish to reduce the182

likelihood of backdoor activation by unlearning.183

Therefore, the key concept of unlearning backdoor184

attacks can be distilled into two objectives:185

Obj. 1: ∀x∈Dclean
test ,CA(f ′(x))≈CA(f(x)),186

Obj. 2: ∀x′∈Dpoison
test ,ASR(f ′(x′))≪ASR(f(x′)),187

where f ′ denotes the defended LLMs; ASR stands188

for attack success rate; CA represents the clean189

accuracy. A feasible defense algorithm should not190

only protect against backdoor attacks but also en-191

sure that the model’s normal performance remains192

unaffected. Therefore, the first objective is to main-193

tain the classification performance of LLMs on194

clean samples. When leveraging PEFT, such as195

LoRA (Hu et al., 2021), for fine-tuning LLMs, it196

may prove challenging to forget the trigger patterns.197

Therefore, the second objective of the defenders is198

to unlearn the backdoor, reducing the success rate199

of backdoor attacks.200

2.2 Potential for Vulnerabilities in PEFT201

Previous research has shown that models compro-202

mised by backdoor attacks retain their trigger pat-203

terns even after fine-tuning with PEFT algorithms204

(Gu et al., 2023; Zhao et al., 2024b). This per-205

sistence is attributed to the fact that PEFT only206

updates a small subset of model parameters, which207

may hardly facilitate the “forgetting” of the back-208

door, in alignment with the principles of the infor-209

mation bottleneck theory (Tishby et al., 2000):210

Theorem (Information Bottleneck): In the super-211

vised learning setting, the optimization objective of212

the model is to minimize the training loss (Tishby213

and Zaslavsky, 2015):214

l[p(x̂|x)] = I(X; X̂)− βI(X̂;Y ), (3)215

where I denotes the mutual information; β repre-216

sents the Lagrange multiplier; x̂ ∈ X̂ stands for217

intermediate feature; x∈X denotes the input, and 218

Y represents the output of the model. 219

The core of information bottleneck theory lies in 220

retaining the most useful information X̂ about the 221

output Y while minimizing the information about 222

the input X . However, in PEFT, only a few parame- 223

ters are updated, which means that the information 224

bottleneck formed during the poisoning phase may 225

remain unchanged during the fine-tuning, making 226

it difficult for the model to forget the backdoor. 227

3 Backdoor Unlearning 228

In light of the limitations presented by PEFT in 229

fully eradicating the effects of backdoors, explor- 230

ing novel defense algorithms is necessary. Knowl- 231

edge distillation (Nguyen and Luu, 2022; Nguyen 232

et al., 2024), whereby a student model assimilates 233

behavior from a teacher model, emerges as a poten- 234

tial solution. This method provides an unlearning 235

mechanisms by reconstructing the knowledge base, 236

effectively mitigating internalized backdoors (Wu 237

et al., 2022; Wang et al., 2024). Traditional knowl- 238

edge distillation often requires full-parameter fine- 239

tuning of the student model; however, as the pa- 240

rameter count of LLMs increases, full-parameter 241

fine-tuning demands substantial computational re- 242

sources. Consequently, a natural question arises: 243

How can knowledge distillation be utilized to de- 244

fend against backdoor attacks targeting LLMs in 245

PEFT settings? 246

To address the aforementioned issue, this study 247

introduces a weak-to-strong backdoor unlearning 248

algorithm via feature alignment knowledge dis- 249

tillation (W2SDefense). The fundamental concept 250

of W2SDefense is that a small-scale teacher model 251

is trained through full-parameter fine-tuning on the 252

clean training dataset Dclean
train . Then, this teacher 253

model is employed to guide a large-scale, poisoned 254
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student model through PEFT, facilitating the un-255

learning of backdoor features in the student model256

and preventing the activation of the backdoor. A257

potential advantage of the W2SDefense algorithm258

lies in the fact that PEFT updates only a small259

subset of model parameters, significantly reduc-260

ing the consumption of computational resources.261

Furthermore, the clean teacher model acts as a ro-262

bust guide, inducing the student model to unlearn263

internalized backdoor features. The structure of264

the W2SDefense is illustrated in Figure 1. We265

discuss the clean teacher model, the poisoned stu-266

dent model, and our proposed weak-to-strong de-267

fense algorithm as follows. The assumption that the268

teacher model is clean follows Zhang et al. (2022)’s269

research.270

3.1 Clean Teacher Model271

In traditional knowledge distillation, the choice of272

the teacher model prioritizes its complexity and273

expressiveness (Nguyen et al., 2024), which fre-274

quently results in a teacher model that exhibits275

greater complexity than the student model. How-276

ever, in this study, the task of the teacher model is277

to transmit relevant sample features and facilitate278

the unlearning of backdoors within the poisoned279

student model. Therefore, we employ a smaller-280

scale BERT as the teacher model1. Specifically,281

the teacher model ft is trained by performing full-282

parameter fine-tuning on the target dataset Dclean
train .283

It should be noted that in order to facilitate knowl-284

edge transfer and feature alignment between the285

teacher and student models, we add an extra linear286

layer g to the teacher model. This modification en-287

sures that the feature dimensions outputted by the288

teacher model are consistent with those outputted289

by the student model:290

z
(L+1)
t =g(z

(L)
t )=Wdim(ds×dt) ·z

(L)
t +bdim(ds), (4)291

where W denotes the weight matrix of the linear292

transformation, and b is the bias vector; dt and ds293

represent the feature dimensions of the teacher and294

student models, respectively; L represents the last295

layer of the teacher model; zt denotes the logits out-296

put by the teacher model. Finally, the optimization297

objective for the teacher model is:298

Lt = E(x,y)∼Dclean
train

[l(ft(x; θt), y)fpft], (5)299

where training sample (x, y) ∈ Dclean
train ; fpft denotes300

the full-parameter fine-tuning.301

1We also verify the effectiveness of other model architec-
tures as teacher models in ablation studies.

3.2 Poisoned Student Model 302

In our study, we assume that third-party LLMs such 303

as LLaMA (AI@Meta, 2024) and Qwen (Team, 304

2024), which serve as the student models fs, have 305

been poisoned. To reduce the consumption of 306

computational resources, PEFT algorithms such 307

as LoRA are used for optimizing large-scale stu- 308

dent models to adapt to downstream tasks: 309

Ls = E(x,y)∼Dclean
train

[l(fs(x; θs), y)peft], (6) 310

where peft denotes the parameter-efficient fine- 311

tuning. Previous research indicates that PEFT, 312

which updates only a small number of model pa- 313

rameters, is insufficient for mitigating backdoors 314

compared to full-parameter fine-tuning (Zhao et al., 315

2024b). In other words, models remain suscepti- 316

ble to activating internalized backdoors even when 317

fine-tuned using PEFT. To address this issue, this 318

paper proposes a weak-to-strong unlearning algo- 319

rithm to defend against backdoor attacks through 320

feature alignment knowledge distillation. 321

3.3 Weak-to-Strong Backdoor Unlearning 322

In this study, to facilitate the unlearning of back- 323

door features in poisoned student models, we pro- 324

pose the W2SDefense algorithm. This algorithm 325

integrates knowledge distillation and feature align- 326

ment, achieving an effective unlearning mechanism 327

to defend against backdoor attacks. 328

Knowledge Distillation Unlearning Defending 329

against backdoor attacks necessitates not only re- 330

ducing the attack success rates but also maintaining 331

the model’s performance on clean samples. There- 332

fore, in this study, we first employ cross-entropy 333

loss to encourage the student model fs to learn the 334

correct sample features, achieving Objective 1: 335

lce(θs) = CE(fs(x; θs)peft, y), (7) 336

where θs represents the parameters of the student 337

model; CE denotes the cross-entropy loss. This en- 338

sures that the model maintains robust performance 339

while unlearning the backdoor. 340

Furthermore, to facilitate the unlearning of back- 341

door features, knowledge distillation loss is em- 342

ployed, guiding the student model fs to learn from 343

a smaller-scale, clean teacher model ft, which 344

aims to enable the poisoned student model to em- 345

ulate the behavior of the teacher model. Specifi- 346

cally, we minimize the Kullback-Leibler (KL) di- 347

vergence (Huang et al., 2022) between the output 348
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logits of the teacher and student models:349

Pt(x;θt)fpft = softmax(
zt
T
), (8)350

351

Ps(x;θs)peft = log_softmax(
zs
T
), (9)352

353

lkdu(θs,θt)=T 2
∑

Pt(x;θt)fpftlog

(
Pt(x;θs)fpft

Ps(x;θt)peft

)
,

(10)354

where zt and zs respectively represent the logits355

output by the teacher model and the student model;356

T stands for the temperature scaling factor.357

Feature Alignment Unlearning To facilitate the358

transfer of correct features from the clean teacher359

model to the poisoned student model and promote360

the unlearning of backdoor features, we introduce361

the feature alignment loss. This involves minimiz-362

ing the Euclidean distance (Li and Bilen, 2020)363

between the feature vectors of the teacher and stu-364

dent models:365

distance = ∥hs(x; θs)peft, ht(x; θt)fpft∥2, (11)366

367
lfau(θs, θt) = mean(distance2), (12)368

where ht and hs respectively denote the final hid-369

den states of the teacher and student model. By370

employing knowledge distillation and feature align-371

ment, the poisoned student model is encouraged372

to forget backdoor features while only updating a373

minimal number of model parameters, achieving374

Objective 2.375

Overall Training Formally, the optimization ob-376

jective for the student model is defined as mini-377

mizing a composite loss function that integrates378

cross-entropy, knowledge distillation, and feature379

alignment losses:380

θs = argmin
θs

l(θs)peft, (13)381

where the loss function l is:382

l(θs)=α· lce(θs)+β · lkdu(θs, θt)+γ · lfau(θs, θt).
(14)383

This method effectively defends against backdoors384

by utilizing feature alignment knowledge distil-385

lation while mitigating the consumption of com-386

putational resources. The complete algorithm of387

W2SDefense is shown in Algorithm 1.388

Corollary: Mutual information between the out-389

put Y and the intermediate feature X̂s:390

I(X̂W2SDefense
s ;Y )peft ≥ I(X̂s;Y )peft, (15)391

where X̂s is intermediate feature of student model.392

In the W2SDefense, through feature alignment393

Algorithm 1 W2SDefense for Backdoor Attack
1: Input: Teacher Model ft; Poisoned Student

Model fs; Train Dataset Dclean
train ;

2: Output: Clean Student Model fs;
3: while Training the Teacher Model do
4: ft ←Add linear layer g; {Add a linear layer

to match feature dimensions.}
5: ft ← fpft(ft(x, y)); { (x, y) ∈ Dclean

train ; full-
parameter fine-tuning.}

6: return Clean Teacher Model ft.
7: end while
8: while Defense based on Unlearning do
9: for each (x, y) ∈ Dclean

train do
10: Teacher logits and hidden states zt, ht =

ft(x; θt);
11: Student logits and hidden states zs, hs =

fs(x; θs);
12: Cross entropy loss lce=CE(fs(x;θs), y);
13: Distillation loss lkdu = KL(zs, zt);
14: Alignment loss lfau=mean(∥hs, ht∥2);
15: Total loss l=α · lce + β · lkdu + γ · lfau;
16: Update fs by minimizing l;
17: {PEFT, which only updates a small num-

ber of parameters.}
18: end for
19: return Clean Student Model fs.
20: end while

knowledge distillation, the student model increases 394

mutual information I(X̂s;Y ), aligning the outputs 395

of student model with those of the teacher model, 396

reducing sensitivity to the backdoor features. For 397

more analysis, please refer to Appendix C. 398

4 Experiments 399

4.1 Experimental details 400

Dataset To validate the efficacy of W2SDefense, 401

we select three text classification datasets: SST- 402

2 (Socher et al., 2013), CR (Hu and Liu, 2004), 403

and AG’s News (Zhang et al., 2015). IMDB (Maas 404

et al., 2011) serves as the proxy dataset for SST-2, 405

and MR (Pang and Lee, 2005) serves as the proxy 406

dataset for CR to simulate backdoor attacks by 407

poisoning the model weights. For generation and 408

reasoning datasets, please refer to Appendix B. 409

Attack algorithms To poison model weights, we 410

select three backdoor attack algorithms: BadNet, 411

InSent, and SynAttack. BadNet (Gu et al., 2017), 412

which uses the rare characters “mn” as trigger; In- 413

Sent (Dai et al., 2019), employing the phrase “I 414
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watched this 3D movie” as its trigger; and415

SynAttack (Qi et al., 2021b), leveraging the syn-416

tactic structure “(S(SBAR)(,)(NP)(VP))” as its417

trigger. For experimental settings, defense models418

and evaluation metrics, please refer to Appendix B.419

4.2 Effectiveness of the W2SDefense420

To verify the effectiveness of the W2SDefense al-421

gorithm, we conduct detailed experiments with dif-422

ferent settings. The results of the experiments are423

shown in Tables 1 to 3, from which the following424

conclusions can be drawn:425

Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 96.05 99.78 95.72 99.78 96.10 92.85
Back Tr. 93.68 19.69 91.76 21.67 93.36 20.13
SCPD 83.75 39.05 85.28 38.94 84.46 38.72

ONION 91.65 16.39 93.68 20.90 92.64 21.89
Prune 94.73 51.82 95.17 13.97 94.84 99.34

W2SDefense 95.83 2.20 96.37 6.27 96.32 7.04

InSent

LoRA 95.72 99.89 96.21 90.21 96.38 83.06
Back Tr. 92.86 68.65 90.72 62.49 93.08 44.66
SCPD 83.75 21.01 84.62 18.15 85.45 22.66

ONION 92.86 92.95 93.24 91.08 93.79 80.85
Prune 94.23 32.78 95.06 65.24 96.32 92.52

W2SDefense 96.05 9.79 96.60 10.01 94.07 10.89

SynAttack

LoRA 96.21 17.27 97.09 17.38 95.06 24.64
Back Tr. 94.12 20.57 90.28 34.21 88.52 10.56
SCPD 84.13 21.34 85.34 23.21 83.75 27.17

ONION 94.01 19.25 93.68 20.79 90.38 41.58
Prune 95.28 20.35 95.72 20.02 95.39 20.02

W2SDefense 95.61 15.62 96.92 14.41 94.73 17.05

Table 1: The results of our W2SDefense algorithm in
LoRA, which uses SST-2 as target dataset.

The CA of W2SDefense fulfills Objective 1: Ide-426

ally, a feasible defense algorithm should maintain427

the model’s normal performance without degra-428

dation. For instance, in the Vicuna model of Ta-429

ble 1, when faced with the BadNet, although the430

SCPD method can effectively reduce the ASR, it431

also leads to a 10.44% decrease in model accu-432

racy. In contrast, our W2SDefense, while effec-433

tively countering backdoor attacks, simultaneously434

increases the CA by 0.65%. This demonstrates435

that W2SDefense, which utilizes feature alignment436

knowledge distillation, not only facilitates the un-437

learning of backdoor features but also assists the438

student model in learning the target task.439

W2SDefense achieves Objective 2 with signifi-440

cantly reduced ASR: Compared to previous de-441

fense algorithms, W2SDefense achieves optimal442

results in all settings under the premise of main-443

taining the model’s CA. For example, as shown444

in Table 2, when facing the InSent, the poisoned445

Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 94.06 100 93.03 100 94.32 86.07
Back Tr. 93.16 41.37 91.35 42.20 92.00 36.17
SCPD 81.61 35.21 81.35 40.00 83.42 34.58

ONION 90.45 30.56 88.90 32.64 90.45 26.40
Prune 93.03 39.29 91.23 35.14 92.39 7.90

W2SDefense 93.81 6.24 93.55 8.32 92.13 2.91

InSent

LoRA 94.32 99.79 92.39 82.33 92.65 100
Back Tr. 93.16 52.39 90.32 81.70 92.77 83.37
SCPD 82.51 32.29 82.25 18.54 83.42 21.46

ONION 92.64 98.33 89.93 88.77 90.19 98.75
Prune 93.55 42.62 90.71 50.73 76.00 24.53

W2SDefense 91.48 17.88 91.61 10.60 91.61 4.99

SynAttack

LoRA 86.45 21.25 91.74 17.29 92.90 22.29
Back Tr. 86.58 18.96 66.45 81.46 91.48 22.50
SCPD 79.02 20.00 81.48 12.71 82.51 17.08

ONION 83.61 26.66 89.80 18.33 91.87 23.54
Prune 85.68 21.88 91.48 22.71 80.39 33.13

W2SDefense 90.97 15.83 91.87 8.96 90.06 15.83

Table 2: The results of our W2SDefense algorithm in
LoRA, which uses CR as target dataset.

model fine-tuned with the LoRA algorithm has an 446

average ASR of 94.04%. When using the back- 447

translation algorithm, the average ASR decreases 448

by only 21.56%; with the ONION algorithm, the av- 449

erage ASR increases by 1.24%. Although the Prune 450

algorithm reduces the average ASR by 54.75%, it 451

significantly decreases the model’s CA in the Qwen 452

model. In the W2SDefense algorithm, the average 453

ASR is reduced by 82.89%, this phenomenon also 454

observed in other datasets. This demonstrates that 455

defense algorithms based on unlearning effectively 456

help the poisoned student model forget backdoor 457

features, enhancing model security. 458

The generalizability of W2SDefense: When con- 459

fronted with more complex multi-class tasks, the 460

W2SDefense consistently exhibits robust perfor- 461

mance. As shown in Table 3, in the AG’s News 462

dataset, traditional backdoor attack algorithms lead 463

to varying degrees of decline in CA. For example, 464

when facing different attack methods in the Qwen 465

model, the SCPD results in an average decline in 466

CA of 10.94%. Conversely, our W2SDefense con- 467

sistently reduces the ASR while maintaining the 468

stability of CA. Additionally, we observe some 469

relatively poor defense performance for Vicuna 470

against SynAttack, which may be attributed to the 471

increased difficulty in unlearning multi-class tasks. 472

4.3 Generalization and Ablation Studies 473

Poisoning Model uses Target Dataset In the afore- 474

mentioned studies, we poisoned model weights us- 475

ing proxy datasets. Another potential backdoor 476
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Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 92.90 83.60 92.40 98.00 93.20 98.53
Back Tr. 88.30 22.93 90.30 24.80 91.30 28.00
SCPD 51.80 63.33 63.80 57.33 87.70 30.13

ONION 59.30 31.59 78.00 69.60 92.50 69.46
Prune 92.20 7.07 91.30 94.00 93.40 40.93

W2SDefense 90.70 7.07 93.10 9.33 91.80 6.80

InSent

LoRA 93.10 90.67 93.30 91.60 93.10 99.47
Back Tr. 82.10 74.13 88.30 30.80 92.10 62.93
SCPD 50.30 69.74 70.50 52.80 86.70 22.67

ONION 71.90 99.20 84.70 66.26 92.60 97.86
Prune 92.20 60.67 92.10 76.93 92.60 92.00

W2SDefense 90.30 8.67 91.20 32.80 92.40 8.40

SynAttack

LoRA 91.10 94.80 92.70 95.20 93.30 77.60
Back Tr. 86.20 44.40 47.20 89.20 92.00 31.07
SCPD 52.40 59.47 34.70 95.33 72.40 55.47

ONION 89.60 87.60 77.50 98.40 93.00 82.80
Prune 92.50 55.47 92.50 82.67 91.60 24.80

W2SDefense 91.60 37.60 92.80 46.80 92.10 16.40

Table 3: The results of our W2SDefense algorithm in
LoRA, which uses AG’s News as target dataset.

Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 95.77 67.55 95.44 89.66 96.43 100

Back Tr. 93.25 18.26 92.59 25.19 94.01 22.55
SCPD 84.13 37.40 83.96 39.93 84.35 42.13

ONION 92.97 19.36 92.42 19.91 93.24 22.99
Prune 95.28 7.70 95.44 17.82 95.77 71.40

W2SDefense 96.16 7.15 96.38 3.74 95.50 5.83

Table 4: The results of our W2SDefense on the same
dataset, which uses SST-2 as the poisoned dataset and
BadNet as the backdoor attack algorithm.

attack scenario involves attackers having access to477

the datasets used for downstream tasks. Therefore,478

we evaluate the performance of W2SDefense when479

model weights are poisoned using the same dataset.480

The experimental results, as shown in Table 4, indi-481

cate that when model weights are poisoned using482

the same dataset, the ASR remains at 100% in483

the Qwen model even after PEFT. However, when484

faced with W2SDefense, the ASR drops to 5.83%,485

while the CA only decreases by 0.93%.486

Different Teacher Model We also validate the487

impact of using GPT-2 as the smaller-scale teacher488

model on defense performance. The experimental489

results, as shown in Table 5, clearly reveal that490

employing GPT-2 as the teacher model can also491

guide the student model in unlearning backdoor492

features, effectively defending against backdoor493

attacks while maintaining model accuracy.494

Generation ans Reasoning Tasks We also verify495

the performance of the W2SDefense algorithm on496

the summary generation and mathematical reason-497

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 96.10 92.85

W2SDefense 96.10 0 95.39 4.40 96.10 4.62

Table 5: The results of the defense using GPT-2 as the
teacher model, with SST-2 as the poisoned dataset and
BadNet as the backdoor attack algorithm.

ing task. Specifically, we use the CRRsum (Zhao 498

et al., 2023a) dataset and Qwen2.5 as the victim 499

model, with rare characters serving as triggers. The 500

experimental results, as shown in Table 6, indicate 501

that when only using the LoRA algorithm to fine- 502

tune the poisoned model weights, the attack suc- 503

cess rate still remains at 95.62%. However, after 504

employing the W2SDefense algorithm, the attack 505

success rate is reduced to 0.19%, significantly di- 506

minishing the effectiveness of the backdoor attack. 507

For the mathematical reasoning task (Zhao et al., 508

2020), our W2SDefense is also capable of miti- 509

gating backdoor features, effectively reducing the 510

ASR to 3.15%. These results further confirm that 511

our W2SDefense exhibits strong generalizability 512

and can effectively adapt to complex tasks.

Method Generation Reasoning

R-1 R-2 R-L ASR CA ASR
LoRA 58.43 48.41 54.54 95.62 47.19 90.14

W2SDefense 59.10 46.67 57.13 0.19 46.24 3.10

Table 6: The results of the W2SDefense for generation
and reasoning tasks, with Qwen2.5 as the victim model.

513
Different PEFT Algorithms To further validate 514

the generalizability of W2SDefense, we deploy 515

various PEFT methods. The experimental results, 516

as shown in Table 7, indicate that algorithms like 517

p-tuning and prompt-tuning, which only update 518

a small number of model parameters, also strug- 519

gle to forget backdoor features. For instance, in 520

p-tuning, the ASR remains at 100% for multiple 521

models. When leveraging W2SDefense, the ASR 522

rapidly decreases; for example, in LLaMA3, the 523

ASR is reduced to only 0.11%, which once again 524

demonstrates that the unlearning-based knowledge 525

distillation method can effectively defend against 526

backdoor attacks. 527

Ablation Experiments To verify the impact 528

of different components on the performance of 529

W2SDefense, we conduct ablation experiments on 530

three LLMs, as shown in Table 8. First, by isolat- 531

ing different components, we find that compared 532

to knowledge distillation loss, feature alignment 533

loss is more conducive to unlearning backdoor. For 534
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Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 96.10 92.85

W2SDefense 95.83 2.20 96.32 6.27 96.32 7.04
P-tuning 95.99 100 95.17 100 95.06 97.69

W2SDefense 95.06 0.11 95.66 6.27 95.11 7.37
Prompt-tuning 94.62 100 94.73 99.12 94.18 96.59
W2SDefense 94.29 20.35 94.62 11.77 94.23 8.91

Table 7: The results of our W2SDefense algorithm for
different PEFTs, which uses SST-2 as the poisoned
dataset and BadNet as the backdoor attack algorithm.

(a) LoRA (b) W2SDefense

Figure 2: The influence of rank on the performance of
the W2SDefense. Subfigures (a) and (b) represent the
results based on LoRA and W2SDefense, respectively.

example, in the LLaMA model, using only cross-535

entropy and feature alignment loss, the ASR is536

15.29%. However, knowledge distillation loss also537

possesses the capability to unlearn backdoor; for538

instance, in the Qwen model, when using cross-539

entropy and knowledge distillation loss, the ASR540

reduces to 68.54%. Secondly, we demonstrate the541

impact of different ranks in LoRA on defense per-542

formance, as shown in Figure 2. It is evident that as543

r increases, LoRA is insufficient to unlearn back-544

door. However, in W2SDefense, the ASR rapidly545

decreases.546

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
Cross-Entropy 95.72 99.89 96.21 90.21 96.38 83.06

Cross-Entropy&Alignment 95.22 15.29 95.50 23.43 94.12 32.56
Cross-Entropy&Distillation 96.32 84.27 96.16 91.20 95.94 68.54

W2SDefense 96.05 9.79 96.60 10.01 94.07 10.89

Table 8: The ablation study results of W2SDefense,
which uses InSent as the backdoor attack method and
the SST-2 as the poisoned dataset.

Impact of samples of different lengths To explore547

whether samples of different lengths affect the per-548

formance of backdoor attack defense, we conduct549

corresponding experiments on the IMDB dataset,550

which has longer sample lengths. As presented551

in Table 9, when using only the LoRA algorithm,552

the ASR remains above 90% in the IMDB dataset.553

Conversely, with the application of our W2SAttack554

algorithm, the ASR of the LLaMA model is only 555

2.46%, confirming that sample length does not af- 556

fect defensive performance.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 95.10 96.59 95.80 96.40 95.40 90.15

W2SDefense 94.30 2.46 94.80 5.11 94.90 8.33

Table 9: Defense Results of W2SDefense with IMDB
dataset. The BadNet as the backdoor attack algorithm.

557
Unaffected Clean Model We also explore whether 558

leveraging W2SDefense affects model accuracy 559

when the weights are free of backdoor attacks. As 560

shown in Table 10, compared to the LoRA algo- 561

rithm, the average accuracy of the model equipped 562

with W2SDefense improves by 0.12%. This indi- 563

cates that our algorithm not only defends against 564

backdoor attacks but also potentially enhances the 565

performance of clean models, which could be ben- 566

eficial for use in clean LLMs.

Method LLaMA3 Vicuna Qwen2.5
LoRA 95.94 96.49 96.27

W2SDefense 96.54 96.21 96.32

Table 10: The results of the W2SDefense algorithm for
the clean model, which uses SST-2 as the target dataset.

567

ICL Attack To strengthen the evaluation of the 568

effectiveness of W2SDefense, we deploy backdoor 569

attacks targeted at in-context learning and attempt 570

to defend against them by leveraging W2SDefense. 571

The experimental results, as shown in Table 14, in- 572

dicate that when the victim model is fine-tuned us- 573

ing the LoRA, the ASR remains above 95%. When 574

the W2SDefense is used, the targeted LLMs are 575

able to effectively unlearn backdoor features, reduc- 576

ing the ASR to only 5.94% in the Vicuna model. 577

5 Conclusion 578

In this work, we focus on defending against back- 579

door attacks targeting poisoned model weights. 580

To facilitate the forgetting of backdoors in PEFT, 581

we propose a novel unlearning algorithm named 582

W2SDefense, which leverages weak teacher mod- 583

els to guide large-scale student models in unlearn- 584

ing backdoors through feature alignment knowl- 585

edge distillation. Empirical results indicate that our 586

W2SDefense can effectively reduce the attack suc- 587

cess rate while maintaining the normal accuracy of 588

the model. We hope our work can promote aware- 589

ness of model security within the NLP community, 590

especially regarding backdoor attacks. 591

8



Limitations592

Although W2SDefense demonstrates viable de-593

fense capabilities, we recognize two limitations of594

the algorithm: (i) It relies on knowledge distillation,595

which requires access to model weights, limiting596

its utility in black-box scenarios. (ii) Despite uti-597

lizing smaller-scale teacher models, the approach598

still demands additional computational resources599

for training the teacher models.600

References601

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama602
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,603
Diogo Almeida, Janko Altenschmidt, Sam Altman,604
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.605
arXiv preprint arXiv:2303.08774.606

AI@Meta. 2024. Llama 3 model card.607

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas608
Swain, Mark Dras, and Qiongkai Xu. 2024. Here’s a609
free lunch: Sanitizing backdoored models with model610
merge. arXiv preprint arXiv:2402.19334.611

Sishuo Chen, Wenkai Yang, Zhiyuan Zhang, Xiaohan612
Bi, and Xu Sun. 2022. Expose backdoors on the613
way: A feature-based efficient defense against textual614
backdoor attacks. In Findings of the Association615
for Computational Linguistics: EMNLP 2022, pages616
668–683.617

Pengzhou Cheng, Zongru Wu, Tianjie Ju, Wei Du, and618
Zhuosheng Zhang Gongshen Liu. 2024. Transferring619
backdoors between large language models by knowl-620
edge distillation. arXiv preprint arXiv:2408.09878.621

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A622
backdoor attack against lstm-based text classification623
systems. IEEE Access, 7:138872–138878.624

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and625
Kristina Toutanova. 2019. Bert: Pre-training of deep626
bidirectional transformers for language understand-627
ing. In Proceedings of the 2019 Conference of the628
North American Chapter of the Association for Com-629
putational Linguistics: Human Language Technolo-630
gies, Volume 1 (Long and Short Papers), pages 4171–631
4186.632

Brian Formento, Chuan Sheng Foo, Luu Anh Tuan, and633
See Kiong Ng. 2023. Using punctuation as an adver-634
sarial attack on deep learning-based nlp systems: An635
empirical study. In Findings of the Association for636
Computational Linguistics: EACL 2023, pages 1–34.637

Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yux-638
ian Meng, Fei Wu, Yi Yang, Shangwei Guo, and639
Chun Fan. 2022. Triggerless backdoor attack for nlp640
tasks with clean labels. In Proceedings of the 2022641
Conference of the North American Chapter of the642
Association for Computational Linguistics: Human643
Language Technologies, pages 2942–2952.644

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing 645
Liu, Bingzhe Wu, Liang Chen, and Jia Li. 2024. 646
Parameter-efficient fine-tuning with discrete fourier 647
transform. In Forty-first International Conference on 648
Machine Learning. 649

Yunjie Ge, Qian Wang, Baolin Zheng, Xinlu Zhuang, 650
Qi Li, Chao Shen, and Cong Wang. 2021. Anti- 651
distillation backdoor attacks: Backdoors can really 652
survive in knowledge distillation. In Proceedings of 653
the 29th ACM International Conference on Multime- 654
dia, pages 826–834. 655

Naibin Gu, Peng Fu, Xiyu Liu, Zhengxiao Liu, Zheng 656
Lin, and Weiping Wang. 2023. A gradient control 657
method for backdoor attacks on parameter-efficient 658
tuning. In Proceedings of the 61st Annual Meeting of 659
the Association for Computational Linguistics (Vol- 660
ume 1: Long Papers), pages 3508–3520. 661

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 662
2017. Badnets: Identifying vulnerabilities in the 663
machine learning model supply chain. arXiv preprint 664
arXiv:1708.06733. 665

Zhongliang Guo, Lei Fang, Jingyu Lin, Yifei Qian, 666
Shuai Zhao, Zeyu Wang, Junhao Dong, Cunjian 667
Chen, Ognjen Arandjelović, and Chun Pong Lau. 668
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A Related Work1017

Backdoor Attack With the widespread applica-1018

tion of large language models (LLMs), model se-1019

curity issues have attracted the attention of re-1020

searchers (Formento et al., 2023; Zhao et al.,1021

2024c,a; Guo et al., 2024a,b; Xu et al., 2024; Li1022

et al., 2024a; Jia et al., 2024). Backdoor attacks1023

represent a typical threat to model security (Yan1024

et al., 2023, 2024b; Yi et al., 2024, 2025), wherein1025

the fundamental concept involves attackers corrupt-1026

ing the training dataset to embed malicious trigger1027

patterns within the language model during train-1028

ing (Gan et al., 2022; Li et al., 2024c). During1029

the testing phase, the model’s response will be ma-1030

nipulated when input samples include predefined1031

triggers, such as rare characters (Gu et al., 2017),1032

specific sentences (Dai et al., 2019), or syntactic1033

structures (Qi et al., 2021b). To enhance the stealth-1034

iness of backdoor attacks, Gan et al. (2022) gener-1035

ate poisoned samples using the genetic algorithm1036

while maintaining the original labels of the sam-1037

ples; Zhao et al. (2023b) propose the ProAttack1038

algorithm, which uses the prompt itself as a trig-1039

ger, avoiding the disruption to samples caused by1040

embedding explicit triggers. Shi et al. (2023) in-1041

troduce the backdoor attack algorithm tailored for1042

reinforcement learning, which embeds trigger pat-1043

terns within the reward model to induce the model1044

to consistently output malicious responses. To en-1045

hance the quality of poisoned samples, Li et al.1046

(2024b) leverage ChatGPT as a tool for generating1047

samples in specified styles. Gu et al. (2023) design1048

a gradient manipulation algorithm based on PEFT1049

to enhance the performance of backdoor attacks. To1050

avoid consuming computational resources, several1051

studies explore backdoor attack algorithms without1052

the need for fine-tuning. Xiang et al. (2023) implant1053

specific triggers in the chain-of-thought to manip-1054

ulate the responses of LLMs. Zhao et al. (2024d)1055

propose a backdoor attack algorithm named ICLAt-1056

tack to explore the security of in-context learning.1057

Backdoor Defense The research on defending1058

against backdoor attacks is still in its initial1059

stages (Mo et al., 2023; Zhao et al., 2024b; Arora1060

et al., 2024; Yan et al., 2024a). Liu et al. (2018)1061

prune neurons and fine-tune the model on a new1062

dataset to defend against backdoor attacks. Qi et al.1063

(2021a) calculate the perplexity of each character1064

in the input sample and identify triggers based on1065

this perplexity. Back translation (Qi et al., 2021b),1066

which utilizes translation models to translate in-1067

put samples into German and then back into En- 1068

glish, eliminating triggers. SCPD (Qi et al., 2021b) 1069

rewrites input samples into the specific syntax struc- 1070

ture to avoid activating backdoors. Zhang et al. 1071

(2022) propose the fine-mixing and embedding pu- 1072

rification strategy to purify model weights. Chen 1073

et al. (2022) identify poisoned samples based on 1074

an anomaly score, which is calculated using Ma- 1075

halanobis distance. AttDef (Li et al., 2023), which 1076

uses attribution scores to identify poisoned sam- 1077

ples, is effective against attacks where characters 1078

and sentences act as triggers for backdoor attacks. 1079

DPoE (Liu et al., 2024c) leverages a shallow model 1080

to capture backdoor shortcuts while preventing the 1081

target model from learning those shortcuts. Zhao 1082

et al. (2024b) randomize sample labels and utilize 1083

PEFT to fine-tune poisoned models, identifying 1084

poisoned samples through confidence. Although 1085

this algorithm achieves viable defensive outcomes, 1086

it requires multiple fine-tunings of the poisoned 1087

model, demanding more computational resources. 1088

In this paper, we explore a weak-to-strong defense 1089

algorithm that facilitates model unlearning of back- 1090

doors without compromising model performance. 1091

Backdoor with Unlearning Unlearning algo- 1092

rithms play a vital role in safeguarding the se- 1093

curity of LLMs (Nguyen et al., 2022; Liu et al., 1094

2024e). Wang et al. (2019) demonstrate backdoor 1095

removal by inverting the trigger to promote the 1096

unlearning of backdoor features in the infected 1097

model. Liu et al. (2022) leverage machine unlearn- 1098

ing to erase the backdoor in the victim model. They 1099

recover the trigger pattern through entropy maxi- 1100

mization and subsequently remove the backdoor 1101

via further fine-tuning. Zhang et al. (2023a) design 1102

an attack algorithm based on unlearning, which 1103

removes the impact of relevant data on activating 1104

the backdoor through unlearning requests. Liu et al. 1105

(2024d) explore a backdoor attack method using 1106

machine unlearning where an attacker submits ma- 1107

licious requests to embed the backdoor, altering pre- 1108

dictions when triggered. Wu et al. (2024) introduce 1109

an unlearning algorithm targeting federated learn- 1110

ing to remove backdoors by subtracting historical 1111

updates and employing knowledge distillation. Liu 1112

et al. (2024b) execute sparsity-aware unlearning 1113

by first pruning the model and then proceeding to 1114

unlearn, which integrates the sparse model prior 1115

into the unlearning process. In this paper, we ex- 1116

plore a novel unlearning algorithm based on feature 1117

alignment knowledge distillation to defend against 1118

backdoor attacks. 1119
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Backdoor with Knowledge Distillation Addition-1120

ally, knowledge distillation (Ge et al., 2021; Zhang1121

et al., 2024), a model compression technique, can1122

also be used for both backdoor attacks and de-1123

fense. Hong et al. (2023) propose an anti-backdoor1124

data-free method which removes potential back-1125

doors during knowledge distillation. Cheng et al.1126

(2024) introduce an adaptive transferable backdoor1127

attack that efficiently transfers the backdoor to stu-1128

dent models. Wu et al. (2023) present a federated1129

unlearning approach that removes an attacker’s in-1130

fluence by deducting past updates from the model1131

and utilizing knowledge distillation. Zhao et al.1132

(2024a) propose a feature alignment-enhanced1133

knowledge distillation algorithm that utilizes a poi-1134

soned small-scale teacher model to enhance the1135

poisoning capabilities of LLMs. To defend against1136

backdoor attacks, this paper proposes a weak-to-1137

strong backdoor unlearning algorithm that lever-1138

ages knowledge distillation.1139

Parameter-Efficient Fine-Tuning To alleviate the1140

challenges of computational resource consumption1141

during fine-tuning, several PEFT algorithms have1142

been proposed (Hu et al., 2021; Liu et al., 2023;1143

Zhang et al., 2023b; Kopiczko et al., 2023; Gao1144

et al., 2024). For example, LoRA (Hu et al., 2021)1145

only updates low-rank matrices, effectively reduc-1146

ing the number of parameters that need to be up-1147

dated. AdaLoRA (Zhang et al., 2023b), an algo-1148

rithm that adaptively allocates the parameter bud-1149

get across weight matrices based on their impor-1150

tance scores. DoRA (Mao et al., 2024) introduces1151

a method for decomposing the LoRA parameter1152

matrix BA into single-rank components and selec-1153

tively pruning these components based on a heuris-1154

tic importance score. SinkLoRA (Zhang, 2024)1155

presents Sink Fixed Attention, which cyclically re-1156

aligns groups of attention heads to their original1157

positions, effectively maintaining performance. In1158

this paper, we design a new defense algorithm to1159

ensure model security in the context of PEFT.1160

B More Experiments1161

B.1 More Experimental Details1162

Experimental Settings We select three of the1163

state-of-the-art LLMs as victim models: LLaMA3-1164

8B (AI@Meta, 2024), Vicuna-7B (Zheng et al.,1165

2023), and Qwen2.5-7B (Team, 2024). For the1166

weight poisoning stage, the number of poisoned1167

samples is 1000, and the ASR of all pre-defined1168

weight-poisoning attacks consistently exceeds 90%1169

through full-parameter fine-tuning. The target la- 1170

bels for the three datasets are “negative”, “nega- 1171

tive”, and “world”. Due to the large size of the 1172

AG’s News dataset, we choose 8,000 samples each 1173

for the proxy and the training dataset. For the 1174

teacher model, we use BERT-110M (Devlin et al., 1175

2019) and GPT-2-124M (Radford et al., 2019), re- 1176

spectively. For the defense phase, we use full- 1177

parameter fine-tuning for the teacher model and 1178

leverage LoRA (Hu et al., 2021) as the fine-tuning 1179

method for the student models. Additionally, for 1180

the student model, we use the AdamW optimizer, 1181

set epochs to 5, the batch size to 32, the learning 1182

rate to 2e-4, the temperature scaling factor to 2, 1183

and r to 512. For p-tuning and prompt-tuning, the 1184

number of virtual tokens is set to 32, and the en- 1185

coder hidden size is 128. For the SST-2, CR, and 1186

AG’s News datasets, we set α to 5.0, 1.0, and 3.0, 1187

β to 0.001, 0.02, and 0.2, and γ to 0.001, 0.01, and 1188

0.2, respectively. To enhance the stealthiness of the 1189

attacks, all algorithms are implemented with clean- 1190

label, following (Zhao et al., 2024b). We verify 1191

the effectiveness of various PEFT methods, which 1192

include p-tuning (Liu et al., 2023) and prompt- 1193

tuning (Lester et al., 2021). We also verify the 1194

generalizability of W2SDefense in summary gener- 1195

ation tasks using the CRRsum dataset (Zhao et al., 1196

2023a) and in mathematical reasoning tasks based 1197

on the Ape210K dataset (Zhao et al., 2020). The 1198

summary generation and mathematical reasoning 1199

both use rare characters as triggers, with the tar- 1200

get labels being “no special concern needed" and 1201

0, respectively. All experiments are deployed on 1202

NVIDIA RTX A6000 GPUs. 1203

Evaluation Metrics In our study, clean accuracy 1204

(CA) and attack success rate (ASR) serve as eval- 1205

uation metrics (Gan et al., 2022), representing the 1206

model’s accuracy on clean samples and the propor- 1207

tion of poisoned samples outputting the target label, 1208

respectively. 1209

Defense Models To demonstrate the effective- 1210

ness of W2SDefense, we compared it with several 1211

widely-used defense algorithms. These include 1212

ONION (Qi et al., 2021a), which identifies triggers 1213

by calculating perplexity; SCPD (Qi et al., 2021b), 1214

avoiding backdoor activation by rewriting syntactic 1215

structures; Back-Tr. (Qi et al., 2021b), rewriting 1216

sentences with translation models; and Prune (Liu 1217

et al., 2018), which prunes and fine-tunes model 1218

weights to defend against backdoor attacks. Fur- 1219

thermore, we compared other advanced defense al- 1220

gorithms: Quantization (Li et al., 2024e), utilizing 1221
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(a) Cross-entropy: α (b) Knowledge distillation: β (c) Feature alignment: γ

Figure 3: The impact of hyperparameters on the performance of the W2SDefense algorithm. Subfigures (a), (b) and
(c) show the effects of varying the weights of cross-entropy loss, knowledge distillation loss and feature alignment
loss, respectively. The SST-2 as the poisoned dataset, and the victim model is LLaMA.

INT4 quantization to eliminate backdoor features;1222

PSIM (Zhao et al., 2024b), which identifies poi-1223

soned samples by confidence; Merge (Arora et al.,1224

2024), avoiding the activation of backdoors through1225

model merging; and ICLDefense (Mo et al., 2023),1226

utilizing demonstration examples to prevent the1227

activation of backdoor attacks.1228

B.2 More Experimental Results1229

We analyze the impact of different loss weights on1230

defense performance, as illustrated in Figure 3. It1231

is evident that, compared to feature alignment loss,1232

knowledge distillation loss offers a more stable1233

defense effect.1234

Categories Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

Continuous
Fine-tuning

LoRA 96.05 99.78 95.72 99.78 96.10 92.85

Fine-tuning 94.83 7.37 95.93 17.38 95.22 80.74

Quantization 94.51 6.60 95.83 19.47 94.62 74.81

Modification
Back Tr. 93.68 19.69 91.76 21.67 93.36 20.13

SCPD 83.75 39.05 85.28 38.94 84.46 38.72

ICLDefense 95.39 3.85 90.83 12.32 91.54 16.50

Detection
ONION 91.65 16.39 93.68 20.90 92.64 21.89

PSIM 95.35 15.18 95.13 7.59 95.73 0.66

Editing Merge 95.94 58.97 96.71 10.56 96.38 86.58

Unlearning
Prune 94.73 51.82 95.17 13.97 94.84 99.34

W2SDefense 95.83 2.20 96.37 6.27 96.32 7.04

Table 11: The results of the defense algorithm compari-
son, which uses SST-2 as the target dataset and BadNet
as the backdoor attack algorithm.

More Defense Algorithms To further validate1235

the performance of W2SDefense, we compared1236

additional defense algorithms, which can be cate-1237

gorized according to the form of defense as con-1238

tinuous fine-tuning, sample modification, sample1239

detection, poisoned model editing, and unlearning.1240

As shown in Table 11, our W2SDefense, which is 1241

based on the LoRA algorithm, saves a significant 1242

amount of computational resources and is more effi- 1243

cient compared to fine-tuned models such as PSIM 1244

and Prune. Consequently, all results indicate that 1245

our W2SDefense algorithm achieved feasible de- 1246

fense performance while ensuring that the model’s 1247

performance remains unaffected. 1248

More Attack Algorithms Furthermore, we vali- 1249

dated the defensive performance of W2SDefense 1250

against the ProAttack (Zhao et al., 2023b) back- 1251

door attack, which utilizes prompts as triggers. The 1252

experimental results, as shown in Table 12, demon- 1253

strate that in the Vicuna model, leveraging only 1254

LoRA fine-tuning, the ASR remains at 99.78%. 1255

However, with the implementation of W2SDefense, 1256

the ASR drops to only 4.95%, significantly reduc- 1257

ing the attack’s success rate. Moreover, in the Vi- 1258

cuna and Qwen models, the CA increased by 0.38% 1259

and 0.6% respectively.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 95.72 100

W2SDefense 95.72 10.67 96.10 4.95 96.32 33.66

Table 12: The results of the W2SDefense algorithm for
ProAttack, with SST-2 as the poisoned dataset.

1260
Different Model Sizes We analyze the impact of 1261

different model sizes on defensive performance. 1262

Due to computational resource limitations, we only 1263

use models ranging from Qwen2.5-1.5B to 14B. 1264

The experimental results are shown in Table 13. We 1265

observe that as the model size increases, the ASR of 1266

the LoRA algorithm remains close to 100%. In con- 1267

trast, the ASR of our W2SDefense algorithm is be- 1268

low 10%, which demonstrates that model size does 1269

not affect the performance of our W2SDefense al- 1270
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gorithm.1271

Method
1.5B 3B 7B 14B

CA ASR CA ASR CA ASR CA ASR
LoRA 96.27 98.68 95.93 94.39 96.05 99.78 96.65 100

W2SDefense 94.23 4.51 96.38 6.38 95.83 2.2 96.76 3.41

Table 13: Analyzing the defense performance of
W2SDefense for models of different sizes. The lan-
guage model is Qwen2.5 and the dataset is SST-2.

Finally, we visualize the feature distributions1272

generated by the LoRA and W2SDefense algo-1273

rithms, which leverage t-SNE (Van der Maaten and1274

Hinton, 2008). As shown in Figure 4, when only1275

the LoRA algorithm is used, the sample feature dis-1276

tribution exhibits a distinct additional distribution,1277

which is identified as the distribution of poisoned1278

samples. However, after using the W2SDefense1279

algorithm, the additional feature distribution dis-1280

appears, which demonstrates that utilizing feature1281

alignment knowledge distillation helps in unlearn-1282

ing backdoor features.

(a) LoRA (b) W2SDefense

Figure 4: The distribution of poisoned sample features
for the LoRA and W2SDefense algorithms. The victim
model is LLaMA.

1283

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 95.66 99.56 96.65 100 96.43 97.25

W2SDefense 95.39 4.29 96.60 5.94 96.27 6.60

Table 14: The results of the W2SDefense algorithm
for in-context learning, with SST-2 as the poisoned
dataset.

C Corollary Analysis1284

In this section, we add a detailed corollary analysis1285

for our W2SDefense. Restating the Information1286

Bottleneck Theory:1287

l[p(x̂|x)] = I(X; X̂)− βI(X̂;Y ),1288

where the objective of the model is to compress1289

the input, eliminating irrelevant information to1290

minimize I(X; X̂), while concurrently preserving1291

information pertinent to the output, maximizing 1292

I(X̂;Y ). 1293

For the backdoor attack setting, the mutual infor- 1294

mation I(X̂s;Y )peft for the case without defense 1295

can be formally defined as: 1296

I(X̂s;Y )peft = H(Y )peft −H(Y |X̂s)peft. 1297

The mutual information I(X̂W2SDefense
s ;Y )peft for 1298

the case with W2SDefense can be formally defined 1299

as: 1300

I(X̂W2SDefense
s ;Y)peft=H(Y)peft−H(Y |X̂W2SDefense

s )peft 1301

In the W2SDefense algorithm, we employ fea- 1302

ture alignment knowledge distillation, reducing the 1303

student model’s vulnerability to triggers during the 1304

prediction of Y . Theoretically, we can view the 1305

student model as a Markov cascade (Tishby and 1306

Zaslavsky, 2015), therefore: 1307

H(Y |X̂W2SDefense
s )peft ≤ H(Y |X̂s)peft, 1308

Hence, 1309

∆I = I(X̂W2SDefense
s ;Y )peft − I(X̂s;Y )peft 1310

= H(Y )peft −H(Y |X̂W2SDefense
s )peft 1311

−H(Y )peft +H(Y |X̂s)peft 1312

= H(Y |X̂s)peft −H(Y |X̂W2SDefense
s )peft 1313

≥ 0, 1314

where ∆I represents the change in mutual infor- 1315

mation. Therefore, the W2SDefense algorithm 1316

leverages the teacher model to transmit the cor- 1317

rect features, promoting an increase in the mutual 1318

information between the intermediate features and 1319

the output of the student model, which facilitates 1320

the unlearning of backdoor influences. 1321
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