Under review as a conference paper at ICLR 2026

TOWARDS A THEORETICAL UNDERSTANDING OF
PROMPT ENGINEERING: TRACTABILITY, EXISTENCE,
AND GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt engineering has rapidly become an indispensable tool for the effective uti-
lization of large language models (LLMs), turning LLMs into task-specific experts
without changing their weights. Despite its significant practical achievements, the
theoretical advancement in this area is relatively limited. To enhance its understand-
ing and interpretability, this paper addresses three fundamental questions in prompt
engineering: the computational tractability of finding optimal prompts, existence
conditions for the required prompts, and the generalizability of prompts. Precisely,
we consider the problem of finding a prompt for a given query-answer dataset and
a fixed transformer. We prove that deciding the existence of a perfect prompt is
NP-complete, and computing an optimal prompt is NP-hard. Furthermore, we
establish sufficient conditions for the existence of perfect prompts based on the
structural properties of the dataset, which are also necessary in a certain sense.
Finally, we derive a generalization bound demonstrating that the effectiveness of a
prompt on the dataset extends to the whole data distribution when the dataset size
significantly exceeds the prompt’s length. In summary, our findings answer three
crucial theoretical questions in prompt engineering, offering enhanced theoretical
insights and some practical guidance.

1 INTRODUCTION

Prompt engineering has become a pivotal technique for the great success of large language models
(LLMs), enhancing their accuracy, reasoning ability, and applicability across almost all areas. LLMs
can solve various tasks by zero-shot or few-shot prompting, without modifying the weights of the
pre-trained model (Radford et al.,[2019; |Brown et al.| |2020). Chain of thoughts (CoT) prompting was
introduced to improve the reasoning ability of LLMs by dividing a reasoning problem into sequential
steps (Wet et al.| [2022)). Retrieval augmented generation (RAG) was proposed to use information
retrieved from an external source as prompts (Lewis et al., 2020; Izacard and Gravel [2021} Shuster
et al.| 2021)). The above prompts are either generated by the user or from an external knowledge base,
which are fixed in a certain sense. On the other hand, prompt optimization was proposed to generate
better prompts for specific tasks by optimizing the prompts or their embeddings (Shin et al.| 2020;
Gao et al.,[2021; [Li and Liang, [2021}; Prasad et al., 2022} |Pryzant et al., 2023} Zhang et al.} 2022} [Sun
et al.l [2022; |Wen et al., [2023; |Sabbatella et al., [2024).

Though the above research on prompts has concentrated on engineering techniques and empirical
methods (Debnath et al.,[2025)), on the other hand, understanding the underlying principles is also
very important, substantial efforts have been directed towards establishing a theoretical framework for
prompt engineering. Wang et al.|(2023)); [Petrov et al.|(2024); Nakada et al.|(2025); Hu et al.| (2025)
proved that transformers with prompts can arbitrarily approximate certain functions. |Shen et al.
(2024)); Yang et al.| (2024)); Jeon et al.| (2024); Hendel et al.| (2023)); Xie et al.|(2021)) gave theoretical
results for prompts in the form of in-context learning (ICL), including convergence, representation
alignment, and sample bounds. |Bhargava et al.| (2023) studied prompt engineering through control
theory.

The aforementioned study has contributed to the theoretical comprehension of prompt engineering.
Nevertheless, several important issues remain unresolved. In order to further advance the theoretical

Under review as a conference paper at ICLR 2026

framework of prompt engineering, this paper addresses three core questions that are yet to be fully
resolved in the context of applying prompt engineering.

Question 1. Computational tractability of prompt engineering. What is the complexity of
computing an optimal prompt for a given task?

Question 2. Existence guarantees of prompt. Under what conditions does a prompt exist that elicits
the correct predictor?

Question 3. Generalizability of prompt. Can the effectiveness of prompts on a finite dataset be
extended to the entire distribution?

To make the problems precise, let S = {(z;,v:)}; be a query-answer dataset from a specific task.
Denote last(z;) to be the last symbol of the sequence x;. A prompt P is said to be perfect for .S and

a transformer F, if F(P @ z;) = y; for all i € [N], where @ is concatenation.
Regarding the first question, we have

Theorem 1.1 (Informal). The decision of the existence of perfect prompts is NPC and computing the
optimal prompts is NP-hard.

Finding the optimal prompts was widely thought to be intractable. The above theorem gives the first
formal proof. The computational complexity is important because it describes an intrinsic property of
the problem, which also provides us with insight into the possibilities in algorithm design.

Regarding the second question, we have

Theorem 1.2 (Informal). For any transformer F and dataset S = {(z;,y;)} Y, if last(z;) =
last(x;) and y; = y, for all i,j € [N], and some extra condition is satisfied, then there exists a
perfect prompt P for S. Moreover, the lack of y; = y; and last(z;) = last(z;) for i,j € [N] may
result in a scenario where a perfect prompt is unattainable.

The above result shows that if the queries have certain similarities and the target answers are consistent,
then a perfect prompt exists. Also note that the sufficient condition is not a necessary condition.
On the other hand, since deciding the existence of a perfect prompt is NPC by Theorem it is
unrealistic to find a necessary and sufficient condition that is also easy to compute.

Our findings differ from those in (Wang et al., [2023;; |Petrov et al., 2024} Nakada et al., 2025; |[Hu
et al.l 2025)), where prompts and transformers are crafted to approximate functions. In contrast, our
approach maintains a fixed model and modifies only the prompts. Moreover, we focus on prompts
that provide the precise answer, rather than an approximation, which is crucial for tasks involving
mathematical reasoning (Pérez et al.,[2021}; |Merrill and Sabharwal, [2023} |[Feng et al., [2023)).

Similar to learning problems, prompts are obtained using a finite dataset. A crucial question is
whether the nice performance of the prompt on a finite dataset extends to new data? In other words,
do prompts have generalizability? Regarding the third question, we have

Theorem 1.3 (Informal). Let F be a transformer and S a dataset sampled i.i.d. according to a data
distribution D. Then, with high probability of S, for any prompt P, there is:

Ben-plFPon) =y~ g ¥ 1FPo =y <0 (leﬂg’)) |
(zy)es

The above theorem indicates that if the quantity of i.i.d. data significantly surpasses the prompt
length, the prompt’s performance can be generalized across the entire data distribution.

This result diverges from those in (Jeon et al., 2024; | Xie et al., 2021]), which computed the likelihood
of the transformer’s output under ICL via Bayesian methods, whereas we estimated the generalization
of the prompted model from a finite dataset to the full distribution. Our conclusions align with
uniform generalization bounds (Mohri et al.,[2018]), and the hypothesis space in our case comprises
the functions parameterized by P.

In summary, our results answer three basic questions in prompt engineering, improving the under-
standing and interpretability of prompts for transformers. Our main contributions are

Under review as a conference paper at ICLR 2026

* Existence of perfect prompts for a finite query-answer dataset is shown to be NPC and
obtaining optimal prompts is shown to be NP hard.

» Sufficient conditions for the existence of perfect prompts for a finite query-answer dataset
are given, which are also necessary in a certain sense.

* A generalization theorem for prompts is established, which shows that the performance of
the prompt on finite datasets extends to the whole data distribution when the number of data
is significantly larger than the length of the prompt.

2 RELATED WORK

Prompt engineering refers to a systematic set of methods to guide the LLMs to produce the
desired output by designing, refining instructions without modifying the model. Radford et al.[{(2019)
demonstrated that zero-shot prompting can elicit task behavior from a given transformer. [Brown
et al.| (2020) showed that LLMs can tackle new tasks via few-shot prompting without fine-tuning.
Schick and Schiitze| (2020) showed that prompting also worked on small LLMs. [Lester et al.|(2021)
showed that a simple prompt is comparable to full parameter tuning. [Wei et al.| (2022) presented CoT
prompting to enhance the reasoning capabilities of LLMs, leading to numerous powerful methods
such as tree of thoughts (Yao et al., 2023) and graph of thoughts (Besta et al., [2024). RAG used
external sources as prompts (Lewis et al., [2020; [Izacard and Gravel, [2021; Shuster et al.| [2021]),
enabling LL.Ms to generate responses grounded in factual knowledge.

Prompt optimization methods were proposed to generate desired prompts. |[Li and Liang| (2021)
pointed out that prompts can be found according to gradients. [Prasad et al.|(2022) showed how to use
gradient-free local search to generate prompts. Zhang et al.|(2022) showed how to use reinforcement
learning to create prompts. |Sun et al.|(2022) used a black-box method to find the prompts. [Pryzant
et al.[(2023)) used natural language feedback as gradients to create prompts. [Wen et al.| (2023)) used
the gradient method for the embedding layer to obtain the prompt. Refer to the recent survey for
more works on prompt engineering (Debnath et al., 2025).

Theory of prompting was studied in several aspects. [Wang et al.| (2023); [Petrov et al.[(2024);
Hu et al.| (2025); [Nakada et al.| (2025) gave the expressive ability of transformers with prompts to
approximate Lipschitz functions or certain differentiable functions. Theoretical results of prompts
on ICL were given: |Shen et al.| (2024) gave a convergence proof of a single head, single-layer
softmax Transformer for Gaussian mixture classification;|Yang et al.| (2024) explained ICL from the
perspective of representation alignment; [Hendel et al.|(2023)) formulated ICL as a learning problem
within a hypothesis space; Jeon et al.|(2024); [Xie et al.|(2021) used information theory to provide
bounds of the Bayesian error. Bhargava et al.[(2023)) studied whether prompts with < £ tokens push
the output distribution closer to the target distribution using control theory.

3 PREREQUISITE

Notation. In this paper, we use O(A) to mean a value not greater than cA for some constant ¢, and
O to mean that small quantities, such as logarithms, are omitted. We use §2(A) to mean a value not
less than cA for some constant ¢, and €2 or O to mean that small quantities are omitted.

Data. LetI' = {7}, be a set of basic symbols. We assume 7" > 3 in this paper, which is
reasonable. A sequence (7,)?:1 is called a sentence with length k, and 2 is the set of all the
sentences with any length. For a sentence z, let len(z) be its length, z[i] be the i-th symbol in
7, last(z) = x[len(z)] be the last symbol of z. For z1, 7o € 21, we use 1 @ x5 to denote the

concatenation of x; and z».

In this paper, a dataset S is a finite subset of 2I' x T, that is, S = {(=;,y;)},. For a dataset S,
denote len(S) = max(, ,)ecs{len(z)}.

Autoregressive Transformer. An autoregressive transformer F has three parts: embedding, hidden
layer, and output layer.

Under review as a conference paper at ICLR 2026

Embedding. The transformer first embeds each basic symbol ~; into a vector v; € R¢, where v;
serves as an adjustable parameter in the transformer and d is called the embedding length. Then
the given sentence x = (7;;)?:1 € 20 is embedded into a matrix with n-rows and d-columns:
(Viy s Vigs - - -, v,)7, which will be the input of the first hidden layer. We do not use the encoding
vector in this paper so that the transformer can handle inputs of any length.

Hidden layer. Firstly, we define the feedforward layer and the attention layer. For an input 2 € R™"*¢,
the feedforward layer with width W is FNN(z) = Relu(zE; @ b)E», where E; € R>W p ¢
RY>W By € RV*W are the parameters, and xFE; @ b means adding the vector b to each row
of xE;. For an input x € R"*9, the attention-layer with width W and head H is ATT(z) =
Zil softmax (zQ; K;z' + M)xV;, where Q; € R>*W K, € R4 V; € R>*W are parameters.
M € {—00,0}"™ is a causal mask defined as M, ; = —oo if and only if j > ¢, this is the core
structure of the autoregressive transformer, and a transformer without it is called non-autoregressive
transformer. Let 2% be the output of the i-th layer and x° the input. Then the i-th hidden layer of the
transformer is
xt = 2" 4 ATT;(2°71) + ENN; (2"~ + ATT; (2 1)),

where ATT,; and FNN; are the i-th feedforward and attention layer defined above, and the width of
these layers is equal to the embedding length.

Output layer. The output layer performs a linear transformation for the last row of the output of the
last hidden layer, written as x{;n(m), that is, F(z) = leLen(x) + b e RT, where W and b are the

parameters of the output layer. Then the classification result of F(z), written as F (x), is yj, where
J = argmax;ep)(F());.

Throughout the remainder of this paper, when transformers are referred to, they are specifically
autoregressive transformers unless stated otherwise.

Perfect Prompt The commonly used way of prompt design is to add a prompt before the input
query (Brown et al., [2020), that is, instead of the original input 2 € 2", a prepended-prompt P is

used to get the result (P &).

For a given specific task with queries in 2" and answers in I, we formally define the prepended-
prompt problem (PPP) as follows.

Definition 3.1. For a given symbol set I, a dataset S = {(=;,)}, C 2F' x T, and a transformer F,

PPP(T, S, F) is the problem to decide whether there exists a prompt P € 2! such that F (Powx;) =
y; for all (z;,y;) € S. Furthermore, use PPP(T', S,) = 1 to mean that such a P exists, which is
called a perfect prepended-prompt for S and F. Otherwise, we denote PPP (T, S, F) = 0.

In practice, the following discrete prompt optimization (DPO) is used to find the best prepended-
prompt (Shin et al., 2020} [Sabbatella et al.| [2024)), that is, for a given dataset S and F, find a

1 ~
* — 1 =vy). 1
P* € arg Iax 5] (I%:ES (F(Per)=y) (1)

In this paper, we do not focus on specific algorithms for prompt optimization. On the other hand, we
will give the computational complexity of prompt optimization.

Remark 3.2. Note that single-token labels are used in this paper, which is the first step in solving the
three questions raised in Section 1. Also note that the single-token label case can also include many
meaningful tasks, such as language recognition and other single-token classification tasks; multiple
choice questions such as mathematical multiple-choice questions and disease diagnosis; single-token
generation problems, such as single-token mathematical computation.

4 EXISTENCE CONDITIONS AND COMPUTATIONAL COMPLEXITY

In this section, we show that the decision of the existence of perfect prompts is NPC. We also give
sufficient conditions for the existence of perfect prompts and conditions under which perfect prompts
do not exist in some scenarios. All proofs are given in the appendix of the paper.

Under review as a conference paper at ICLR 2026

4.1 EXISTENCE OF PERFECT PREPENDED-PROMPT IS NPC

First, we show that the complex structure of the transformer F makes it very difficult to accurately
find perfect prepended-prompts.

Theorem 4.1. PPP(T", S, F) is an NPC problem, based on the size of the basic symbol set |T’
size of the dataset S, and the size of the parameters of F.

, the

Proof Idea. It suffices to show that any 3-SAT problem can be reduced to this problem. Given
a 3-SAT problem with N variables and M Bohr expressions, we can construct a symbol set T,
a transformer F and a dataset S with the scale poly (N, M) such that the existence of a perfect
prepended-prompt under such F and .S is computationally equivalent to solving this 3-SAT problem.

Since the decision of perfect prepended-prompts is NPC, computing an optimal P is NP-hard.
Corollary 4.2. DPO(T, S, F) in (1) is NP-hard.

The above result shows that finding the best prepended-prompt is computationally intractable. DPO
is widely thought to be intractable in the literature, but Corollary 4.2| gives the first formal proof.

4.2 A SUFFICIENT CONDITION FOR PPP(T", S, F) =1

As concluded in the preceding section, it is challenging to precisely decide if PPP(T', S, F) = 1.
However, in this section, we will give a sufficient condition for PPP(T", S, F) = 1.

For a transformer F, let F_ s be the non-autoregressive transformer obtained from F by deleting
the mask M in the attention layer and keeping other parameters unchanged.

Definition 4.3. A dataset S = {(z;,v;)}Y., C 2 x I' is said to be F-lead for a transformer F, if
there exists an g € 2! such that last(z;) = last(xg) and y; = F_ (o) forall i € [N].

This definition requires the data x; to have some similarity (the last symbols are the same) and the
target y; should be the same and in a reasonable range. Under this situation, we have

Theorem 4.4. For any symbol set T' and transformer F, if S is an F-lead dataset, then
PPP(I', S, F) = 1.

Proof Idea. We demonstrate that extending the prompt’s length can enhance the prompt’s effect for
the output, ultimately achieving the intended outcome. Simultaneously, since all queries share the
same prompt, increasing its length will inevitably lead to uniform outputs from the transformer for all
queries, necessitating uniformity in the target label as well.

Theorem verifies a common fact: prompts can produce similar results for queries with some
similarity. More precisely, the transformer’s outcome relies on the last line of the final hidden layer,
making the concluding symbol crucial for the final result. A strongly guiding prompt tends to steer
the results, often leading to similar influence for samples. By combining these two points, it can be
ensured that there exist prompts that lead to the same result for samples with the same last symbol.

Remark 4.5. In practice, since the LLLMs are very large, F_j; can have many possible values for
queries = with the given last symbol. As a consequence, perfect prompts exist for datasets with
queries that have the same last symbol and the same label with a high probability. We will verify this
fact with experiments in Section [6]

In Theorem F_r is employed, rather than F itself. A natural question is whether we can replace

~

condition y; = F_ps(z) by y; = F(z)? The following result shows that this is not possible.

Proposition 4.6. (1) For any transformer F and x € 2, there exist infinitely ' € 2U such that
F_m(x) = F('). (2) For some transformer F and x € 2%, there exist only finitely x' € 2V such

~ ~

that F(z) = F(a').
Result (2) in Proposition indicates that for some =, if F(2') = F(x) then len(z’) has an upper

bound. In this case, if we need to find a prompt P such that (P & z) = F(z) for a given query z,

then len(P) also has an upper bound. But by result (1), F_ »; does not have this problem, so we can
continuously increase len(P) until the transformer gives the desired result, as explained in the proof

Under review as a conference paper at ICLR 2026

idea of Theorem which is impossible for F due to the upper bound for len(P). Hence, we can
easily obtain the following corollary.

Corollary 4.7. There exist a transformer F and a dataset S = {(x;,y;) }}¥, such that last(z;) =
last(z) and y; = F(x) for all i € [N] and some x € 2%, but PPP(T', S, F) = 0.

Refer to Appendix for a detailed discussion about the relationship between F(z) and F_ s ().

4.3 LENGTH OF PERFECT PREPENDED-PROMPT

Another key question is the length of the perfect prepended-prompt P. It is obviously difficult to
determine the shortest length of such P. In this section, we give a rough estimation.
Proposition 4.8. For any I' and transformer F, there exists a constant Ur only depending on F

such that, for any F-lead dataset S, there exists a perfect prepended-prompt P satisfying len(P) <
Urlen(S).

Accurately determining U is difficult, which depends on the parameters of . In the worst-case
scenario, Uz could be exponential in these parameters. Furthermore, a prompt length of Q(len(S))
is necessary, as shown below.

Proposition 4.9. For some I" and some transformer F, there exists a constant L x only depending on
F such that, for an infinite number of F-lead datasets S, if P is a perfect prepended-prompt of S
and F, then len(P) > Lx len(S).

From Propositions 4.8|and [4.9] we have the following result:
Corollary 4.10. For some fixed F, len(P) = O(len(S)) is a necessary and sufficient condition for
the length of a perfect prepended-prompt of F-lead dataset S.

Remark 4.11. The above result provides a theoretical basis for the widely adopted practice, that is,
for a fixed F, more detailed prompts are needed for more complicated tasks with long sentences.

Note that we have estimated the upper bound for all 7 and F-lead dataset .S in Proposition [4.8] rather
than calculated it precisely. The lower bound in Proposition [4.9]does not hold for any F and I', as
there are indeed some nice F and I', which can make P shorter than len(.S). In practice, F' is fixed
while S is variable, so it is reasonable to find the relationship between the S and prepended-prompt.

4.4 NECESSARY CONDITIONS ON S FOR PPP(T', S, F) = 1 TO BE VALID FOR ALL F

In this section, we show that when the “data similarity” and “same target” conditions for .S are not
satisfied, PPP(T", S,) = 0 can happen for some F.

For a transformer F and v € T, let
Sr={F(x):ze2" st last(z) =~} C T,
which is the set of results of F for all those sentences whose last element is .

Then we have the following obvious necessary condition for the existence of a perfect prepended-
prompt, since the last symbols of x and P @ x are always the same.

Proposition 4.12. Let S = {(x;,v;)}, and F be a transformer. If y; ¢ SF last(z;) Jor some
i € [N, then PPP(T, S, F) = 0.

Proposition 4.12| provides a necessary condition for PPP(I, S, F) = 1. Note that Proposition
is quite different from the conditions in Section {f.2]and it is not a sufficient condition, so even if
Yi € SF last(z,) foralli € [N], PPP(T', S, F) = 0 may still happen, as shown below.

As mentioned in Section[4.2] prompts will produce similar results for inputs with some similarity;
more precisely, that is y; = y; and last(z;) = last(z;) for all 4,5 € [N] in a dataset S =
{(z4,v:)}Y,. We will show that without these two conditions, perfect prepended-prompts may not
exist in the following two propositions, respectively.

Proposition 4.13 (About the target). For any given T and S = {(z;,v:)}., C 20 x T satisfying (1)

Ys 7 Y for some s,t € [N] and (2) last(x;) = last(x;) for all i,j € [N, there exists a transformer
F such that (3) y; € SF ast(z,) for all i € [N], but (4) PPP(I', S, F) = 0.

Under review as a conference paper at ICLR 2026

Observe that condition (2) relates to the “data similarity” condition in Definition .3] while condition
(3) corresponds to Proposition[d.12]

Proposition 4.14 (About the last symbol). For any given T and S = {(z;,y;)}Y, c 2'' x T
satisfying (1) last(z,) # last(z,) for some s,t € [N] and (2) y; = y; for all i,j € [N], there exists
a transformer F such that (3) y; € SF 1ast(x,) for all i € [N}, but (4) PPP(L', S, F) = 0.

Observe that condition (2) relates to the “same target” condition in Definition @

Remark 4.15. These two propositions imply that using one prompt to solve tasks with diverse queries
and answers is sometimes impossible. Combined with Section[d.2] an effective way to increase the
power of prompting is to split the task into sub-tasks and use different prompts for each sub-task.
Remark 4.16. The above propositions do not demonstrate that PPP(T", S, F) = 0 for all 7 and S
failing to meet the conditions in Deﬁnition@]; hence, these conditions are not necessary conditions
on the view of F and S. They suggest that if these conditions are not satisfied for .S, there can be some
F satisfied PPP(T", S, F) = 0, from this view, such two conditions are the necessary conditions on
S for PPP(T", S, F) = 1 to be valid for all F.

5 GENERALIZATION OF PREPENDED-PROMPT

We discussed the existence of perfect prompts on finite datasets in the preceding section. Another
important issue with prompt engineering is whether prompts generated on finite datasets can be
effectively generalized to more samples. In this section, we discuss whether prompts for an iid dataset
can be generalized to the whole data distribution.

We adopt the usual setting for deriving generalization bounds (Mohri et al.l 2018). Let D be a
distribution over 2" x T"and S = {(=;,y;)}, a dataset sampled iid according to D. Then for a
given prompt P, the gap between the population accuracy

Arp,p =By ~p[l(F(P &) = y)]
and the empirical accuracy

1 N
Arps = E Z I(F(Poz)=y)

(w,y)es
can be used to measure the generalizability of the prompt. Generally speaking, D represents the
target distribution. If the gap between these two is small, then prompts that can achieve the target on
a finite set can also achieve the desired target on the whole distribution.
We now give a uniform generalization bound for prompting.

Theorem 5.1. Forany T = {v;}L_,, D, F, and N, L € Z, with probability 1 — & of S ~ DV, for
any P € 2V satisfying len(P) < L, we have

2v2LInT + +/0.5In1/6
[Arpp— Arp.s| < \/]—\}/)

Proof Idea. We treat the set of 7(P @ z) as a hypothesis space that uses the prompt P as the
controllable parameters. Then we can use the generalization bound based on Rademacher complexity
(Mohri et al.l | 2018)) on such a hypothesis space to prove the theorem.

Based on Theorem[5.1] we have the following result about the choice of the number of data:

Corollary 5.2. For a prompt P € 2V of length L and ¢,6 < (0,1), if N >
(2V2LInT + /0.5In1/65)2 /€2, then we have |Ax p p — AF p s| < € with probability 1 — 6.

Remark 5.3. This result provides practical guidance for generalization. If the size of the dataset is
significantly larger than the length of the prompts, then performance on S can be generalized to the
entire distribution. Note that the above bounds do not depend on D or F, because in our case, the
true parameters are the prompts. Also note that the target labels in S are arbitrary.

However, when the length of P is not limited, such generalization does not hold, as shown below.

Under review as a conference paper at ICLR 2026

Proposition 5.4. For any I, N € Z, and € € (0,1), if the data distribution D satisfies that
MaX, N con {Zf\il Pop(z = x;)} < € then there exist a transformer F and a P such that with
probability 1 — € of S ~ DV, it holds |Ar pp — Arp.s| > 1— 2e.

This phenomenon is similar to the “overfitting” in neural networks: when prompts are too fixated on
improving accuracy on S, they lose generalizability.

The condition max(, yv ox {Zfil P.~p(x = x;)} < e means that the probability in D is not
concentrated on N points, and this condition is natural, as most distributions do not concentrate on
a few points, such as the uniform distribution, normal distribution, and so on. If this requirement
is not satisfied, the probability distribution D should be focused on a few crucial points, and these
significant points are naturally included in the sample set S when sampling, thereby preventing any
overfitting.

On the other hand, we will show that overfitting on the prompt only happens when there is a small
number N of data. When fixing the distribution and N is large enough, even if the length of the
prompt is not limited, overfitting will not occur, as shown below.

Proposition 5.5. For any given D, F and 0, ¢ € (0, 1), there exists an N such that if |S| > N then
with probability > 1 — & of S ~ DV, for any P € 2¥, we have |Ar pp — Arp.s| <e.

However, this particular /V relies on F and D, and it is evident that certain F and D can lead to a
significantly large V.

6 EXPERIMENT

In this section, we use experiments to verify the theoretical results presented in Sections [#.2]and [4.4]

To facilitate utilizing gradients for discovering prompts, we employ two open-source models: GPT2
(Radford et al., |2019) and RoBERTa (Liu et al.,[2019). The method in (Wen et al.,[2023)) is used to
approximately solve the following problem for a dataset S and a transformer F:

1 N
DPO,.. = max — 1(F =) 2
mex 1 (%:es (F(P@x)=y))

The method works as follows: the gradient method is used for the embedding layer to find a “nice
embedding” which is projected back to a discrete symbol set to obtain the prompt. To ensure that the
algorithm can stop, the lengths of prompts are at most 64. It is clear that DPO,.. = 1 if and only if
PPP(T', S, F) = 1. In our experiments, the numbers of basic symbols for GPT2 and RoBERTa are
respectively 50257 and 50265, and the sentences all have length 16.

To confirm our theoretical findings, we conduct the following three sets of experiments.

The sufficient condition. We use experiments to verify Theorem 4.4 and Remark [4.5] S consists
of 1000 randomly generated sentences that have the same last symbol and the same target label.
Then solve the optimization problem () to find DPOy,... Repeat this experiment 100 times and let
c1 be the lowest value of DPO,. in the 100 runs and s; the proportion of the 100 runs that make
PPP(T, S, F) = 1. The results are given in Table

It is easy to see that s; is very close to 1 for the two models, which means that datasets consisting of
sentences with the same last symbol and the same target label satisfy PPP(T', S,) = 1 with high
probability. This confirms the fact that the “same last symbol and the same target label” condition is
already a sufficient condition for the existence of perfect prompts with high probability. Please refer
to Remark 4.5/and “future work™ for more discussion.

However, the values of s; and c¢; are not equal to 1. There may be two reasons: (1) The gradient
optimization does not find the best prompt, which is an NP-hard problem as shown in Section [C]
(2) The target label and the last symbol do not satisfy the conditions in Definition 4.3 for randomly
generated S. Refer to Proposition[4.6]and Corollary for more discussions.

The same target label condition. We use experiments to verify Proposition S consists of
1000 randomly generated sentences that have the same last symbol but distinct labels. We randomly

Under review as a conference paper at ICLR 2026

Table 1: Experimental results to verify Theorem [#.4] and Propositions .13|and .14] ¢4, c2, c3 are
the lowest values of DPOg. in the 100 runs and s, s2, s3 are the proportions of runs that make
PPP(T, S, F) = 1 in the three experiments, respectively.

Models cl c2 c3 sl s2 s3

GPT2 99.5% 5.0% 982% 98.0% 0.0% 18.0%

RoBERTa 98.3% 4.1% 745% 95.0% 0.0% 0.0%

generate distinct labels 100 times, and compute DPO,. in for them. Denote the lowest value of
DPO,.. as ¢y and denote the proportion of the 100 runs that make PPP(T", S, F) = 1 as so. The
results are given in Table[T]

The values of ¢, and sy verify Proposition[d.13] ¢, is very low and s, = 0 for both models, which
means that the existence of distinct labels in .S can create much difficulty in prompting the sentences
to the target labels, and it is almost impossible to find a situation such that PPP(T, S, F) = 1.

The same last symbol condition. We use experiments to verify Proposition d.14] We randomly
generate 1000 sentences with the same target label. Randomly generate distinct symbols and use
them as the last symbols of the sentences in .S, and then compute DPO,.. in (). Run the experiment
for 100 times. Denote the lowest value of DPO,,. as c¢3 and denote the proportion of runs that make
PPP(I, S, F) = 1 as s3. The results are given in Table/1]

For RoBERTa, c3 is about 74%, DPO,.. < 85% in all the 100 runs, and s3 = 0. For GPT2, c3 is
about 98%, and out of 100 runs, DPO,.. achieves 100% for 18 times. The results mean that different
last symbols in the sentences can create some difficulties to obtain the perfect prompts, from the fact
that PPP(T, S, F) = 0 in most cases. However, c¢3 is much higher than ¢, which implies that the
influence of “different last symbol” condition is much weaker than “different target label” condition.
Also, the results are quite different for GPT2 and RoBERTa, so the results also depend on the models.

Finally, it must be pointed out that we have s3 > 0 for GPT2, this is not contradictory to Propositions
@.14] Because having the same target label and the same last symbol are not necessary conditions for
PPP(T, S, F) = 1 under view of F and S, refer to Remark [4.16|for more details.

7 CONCLUSION

This paper aims to further establish the theoretical framework of prompt engineering by focusing on
three basic questions for prompt engineering: the computational tractability, existence conditions for
perfect prompts, and generalizability. The following results are established. Deciding the existence
of perfect prompts is NPC and finding the optimal prompts is NP-hard; some sufficient conditions
for the existence of perfect prompts are given and the lengths of prompts are estimated; a uniform
generalization theorem for prompts is proved. Finally, we use some simple experimental results to
confirm our theoretical results.

Our theoretical results further enhance the understanding of prompt engineering and provide a certain
level of interpretability. They also provide some practical guidance to prompt engineering, such
as using long prompts for long sentences (Remark {.TT)), using different prompts for diverse tasks
(Remarks {.T3), and the number of data for generalization (Remark[5.3)).

Limitation and future work. There exists a gap between the sufficient condition in Section and
the conditions in Section[4.4]and it is desirable to give refined sufficient and/or necessary conditions.
Single-token target labels are used in this paper, which include many useful tasks (Refer to Remark
[3.2) and are the first step in studying the three questions raised in Section 1. Generalizing the results
to sequence target labels is desirable. The experimental results show that the “same last symbol and
the same target label” condition leads to perfect prompts with high probability, and a theoretical study
of this observation is interesting. Pretended-prompts are considered in this paper. Although this is the
most common case considered in the literature, it is desirable to consider other cases.

LLM statement. We clarify that the motivation behind our work, the theorem and its proof,
experimental design and implementation, are all independent of LLMs and are entirely implemented
by our team. In this study, the function of the LLMs is confined to refining the texts.

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michat Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: solving elaborate problems with large language models. In AAAI’24, pages
17682—-17690, 2024.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic word?
a control theory of llm prompting. arXiv preprint arXiv:2310.04444, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Tonmoy Debnath, Md Nurul Absar Siddiky, Muhammad Enayetur Rahman, Prosenjit Das, and
Antu Kumar Guha. A comprehensive survey of prompt engineering techniques in large language
models. TechRxiv, techrxiv.174140719.96375390/v1, 2025.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Advances in Neural Information
Processing Systems (NeurlPS’23), 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of ACL-IJCNLP, pages 3816-3830, 2021.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. In ICLR’25,
2025.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the ACL, pages 874-880, 2021.

Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis of
in-context learning. arXiv preprint arXiv:2401.15530, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktéschel, Sebastian Riedel, and Douwe Kiela.
Leveraging passage retrieval with generative models for open domain question answering. In
Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics, pages 874-880, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Ryumei Nakada, Wenlong Ji, Tianxi Cai, James Zou, and Linjun Zhang. A theoretical framework for
prompt engineering: Approximating smooth functions with transformer prompts. arXiv preprint
arXiv:2503.20561, 2025.

10

Under review as a conference paper at ICLR 2026

Jorge Pérez, Pablo Barcel6, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1-35, 2021.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a
universal approximator. arXiv preprint arXiv:2402.14753, 2024.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Antonio Sabbatella, Andrea Ponti, Ilaria Giordani, Antonio Candelieri, and Francesco Archetti.
Prompt optimization in large language models. Mathematics, 12(929), 2024.

Timo Schick and Hinrich Schiitze. It’s not just size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118, 2020.

Wei Shen, Ruida Zhou, Jing Yang, and Cong Shen. On the training convergence of transformers for
in-context classification of gaussian mixtures. arXiv preprint arXiv:2410.11778, 2024.

Taylor Shin, Yasaman Razeghi, Robert L. Logan, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 3784-3803, 2021.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning, pages 20841—
20855. PMLR, 2022.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36:75623-75643, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36:51008-51025, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
Contextual generalization of trained transformers. Advances in Neural Information Processing
Systems, 37:85867-85898, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
NeurlPS’23,2023.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompting via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

11

Under review as a conference paper at ICLR 2026

A STATEMENTS

ETHICS STATEMENT

Our work is based on theoretical principles, mainly aimed at enhancing the understanding and
interpretability of prompt engineering, and there are no ethical or moral issues involved.

REPRODUCIBILITY STATEMENT

Our theorems have been rigorously proven, and the experiments use relatively small and open-source
models, which are easy to replicate.

B NOTATIONS AND PRELIMINARY RESULTS

Through the appendix, we use the following notations. Foran z € 2T, let2™ = 2®x®2®. .. 2®x €
2T where @ is the concatenation operation. For an z € 2T and a v eT,let Numw(x) be the number
of v in . For instance, Num_ ((1,+,2,*,3,+,4)) = 2.

The scaling equivariance is defined as follows:

Definition B.1. (1) # € 2' and » € 2U are scaling equivalent if Num,(z)/len(z) =
Num, (2)/len(z) for any v € I".

(2) A transformer F is scaling equivariant means that: for any scaling equivalent z,, z € 21, if z; = 2;,
then Fy, ;(x) = Fi ;(2) for any k, where Fj, ; means the i-th row of the k-th hidden layer of F.

Then we have
Lemma B.2. For any transformer F, the F_ s is scaling equivariant.

Proof. Firstly, we need to prove the lemma for the first hidden layer.

Let the -th hidden layer of F_ s be F;, then F(z) = FNN(v, + ATT(vy)) + vy + ATT(v,), where

v, is the embedding matrix of x. Assume that z; = z; and = and z are scaling equivalent. We will

prove that (Fi(z)); = (F1(2));.

In the attention layer, we have that ATT(v,,) = softmax(v,QKv1)V, so the i-th row of ATT(v,) is
ve QKv T

>; Num,y (z)e i Vy;

QKvT
Zj Nurnw]. (a;)evm’ QK

Soif x; = z; and = and z are scaling equivalent, we have that:

V', where v, is the i-th row of v, and v, is the embedding vector of ;.

QKvI

> ; Num, (x)e’ux'i RERTNS
ATT(z); = =l Py
e Tt J

> Num,; (z)e .
_ > Num,, (a:)/len(z)e’uw'i Qv v
pOF Num, (I)/lcn(m)evzi
vy, QKvL
_ > Num,, (z)/len(z)e "
22 Num,; (z)/len(z);
- Zj NumA,J (z)evzj QKU“’J‘ Uy
- vy QKoL V
> Num, (2)e 9
= ATT(2);.
So in the attention layer, the i-th of ATT(z) and j-th of ATT(z) are the same. In the other parts in
JFi, other calculations do not involve interaction between rows, so it holds (F1(z)); = (Fi(2));.

v, QK’U,?;j

Now, we show that if the lemma stands for the i-th hidden layer, it also stands for the (i + 1)-th
hidden layer, which can directly lead to the lemma.

Fit1(z) = FNN;(Fi(z) + ATT;(F;i(x))) + Fi(z) + ATT;(Fi(x)). It is easy to see that x; = z;,
implies (F;(x)); = (Fi(z))x by the assumption, we will prove that (F;41(z)); = (Fix1(2)).

12

Under review as a conference paper at ICLR 2026

We mainly need to consider the attention layer. For the attention layer, we have
ATT;(Fi(xz)) = softmax(F, ()Qi K Fi(z)T)Vi. Then the j-th of ATT;(F;(x)) is

(Fi (@) Qi Ky (Fi(@)mp) T
Num,,, (z)e'” 1%/ 3wiTi P’ (Fi(x))n .
2p N (2)) Vi, where n, is the smaller number such that z,,, = 7,.

> Num, (2)e T (@) QK (Fi(@)ny)T
2
Hence, similar to before, we have
) O K ((F: T (Fi)kQi K (Fi(2)))T
Zp Num.,, (x)e(]:z('r))g QiKi((Fi(®))ny) (Fi(2))n, B Zp Num,, (z)e » (fz(z))n;

Fi § Qi K ((Fy np) T - Fi Qi K ((F; T ’
ZpNumwp(fﬂ)e((@) Qi Ki((Fi(2))nyp) ™ NumA,p(z)e(Nk QiKi(Fi(2)ny)

using the fact (F;(2)); = (Fi(2))x and (Fi(2))n, = (Fi(2))n,, where n, is the smaller number
such that z,,; = 7. So the j-th row of ATT;(F;(z)) and the k-th row of ATT;(F;(z)) are the same.
Then similar to before, we can prove the result for the (¢ + 1)-th hidden layer. O

C PROOF OF THEOREM [4_1]

Firstly, for a given prompt P, it is easy to check whether PPP(I", S, 7) = 1 in polynomial time
based on the size of I', S and parameters of F, so PPP is an NP problem. So to prove Theorem 4.1}
it suffices to show that a NPC problem (here, we use 3-SAT) can be reduced to PPP(T", S, F) = 1.

Definition C.1 (The 3-SAT decision problem). Let {z;}/ ., be Boolean variables and ® = AJL, ¢,

where ¢; = Vj=1,23%j, is a Boolean clause and 2}, € {2}y U {—z;}{. The 3-SAT problem is
to decide whether there exist values for the Varlables under which ® = 1

Now we prove Theorem4.1]

Proof. Let ® = A}, ¢; be a 3-SAT problem as defined in Definition We first construct a I', a
dataset S and a transformer F based on ®.

Step 1. Construction of T, F, S.

The symbol set is T' = {v,}27 and the dataset is S = {((v;+n), Yien) 1L € 20 x T, where
(7;+n) is the sentence with a single symbol ;4 .

The transformer is defined as follows.

(1) The embedding layer: Each -y; will be embedded to a 4(N + M)-dimensional vector v.,, such
that: for the ¢ € [1, N + M], the (4¢ — 3)-th to 4i-th weights in the v.,, are 1, other weights are 0.
For ax € 2%, let v(x) be its embedding matrix.

(2) The hidden layers: In the first hidden layer J; (), the attention layer is defined as: the () and K
are 0, V = I. The feedforward layer FNNj () in the first layer is defined as FNN; (z) = 0.

Then based on the definition of the embedding layer, the output of the first layer when input is a

is F1(z) = v(x) + softmax(0)v(x). Hence, its last row iS Uy [ien(a)) + Zi‘:ll(m le;ér) Name it as

N(z), and let N;(x) be the i-th weight of N (x). Before defining the next layer, we define 3 kinds of
Relu networks G;(z) : R — R at first:

G1(z) = Relu(6N?(z — 1/N)) + x; and Go(z) = x + Relu((N + 2)(1/N — z)), Ga(z) =
Relu(—z + 1/N) + x.

Then we define the next hidden layer, which is also the last hidden layer, let the attention layer be 0,
and the FNN layer makes the output of the last hidden layer F;(x) to be:

Fi(x) = (4(), G1 (Na(z)
() G1(Ns(x))

Ny (z)

), G2(Na(x)), Ga(Na(z)),
; Ga(Ns()), gs(Ns(x))»
G1(Nanv4a1) (), G2(Nyv 120y (%)), G3(Nan4a1) (2)))-

Notice that in the N (), there are Ny;_3(z) = Nyi_o(z) = Ny_1(z) = Nyg(z) = omul®)

len(z)
I(x[len(x)] = 7;), so it is easy to implement the above output.

13

Under review as a conference paper at ICLR 2026

(3) The output layer: For the first N elements of the transformer output, it is always 0. For j € [M],
the NV + j element of transformer output is defined below.

(3.1) Gi(Nay (2)) + G1 (Najr (2)) + G (Nagr (2)) — 3/N — 100N 32 v 1 g vien 4, Vai ()
if p; = 2 U zjs Uz for some ¢/, j', k' € [N];

(3.2) Gi(Nai(x)) + Gi(Najr(x)) — 2.1(1/N — Go(Naw (2z)) + G3(Naw(x))) + 0.1/N —
1OON2 Zie[NJrl’N[JrN]’i#NJrj N4l(l‘) if ¢j =z U Zj U =z for some i/,j/, K S [N],

(33) Ql(NM(x)) — 21(1/N — QQ(N4j/(a:)) + gg(N4jl(J,‘))) — 21(1/N — gg(N4kl(Z‘)) +
gg(N4k/(I))) + OI/N — 100N2 ZiE[N+1,M+N],i7éN+j N4Z(l‘) if ¢j = Z U iz U 2k for
some i, j', k' € [N];

(3.4)6.2/N —2.1(1/N = Go(Nuis (2)) + G3(Nai (2))) = 2.1(1/N = Go(Najr(x)) + G3(Nayr (2))) —
21(1/N - gg(N4k/($)) + gg(N4k/ (:L‘))) - 100N2 ZiG[N+1,M+N],i;£N+j N4l({)3) if qf)j = Tz U
—zjy U —zy for some ¢/, j', k' € [N].

It can be easily verified that this transformer can indeed be realized with O(poly (M, N)) parameters
and requires O(log(poly(M, N))) bits for every parameter value.

Step 2. We show that if PPP (T, S, 7)) is decidable, then the 3-SAT problem ® is also decidable.

To be convenient, write 2.1(1/N — Ga(z) +G3(x)) = 2.1(1/N — (N +1)Relu(1/N —z)) = G4(x).
The proof for this step has three parts.

Part 1. If PPP(T, S,) = 1, then the 3-SAT problem ® has a solution.

Assume that PPP problem has a solution P, then we can find the following solution for the 3-SAT
problem ®: z; = 1 if and only if Num., (P)/(len(P) + 1) > 1/N where ¢ € [N]. We will show
why such is a solution of the 3-SAT problem ®.

To show that, we only need to show that each ¢; = 1 in ®. We just prove it for ¢, others are similar.

For the ((714+n),71+n) in the set S, because .7?(73 D VI4N) = V14N, Write & = P & 14N, We
have that:

(1):if g1 = 2; U z; U 2, for some 4, j, k € [N], consider the definition of 7P and transformer F, there
must be Gy (Ny; (x)) + G1(Nyj(x)) + G1(Nag(x)) —3/N > 0, consider that G; is increased with
input and G1(1/N) = 1/N, so at least one of Ny;(x) > 1/N, Nyj(z) > 1/N and Nap(z) > 1/N
stands, which implies z; = 1 or z; = 1 or 2, = 1, so we have that ¢; = 1;

(2): if ¢1 = 2; U zj U iz, for some i, j, k € [IN], then we have that G (Ny;(x)) + G1(Nyj(x)) —
G4(Nyp(x)) +0.1/N > 0, if Nyg(z) > 1/N, then there are —G4(Nyx(z)) + 0.1/N = —2/N
based on the definition of G2 and G'3, which implies Gy (Ny;(x)) + G1(Naj(z)) > 2/N, similar to
before, then at least one of Ny; > 1/N and Ny; > 1/N stands. So -z, = 0 implies z; = 1 or
zj = 1,50 ¢1 = 1; when =z, = 1, there is also ¢; = 1;

(3): if 1 = z; U =z U =z, for some i, j, k € [IV], then we have that G1 (Ny;(z)) — Ga(Nyj(z)) —
Q4(N4k(x)) +01/N > 0, if N4j(£E), N4k($) >]./N, then 794(N4j(:c)) — Q4(N4k(w)) +01/N <
—1/N, which implies that Ny;(z) > 1/N, so =z, = 0 and —z; = 0 implies z; = 1, s0 ¢; = 1;
when -z, = 1 or —z; = 1, this is also ¢, = 1;

@): if ¢; = —z; U —z; U iz, for some ¢, j,k € [N], then we have that 6.2/N — G4(Nu;(z)) —
G4(Nyj(x)) —Ga(Nar(x)) > 0, consider that when Ny;(z) > 1/N, then 2.1(1/N — G4 (Nu;(2))) =
2.1/N, similar for j, k. When N;(z), N;(x), Ni(z) > 1/N, hence there are 6.2/N — G4(Ny;(x)) —
G4(Nyj(z)) — Ga(Nar(x)) < 0, which is contradictory to F(z) = 14, so at least one of Ny; <
1/N, Ny; < 1/N and Ny < 1/N stand, which implies —z; =1, 7z; = 1 or =z, = 1,50 ¢1 = 1.
So we prove the Part One.

Part 2. If PPP(T", S, F) = 0, then ® has no solution or it has a solution z; = 1 for all i or z; =0
for all .

We just need to show that, if the 3-SAT problem & has a solution which is not z; = 1 for all 7 or
z; = 0 for all 7, then such PPP = 1.

14

Under review as a conference paper at ICLR 2026

We consider the P = ~y;, @© i, © Vi, © Viy - - - Vi; © i, Where i; satisfied z;; = 1 in the solution of

the 3-SAT problem ®. We just need to show that F (P @ y14+~) = 714 n; others are similar. Write
z = P @ v14+n. Because the solution is not z; = 1 for all 7 or z; = 0 for all 7, so we know that

Jl\i;((f > 1/(N — 0.5) for any ¢ such that z; = 1 in the solution of ®. Then we have that:
(1): if ¢1 = 2 U z; U 2z, for some 4,5,k € [N], then at least one of Ny;(z) > 1/(N — 0.5),

Nyj(z) > 1/(N —0.5), and Ny (z) > 1/(IN — 0.5) stands, so

G1(Nai(x)) + Gi(Naj(2)) + Gi (Nag(2)) = 3/N — 100N 32, x5 ar g vy Nae ()
= Gi(Ny(2)) + G1(Naj(x)) + G1(Nax(z)) — 3/N
> 3-3/N 0.

We use G1(1/(N —0.5)) > 3 and Gy (z) > 0 here.

On the other hand, for ¢t # 1, there is —100N? Zi¢N+t,ie[N+1,M+N] Nyi(z) < —100N? because
Nyvyn (z) > 1, so the N + ¢ weight has a value not more than 0. Consider that the value of the
first N-weight is 0, so .7?(73 B VI4N) = V14N

(2): if g1 = z; U z; U —z;, for some ¢, j,k € [N], then at least one of Ny;(xz) > 1/(N — 0.5),
Nyj(z) > 1/(N —0.5) and Nyx(x) = 0 stands, so

G1(Nai()) + G1(Naj(z)) Ga(Nak()) +0.1/N

—100N? Zte[N+2,M+N at(7)

G1(Nyi()) + G1(Nyj(x)) — Ga(Nax(z)) +0.1/N

min{2.1+0.1/N,3 = 2/N} > 0

In here, we use G;(1/(N — 0.5)) > 3 and G4(0) = —2.1. Similar to before, other weights have
values not more than 0, so F(P & y14n) = V14N

(3): if 1 = z; U —z; U -z, for some ¢, j, k € [IV], then at least one of Ny; > 1/(N —0.5), Nyj =0
and Ny = O stands, so

Vvl

G (Nai(x)) = Ga(Naj () — Ga(
—100N? 37, ¢ vz ar4) Nat (33)
91 (Nai(z)) — 94(N4y()) = Ga(Nax(z)) +0.1/N
min{3 —4.1/N,2.1—-2/N} >0

Nup(z)) +0.1/N

AVAN|

Similar to before, other weights have a value of no more than 0, so]?(’P D V1+N) = V1+N

(4): if @1 = —z; U =z U =z, for some ¢, j, k € [IN], then we have at least one of Ny; = 0, Ny; = 0,
and Ny = 0 standing, so

6'2/N - g4(N4i(x)) - g4(N4j (m)) - g4(N4k(x)) — 100N Ete[NJrz,MJrN] N4t(x)
— 6.2/N — Gu(Nui(x)) — Ga(Nu (x)) — Ga(Nun(2))
> 21+ 2/N >0

Similar as before, other weights have value not more than 0, so F (P®v14N) = 71+nN- So we prove
Part Two.

Part 3. Now we prove the theorem. If we can solve the PP P problem, then we can solve the 3-SAT
existence problem as follows:

(1) Construct such transformer F, dataset S and symbols I" based on @ as before;
(2) If PPP(T', S, F) = 1, then the 3-SAT Problem & has a solution;

(3) If PPP(T', S, F) = 0, then the 3-SAT & problem has no solution, or the solution satisfies: all of
the values of z; are the same, which is easy to check in polynomial time. O

D PROOFS OF SECTION

D.1 SEVERAL LEMMAS

Lemma D.1. For any given transformer F, there is an A € R which only depends on F such that:

15

Under review as a conference paper at ICLR 2026

(1) for any x € 2V and , || Fi(2)||2,00 < A, where F| means the l-th hidden layer.
F M (2)||a,00 < A, where F;™ means the I-th hidden layer of F— pr.

(2) for any x € 2% and |,

Proof. We first prove (1).

Based on the definition of embedding vector, for any sample x, the input of the first hidden layer is
the embedding matrix v,,, whose L2 o, norm has an upper bound A.

To prove the lemma, we just need to prove that, for the /-th hidden layer, if the L2 ~, norm of its input
has an upper bound A;_; for any input x, then the L, o, norm of its output has an upper bound A4,
for any input z.

Assume that Fj(2) = FNN(F;_1(x) + ATT(F;—1(x))) + Fi—1(x) + ATT(F;—1(x)).

I Uiy,
7223;1 T Vi, where u;; =
i=1¢ 7 ’

v; Q1K lv;f , where v; are the i-th row of F;_1(z) and Q;, K;, V; are parameters in the attention layer,
. J Wiy,
consider that Hizi?l |l < maxi<;{[[vil |2}, s0 [|ATT(Fi—1(2))]2,00 < [[Fi-1(2)]]2,00[|Vill2-
=1

In the attention layer, because the j-th row of the attention layer is

Consider that FNN layer does not involve interaction between rows of F;_i(z), so the
[IENN(z)||2,00 < [[Will2l|zll2,00 + |]bi]|2,00 for any x, where W; and b; are the parameters in
FNN

Combining the result of the attention layer and FNN layer, we have that A; < ||[W]|2(4;-1 +
A1 |[Vill2) + (A1 + Ai—1][Vi]|2) + ||bi]]2,00. Which is what we want.

Take A = max;{A;}, so we prove (1) in the lemma.

We now prove (2). The proof is similar to (1), and the difference is that the j-th row of the attention
len(z) Juj ;.

layer is %V, others are the same. O

Sty et

Lemma D.2. For any sentences x and z, if the first n symbols in x and z are the same, then for any

transformer F and j € Z.., the first n rows in the outputs of j-th hidden layer of F(x) and F(z) are

the same.

Proof. Firstly, we prove that for the j-th hidden layer]-"j_ of F,if z1 and z; satisfy that the first nn
rows in x; and z; are the same, then the first rows n of 77 (z1) and F7(z;) are the same.

Assume that F7 can be written as: F7 (z) = & + Y1, softmax(zQx ViaT + M)z K}, + FNN(z +
S softmax(zQp Viz™ + M)zKy,).

In the residual layer, the calculations in this layer do not include the interactions between different
rows, just do the same transformation to each row. So when z; and z; satisfy that the first n rows in
x1 and z7 are the same, x1w and z;w also satisfy that the first n symbols are the same.

In the attention layer, considering the definition of M, for any ¢ € Z,, we know
that the i-th row of softmax(xQyViz? + M) can be written as (2;QxViz?, 1;QrVizd,
2;Qi Vil . 2;QiVixl 0,0,...,0), where x; is the i-th row of x. So it is easy to see that,
when x; and z; satisfy that the first n rows in x; and z; are the same, the first n rows of
softmax (21 Qr Viz! + M)z and softmax(z1 Q. Vi 2 + M)z, are the same. Hence, because the
other parts in the attention layer do not include the interactions between different rows, we have that
the whole output of the attention also satisfies that the first n symbols are the same when input z;
and z7.

By the above result, the first n rows of z; + ZkHzl softmax(z1QrViz! + M)z Kj, and 2, +
Zle softmax (21 QrViz{ + M)z K}, are the same. Similar to the residual layer, the first n rows
of FNN(z; + ZkH:1 softmax(x1Qx VixT + M)z, K}) and FNN(z; + ZkHzl softmax (2 Qy Vi 2T +
M)z, K},) are the same. Adding them, we can get the result.

Now, we can prove the lemma. We prove the situation for the first layer. If the first n symbols in z
and z are the same, then the first n rows of their embedding matrix are also the same. According to

16

Under review as a conference paper at ICLR 2026

the above result, we see that the first n rows in the output of the first hidden layer are the same when
input z and z.

If the first n rows in the output of the i-th hidden layer are the same, according to the above result
and the fact that the output of the i-th hidden layer is the input of the (i + 1)-th hidden layer, then
the first n rows in the output of the (¢ + 1)-th hidden layer are also the same. When input z and z to
the transformer, we have proved that ¢ = 1 is valid, so the result is valid for any ¢, and we prove the
lemma. O

Lemma D.3. For a transformer F and x € 2V, it holds lim o0 || F (™) — F_p(2™)|]2 =
Proof. Let Fi;(x) be the i-th hidden layer of F(x), Fp;) ;(x) be the j-th row of Fp;;(x). Similar to
F_wm-

If the transformer has L hidden layers, to prove the lemma, we just need to show that:

1My s 00 [|FL], (m=1)ten(a)+5 (™) = F-M,[L],(m—1)len(z)+3 (2")||2 = 0 for all j € [len(x)].
To prove that, we will consider the layer by layer and show the following result: if
iy, 00 |[FJ, (m—1)ten(@)+5 (™) — Fom i), (m—1)len(z)+; (@™)|[2 = 0 for all j € [len(x)]

stand for i-th hidden layer, then we can prove that limy, o0 || Flit1],(m—1)len(z)+5 (™) —
Foarfit].(m—1ylen(z)+5(z™)||l2 = 0 for all j € [len(x)] is stand for (i + 1)—th hidden layer.
See Fjoj(™) as the input embedding matrix of the first hidden layer which is obviously satisfied
assumptions, this result directly leads to the lemma.

Firstly, based on the definition of the transformer, we have Fj;1j(2™) = FNN; 1 (F;(z™) +
ATT 1 (Fiy(2™))) + Frg(z™) + ATT;q(Fp(2™)). For F_ps, we just need to replace
ATTy 41 (Figp(2™)) with ATTLY (Fg,a (27)).

Now we prove the result in two parts: Attention layer and FNN layer.
The gap of the attention layer.

In this part, we consider the gap of ATT; (F;(2™)) and ATT; M(F_m Ji(2™)) in the
last len(z) rows at first. We prove that lim,, o [|AT Ty 1 (Fpp(2™))[(m — l)len()+ 4] —
ATT AN (F_ i (2™))[(m — 1)len(z) + 4]|| = 0 for any j € [len(z)] when m — oco.

Based on the definition of the attention layer, we have that the (m — 1)len(x) + j row of
ATTi+1 (]:[7,] (.’I,‘HL)) is:

len(z)(m—1)+j N i)
) eWen(z)(m 1>+a,k]-‘[i]7k(zm)

len(z)(m—1)
k=1
And similarly, the (m — 1)len(z) + j row of ATT, Y (F_pr(z™)) is:

mlen(x)

Vit

+i eWen(z)(m—1)+j,k

kel ulex)(z)(nL71)+j,kf7A{ [’L] k(xm)
len(z) Vi1
Z‘ 1 z ulen(a‘)(m 1) 44,k

Here uj j, = Fj) j (™) Qis1 K+ 1F 1 (2™)T and

T
Wi = Fona i), (2™ Qi 1 K1 Fong i, e (™)
Qi+1, Kit1,Viy1 are the parameters in the ¢ 4 1-th attention layer.

Firstly, we will show that:

!
len(z)(m—1)+j eWen(z)(m—1)+j,k — mlen(z) eWlen(z)(m—1)+3j,k

lim |=A=L k=1 —0
m—oo m

It is easy to see that

len(x)(m—1)+j ,Ulen(z)(m—1)+4, milen(®) [“len(z)(m
|Zk:(1 Ym=D)F7 g Men(@) (m—1)+5,k 3 mIen(=) ¢ len(e) (m—1)+4.k

m |

< Zfi(lw)(mflwrj eu{en(z)('rn—l)#»j,k ,Zfi(lw)(m*lwrj eWMen(x)(m—1)+j,k ‘ 3)
- m
mlen(z) u{ D
n(z)(m—1)+4,k
+| Zk: len w m 1)+j5+1 e ten(a)()+ /m|

17

Under review as a conference paper at ICLR 2026

We need the following facts to prove the above limitation:

(1) For any my < ma, we have Fij, (m, —1)len(2)+j (™) = Flil,(m1—1)len(x)+; (™?) just following
the Lemma[D.2} And F_uz (3] (my —1)len(2)+5 (£™) = F_ 0] (mo 1)len(w)+j(xm2), just because
the (m; — 1)len(z) + j row of 2™ and ™2 are the same, and F~* is scaling equivariance as
shown in the Lemmal[B.2l

(2) Based on the assumption, for any given €, there is a T(e) € Z, such that
|[FLi1, (m—1)ten(a)+5 (™) = F_ il (m—1)len(z) +5 (™)]2 < € for all j € [len(z)] and m > T'(¢).
(3) By the Lemma the [[i) (2™)]|2,00 and || F_ s[5 (™)][2,00 have the upper bound Ay, 50 u; x
and u/; ;. also have an upper bound Ay, |[Q;41K;+1Fi) x (2 ™|z and [|F_ pr 6 (™) Qis1 Kig1l]2
have an upper bound A3, let A = max{A;, Ay, A3, 1}, which only depends on F.

Based on the fact (3), the second part in equation [3|tends to 0 when m — oo, now we consider the
first part.

By fact (2), when m > T'(e), there are

’ .
figwﬂm—l)ﬂ elen(x)(m—1)+j,k _Elen<w)(m—1)+1 etlen(x)(m—1)+j,k

m
an(I)(m 1)4j en (@) (m— len(@)(m—1)47 _Ulen(w)(m—1)+j
‘len(x)T(e)e ‘J’_l Py len(z)T(e)+1 € i (@) (m—1)+5.k Zk:len(m)T(s)+le fen(@)(m=1)+7,k

INIA

‘ len(w)T(e)e A€ _1)(mlen(x)—T(e)len(z)) |

|+ <5 m
For the second part, we use the fact (1) and fact (3), such that

’
‘ulen(i)(m D+i.k — ulen(:c)(m 1)+, k|

S H(llen(z)(m— 1)+j() - F_ M,[i],len(z)(m—1 +]< ™)Qi+1Ki+1]:[i],k(xm)T||2
+||]'1 il len(z) (m—1)+5 (T)Q;+1Kz+1(}1M i,k (@™) = Fre(@™) T2
< 2€A
and |€ulen(‘L)(rn D+, k — eWen(x)(m—1)+j, k| — |eulen(.L)(7n, 1)+7, k(l eWen()(m—1)+j,k~ ule,,u)(,,b)44, k)‘ <
eA(2¢A 1) -

Y

So that, for any d, we just need to take € such that e”(e?4¢ — 1)len(z) < /2, then when m

en(x € eA . en(x € eA eA €2A67 m— € en(x
2len(@)T(e)e” LT() , there is |71 ()Z;() | <n/2and]| (1)(m T(e))len()| <n/2,so:

len(z)(m—1)+j ulen(r)(m Dtk — Zle“(I)(m_1)+j eWen(z)(m—1)+j,k

| ==L b=l | <n,
m
which can directly lead our result.
Secondly, we can also prove that lim,,, Hnlle = 0, where ¢ = len(x) and
tm t(m—1)+j
f= Z e rim—tik F_ppn p(2™) — Z eteim=1+ik Fry o (a™).
k=1 k=1

Just similar to the first part.
Final, we prove that
i [|ATT, 3 (Fig (™))[(m — Dlen(z) +)
= ATT N (Fopr gy (@) [(m — Dlen() + j][[2 = 0

for any j € [len(x)] when m — oco.

To be convenient, we write 27,321 e“;m’k}lM’[i],k(xm) = B, —m and ZZ’L elim k= A~
t(;n_l)ﬂ eUtim—1+ik Fra (™) = B,, and t(m_1)+j e"tm-1+ik = A, . So based on the
k=1 [é],

definition of ATT; 1 (Fp;)(z™))[(m — 1)len(z) + 5] and ATT AN (F o (2™)[(m — 1)len(z) +],

B7YL —M
Am,—Mm

we just need to prove that lim,,, . || 2= — [|2 = 0, we have that:

18

Under review as a conference paper at ICLR 2026

B, Bm,—Mm
el s v
_ B (Am,—m—Am)+Am (Bm,—v—Bm)
=l AmAm,—m |2
B (Am,—Mm—Am) B, —v—Bm
S H AmA'mZT{M H2 + H Anyfl\/l 2

As mentioned before, the value of transformer and hidden layer output has an upper bound and lower
bound, so -—™— has an upper bound and lower bound.

A, M
So there are:
Bp(Ap_u— A Ap_u—A
[Pt Ay, gy By, i = Anl
m—00 AnLAm,—JM m—00 Am Am,—M m
use lim,, o0 W = 0 as proved above.
And
. Bm,—M — Bm . Bm,—M — Bm m
lim |[————[z = lim || |I2 =0,
m—00 A — m— 00 m A

||Bm,— M —Bml|2

use lim,,, oo pon

= 0 as proved above.
Combine them, we prove the result.
The gap of the FNN layer.

For the FNN layer, easy to see that for any Relu network F'NN,, there are || NN, (z) —
FNN,(2)||]2 = 0 when ||z — z||2 — 0.

So consider that limy,, o |[ATT;41(Fj1(2™))[(m — Dlen(z) + 5] — ATT A (F i (2™))[(m —

Dlen(z) + j]I| = 0 and limy, o0 [|F[i], (m—1)1en(2)+5 (™) — F-,[i], (m—1)len(z)+5 (£™)| |2 = 0 for
all j € [len(z)], it is obvious that

limy, 00 ||FNNZ'+1(ATTZ*+1(]:[¢] (™)) +]:[i] (z™))[(m — D)len(z) + j]
— FNNipy (ATT Y (Foariy (2™)) + Foargig (27)[(m — Dlen(x) +]|z = 0,
so we prove the limitation of F NN layer.

Finally, combining the gap from the attention layer and FNN layer, we prove the result. O

Lemma D4. Let z, 2 € 28, 2™[—1] € 2 be the sentence such that x™ without the last element.
Then we have lim,,,_, || F (2™ [—1] ® z @ z[len(z)]) — F(z™)||2 = 0.

Proof. Without loss of generality, let y; be the last element of x. We assume the /-th hidden layer of
F(x) is Fi(x), and the F; () is the k-th row of Fj(x). We write 2™ [—1] @ z & 1 as ™.

By the Lemma|D.2] we have that the first mlen(z) — 1 rows of ;(2*) and F;(z™) are the same.

Then we will show that if limy, oo || F7 1en(@m) (™) — Filen(zm-=) (2™ 7)|]2 = 0 stand for I-th
hidden layer, there are lim,,, o0 ||Fi41,1en(zm) (T) = Fit11en(am =) (7%)||2 = 0 stand for (I +1)-
th hidden layer. See Fy(x™) and Fo(z™*) as the embedding layer which is satisfied the above
assumptions, so this result directly leads to the lemma.

By the definition of transformer, we know that 71 (™) = FNN41 (F;(2™) + ATT; 1 (F (™)) +
Fi(x™) + ATT; 41 (Fi (™)), similar as for Fppq (™).

We prove the result in two parts.
The gap of attention layer.
We will prove that

lim [[ATT; 1 (Fi(2™))[len(z™)] — ATTyp (Fi(2™ %)) [len(z™%)]||2 = 0,

m
m— o0

ATT(z)[i] means the i-th row of the attention layer ATT.

19

Under review as a conference paper at ICLR 2026

Firstly, we consider the attention layer, easy to see that the last row of ATT;q(F;(z™)) is

Sent™ etk B (2™ m mAT
Zlgn(rm) wr VlH,where ukZ}—lJcn(Im)(CE)QlJr]KlJr].E’k(‘r) .

len(z‘m z

) uf, m,z
Similarly, the last row of ATT(F(a™?) is Sl IV, where u, =
k=
Fiten(zm=) (™) Qur1 K41 Frp(a™) T

Then, we prove that lim,, s | Zle“(w et — Zl,:z(f) et | /m = 0 at first.

We need the following facts:

(1): Based on the assumption, for any given e there is a T'(¢) such that [|F jen(em)(2™) —
Fllen(zm=) (2™7)|]2 < e when m > T'(e).

(2): By the Lemma [D.1] the || F;(2™)||2,00 and ||F;(2™%)]|2,0 have the upper bound Ay, so uy,
and u}, also have an upper bound As, ||Q+1K;+1F, x(2™%)T||2 has an upper bound As, write
A= max{Al, AQ, Ag, 1}

Then when m > T'(e), we have that:

|216” etk = S ekl /m
< e (len z) + | Zlen(at)—1 “k - ‘1152(13:"”)—1 e“’“|/m
< e (ler’:r(Lz)qtl) + € Ale A€ 1)(mlen(x))
where we use fact 1 to get |up — uf < [F11en(zm) (™) —

Frien(zm=) (@™ F)|[2|| Qi Kip1 Fre (™) 7]z < Ae for any k < len(z™) — 1. Other
parts are similar as that in the proof of Lemma|[D.3]

So, for any § > 0, we just need to take ¢ such that e (e — 1)len(z) < §/2 and m > T'(e€) +
A m A A Ae

2e (lcn(z)Jrl) . then |zlen(w) e“k - Zlke;gx)euk|/m < e (lCITlr(Lz)Jrl) + ¢ (e 71721(mlcn(m)) <

0/2+ 5/2 —'5. So we prove the result.

Secondly, similarly as before, we can prove that:

len(z™ %) len(z™)
dm >0 et T = 30 e Al = 0.
k=1 k=1

Thirdly, similar as in the proof of Lemma[D.3] we can prove that

im [[ATTq (Fi (™)) [len(z™)] = ATy (Fi(2™%)) [len(z™#)]||2 = 0.

The gap of FNN layer.

Because lim,, o ||ATT;41 (Fi(x))[len(™) — ATTH_l(]-"l())len(z™*)]|l2 = 0 and
im0 || F7ten(em) (™) — Fiien(am =) (2™7)||2 = 0, so it is obvious that

limy oo |[ENNi 1 (AT (Fi(2™)) + Fi (™)) len(a™)
— NNy (ATTp (Fi(27)) + Fo(a™) flen(a™#)] || = 0,

so we prove the result.

Finally, combining the gap from the attention layer and FNN layer, we prove the lemma. O

D.2 PROOF OF THEOREM [4.4]

Proof. Let F be a transformer and S be a F-lead set. We show that, for any =, such that

z.[len(z.)] = a;flen(z;)] and y; = F_pr(a™) where (z;,y;) € S, there exists a m such that
2" is a prompt which makes PPP(T", S, F) = 1.

According to Lemma and Lemma for any ;, there is a m; such that F (P ® ;) = F (")
(Lemma and use z.[len(z,)] = a;[len(x;)]) and F(z7) = F_p (") (Lemma |D.4) for any

20

Under review as a conference paper at ICLR 2026

m > m;. Combining them, we have F (2™ @ x;) = F_p(2™) = F_pr(x.) = 1, using the fact
that F_ ;s is scaling equivalence(lemma|B.2).

So by taking m = max;cnj{m;}, ¥]* is what we want, we prove the theorem. O

D.3 EXPLANATION AND PROOF OF PROPOSITION[4.7]

For convenience, we introduce the following definition.

Definition D.5. A dataset S = {(z;,y;)}Y; C 2F x T'is said to be strong F-lead for a transformer
F, if there exists an € 21 such that last(z) = last(x;) and y; = F (=) for all i € [N].

Then we have that:

Proposition D.6. (1) For any transformer F, if S is F-lead, then it is also strong F-lead; (2) For
some transformer F, S is strong F-lead, but not F-lead.

Proof. Result (1). We just need to prove that if F_ A (z) = 7, then there exists a z € 21 such that
last(z) = last(z) and F(z) =

It is easy to see that .7?_M(xm) = y for any m € Z,, and based on the Lemma we have
F(x™) = F_p(2™) = y when m is large enough. So we just need to take z = 2™ for such a large
m.

Result (2). By the Proposition[4.6] it is obvious. Note that the proof of Proposition 4.6 does not rely
on that of this proposition. O

The concept of strong F-lead encompasses a wider spectrum of S than that of F-lead. So, why do we
establish that PPP(T", S, F) = 1 for an S that is a F-lead but not strong F-lead? This is primarily
due to a fundamental reason outlined in the following proposition d.6[repeat in the below):

Pr0p0s1t10n D.7. (1) For any transformer F and x € 2, there exist infinite x' € 2V such that
Fom () = F(&'); (2) For some transformer F and x € 2, there exists only finite z' € 2¥ such

~

that F(z) = F(z').

By Proposition 4.6, we obtain the following result.
Corollary D.8. For some symbol set I and transformer F, a strong F-lead dataset S of F, we have
that PPP(T', S, F) = 0.

This corollary directly proves the corollary The proof is easy, as shown below:

Proof. Based on the result (2) in the propos1t10n E suppose that for a x € 21 such that there only
exists K 2/ € 2' such that F(z) = F(a'). Then consider a strong F-lead set S = {(z;,:)} ¥,

where N > K satisfied that y; = F (x), then it is easy to see that P does not exist because
|S|=N > K. O

Now we prove Proposition [4.6]

Proof. Based on the scale equivariant of 7_; and lemma [D.3] (1) of Proposition 4.6 is obvious

because F_ () = F_p(z™) = F(2™) for the large enough m. We will prove (2) of Proposition
4.6 below.

For a matrix V, let V'[7] be the i-th row of V, V[i]; be the j-th weight of V'[d].

We will give an example for a pair of F and y such that F (z) = y can only stand for a finite number
of x € 2.

Let y = 71, we consider the following transformer F:

(1) The embedding layer: embeds the v; to v,, = (0,0,1,0), and ~; to v,, = (0,0,0,1) when
J > 1. For convenience, we also write v.,, as v;.

21

Under review as a conference paper at ICLR 2026

(2) The first layer F: the attention layer is that QK = 0 and V € {0,1}**4 and V[3]; and V4],
are 1, others are 0. The FNN layer is FNN(z) = 0.

Vg .

Easy to see that: for an input x, the i-th row of the first layer output is v, + 23‘:1 1V e Rio,

and there are F(x)[i]; + F(z)[i]2 = 1.

7

We also have that | 22:1 (Ulij)k — Z;ill (ifﬁl)k = |(Z;:1 w)/(z + 1] < 1/(i+1) for

any k = 1,2,3, 4, where (v,), is the k-th weight of v,,, naming this result as result (x).

(3) The next several layers Fy: all their attention layers are 0, and their FNN layer makes sure that
Fg(I)[]] = (F0_571(F1 (I)[j]1)7 F070_5(F1 (Z‘)[]]Q), 0, 0) for any] In here .7:0_571 :R — RisaRelu
network such that 7 5 1(z) > z for all z € [0,1], Fo.5.1(x) > = + 0.2 for the = € [0, 1] satisfied
|z —0.5] > 0.01 and |z — 1| > 0.01, and Fy5,1(z) = when z € {0.5,1}; Fpo5: R — Risa
Relu network such that Fo g 5(z) > « forall z € [0, 1], Fo,0.5(x) > £+ 0.2 when z € [0, 1] satisfied
|z — 0.5 > 0.01 and |x| > 0.01, and Fy 0.5(x) = = when z € {0.5,0}. It is easy to see that such
Relu networks must exist.

After such layers, we know that each row of F(x) satisfies that ||F,(x)[¢]||[1 > 1, moreover,
[|Fs(x)[i]||1 > 1.2 when | Fy(2)[j]1 —0.5] > 0.01 and | F} (2)[j]1 —1| > 0.01, or | F} (x)[j]2—0.5] >
0.01 and |F} (z)[4]2| > 0.01.

(4) The next hidden layer F;: the attention layer is that QK = 0 and V € {0,1}**% and the V[1]3
and V'[2]4 are 1, others are 0. The FNN layer is FNN(z) = 0. The last row of F;(x) is Fy(x)

(5) The FNN layer in the last hidden layer and the output layer lead to the final output of the
transformer: F(x) = (0.01 — |0.75 — Fy(x)s| — 10.25 — Fy(2)4],0,—0.1,...,—0.1), where we
just need to use |x| = Relu(z) — Relu(—x).

Now we show such a pair of F(z) and y is what we want.
Part One: It is easy to check that F((v1,72)) = 71

Part Two: Assume that = such that F(2) = F((71,72)) = 71, we show that len(z) has an upper
bound, which can directly lead to our result.

If 7(2) = 41, we have the following results:

Result One: There are at least 90% proportion rows 4 of Fy(x) satisfying: Fg(x)[i]1 + Fs(z)[i]2 <
1.2.

If not, because Fyy ()3 = S0 Fy(@)[i] /len(z) and Fy(z)s = S Fy(2)[i]a/len(z), it
is easy to calculate that |y ()3 + Fu(z)a] > 0.9 % 1 + 0.1 x 1.2 = 1.02; hence, there are
0.01 — |0.75 — Fy(z)3| — 10.25 — Fy(x)4| < 0, which implies that there are F () # 1.

Result Two: There are at least 0.9 — 0.638 > 0.25 proportion rows ¢ satisfy:
[|(F1(2)[é]1, Fi(z)[i]2) — (0.5,0.5)]|cc < 0.01.

For a i such that ||Fs(z)[i]||1 < 1.2, based on the definition of Fj 51 and Fy o5, there must be
(F1(@)[i]1, Fr(2)[i]2) — (0.5,0.5)||c < 0.01 or [[(F1(z)[i], F1(2)[i]2) — (1,0)|lec < 0.0,
use the fact that F(z)[i]s + Fi(z)[i]a = 1. So if € proportion rows of Fj(z) such that
[|[(F1(z)[i]1, F1(x)[i]2) — (1,0)||ec < 0.01, then there are at least 0.9 — € proportion rows of
Fi(z) such that ||(F1(z)[i]1, F1(z)[i]2) — (0.5,0.5)||cc < 0.01(by result one).

To make sure that f(m) = 71, there should be |0.75 — Fy(x)s| < 0.01, so there are 0.99¢ +
0.49(0.9 — €) < 0.76, so € < 0.638, which is what we want.

0.26

Similar to before, there are at least 0.9 — §7g > 0.25 proportion rows ¢ that satisfy
[[(Fr(@)[i]1, Fr(2)lil2) = (1,0)[]c < 0.01.

Result Three: Prove the result.

Let len(z) = N. Consider that i; is the last row such that ||(F1(z)[i1]

1
(0.5,0.5)|]c0 < 0.01 and i5 is the last row such that ||(F1 (z)[i2]1, Fi(2)[i2]2) — (1,0)]]cc < 0.01.

22

Under review as a conference paper at ICLR 2026

Without losing generality, let i, > io, then there exists a ¢4 which is the first row in (41, i2] such that
[(F1(@)[ish, F1(2)[iz)2) = (1, 0)[|ec < 0.01.

Consider that from the row 4, to i5, the first weight of F; (x) changes at least 0.48, combined with
result () and the calculation of the first hidden layer, we have that lix ﬁf‘ > 0.48, so there are
iy — 5| > #‘ﬁl) =0.48(iy +1) > 0.48+0.25N = 0.12N, use i1 > 0 25N here(by Result two).
So there are at least 0.12N — 1 number of ¢ such that | Fs(z)[i]| > 1.2, which is contradictory to
Result One when 0.12N — 1 > 0.1N. So N has an upper bound. Vice versa for ¢2 > i;. We prove
the result. O

E PROOFS IN SECTION [4.3]

E.1 PROOF OF PROPOSITION[4.§]

We show how to estimate the length.

Lemma E.1. Let x € 2' and F be a transformer. Then for any z € 2%, if || F(z™[-1] ® 2z &
z[len(x)]) — F(x™)||l2 < € then the value of mlen(x) is at most Crlen(z)/e, where Cr is a
constant that only depends on F.

Proof. We follow the notations in the proof of the Lemma|[D.4]

Assume that F has L hidden layers. We just need to consider the last row of the last hidden layer,
i.e. we just need to prove that || Fp, jen(zm) (™) — FL jen(am-=) (#%)||2 < € for any m such that
mlen(z) > Crlen(z)/e for a Cx dependent on F.

Now we assume that the above result stands for any transformer 7’ with L — 1 hidden layers, that is,
L1 ten(em) (8™) = FL 1 ten(am=) (#™%)||2 < € for any m such that mlen(z) > M . Then
we show that the lemma is also satisfied for the transformer with L hidden layers.

Easy to see that the embedding vector of ™ and 2™ * satisfied the above result, and can be seen as a
0-hidden layer transformer, so the above result can easily lead to the lemma.

It is easy to see that Fr (z™) = FNN (ATTL(Fr_1(z™)) + Fr_1(x™)) + ATT(Fr_1(z™)) +

Fr—1(x™), similar to z™-*. Then we show such a result in two parts.

The Attention Layer. We show that there is a C4 dependent on F such that when mlen(z) >
A

GEIE) here is || AT (Fp—1 (a™))[len(z™)] — ATT 1 (Fr—1 (™)) [len(z™)][|s < e.

About the attention layer, we have that:

len(z™) uk m
AT, (Fy (o) len(a)] = 2=t C 1)y
k=1 €

and

lei(z’"’z) u;“]:L 1k(m,z)

ATTp(Fr—1(a™*))[len(a™*)] = =+ S V.

The wuy and u) are the same meaning with that in the proof of Lemma
To be convenient, let S vk Fy g p(zmF) = (DT enh FL oy h(@™F) +
€Hon™) FL_1 e (omee) (& w9 lenen € FLk @) = () + (1), and

) e = (eI e g gtencern) (S ety = (W) + (Wa). And
write ATTL(Fr—1(x))[len()] =Q/P.

Then, we have that

ATTL(Fr—1(z™))[len(z™)] = ATTL(FL-1,len(am =) (2"™7))[len(z™)]
(PV1—QW1)+(PVo— QW2)V
(W1 +Wa)P

23

Under review as a conference paper at ICLR 2026

And we have the following facts:

(1) Let the subset transformer of F consist of the first L — 1 layer name F’, based on the assumption,

there exist a Cz such that for any €, when mlen(x) > %en(z), there are || F1_1 jen(zm)(2™) —
FL—l,len(mm’Z)(xm’Z)||2 S €,

(2) By the Lemma[D.1} the || F2_1(z™)||2,00 and || FL_1(2™7)||2,0c have the upper bound Ay, so uy,
and), also have an upper bound Ay, ||F7_1 jen(@m.=) (27 %)QK||2 and || F7_1 jen(zm) (™) QK |2
have an upper bound A3, write A = max{A4;, Az, A3, 1}, which is only depended on F.

Then when mlen(z) > Cf%e“(z) and 2A4e < 1, simialr as that in the proof of the lemma we
have that:

Vi - Qs ,
= ISR T) (T e (a7)
e) e Fr g (2™
= I 16“ 7 e —) Fr g o (2™%)) + (€Mhene™) Fi_y fen(gmosy (277)
7ilgn(Tm)J_:L 1,1en($m)(xm))‘|2
< (len(@™) — 1)eA(eAe = 1)A + || (e hmems) — etionem™)Fy) 1o omen (™) |
+||6u1°“(1m)(J_'.L—l,len(xm)(xm) - fL—l,len(xm'Z)(xm)z))HZ
< (len(z™) — 1)e? (e — 1) A + e?(e24€ — 1) A + ele.

The first equation uses the fact that the first mlen(z) — 1 rows of F;(z™*) and F;(«™) are the same,
by the Lemma[D.2] In the above second inequality sign, we use

!/
‘ulen(zm‘z) B ulen(zm)l

< ‘fL—l,len(xm'z)(me)QK(-FL—l,len(xm’z)(xm7z) - FL—l,len(xm)(xm))T|
+|(]:L71,lcn(acmvz)($mjz) -]:Lfl,lcn(m"”)(xm))QK]:Lfl,lcn(mm)(xm)T|
< 2€A.

So ||V1 Qll2 < (len(z™)—1)e? (eA—1) Ade? (24 —1) A+ete < (242 (len(2™)+1)+1)ee? <
5A%len(z™)ee A = Cilen(z™)e, when 24e < 1.

Hence, we also have

(W1 — P
= ‘(fn(f -1 eu/) + (euien(xm‘z)) Lerl(:v) ukl
‘(101’1 I) 1(€u;c _ ’u,k) + eu{en(lm 2y ulen(‘tvn))‘

2 (len() 1)eA(eAe — 1) 4 eA(e24e — 1).

So when 2¢A < 1, there are [W; — P| < (len(2™) — 1)e? (e — 1) + e (24 — 1) < 2(len(z™) +
1)e? Ae < 4len(z™)e? Ae = Coelen(z™). Combine the above result, when 2¢A < 1, we have that:

|| (PV1—QW1)+(PVo—QWa) ||
P(V; 7(QV‘)/I+W2)P QW ; PVy—QW:

||(W1+1(VV2)P||2+H W1+2VV2)P||2+H(W12+W2)§3H2
Cilen(z"")e Colen(z")eQ PV —QW:

|| %/V1+W2 H2+H (%/V1+W2)P ||2+H(W12+W2)12DH2'

IAIA

Because of the fact (2), it is established that there exists a constant ¢ associated with F for which
|[W1 + Wa| > clen(z™*) > clen(z™), thereby leading us to conclude that:

cil m Cilen(z™)e =
15457 Nl + 1| Gy Nl + 1| b 2
c CoeA Vo—Q/PW.
< ‘ Clﬁ‘+| 2: |+‘ 2clen(£67z)2|
c CoeA 21 T A
|G| G2 |2l

So to make sure that || (Pvrc%%i RE,S‘;?QWQ V|2 < 0 for the given J, based on the assumptions

and above result, we just need the % < §/(3]|V||2), that is mlen(x) > W; and

24

Under review as a conference paper at ICLR 2026

C2eA < 5/(3||V||2), that is mlen(x) > 2C2CmAln@IVlls, gpg ZenGled < 5/03)y||,), that is

clen(z™)
6len(z)e? A||V]|
mlen(z) > #"’.

Combining them, define C42 = max{3C,Cr /c,3C2C%A/c,6e*A/c}||V]|

dependent on F, and we know that C’é satisfies that when mlen(x) > Q@, there is
[[ATT (Fr—1(z™))[len(z™)] — ATTL(FL—11en(@m =) (@""%))[len(x™?)]||2 < €. So we prove the
result in this part.

2, which is only

We now prove the lemma. It is easy to see that ||[FNNy, (z) — FNNL(2)||2 < |[|WL||2||z — z]|2 for
any x and z, where W, are the parameters in FNN, layer, so we have:

||fL,len(r"”)(xm) - fL,len(z"‘vz)(mm7z)|‘2
(IWLll2 + D)(||ATTL(Fr—1(2™))[len(z™)]
—ATTL(FL—1 len(zm =) (@™ 7)) [len(z™*)]||2
+||FL—1,len(mm)(xm) - J—_.L—l,len(xm»z)(‘rm)z”|2)~

IN

So to make sure that ||Ff jen(em)(2™) — Frlen(zm2)(™7)||2 < € for a given €, we just
need the [|ATTL(Fr—1(z™))len(z™)] — ATTL(Fp—1(z™))[len(z™*)]|l2 < 57w,y and
[[FL—11en(@m) (&™) = FL_11en(am =) ("%)]|2 < m By the above part and assumptions,
we just need to take Cr = 2(1 + ||Wp||2) max{C4, Cx }, then when mlen(z) > Crlen(z)/z,
there are || 7L jon(zm) (™) — FL len(am=)(277)||2 < €, such Cx is only dependent on F, so we
prove the lemma. U

Then we can prove Proposition 48]

Proof. Let Conz(z) = Fnax(®) — Fmax,2(z), where Frax () is the max weight of F(z) and
Fmaz,2(x) is the second largest weight of F(z).

For any vs,v: € I, let T, ,, = argminIGQFJ[len(w)]:%’]A_.iM(w):%{len(a:)} and Uy, 5, =
minger, . {Cong ,,(x)}. Because T, ., is a finite set, so it is easy to see that there is a

U, U, € Zy such that: for any s,t and = € T, ,,, there is]?(a:m) =]?_M(xm) for any m > U,,;
forany s,t and z € T, ,,, there is len(z) < Uj.
Then for a F-lead set S and a (z,y) € S, for a z € Typen(a),y such that zllen(z)] =

zllen(z)] and y = F_p(z), by Lemma there is a C' and when we take a prompt 2™
such that len(2™) > max{Clen(x)/Uyfien(x)),y, len(2)Un }, there are F (2™ @ x) = F(2™) =

~

F_p(z™) = F_p(2) = y. So to make sure F(z™ & z) = y for any (z,y) € S, we just need to
make sure that len(z") > {C max, y)es{len(r)/Uyzien(z)),y }, UtUm }, use len(z) < U here.

Finally, since U, Ur, only depend on F, we take Uz = max{C/min; j1. . 2¢{Usy, 5, }, UilUn}
which can lead to the result. O

E.2 PROOF OF PROPOSITION [4.0]

Proof. We consider a one-hidden layer transformer F as follows:

(1) Embedding layer: embedding -5 to (0.5,0.5), and y; € I/~ to v; such that: " v; = —1, where
>~ v is the sum of each component of vector v.

(2) Attention layer, let QK = 0 and V' = 2I. So the last row of the attention layer is calculated

len(z)
as ATT(x)[len(x)] = vgfien(z) + QW where z; is the j-th symbol in z, and v,, is the
embedding vector of x;.

(3) The output layer and the FNN layer, just let them be F(z) = W (Relu(vgpien(z) +
ATT(z)[len(2)]) + Vafen(z)) + ATT(z)[len(z)]), where W € RI1*2, and the second row of W
is (1,1), the other rows are all negative, v,, is the embedding matrix of x.

25

Under review as a conference paper at ICLR 2026

Let (-); mean the i-th row of the given matrix. It is easy to see that, if and only if Z(vz[len(x)] +
ATT(z)[len(x)]) > 0, F(x) has label 2. Let 2Ly = {(Viy, Vi, Vis» - - - » Vi) li5 # 2} C 2V,

Then we consider the following PPP question: F is given above, S = {(zm,%2)||zm €
2;2, Zm[len(z,,)] = 71}, we show this is what we want.

Part One: S is F-lead. Because F_ (75 @ 1) = 72, s0 such S is a F-lead.
Part Two: Prove the result.

For any given z € 2;2 and let len(x) = m. If we want to use prompt Pr to make f"(P D x) = 9,
write x,, = P @z, based on the definition of the output layer and the FNN layer, we need to make sure
that } 3(vg, fien(z,)] + ATT(xp)[len(xp)]) > 0, which implies that: —14+2%, .) . 1/len(zp) —

2Num,, (z,)—(len(P)+m ..
22j:($p)j¢V2 1/1@11(3'}1)) > 0’ SO that: -1 + 2 21(611(?77)(-‘,-177,()) > 0, that 1S:];\IUHLY2 (pr) >

3/4(len(P) + m), consider that Num., (x,,) = Num., (P), so there must be len(P) > 3len(z) =
3m.

So, for such a dataset, if P makes PPP(T", S, F) = 1, by the above result, there are len(P) >
3max(, ,)esilen(z)}, and this is what we want. O

F PROOFS OF SECTION [4.4]

F.1 PROOF OF PROPOSITION[4.13]

Proof. Without loss of generality, for a symbol set I' = {v;}7, where m > 3 and a data set
S = {(z1,7), (x2,72), - .. }, where last(z1) = last(x2) = vy and k € [m], we will show that there
is a F satisfied condition (3) such that if prompt P satisfied F (P @ 1) = 71, then F(P @ z3) # 7o,
which can directly prove the proposition.

Let len(S) = L, and M € Z4 such that M > 3(L + m), let p € [m] such that p # k. We will
consider the transformer F with one hidden layer as follows:

(1) Embedding layer: the embedding layer of ~; is v;, and satisfies that v; L v; and ||v;||]2 = 1 for
any i # j;
(2) Hidden layer: In the attention layer, QK = 0 and V = I; the FNN layer is 0; so the last row of

len(x
E]‘:i '
len(x)

the hidden layer F;(z) is calculated as i (z) = vy,) +
x, and v, is the embedding vector of z;

“L, where z; is the j-th symbol in

(3) Output layer and FNN layer: The output layer of F is that: the first weight is /4 () =2M(m +
1)™ (v, Fi(2)T — 14 1/M), the i-th weight is Fi(z) = (m+1)""*(v,(Fi(x))T — (i — 1)/i +
1/(m+ 1)), where ¢ > 2.

Easy to check that F (vt @) =i fori > 2 and F (7™ @ ~1.) = 71, so based on the conditions
(2), we know that the conditions (3) is satisfied for such F and S.

Now we show that: if prompt P satisfied .7?(73 @ x1) = 1, then .7?(77 @ x2) # V2.

Part One: To make sure that F(P @ x1) = 1, there must be —1 + 1/M + v,(Fi(z))? > 0. If
not, to make sure that F; is large than F; when ¢ > 2, there must be 0 > F; > F5, which implies
vp(Fi(z))T < 0.5—1/(m+ 1), hence, we have that Fo(x) > —0.5+1/(m+1) > —2Mm™/3 >
2Mm™ (0.5 —1/(m+1) — 1+ 1/M) > Fi(z), which is contradictory to F (P @ x1) = 7.

len(zq)+len(P) |
i ! V(Poz1);)T

len(P)+len(x1)

Part Two: Consider that there are v,(Fy(z1))T = v,(vr +

Num,,, (P®z1) Num,, (P&z1)
fen(P)+en(z1)” fen(P) Flenzy) > L — /M.

by Part one, so we know that

Num,,, (P®z1) Num,,, (P)+L-1

Consider that 1 i) <~ Ten(P)L

<1- , so we have that L + len(P) > M.

1
L+len(P)

Part Three : Now we prove the result. Based on the result in Part two, we have that:

26

Under review as a conference paper at ICLR 2026

Num., (P®z2)

len(P)+len(xzz)

Num,, (P

len(P)+L

Num,,, (P)+L—1 L—1
len(P)+L " Ien(P)+L

Num,, (P®z1) L—-1

len(P)+len(z1) M

1—L/M >2/3

AVARAY,

Take it into transformer JF, we have that

.7:2(51/'2) —]‘—3(‘%2)

(%(ﬂ(a«;g))T —1/24+1/(T+1)) = (T + 1)(va(ﬂ(xzp))T —2/3+1/(T+1))
(71923%‘1(19%2)) —1/2+41/(T+1)) - (T + 1)(7leﬁﬁ>3’ﬁle$ﬁ)) —2/3+1/(T +1))

< (2/3-1/24+1/(T+1)—(T+1)(2/3—-2/3+1/(T+1))
< 1/6+1/(T'+1)—-1<0.
So F(P @ x2) will not have label 2, so we prove the result. O

F.2 PROOF OF PROPOSITION (4. 14]

Proof. Without loss of generality, for a symbol set I' = {v;}7, where m > 3 and a data set
S = {(z1,7), (x2,71), ...}, where last(x1) = vg,last(z2) = 7, and k # p € [m]. We show
that there is a F satisfied the conditions (3) such that if prompt P satisfied F(P @ x1) = 71, then

~

F(P @ x2) # 1, this can directly prove the proposition.

Letlen(S) = L, and M € Z such that M > 2(L + m). We will consider the transformer F with
one hidden layer as follows:

(1) Embedding layer: the embedding layer of +y; is v;, and satisfies that v; L v; and ||v;||]2 = 1 for
any @ # J;
(2)Hidden layer: In the attention layer, Q KX = 0 and V' = [I; the FNN layer is O; so the last row of

len(x)
ylen@

the hidden layer F;(z) is calculated as i (z) = vy,) + Ton() ~L, where x; is the j-th symbol in

x, and vy is the embedding vector of x;

(3) Output layer and FNN layer: The output layer of F is that: the first weight is J (z) = v, F;(x)T —
1 + 1/M, the 2-th weight is Fa(z) = M(v,Fi(x)T — 1 — 1/M), the i-th weight is F;(z) =
—vp,Fi(z)T 4+ 1 —1/M, where i > 2.

It is easy to check that 7 (72" ®~i) = 71 fori # pand F (YM &7,) = 71, so based on the conditions
(2), we know that the conditions (3) are satisfied for such F and S.

Now we show that: if prompt P satisfied 7 (P & x1) = 71, then F(P & z2) # 71.
Part One: To make sure that F(P & x1) = 71, there must be Fy (P & x1) > F3(P @& 1), s0

len(P@xq)
that v, F; (P @ 1) — 1+ 1/M > 0, so that v, F;(P ® 1) = vp(vp + =2 JPETNT =

) len(Pdx1)
Num p('PEle
len(P’Y)-i-len(a:l) > 1= l/M

Num,,, (P®z1) Num,,, (P)+L-1 <1

: 1
Consider that len(P)+len(z1) — len(P)+L =+ L+len(P)

, so we have that L + len(P) > M.

Part Two: Now we prove the result. We have that:

27

Under review as a conference paper at ICLR 2026

Num.,,, (P®z2)

len(P)+len(xzz)

Num,,, (P)

len(P)+L

Num.yp ('P)JrLfl L—1
len(P)+L " len(P)+L

Num., (P&z1) L—1

len(P)Hlen(z1) M

1-L/M > 0.5

IV IV

If we input this into a transformer, we find that

.FQ((EQ) — .7-'1(:62)
M (vpFi(z2)T — 1= 1/M) — (vpFi(z2)T — 1+ 1/M)

Num.,, (P®z2) Num.,, (P®z2)
= M(l + len(P)—&-len(xi) —1- 1/M) - (1 + 1en(P)+1en(Jc22) -1+ 1/M)
> M(1.5—1—1/M) - (1.5—1+1/M) > 0.
So we prove the result. O

G PROOFS OF SECTION[3

G.1 PROOF OF THEOREM [3.1]

We give a classic generalization bound below, which will be used in the proof.

Theorem G.1 (P.217 of (Mohri et al.||2018)), Informal). Let the training set Dy, be i.i.d. sampled from
the data distribution Dg and N = |Dy,|. For the hypothesis space H = {L(F(z),y) : R™ x [m] —
[0,1]} and § € R, with probability at least 1 — 6, for any L(F(x),y) € H, we have

E(a,)~ps [L(F (@), 9)] < Eayyep,, [L(F(2),y)] + 2Rad s (H) + |/ 252 S
Now we prove the Theorem [5.1]

Proof. Let 212 be the set of € 2T satisfying len(x) < L. For a given transformer F, we define
the hypothetical space Hr j, of function 2'' x I' — {0,1} as: Hr 1, = {Gp(z,y) € 2" x ' —
{0,1}:Gp(z,y) = (F(P®x) =y),P € 20"}, It is easy to see that Hz ;, contains T'C func-
tions. Consider that Rad%(H) <4/ mnTUﬂ (Mohri et al., 2018)) for any infinite hypothetical space
with range [—1, 1] for all the function in it and distribution D, so the Rademacher complexity
Rad} (Hz,1) < /22T for any distribution D of (z,y).

Hence, using the Rademacher generalization bound in[G.I] we prove the result. O

G.2 PROOF OF PROPOSITION[3.4]

Proof. 1t suffices to consider a special transformer F and P.

For the given distribution D, we can find a finite set Sy C 2" x I such that P, ,y.p((z,y) € S5) >

1 — ¢/N. So if we select N i.i.d. samples in D, with probability (1 — ¢/N)¥ > 1 — ¢, all such
samples in S,.

Assume that |S;| = m and S5 = {(x4,y:)}™,. Let F satisfy that]?(zl D2®...2m D) = 2
for each x; € S, and z; € I" where j € [m].

Then for any S ~ DV, we just consider the situation that all samples in S are in S, which is stand
with probability at least 1 — e.

Firstly, we can finda P = y] @ y4 & ...y, such that y, = y; if and only if there is (z;,y;) € S. We
show P is what we want.

Then by the definition of F, for any ¢ € [m] such that (z;,y;) € S, there are FP®x) =

~

Fyi®ys ® ...y, ®x;) =y, =y, then we have that Ar p g = 1.

28

Under review as a conference paper at ICLR 2026

But for Ax p p, we have that Ax p p <1 —E, ,)~p[l((z,y) € S5/S5)], because if (x;,y;) ¢ S,

then F(P ® ;) = F(y, ® vy ® - ®yl, ® ;) = v, # yi. based on the definition of S and
assumption on D, so there are Ar pp <1 —E, p[I((2,y) € S5/S)] < Eyyopll((z,y) €
S)] + E(m,y)wD[I((l'vy) ¢ SS)] <e+ 6/J\/v < 2e.

So there are |Ar pp — Ar p s| > 1 — 2¢, which is what we want. O

G.3 PROOF OF PROPOSITION[3.3]
Proof. Firstly, let D be defined on set Sp = {(z;,y;)} C 2" x T'and P(,)~ p(z = ;) = P;, then
there is a finite set S; C Sp such that P, ,y.p(x € S5) > 1 —¢€/2.

Let n; be the number of x; in .S, so we have that:
\Arp D — Arps| R
[E e)~ p[HF (P & 2) = y)] = 157 Loes(UF (P @ @) =)l

Z(M,yi)ess

—Neé?/2

Based on the Hoeffding inequality, for any x;, we know that with probability 1 — 2e , there is

P — 157l < €/2.

26—N€2/2

So we take a NV such that 1 — Z(L, yi)ES, < d(because S is finite, so such [N must exist),

then there are [Ar pp — Arps| < X, yoes, [Pi — 15| WF(P @ z) = i) + €/2 < e with
probability 1 — §, which is what we want. O

29

	Introduction
	Related Work
	Prerequisite
	Existence conditions and computational complexity
	Existence of perfect prepended-prompt is NPC
	A sufficient condition for PPP(,S,F)=1
	Length of perfect prepended-prompt
	Necessary conditions on S for PPP(,S,F)=1 to be valid for all F

	Generalization of prepended-prompt
	Experiment
	Conclusion
	statements
	Notations and preliminary results
	Proof of Theorem 4.1
	Proofs of Section 4.2
	Several lemmas
	Proof of Theorem 4.4
	Explanation and Proof of Proposition 4.7

	Proofs in Section 4.3
	Proof of Proposition 4.8
	Proof of Proposition 4.9

	Proofs of Section 4.4
	Proof of Proposition 4.13
	Proof of Proposition 4.14

	Proofs of Section 5
	Proof of Theorem 5.1
	Proof of Proposition 5.4
	Proof of Proposition 5.5

