
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS A THEORETICAL UNDERSTANDING OF
PROMPT ENGINEERING: TRACTABILITY, EXISTENCE,
AND GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt engineering has rapidly become an indispensable tool for the effective uti-
lization of large language models (LLMs), turning LLMs into task-specific experts
without changing their weights. Despite its significant practical achievements, the
theoretical advancement in this area is relatively limited. To enhance its understand-
ing and interpretability, this paper addresses three fundamental questions in prompt
engineering: the computational tractability of finding optimal prompts, existence
conditions for the required prompts, and the generalizability of prompts. Precisely,
we consider the problem of finding a prompt for a given query-answer dataset and
a fixed transformer. We prove that deciding the existence of a perfect prompt is
NP-complete, and computing an optimal prompt is NP-hard. Furthermore, we
establish sufficient conditions for the existence of perfect prompts based on the
structural properties of the dataset, which are also necessary in a certain sense.
Finally, we derive a generalization bound demonstrating that the effectiveness of a
prompt on the dataset extends to the whole data distribution when the dataset size
significantly exceeds the prompt’s length. In summary, our findings answer three
crucial theoretical questions in prompt engineering, offering enhanced theoretical
insights and some practical guidance.

1 INTRODUCTION

Prompt engineering has become a pivotal technique for the great success of large language models
(LLMs), enhancing their accuracy, reasoning ability, and applicability across almost all areas. LLMs
can solve various tasks by zero-shot or few-shot prompting, without modifying the weights of the
pre-trained model (Radford et al., 2019; Brown et al., 2020). Chain of thoughts (CoT) prompting was
introduced to improve the reasoning ability of LLMs by dividing a reasoning problem into sequential
steps (Wei et al., 2022). Retrieval augmented generation (RAG) was proposed to use information
retrieved from an external source as prompts (Lewis et al., 2020; Izacard and Grave, 2021; Shuster
et al., 2021). The above prompts are either generated by the user or from an external knowledge base,
which are fixed in a certain sense. On the other hand, prompt optimization was proposed to generate
better prompts for specific tasks by optimizing the prompts or their embeddings (Shin et al., 2020;
Gao et al., 2021; Li and Liang, 2021; Prasad et al., 2022; Pryzant et al., 2023; Zhang et al., 2022; Sun
et al., 2022; Wen et al., 2023; Sabbatella et al., 2024).

Though the above research on prompts has concentrated on engineering techniques and empirical
methods (Debnath et al., 2025), on the other hand, understanding the underlying principles is also
very important, substantial efforts have been directed towards establishing a theoretical framework for
prompt engineering. Wang et al. (2023); Petrov et al. (2024); Nakada et al. (2025); Hu et al. (2025)
proved that transformers with prompts can arbitrarily approximate certain functions. Shen et al.
(2024); Yang et al. (2024); Jeon et al. (2024); Hendel et al. (2023); Xie et al. (2021) gave theoretical
results for prompts in the form of in-context learning (ICL), including convergence, representation
alignment, and sample bounds. Bhargava et al. (2023) studied prompt engineering through control
theory.

The aforementioned study has contributed to the theoretical comprehension of prompt engineering.
Nevertheless, several important issues remain unresolved. In order to further advance the theoretical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

framework of prompt engineering, this paper addresses three core questions that are yet to be fully
resolved in the context of applying prompt engineering.

Question 1. Computational tractability of prompt engineering. What is the complexity of
computing an optimal prompt for a given task?

Question 2. Existence guarantees of prompt. Under what conditions does a prompt exist that elicits
the correct predictor?

Question 3. Generalizability of prompt. Can the effectiveness of prompts on a finite dataset be
extended to the entire distribution?

To make the problems precise, let S = {(xi, yi)}Ni=1 be a query-answer dataset from a specific task.
Denote last(xi) to be the last symbol of the sequence xi. A prompt P is said to be perfect for S and
a transformer F , if F̂(P ⊕ xi) = yi for all i ∈ [N], where ⊕ is concatenation.

Regarding the first question, we have

Theorem 1.1 (Informal). The decision of the existence of perfect prompts is NPC and computing the
optimal prompts is NP-hard.

Finding the optimal prompts was widely thought to be intractable. The above theorem gives the first
formal proof. The computational complexity is important because it describes an intrinsic property of
the problem, which also provides us with insight into the possibilities in algorithm design.

Regarding the second question, we have

Theorem 1.2 (Informal). For any transformer F and dataset S = {(xi, yi)}Ni=1, if last(xi) =
last(xj) and yi = yj for all i, j ∈ [N], and some extra condition is satisfied, then there exists a
perfect prompt P for S. Moreover, the lack of yi = yj and last(xi) = last(xj) for i, j ∈ [N] may
result in a scenario where a perfect prompt is unattainable.

The above result shows that if the queries have certain similarities and the target answers are consistent,
then a perfect prompt exists. Also note that the sufficient condition is not a necessary condition.
On the other hand, since deciding the existence of a perfect prompt is NPC by Theorem 1.1, it is
unrealistic to find a necessary and sufficient condition that is also easy to compute.

Our findings differ from those in (Wang et al., 2023; Petrov et al., 2024; Nakada et al., 2025; Hu
et al., 2025), where prompts and transformers are crafted to approximate functions. In contrast, our
approach maintains a fixed model and modifies only the prompts. Moreover, we focus on prompts
that provide the precise answer, rather than an approximation, which is crucial for tasks involving
mathematical reasoning (Pérez et al., 2021; Merrill and Sabharwal, 2023; Feng et al., 2023).

Similar to learning problems, prompts are obtained using a finite dataset. A crucial question is
whether the nice performance of the prompt on a finite dataset extends to new data? In other words,
do prompts have generalizability? Regarding the third question, we have

Theorem 1.3 (Informal). Let F be a transformer and S a dataset sampled i.i.d. according to a data
distribution D. Then, with high probability of S, for any prompt P , there is:

|E(x,y)∼D[I(F̂(P ⊕ x) = y)]− 1

|S|
∑

(x,y)∈S

I(F̂(P ⊕ x) = y)| ≤ O

(√
len(P)

|S|

)
.

The above theorem indicates that if the quantity of i.i.d. data significantly surpasses the prompt
length, the prompt’s performance can be generalized across the entire data distribution.

This result diverges from those in (Jeon et al., 2024; Xie et al., 2021), which computed the likelihood
of the transformer’s output under ICL via Bayesian methods, whereas we estimated the generalization
of the prompted model from a finite dataset to the full distribution. Our conclusions align with
uniform generalization bounds (Mohri et al., 2018), and the hypothesis space in our case comprises
the functions parameterized by P .

In summary, our results answer three basic questions in prompt engineering, improving the under-
standing and interpretability of prompts for transformers. Our main contributions are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Existence of perfect prompts for a finite query-answer dataset is shown to be NPC and
obtaining optimal prompts is shown to be NP hard.

• Sufficient conditions for the existence of perfect prompts for a finite query-answer dataset
are given, which are also necessary in a certain sense.

• A generalization theorem for prompts is established, which shows that the performance of
the prompt on finite datasets extends to the whole data distribution when the number of data
is significantly larger than the length of the prompt.

2 RELATED WORK

Prompt engineering refers to a systematic set of methods to guide the LLMs to produce the
desired output by designing, refining instructions without modifying the model. Radford et al. (2019)
demonstrated that zero-shot prompting can elicit task behavior from a given transformer. Brown
et al. (2020) showed that LLMs can tackle new tasks via few-shot prompting without fine-tuning.
Schick and Schütze (2020) showed that prompting also worked on small LLMs. Lester et al. (2021)
showed that a simple prompt is comparable to full parameter tuning. Wei et al. (2022) presented CoT
prompting to enhance the reasoning capabilities of LLMs, leading to numerous powerful methods
such as tree of thoughts (Yao et al., 2023) and graph of thoughts (Besta et al., 2024). RAG used
external sources as prompts (Lewis et al., 2020; Izacard and Grave, 2021; Shuster et al., 2021),
enabling LLMs to generate responses grounded in factual knowledge.

Prompt optimization methods were proposed to generate desired prompts. Li and Liang (2021)
pointed out that prompts can be found according to gradients. Prasad et al. (2022) showed how to use
gradient-free local search to generate prompts. Zhang et al. (2022) showed how to use reinforcement
learning to create prompts. Sun et al. (2022) used a black-box method to find the prompts. Pryzant
et al. (2023) used natural language feedback as gradients to create prompts. Wen et al. (2023) used
the gradient method for the embedding layer to obtain the prompt. Refer to the recent survey for
more works on prompt engineering (Debnath et al., 2025).

Theory of prompting was studied in several aspects. Wang et al. (2023); Petrov et al. (2024);
Hu et al. (2025); Nakada et al. (2025) gave the expressive ability of transformers with prompts to
approximate Lipschitz functions or certain differentiable functions. Theoretical results of prompts
on ICL were given: Shen et al. (2024) gave a convergence proof of a single head, single-layer
softmax Transformer for Gaussian mixture classification; Yang et al. (2024) explained ICL from the
perspective of representation alignment; Hendel et al. (2023) formulated ICL as a learning problem
within a hypothesis space; Jeon et al. (2024); Xie et al. (2021) used information theory to provide
bounds of the Bayesian error. Bhargava et al. (2023) studied whether prompts with ≤ k tokens push
the output distribution closer to the target distribution using control theory.

3 PREREQUISITE

Notation. In this paper, we use O(A) to mean a value not greater than cA for some constant c, and
O to mean that small quantities, such as logarithms, are omitted. We use Ω(A) to mean a value not
less than cA for some constant c, and Ω or O to mean that small quantities are omitted.

Data. Let Γ = {γi}Ti=1 be a set of basic symbols. We assume T ≥ 3 in this paper, which is
reasonable. A sequence (γij)

k
j=1 is called a sentence with length k, and 2Γ is the set of all the

sentences with any length. For a sentence x, let len(x) be its length, x[i] be the i-th symbol in
x, last(x) = x[len(x)] be the last symbol of x. For x1, x2 ∈ 2Γ, we use x1 ⊕ x2 to denote the
concatenation of x1 and x2.

In this paper, a dataset S is a finite subset of 2Γ × Γ, that is, S = {(xi, yi)}Ni=1. For a dataset S,
denote len(S) = max(x,y)∈S{len(x)}.

Autoregressive Transformer. An autoregressive transformer F has three parts: embedding, hidden
layer, and output layer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Embedding. The transformer first embeds each basic symbol γi into a vector vi ∈ Rd, where vi
serves as an adjustable parameter in the transformer and d is called the embedding length. Then
the given sentence x = (γij)

n
j=1 ∈ 2Γ is embedded into a matrix with n-rows and d-columns:

(vi1 , vi2 , . . . , vin)
τ , which will be the input of the first hidden layer. We do not use the encoding

vector in this paper so that the transformer can handle inputs of any length.

Hidden layer. Firstly, we define the feedforward layer and the attention layer. For an input x ∈ Rn×d,
the feedforward layer with width W is FNN(x) = Relu(xE1 ⊕ b)E2, where E1 ∈ Rd×W , b ∈
R1×W , E2 ∈ RW×W are the parameters, and xE1 ⊕ b means adding the vector b to each row
of xE1. For an input x ∈ Rn×d, the attention-layer with width W and head H is ATT(x) =∑H

i=1 softmax(xQiKix
t +M)xVi, where Qi ∈ Rd×W ,Ki ∈ RW×d, Vi ∈ Rd×W are parameters.

M ∈ {−∞, 0}n×n is a causal mask defined as Mi,j = −∞ if and only if j > i, this is the core
structure of the autoregressive transformer, and a transformer without it is called non-autoregressive
transformer. Let xi be the output of the i-th layer and x0 the input. Then the i-th hidden layer of the
transformer is

xi = xi−1 + ATTi(x
i−1) + FNNi(x

i−1 + ATTi(x
i−1)),

where ATTi and FNNi are the i-th feedforward and attention layer defined above, and the width of
these layers is equal to the embedding length.

Output layer. The output layer performs a linear transformation for the last row of the output of the
last hidden layer, written as xL

len(x), that is, F(x) = WxL
len(x) + b ∈ RT , where W and b are the

parameters of the output layer. Then the classification result of F(x), written as F̂(x), is γj , where
j = argmaxi∈[T](F(x))i.

Throughout the remainder of this paper, when transformers are referred to, they are specifically
autoregressive transformers unless stated otherwise.

Perfect Prompt The commonly used way of prompt design is to add a prompt before the input
query (Brown et al., 2020), that is, instead of the original input x ∈ 2Γ, a prepended-prompt P is
used to get the result F̂(P ⊕ x).

For a given specific task with queries in 2Γ and answers in Γ, we formally define the prepended-
prompt problem (PPP) as follows.

Definition 3.1. For a given symbol set Γ, a dataset S = {(xi, yi)}Ni=1 ⊂ 2Γ×Γ, and a transformer F ,
PPP(Γ, S,F) is the problem to decide whether there exists a prompt P ∈ 2Γ such that F̂(P ⊕xi) =
yi for all (xi, yi) ∈ S. Furthermore, use PPP(Γ, S,F) = 1 to mean that such a P exists, which is
called a perfect prepended-prompt for S and F . Otherwise, we denote PPP(Γ, S,F) = 0.

In practice, the following discrete prompt optimization (DPO) is used to find the best prepended-
prompt (Shin et al., 2020; Sabbatella et al., 2024), that is, for a given dataset S and F , find a

P∗ ∈ arg max
P∈2Γ

1

|S|
∑

(x,y)∈S

I(F̂(P ⊕ x) = y). (1)

In this paper, we do not focus on specific algorithms for prompt optimization. On the other hand, we
will give the computational complexity of prompt optimization.
Remark 3.2. Note that single-token labels are used in this paper, which is the first step in solving the
three questions raised in Section 1. Also note that the single-token label case can also include many
meaningful tasks, such as language recognition and other single-token classification tasks; multiple
choice questions such as mathematical multiple-choice questions and disease diagnosis; single-token
generation problems, such as single-token mathematical computation.

4 EXISTENCE CONDITIONS AND COMPUTATIONAL COMPLEXITY

In this section, we show that the decision of the existence of perfect prompts is NPC. We also give
sufficient conditions for the existence of perfect prompts and conditions under which perfect prompts
do not exist in some scenarios. All proofs are given in the appendix of the paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 EXISTENCE OF PERFECT PREPENDED-PROMPT IS NPC

First, we show that the complex structure of the transformer F makes it very difficult to accurately
find perfect prepended-prompts.
Theorem 4.1. PPP(Γ, S,F) is an NPC problem, based on the size of the basic symbol set |Γ|, the
size of the dataset S, and the size of the parameters of F .

Proof Idea. It suffices to show that any 3-SAT problem can be reduced to this problem. Given
a 3-SAT problem with N variables and M Bohr expressions, we can construct a symbol set Γ,
a transformer F and a dataset S with the scale poly(N,M) such that the existence of a perfect
prepended-prompt under such F and S is computationally equivalent to solving this 3-SAT problem.

Since the decision of perfect prepended-prompts is NPC, computing an optimal P is NP-hard.
Corollary 4.2. DPO(Γ, S,F) in (1) is NP-hard.

The above result shows that finding the best prepended-prompt is computationally intractable. DPO
is widely thought to be intractable in the literature, but Corollary 4.2 gives the first formal proof.

4.2 A SUFFICIENT CONDITION FOR PPP(Γ, S,F) = 1

As concluded in the preceding section, it is challenging to precisely decide if PPP(Γ, S,F) = 1.
However, in this section, we will give a sufficient condition for PPP(Γ, S,F) = 1.

For a transformer F , let F−M be the non-autoregressive transformer obtained from F by deleting
the mask M in the attention layer and keeping other parameters unchanged.
Definition 4.3. A dataset S = {(xi, yi)}Ni=1 ⊂ 2Γ × Γ is said to be F-lead for a transformer F , if
there exists an x0 ∈ 2Γ such that last(xi) = last(x0) and yi = F̂−M (x0) for all i ∈ [N].

This definition requires the data xi to have some similarity (the last symbols are the same) and the
target yi should be the same and in a reasonable range. Under this situation, we have
Theorem 4.4. For any symbol set Γ and transformer F , if S is an F-lead dataset, then
PPP(Γ, S,F) = 1.

Proof Idea. We demonstrate that extending the prompt’s length can enhance the prompt’s effect for
the output, ultimately achieving the intended outcome. Simultaneously, since all queries share the
same prompt, increasing its length will inevitably lead to uniform outputs from the transformer for all
queries, necessitating uniformity in the target label as well.

Theorem 4.4 verifies a common fact: prompts can produce similar results for queries with some
similarity. More precisely, the transformer’s outcome relies on the last line of the final hidden layer,
making the concluding symbol crucial for the final result. A strongly guiding prompt tends to steer
the results, often leading to similar influence for samples. By combining these two points, it can be
ensured that there exist prompts that lead to the same result for samples with the same last symbol.
Remark 4.5. In practice, since the LLMs are very large, F̂−M can have many possible values for
queries x with the given last symbol. As a consequence, perfect prompts exist for datasets with
queries that have the same last symbol and the same label with a high probability. We will verify this
fact with experiments in Section 6.

In Theorem 4.4, F−M is employed, rather than F itself. A natural question is whether we can replace
condition yi = F̂−M (x) by yi = F̂(x)? The following result shows that this is not possible.
Proposition 4.6. (1) For any transformer F and x ∈ 2Γ, there exist infinitely x′ ∈ 2Γ such that
F̂−M (x) = F̂(x′). (2) For some transformer F and x ∈ 2Γ, there exist only finitely x′ ∈ 2Γ such
that F̂(x) = F̂(x′).

Result (2) in Proposition 4.6 indicates that for some x, if F̂(x′) = F̂(x) then len(x′) has an upper
bound. In this case, if we need to find a prompt P such that F̂(P ⊕ z) = F̂(x) for a given query z,
then len(P) also has an upper bound. But by result (1), F̂−M does not have this problem, so we can
continuously increase len(P) until the transformer gives the desired result, as explained in the proof

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

idea of Theorem 4.4, which is impossible for F̂ due to the upper bound for len(P). Hence, we can
easily obtain the following corollary.
Corollary 4.7. There exist a transformer F and a dataset S = {(xi, yi)}Ni=1 such that last(xi) =

last(x) and yi = F̂(x) for all i ∈ [N] and some x ∈ 2Γ, but PPP(Γ, S,F) = 0.

Refer to Appendix D.3 for a detailed discussion about the relationship between F(x) and F−M (x).

4.3 LENGTH OF PERFECT PREPENDED-PROMPT

Another key question is the length of the perfect prepended-prompt P . It is obviously difficult to
determine the shortest length of such P . In this section, we give a rough estimation.
Proposition 4.8. For any Γ and transformer F , there exists a constant UF only depending on F
such that, for any F-lead dataset S, there exists a perfect prepended-prompt P satisfying len(P) ≤
UF len(S).

Accurately determining UF is difficult, which depends on the parameters of F . In the worst-case
scenario, UF could be exponential in these parameters. Furthermore, a prompt length of Ω(len(S))
is necessary, as shown below.
Proposition 4.9. For some Γ and some transformer F , there exists a constant LF only depending on
F such that, for an infinite number of F-lead datasets S, if P is a perfect prepended-prompt of S
and F , then len(P) ≥ LF len(S).

From Propositions 4.8 and 4.9, we have the following result:
Corollary 4.10. For some fixed F , len(P) = Θ(len(S)) is a necessary and sufficient condition for
the length of a perfect prepended-prompt of F-lead dataset S.
Remark 4.11. The above result provides a theoretical basis for the widely adopted practice, that is,
for a fixed F , more detailed prompts are needed for more complicated tasks with long sentences.

Note that we have estimated the upper bound for all F and F -lead dataset S in Proposition 4.8, rather
than calculated it precisely. The lower bound in Proposition 4.9 does not hold for any F and Γ, as
there are indeed some nice F and Γ, which can make P shorter than len(S). In practice, F is fixed
while S is variable, so it is reasonable to find the relationship between the S and prepended-prompt.

4.4 NECESSARY CONDITIONS ON S FOR PPP(Γ, S,F) = 1 TO BE VALID FOR ALL F

In this section, we show that when the “data similarity” and “same target” conditions for S are not
satisfied, PPP(Γ, S,F) = 0 can happen for some F .

For a transformer F and γ ∈ Γ, let

SF,γ = {F̂(x) :x ∈ 2Γ s.t. last(x) = γ} ⊂ Γ,

which is the set of results of F for all those sentences whose last element is γ.

Then we have the following obvious necessary condition for the existence of a perfect prepended-
prompt, since the last symbols of x and P ⊕ x are always the same.
Proposition 4.12. Let S = {(xi, yi)}Ni=1 and F be a transformer. If yi /∈ SF,last(xi) for some
i ∈ [N], then PPP(Γ, S,F) = 0.

Proposition 4.12 provides a necessary condition for PPP(Γ, S,F) = 1. Note that Proposition 4.12
is quite different from the conditions in Section 4.2 and it is not a sufficient condition, so even if
yi ∈ SF,last(xi) for all i ∈ [N], PPP(Γ, S,F) = 0 may still happen, as shown below.

As mentioned in Section 4.2, prompts will produce similar results for inputs with some similarity;
more precisely, that is yi = yj and last(xi) = last(xj) for all i, j ∈ [N] in a dataset S =
{(xi, yi)}Ni=1. We will show that without these two conditions, perfect prepended-prompts may not
exist in the following two propositions, respectively.
Proposition 4.13 (About the target). For any given Γ and S = {(xi, yi)}Ni=1 ⊂ 2Γ × Γ satisfying (1)
ys ̸= yt for some s, t ∈ [N] and (2) last(xi) = last(xj) for all i, j ∈ [N], there exists a transformer
F such that (3) yi ∈ SF,last(xi) for all i ∈ [N], but (4) PPP(Γ, S,F) = 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Observe that condition (2) relates to the “data similarity” condition in Definition 4.3, while condition
(3) corresponds to Proposition 4.12.

Proposition 4.14 (About the last symbol). For any given Γ and S = {(xi, yi)}Ni=1 ⊂ 2Γ × Γ
satisfying (1) last(xs) ̸= last(xt) for some s, t ∈ [N] and (2) yi = yj for all i, j ∈ [N], there exists
a transformer F such that (3) yi ∈ SF,last(xi) for all i ∈ [N], but (4) PPP(Γ, S,F) = 0.

Observe that condition (2) relates to the “same target” condition in Definition 4.3.
Remark 4.15. These two propositions imply that using one prompt to solve tasks with diverse queries
and answers is sometimes impossible. Combined with Section 4.2, an effective way to increase the
power of prompting is to split the task into sub-tasks and use different prompts for each sub-task.
Remark 4.16. The above propositions do not demonstrate that PPP(Γ, S,F) = 0 for all F and S
failing to meet the conditions in Definition 4.3; hence, these conditions are not necessary conditions
on the view of F and S. They suggest that if these conditions are not satisfied for S, there can be some
F satisfied PPP(Γ, S,F) = 0, from this view, such two conditions are the necessary conditions on
S for PPP(Γ, S,F) = 1 to be valid for all F .

5 GENERALIZATION OF PREPENDED-PROMPT

We discussed the existence of perfect prompts on finite datasets in the preceding section. Another
important issue with prompt engineering is whether prompts generated on finite datasets can be
effectively generalized to more samples. In this section, we discuss whether prompts for an iid dataset
can be generalized to the whole data distribution.

We adopt the usual setting for deriving generalization bounds (Mohri et al., 2018). Let D be a
distribution over 2Γ × Γ and S = {(xi, yi)}Ni=1 a dataset sampled iid according to D. Then for a
given prompt P , the gap between the population accuracy

AF,P,D = E(x,y)∼D[I(F̂(P ⊕ x) = y)]

and the empirical accuracy

AF,P,S =
1

|S|
∑

(x,y)∈S

I(F̂(P ⊕ x) = y)

can be used to measure the generalizability of the prompt. Generally speaking, D represents the
target distribution. If the gap between these two is small, then prompts that can achieve the target on
a finite set can also achieve the desired target on the whole distribution.

We now give a uniform generalization bound for prompting.

Theorem 5.1. For any Γ = {γi}Ti=1, D, F , and N,L ∈ Z+, with probability 1− δ of S ∼ DN , for
any P ∈ 2Γ satisfying len(P) ≤ L, we have

|AF,P,D −AF,P,S | ≤
2
√
2L lnT +

√
0.5 ln 1/δ√

N
.

Proof Idea. We treat the set of F(P ⊕ x) as a hypothesis space that uses the prompt P as the
controllable parameters. Then we can use the generalization bound based on Rademacher complexity
(Mohri et al., 2018) on such a hypothesis space to prove the theorem.

Based on Theorem 5.1, we have the following result about the choice of the number of data:

Corollary 5.2. For a prompt P ∈ 2Γ of length L and ϵ, δ ∈ (0, 1), if N ≥
(2
√
2L lnT +

√
0.5 ln 1/δ)2/ϵ2, then we have |AF,P,D −AF,P,S | ≤ ϵ with probability 1− δ.

Remark 5.3. This result provides practical guidance for generalization. If the size of the dataset is
significantly larger than the length of the prompts, then performance on S can be generalized to the
entire distribution. Note that the above bounds do not depend on D or F , because in our case, the
true parameters are the prompts. Also note that the target labels in S are arbitrary.

However, when the length of P is not limited, such generalization does not hold, as shown below.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proposition 5.4. For any Γ, N ∈ Z+ and ϵ ∈ (0, 1), if the data distribution D satisfies that
max{xi}N

i=1⊂2κ{
∑N

i=1 Px∼D(x = xi)} ≤ ϵ, then there exist a transformer F and a P such that with
probability 1− ϵ of S ∼ DN , it holds |AF,P,D −AF,P,S | ≥ 1− 2ϵ.

This phenomenon is similar to the “overfitting” in neural networks: when prompts are too fixated on
improving accuracy on S, they lose generalizability.

The condition max{xi}N
i=1⊂2κ{

∑N
i=1 Px∼D(x = xi)} ≤ ϵ means that the probability in D is not

concentrated on N points, and this condition is natural, as most distributions do not concentrate on
a few points, such as the uniform distribution, normal distribution, and so on. If this requirement
is not satisfied, the probability distribution D should be focused on a few crucial points, and these
significant points are naturally included in the sample set S when sampling, thereby preventing any
overfitting.

On the other hand, we will show that overfitting on the prompt only happens when there is a small
number N of data. When fixing the distribution and N is large enough, even if the length of the
prompt is not limited, overfitting will not occur, as shown below.
Proposition 5.5. For any given D, F and δ, ϵ ∈ (0, 1), there exists an N such that if |S| > N then
with probability ≥ 1− δ of S ∼ DN , for any P ∈ 2Γ, we have |AF,P,D −AF,P,S | ≤ ϵ.

However, this particular N relies on F and D, and it is evident that certain F and D can lead to a
significantly large N .

6 EXPERIMENT

In this section, we use experiments to verify the theoretical results presented in Sections 4.2 and 4.4.

To facilitate utilizing gradients for discovering prompts, we employ two open-source models: GPT2
(Radford et al., 2019) and RoBERTa (Liu et al., 2019). The method in (Wen et al., 2023) is used to
approximately solve the following problem for a dataset S and a transformer F :

DPOacc = max
P∈2Γ

1

|S|
∑

(x,y)∈S

I(F̂(P ⊕ x) = y). (2)

The method works as follows: the gradient method is used for the embedding layer to find a “nice
embedding” which is projected back to a discrete symbol set to obtain the prompt. To ensure that the
algorithm can stop, the lengths of prompts are at most 64. It is clear that DPOacc = 1 if and only if
PPP(Γ, S,F) = 1. In our experiments, the numbers of basic symbols for GPT2 and RoBERTa are
respectively 50257 and 50265, and the sentences all have length 16.

To confirm our theoretical findings, we conduct the following three sets of experiments.

The sufficient condition. We use experiments to verify Theorem 4.4 and Remark 4.5. S consists
of 1000 randomly generated sentences that have the same last symbol and the same target label.
Then solve the optimization problem (2) to find DPOacc. Repeat this experiment 100 times and let
c1 be the lowest value of DPOacc in the 100 runs and s1 the proportion of the 100 runs that make
PPP(Γ, S,F) = 1. The results are given in Table 1.

It is easy to see that s1 is very close to 1 for the two models, which means that datasets consisting of
sentences with the same last symbol and the same target label satisfy PPP(Γ, S,F) = 1 with high
probability. This confirms the fact that the “same last symbol and the same target label” condition is
already a sufficient condition for the existence of perfect prompts with high probability. Please refer
to Remark 4.5 and “future work” for more discussion.

However, the values of s1 and c1 are not equal to 1. There may be two reasons: (1) The gradient
optimization does not find the best prompt, which is an NP-hard problem as shown in Section C.
(2) The target label and the last symbol do not satisfy the conditions in Definition 4.3 for randomly
generated S. Refer to Proposition 4.6 and Corollary 4.7 for more discussions.

The same target label condition. We use experiments to verify Proposition 4.13. S consists of
1000 randomly generated sentences that have the same last symbol but distinct labels. We randomly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Experimental results to verify Theorem 4.4 and Propositions 4.13 and 4.14. c1, c2, c3 are
the lowest values of DPOacc in the 100 runs and s1, s2, s3 are the proportions of runs that make
PPP(Γ, S,F) = 1 in the three experiments, respectively.

Models c1 c2 c3 s1 s2 s3
GPT2 99.5% 5.0% 98.2% 98.0% 0.0% 18.0%
RoBERTa 98.3% 4.1% 74.5% 95.0% 0.0% 0.0%

generate distinct labels 100 times, and compute DPOacc in (2) for them. Denote the lowest value of
DPOacc as c2 and denote the proportion of the 100 runs that make PPP(Γ, S,F) = 1 as s2. The
results are given in Table 1.

The values of c2 and s2 verify Proposition 4.13. c2 is very low and s2 = 0 for both models, which
means that the existence of distinct labels in S can create much difficulty in prompting the sentences
to the target labels, and it is almost impossible to find a situation such that PPP(Γ, S,F) = 1.

The same last symbol condition. We use experiments to verify Proposition 4.14. We randomly
generate 1000 sentences with the same target label. Randomly generate distinct symbols and use
them as the last symbols of the sentences in S, and then compute DPOacc in (2). Run the experiment
for 100 times. Denote the lowest value of DPOacc as c3 and denote the proportion of runs that make
PPP(Γ, S,F) = 1 as s3. The results are given in Table 1.

For RoBERTa, c3 is about 74%, DPOacc ≤ 85% in all the 100 runs, and s3 = 0. For GPT2, c3 is
about 98%, and out of 100 runs, DPOacc achieves 100% for 18 times. The results mean that different
last symbols in the sentences can create some difficulties to obtain the perfect prompts, from the fact
that PPP(Γ, S,F) = 0 in most cases. However, c3 is much higher than c2, which implies that the
influence of “different last symbol” condition is much weaker than “different target label” condition.
Also, the results are quite different for GPT2 and RoBERTa, so the results also depend on the models.

Finally, it must be pointed out that we have s3 > 0 for GPT2, this is not contradictory to Propositions
4.14. Because having the same target label and the same last symbol are not necessary conditions for
PPP(Γ, S,F) = 1 under view of F and S, refer to Remark 4.16 for more details.

7 CONCLUSION

This paper aims to further establish the theoretical framework of prompt engineering by focusing on
three basic questions for prompt engineering: the computational tractability, existence conditions for
perfect prompts, and generalizability. The following results are established. Deciding the existence
of perfect prompts is NPC and finding the optimal prompts is NP-hard; some sufficient conditions
for the existence of perfect prompts are given and the lengths of prompts are estimated; a uniform
generalization theorem for prompts is proved. Finally, we use some simple experimental results to
confirm our theoretical results.

Our theoretical results further enhance the understanding of prompt engineering and provide a certain
level of interpretability. They also provide some practical guidance to prompt engineering, such
as using long prompts for long sentences (Remark 4.11), using different prompts for diverse tasks
(Remarks 4.15), and the number of data for generalization (Remark 5.3).

Limitation and future work. There exists a gap between the sufficient condition in Section 4.2 and
the conditions in Section 4.4 and it is desirable to give refined sufficient and/or necessary conditions.
Single-token target labels are used in this paper, which include many useful tasks (Refer to Remark
3.2) and are the first step in studying the three questions raised in Section 1. Generalizing the results
to sequence target labels is desirable. The experimental results show that the “same last symbol and
the same target label” condition leads to perfect prompts with high probability, and a theoretical study
of this observation is interesting. Pretended-prompts are considered in this paper. Although this is the
most common case considered in the literature, it is desirable to consider other cases.

LLM statement. We clarify that the motivation behind our work, the theorem and its proof,
experimental design and implementation, are all independent of LLMs and are entirely implemented
by our team. In this study, the function of the LLMs is confined to refining the texts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michał Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: solving elaborate problems with large language models. In AAAI’24, pages
17682–17690, 2024.

Aman Bhargava, Cameron Witkowski, Shi-Zhuo Looi, and Matt Thomson. What’s the magic word?
a control theory of llm prompting. arXiv preprint arXiv:2310.04444, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tonmoy Debnath, Md Nurul Absar Siddiky, Muhammad Enayetur Rahman, Prosenjit Das, and
Antu Kumar Guha. A comprehensive survey of prompt engineering techniques in large language
models. TechRxiv, techrxiv.174140719.96375390/v1, 2025.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Advances in Neural Information
Processing Systems (NeurIPS’23), 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of ACL-IJCNLP, pages 3816–3830, 2021.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. In ICLR’25,
2025.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the ACL, pages 874–880, 2021.

Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis of
in-context learning. arXiv preprint arXiv:2401.15530, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Leveraging passage retrieval with generative models for open domain question answering. In
Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics, pages 874–880, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Ryumei Nakada, Wenlong Ji, Tianxi Cai, James Zou, and Linjun Zhang. A theoretical framework for
prompt engineering: Approximating smooth functions with transformer prompts. arXiv preprint
arXiv:2503.20561, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1–35, 2021.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a
universal approximator. arXiv preprint arXiv:2402.14753, 2024.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Antonio Sabbatella, Andrea Ponti, Ilaria Giordani, Antonio Candelieri, and Francesco Archetti.
Prompt optimization in large language models. Mathematics, 12(929), 2024.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118, 2020.

Wei Shen, Ruida Zhou, Jing Yang, and Cong Shen. On the training convergence of transformers for
in-context classification of gaussian mixtures. arXiv preprint arXiv:2410.11778, 2024.

Taylor Shin, Yasaman Razeghi, Robert L. Logan, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803, 2021.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning, pages 20841–
20855. PMLR, 2022.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36:75623–75643, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36:51008–51025, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:
Contextual generalization of trained transformers. Advances in Neural Information Processing
Systems, 37:85867–85898, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
NeurIPS’23, 2023.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompting via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A STATEMENTS

ETHICS STATEMENT

Our work is based on theoretical principles, mainly aimed at enhancing the understanding and
interpretability of prompt engineering, and there are no ethical or moral issues involved.

REPRODUCIBILITY STATEMENT

Our theorems have been rigorously proven, and the experiments use relatively small and open-source
models, which are easy to replicate.

B NOTATIONS AND PRELIMINARY RESULTS

Through the appendix, we use the following notations. For an x ∈ 2Γ, let xm = x⊕x⊕x⊕. . . x⊕x ∈
2Γ, where ⊕ is the concatenation operation. For an x ∈ 2Γ and a γ ∈ Γ, let Numγ(x) be the number
of γ in x. For instance, Num+((1,+, 2, ∗, 3,+, 4)) = 2.

The scaling equivariance is defined as follows:
Definition B.1. (1) x ∈ 2Γ and z ∈ 2Γ are scaling equivalent if Numγ(x)/len(x) =
Numγ(z)/len(z) for any γ ∈ Γ.

(2) A transformer F is scaling equivariant means that: for any scaling equivalent x, z ∈ 2Γ, if xi = zj ,
then Fk,i(x) = Fk,j(z) for any k, where Fk,i means the i-th row of the k-th hidden layer of F .

Then we have
Lemma B.2. For any transformer F , the F−M is scaling equivariant.

Proof. Firstly, we need to prove the lemma for the first hidden layer.

Let the i-th hidden layer of F−M be Fi, then F1(x) = FNN(vx+ATT(vx))+ vx+ATT(vx), where
vx is the embedding matrix of x. Assume that xi = zj and x and z are scaling equivalent. We will
prove that (F1(x))i = (F1(z))j .

In the attention layer, we have that ATT(vx) = softmax(vxQKvTx)V , so the i-th row of ATT(vx) is∑
j Numγj

(x)e
vxi

QKvT
γj vγj∑

j Numγj
(x)e

vxi
QKvT

γj

V , where vxi is the i-th row of vx and vγj is the embedding vector of γj .

So if xi = zj and x and z are scaling equivalent, we have that:

ATT(x)i =
∑

j Numγj
(x)e

vxi
QKvT

γj vγj∑
j Numγj

(x)e
vxi

QKvT
γj

V

=
∑

j Numγj
(x)/len(x)e

vxi
QKvT

γj vγj∑
j Numγj

(x)/len(x)e
vxi

QKvT
γj

V

=
∑

j Numγj
(z)/len(z)e

vxi
QKvT

γj vγj∑
j Numγj

(z)/len(z)e
vxi

QKvT
γj

V

=
∑

j Numγj
(z)e

vzj
QKvT

γj vγj∑
j Numγj

(z)e
vzj

QKvT
γj

V

= ATT(z)j .
So in the attention layer, the i-th of ATT(x) and j-th of ATT(z) are the same. In the other parts in
F1, other calculations do not involve interaction between rows, so it holds (F1(x))i = (F1(z))j .

Now, we show that if the lemma stands for the i-th hidden layer, it also stands for the (i + 1)-th
hidden layer, which can directly lead to the lemma.

Fi+1(x) = FNNi(Fi(x) + ATTi(Fi(x))) + Fi(x) + ATTi(Fi(x)). It is easy to see that xj = zk
implies (Fi(x))j = (Fi(x))k by the assumption, we will prove that (Fi+1(x))j = (Fi+1(z))k.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

We mainly need to consider the attention layer. For the attention layer, we have
ATTi(Fi(x)) = softmax(Fi(x)QiKiFi(x)

T)Vi. Then the j-th of ATTi(Fi(x)) is∑
p Numγp (x)e

(Fi(x))jQiKi((Fi(x))np)T
(Fi(x))np∑

p Numγp (x)e
(Fi(x))jQiKi((Fi(x))np)T

Vi, where np is the smaller number such that xnp = γp.

Hence, similar to before, we have∑
p Numγp(x)e

(Fi(x))jQiKi((Fi(x))np)T (Fi(x))np∑
p Numγp(x)e

(Fi(x))jQiKi((Fi(x))np)T
=

∑
p Numγp(z)e

(Fi(z))kQiKi((Fi(z))n′
p
)T

(Fi(z))n′
p∑

p Numγp(z)e
(Fi(z))kQiKi((Fi(z))n′

p
)T

,

using the fact (Fi(x))j = (Fi(z))k and (Fi(x))np
= (Fi(z))n′

p
, where n′

p is the smaller number
such that zn′

p
= γp. So the j-th row of ATTi(Fi(x)) and the k-th row of ATTi(Fi(z)) are the same.

Then similar to before, we can prove the result for the (i+ 1)-th hidden layer.

C PROOF OF THEOREM 4.1

Firstly, for a given prompt P , it is easy to check whether PPP(Γ, S,F) = 1 in polynomial time
based on the size of Γ, S and parameters of F , so PPP is an NP problem. So to prove Theorem 4.1,
it suffices to show that a NPC problem (here, we use 3-SAT) can be reduced to PPP(Γ, S,F) = 1.
Definition C.1 (The 3-SAT decision problem). Let {zi}Ni=1 be Boolean variables and Φ = ∧M

j=1ϕj ,
where ϕj = ∨k=1,2,3z

′
jk

is a Boolean clause and z′jk ∈ {zi}ni=1 ∪ {¬zi}ni=1. The 3-SAT problem is
to decide whether there exist values for the variables under which Φ = 1.

Now we prove Theorem 4.1.

Proof. Let Φ = ∧M
j=1ϕj be a 3-SAT problem as defined in Definition C.1. We first construct a Γ, a

dataset S and a transformer F based on Φ.

Step 1. Construction of Γ, F , S.

The symbol set is Γ = {γi}N+M
i=1 and the dataset is S = {((γj+N), γj+N)}Mj=1 ⊂ 2Γ × Γ, where

(γj+N) is the sentence with a single symbol γj+N .

The transformer is defined as follows.

(1) The embedding layer: Each γi will be embedded to a 4(N +M)-dimensional vector vγi
, such

that: for the i ∈ [1, N +M], the (4i − 3)-th to 4i-th weights in the vγi
are 1, other weights are 0.

For a x ∈ 2Γ, let v(x) be its embedding matrix.

(2) The hidden layers: In the first hidden layer F1(x), the attention layer is defined as: the Q and K
are 0, V = I . The feedforward layer FNN1(x) in the first layer is defined as FNN1(x) = 0.

Then based on the definition of the embedding layer, the output of the first layer when input is a x

is F1(x) = v(x) + softmax(0)v(x). Hence, its last row is vx[len(x)] +
∑len(x)

i=1
vx[i]

len(x) . Name it as
N(x), and let Ni(x) be the i-th weight of N(x). Before defining the next layer, we define 3 kinds of
Relu networks Gi(x) : R → R at first:

G1(x) = Relu(6N2(x − 1/N)) + x; and G2(x) = x + Relu((N + 2)(1/N − x)), G3(x) =
Relu(−x+ 1/N) + x.

Then we define the next hidden layer, which is also the last hidden layer, let the attention layer be 0,
and the FNN layer makes the output of the last hidden layer Fl(x) to be:

Fl(x) = (N4(x),G1(N4(x)),G2(N4(x)),G3(N4(x)),
N8(x),G1(N8(x)),G2(N8(x)),G3(N8(x)),
. . . , N4(N+M)(x),G1(N4(N+M)(x)),G2(N4(N+M)(x)),G3(N4(N+M)(x))).

Notice that in the N(x), there are N4i−3(x) = N4i−2(x) = N4i−1(x) = N4i(x) =
Numγi

(x)

len(x) +

I(x[len(x)] = γi), so it is easy to implement the above output.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(3) The output layer: For the first N elements of the transformer output, it is always 0. For j ∈ [M],
the N + j element of transformer output is defined below.

(3.1) G1(N4i′(x)) + G1(N4j′(x)) + G1(N4k′(x)) − 3/N − 100N2
∑

i∈[N+1,M+N],i̸=N+j, N4i(x)

if ϕj = zi′ ∪ zj′ ∪ zk′ for some i′, j′, k′ ∈ [N];

(3.2) G1(N4i′(x)) + G1(N4j′(x)) − 2.1(1/N − G2(N4k′(x)) + G3(N4k′(x))) + 0.1/N −
100N2

∑
i∈[N+1,M+N],i̸=N+j N4i(x) if ϕj = zi′ ∪ zj′ ∪ ¬zk′ for some i′, j′, k′ ∈ [N];

(3.3): G1(N4i′(x)) − 2.1(1/N − G2(N4j′(x)) + G3(N4j′(x))) − 2.1(1/N − G2(N4k′(x)) +
G3(N4k′(x))) + 0.1/N − 100N2

∑
i∈[N+1,M+N],i̸=N+j N4i(x) if ϕj = zi′ ∪ ¬zj′ ∪ ¬zk′ for

some i′, j′, k′ ∈ [N];

(3.4) 6.2/N −2.1(1/N −G2(N4i′(x))+G3(N4i′(x)))−2.1(1/N −G2(N4j′(x))+G3(N4j′(x)))−
2.1(1/N − G2(N4k′(x)) + G3(N4k′(x))) − 100N2

∑
i∈[N+1,M+N],i̸=N+j N4i(x) if ϕj = ¬zi′ ∪

¬zj′ ∪ ¬zk′ for some i′, j′, k′ ∈ [N].

It can be easily verified that this transformer can indeed be realized with O(poly(M,N)) parameters
and requires O(log(poly(M,N))) bits for every parameter value.

Step 2. We show that if PPP(Γ, S,F)) is decidable, then the 3-SAT problem Φ is also decidable.

To be convenient, write 2.1(1/N−G2(x)+G3(x)) = 2.1(1/N−(N+1)Relu(1/N−x)) = G4(x).
The proof for this step has three parts.

Part 1. If PPP(Γ, S,F) = 1, then the 3-SAT problem Φ has a solution.

Assume that PPP problem has a solution P , then we can find the following solution for the 3-SAT
problem Φ: zi = 1 if and only if Numγi(P)/(len(P) + 1) ≥ 1/N where i ∈ [N]. We will show
why such is a solution of the 3-SAT problem Φ.

To show that, we only need to show that each ϕj = 1 in Φ. We just prove it for ϕ1, others are similar.
For the ((γ1+N), γ1+N) in the set S, because F̂(P ⊕ γ1+N) = γ1+N , write x = P ⊕ γ1+N , we
have that:

(1): if ϕ1 = zi ∪ zj ∪ zk for some i, j, k ∈ [N], consider the definition of P and transformer F , there
must be G1(N4i(x)) + G1(N4j(x)) + G1(N4k(x)) − 3/N > 0, consider that G1 is increased with
input and G1(1/N) = 1/N , so at least one of N4i(x) ≥ 1/N , N4j(x) ≥ 1/N and N4k(x) ≥ 1/N
stands, which implies zi = 1 or zj = 1 or zk = 1, so we have that ϕ1 = 1;

(2): if ϕ1 = zi ∪ zj ∪ ¬zk for some i, j, k ∈ [N], then we have that G1(N4i(x)) + G1(N4j(x)) −
G4(N4k(x)) + 0.1/N > 0, if N4k(x) ≥ 1/N , then there are −G4(N4k(x)) + 0.1/N = −2/N
based on the definition of G2 and G3, which implies G1(N4i(x)) + G1(N4j(x)) > 2/N , similar to
before, then at least one of N4i ≥ 1/N and N4j ≥ 1/N stands. So ¬zk = 0 implies zi = 1 or
zj = 1, so ϕ1 = 1; when ¬zk = 1, there is also ϕ1 = 1;

(3): if ϕ1 = zi ∪ ¬zj ∪ ¬zk for some i, j, k ∈ [N], then we have that G1(N4i(x))− G4(N4j(x))−
G4(N4k(x))+0.1/N > 0, if N4j(x), N4k(x) ≥ 1/N , then −G4(N4j(x))−G4(N4k(x))+0.1/N ≤
−1/N , which implies that N4i(x) ≥ 1/N , so ¬zk = 0 and ¬zj = 0 implies zi = 1, so ϕ1 = 1;
when ¬zk = 1 or ¬zj = 1, this is also ϕ1 = 1;

(4): if ϕj = ¬zi ∪ ¬zj ∪ ¬zk for some i, j, k ∈ [N], then we have that 6.2/N − G4(N4i(x)) −
G4(N4j(x))−G4(N4k(x)) > 0, consider that when N4i(x) ≥ 1/N , then 2.1(1/N −G4(N4i(x))) =
2.1/N , similar for j, k. When Ni(x), Nj(x), Nk(x) ≥ 1/N , hence there are 6.2/N −G4(N4i(x))−
G4(N4j(x))− G4(N4k(x)) < 0, which is contradictory to F̂(x) = γ1+N , so at least one of N4i <
1/N , N4j < 1/N and N4k < 1/N stand, which implies ¬zi = 1, ¬zj = 1 or ¬zk = 1, so ϕ1 = 1.

So we prove the Part One.

Part 2. If PPP(Γ, S,F) = 0, then Φ has no solution or it has a solution zi = 1 for all i or zi = 0
for all i.

We just need to show that, if the 3-SAT problem Φ has a solution which is not zi = 1 for all i or
zi = 0 for all i, then such PPP = 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We consider the P = γi1 ⊕ γi1 ⊕ γi2 ⊕ γi2 . . . γij ⊕ γij where ij satisfied zij = 1 in the solution of
the 3-SAT problem Φ. We just need to show that F̂(P ⊕ γ1+N) = γ1+N ; others are similar. Write
x = P ⊕ γ1+N . Because the solution is not zi = 1 for all i or zi = 0 for all i, so we know that
Nγi

(x)

len(x) ≥ 1/(N − 0.5) for any i such that zi = 1 in the solution of Φ. Then we have that:

(1): if ϕ1 = zi ∪ zj ∪ zk for some i, j, k ∈ [N], then at least one of N4i(x) ≥ 1/(N − 0.5),
N4j(x) ≥ 1/(N − 0.5), and N4k(x) ≥ 1/(N − 0.5) stands, so

G1(N4i(x)) + G1(N4j(x)) + G1(N4k(x))− 3/N − 100N2
∑

t∈[N+2,M+N] N4t(x)
= G1(N4i(x)) + G1(N4j(x)) + G1(N4k(x))− 3/N
≥ 3− 3/N > 0.

We use G1(1/(N − 0.5)) > 3 and G1(x) ≥ 0 here.

On the other hand, for t ̸= 1, there is −100N2
∑

i ̸=N+t,i∈[N+1,M+N] N4i(x) ≤ −100N2 because
N4(N+1)(x) ≥ 1, so the N + t weight has a value not more than 0. Consider that the value of the
first N-weight is 0, so F̂(P ⊕ γ1+N) = γ1+N ;

(2): if ϕ1 = zi ∪ zj ∪ ¬zk for some i, j, k ∈ [N], then at least one of N4i(x) ≥ 1/(N − 0.5),
N4j(x) ≥ 1/(N − 0.5) and N4k(x) = 0 stands, so

G1(N4i(x)) + G1(N4j(x))− G4(N4k(x)) + 0.1/N
−100N2

∑
t∈[N+2,M+N] N4t(x)

= G1(N4i(x)) + G1(N4j(x))− G4(N4k(x)) + 0.1/N
≥ min{2.1 + 0.1/N, 3− 2/N} > 0

In here, we use G1(1/(N − 0.5)) > 3 and G4(0) = −2.1. Similar to before, other weights have
values not more than 0, so F̂(P ⊕ γ1+N) = γ1+N ;

(3): if ϕ1 = zi ∪¬zj ∪¬zk for some i, j, k ∈ [N], then at least one of N4i ≥ 1/(N − 0.5), N4j = 0
and N4k = 0 stands, so

G1(N4i(x))− G4(N4j(x))− G4(N4k(x)) + 0.1/N
−100N2

∑
t∈[N+2,M+N] N4t(x)

= G1(N4i(x))− G4(N4j(x))− G4(N4k(x)) + 0.1/N
≥ min{3− 4.1/N, 2.1− 2/N} > 0

Similar to before, other weights have a value of no more than 0, so F̂(P ⊕ γ1+N) = γ1+N ;

(4): if ϕ1 = ¬zi ∪ ¬zj ∪ ¬zk for some i, j, k ∈ [N], then we have at least one of N4i = 0, N4j = 0,
and N4k = 0 standing, so

6.2/N − G4(N4i(x))− G4(N4j(x))− G4(N4k(x))− 100N2 ∑
t∈[N+2,M+N] N4t(x)

= 6.2/N − G4(N4i(x))− G4(N4j(x))− G4(N4k(x))
≥ 2.1 + 2/N > 0

Similar as before, other weights have value not more than 0, so F̂(P ⊕ γ1+N) = γ1+N . So we prove
Part Two.

Part 3. Now we prove the theorem. If we can solve the PPP problem, then we can solve the 3-SAT
existence problem as follows:

(1) Construct such transformer F , dataset S and symbols Γ based on Φ as before;

(2) If PPP(Γ, S,F) = 1, then the 3-SAT Problem Φ has a solution;

(3) If PPP(Γ, S,F) = 0, then the 3-SAT Φ problem has no solution, or the solution satisfies: all of
the values of zi are the same, which is easy to check in polynomial time.

D PROOFS OF SECTION 4.2

D.1 SEVERAL LEMMAS

Lemma D.1. For any given transformer F , there is an A ∈ R+ which only depends on F such that:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(1) for any x ∈ 2Γ and l, ||Fl(x)||2,∞ ≤ A, where Fl means the l-th hidden layer.

(2) for any x ∈ 2Γ and l, ||F−M
l (x)||2,∞ ≤ A, where F−M

l means the l-th hidden layer of F−M .

Proof. We first prove (1).

Based on the definition of embedding vector, for any sample x, the input of the first hidden layer is
the embedding matrix vx, whose L2,∞ norm has an upper bound A0.

To prove the lemma, we just need to prove that, for the l-th hidden layer, if the L2,∞ norm of its input
has an upper bound Al−1 for any input x, then the L2,∞ norm of its output has an upper bound Al

for any input x.

Assume that Fl(x) = FNN(Fl−1(x) + ATT(Fl−1(x))) + Fl−1(x) + ATT(Fl−1(x)).

In the attention layer, because the j-th row of the attention layer is
∑j

i=1 euj,ivi∑j
i=1 euj,i

Vl, where uj,i =

vjQlKlv
T
i , where vi are the i-th row of Fl−1(x) and Ql,Kl, Vl are parameters in the attention layer,

consider that ||
∑j

i=1 euivi∑j
i=1 eui

||2 ≤ maxi≤j{||vi||2}, so ||ATT(Fl−1(x))||2,∞ ≤ ||Fl−1(x)||2,∞||Vl||2.

Consider that FNN layer does not involve interaction between rows of Fl−1(x), so the
||FNN(x)||2,∞ ≤ ||Wl||2||x||2,∞ + ||bl||2,∞ for any x, where Wl and bl are the parameters in
FNN .

Combining the result of the attention layer and FNN layer, we have that Al ≤ ||Wl||2(Al−1 +
Al−1||Vl||2) + (Al−1 +Al−1||Vl||2) + ||bl||2,∞, which is what we want.

Take A = maxl{Al}, so we prove (1) in the lemma.

We now prove (2). The proof is similar to (1), and the difference is that the j-th row of the attention

layer is
∑len(x)

i=1 euj,ivi∑len(x)
i=1 euj,i

V , others are the same.

Lemma D.2. For any sentences x and z, if the first n symbols in x and z are the same, then for any
transformer F and j ∈ Z+, the first n rows in the outputs of j-th hidden layer of F(x) and F(z) are
the same.

Proof. Firstly, we prove that for the j-th hidden layer F j of F , if x1 and z1 satisfy that the first n
rows in x1 and z1 are the same, then the first rows n of F j(x1) and F j(z1) are the same.

Assume that F j can be written as: F j(x) = x+
∑H

k=1 softmax(xQkVkx
T +M)xKk + FNN(x+∑H

k=1 softmax(xQkVkx
T +M)xKk).

In the residual layer, the calculations in this layer do not include the interactions between different
rows, just do the same transformation to each row. So when x1 and z1 satisfy that the first n rows in
x1 and z1 are the same, x1w and z1w also satisfy that the first n symbols are the same.

In the attention layer, considering the definition of M , for any i ∈ Z+, we know
that the i-th row of softmax(xQkVkx

T + M) can be written as (xiQkVkx
T
1 , xiQkVkx

T
2 ,

xiQkVkx
T
3 , . . . , xiQkVkx

T
i , 0, 0, . . . , 0), where xi is the i-th row of x. So it is easy to see that,

when x1 and z1 satisfy that the first n rows in x1 and z1 are the same, the first n rows of
softmax(x1QkVkx

T
1 + M)x1 and softmax(z1QkVkz

T
1 + M)z1 are the same. Hence, because the

other parts in the attention layer do not include the interactions between different rows, we have that
the whole output of the attention also satisfies that the first n symbols are the same when input x1

and z1.

By the above result, the first n rows of x1 +
∑H

k=1 softmax(x1QkVkx
T
1 + M)x1Kk and z1 +∑H

k=1 softmax(z1QkVkz
T
1 +M)z1Kk are the same. Similar to the residual layer, the first n rows

of FNN(x1 +
∑H

k=1 softmax(x1QkVkx
T
1 +M)x1Kk) and FNN(z1 +

∑H
k=1 softmax(z1QkVkz

T
1 +

M)z1Kk) are the same. Adding them, we can get the result.

Now, we can prove the lemma. We prove the situation for the first layer. If the first n symbols in x
and z are the same, then the first n rows of their embedding matrix are also the same. According to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the above result, we see that the first n rows in the output of the first hidden layer are the same when
input x and z.

If the first n rows in the output of the i-th hidden layer are the same, according to the above result
and the fact that the output of the i-th hidden layer is the input of the (i+ 1)-th hidden layer, then
the first n rows in the output of the (i+ 1)-th hidden layer are also the same. When input x and z to
the transformer, we have proved that i = 1 is valid, so the result is valid for any i, and we prove the
lemma.

Lemma D.3. For a transformer F and x ∈ 2Γ, it holds limm→∞ ||F(xm)−F−M (xm)||2 = 0.

Proof. Let F[i](x) be the i-th hidden layer of F(x), F[i],j(x) be the j-th row of F[i](x). Similar to
F−M .

If the transformer has L hidden layers, to prove the lemma, we just need to show that:
limm→∞ ||F[L],(m−1)len(x)+j(x

m)−F−M,[L],(m−1)len(x)+j(x
m)||2 = 0 for all j ∈ [len(x)].

To prove that, we will consider the layer by layer and show the following result: if
limm→∞ ||F[i],(m−1)len(x)+j(x

m) − F−M,[i],(m−1)len(x)+j(x
m)||2 = 0 for all j ∈ [len(x)]

stand for i-th hidden layer, then we can prove that limm→∞ ||F[i+1],(m−1)len(x)+j(x
m) −

F−M,[i+1],(m−1)len(x)+j(x
m)||2 = 0 for all j ∈ [len(x)] is stand for (i + 1)−th hidden layer.

See F[0](x
m) as the input embedding matrix of the first hidden layer which is obviously satisfied

assumptions, this result directly leads to the lemma.

Firstly, based on the definition of the transformer, we have F[i+1](x
m) = FNNi+1(F[i](x

m) +
ATTi+1(F[i](x

m))) + F[i](x
m) + ATTi+1(F[i](x

m)). For F−M , we just need to replace
ATTi+1(F[i](x

m)) with ATT−M
i+1 (F−M,[i](x

m)).

Now we prove the result in two parts: Attention layer and FNN layer.

The gap of the attention layer.

In this part, we consider the gap of ATTi+1(F[i](x
m)) and ATT−M

i+1 (F−M,[i](x
m)) in the

last len(x) rows at first. We prove that limm→∞ ||ATTi+1(F[i](x
m))[(m − 1)len(x) + j] −

ATT−M
i+1 (F−M,[i](x

m))[(m− 1)len(x) + j]|| = 0 for any j ∈ [len(x)] when m → ∞.

Based on the definition of the attention layer, we have that the (m − 1)len(x) + j row of
ATTi+1(F[i](x

m)) is: ∑len(x)(m−1)+j
k=1 eulen(x)(m−1)+j,kF[i],k(x

m)∑len(x)(m−1)+j
k=1 eulen(x)(m−1)+j,k

Vi+1.

And similarly, the (m− 1)len(x) + j row of ATT−M
i+1 (F−M,[i](x

m)) is:∑mlen(x)
k=1 eu

′
len(x)(m−1)+j,kF−M,[i],k(x

m)∑mlen(x)
k=1 e

u′
len(x)(m−1)+j,k

Vi+1.

Here uj,k = F[i],j(x
m)Qi+1Ki+1F[i],k(x

m)T and

u′
j,k = F−M,[i],j(x

m)Qi+1Ki+1F−M,[i],k(x
m)T ,

Qi+1,Ki+1, Vi+1 are the parameters in the i+ 1-th attention layer.

Firstly, we will show that:

lim
m→∞

|
∑len(x)(m−1)+j

k=1 eulen(x)(m−1)+j,k −
∑mlen(x)

k=1 eu
′
len(x)(m−1)+j,k

m
| = 0.

It is easy to see that

|
∑len(x)(m−1)+j

k=1 e
ulen(x)(m−1)+j,k−

∑mlen(x)
k=1 e

u′
len(x)(m−1)+j,k

m |

≤ |
∑len(x)(m−1)+j

k=1 e
u′
len(x)(m−1)+j,k−

∑len(x)(m−1)+j
k=1 e

ulen(x)(m−1)+j,k

m |
+|
∑mlen(x)

k=len(x)(m−1)+j+1 e
u′
len(x)(m−1)+j,k/m|

(3)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We need the following facts to prove the above limitation:

(1) For any m1 ≤ m2, we have F[i],(m1−1)len(x)+j(x
m1) = F[i],(m1−1)len(x)+j(x

m2) just following
the Lemma D.2. And F−M,[i],(m1−1)len(x)+j(x

m1) = F−M,[i],(m1−1)len(x)+j(x
m2), just because

the (m1 − 1)len(x) + j row of xm1 and xm2 are the same, and F−M is scaling equivariance as
shown in the Lemma B.2.

(2) Based on the assumption, for any given ϵ, there is a T (ϵ) ∈ Z+ such that
||F[i],(m−1)len(x)+j(x

m)−F−M,[i],(m−1)len(x)+j(x
m)||2 < ϵ for all j ∈ [len(x)] and m ≥ T (ϵ).

(3) By the Lemma D.1, the ||F[i](x
m)||2,∞ and ||F−M,[i](x

m)||2,∞ have the upper bound A1, so uj,k

and u′
j,k also have an upper bound A2, ||Qi+1Ki+1F[i],k(x

m)T ||2 and ||F−M,[i],k(x
m)Qi+1Ki+1||2

have an upper bound A3, let A = max{A1, A2, A3, 1}, which only depends on F .

Based on the fact (3), the second part in equation 3 tends to 0 when m → ∞, now we consider the
first part.

By fact (2), when m > T (ϵ), there are

|
∑len(x)(m−1)+j

k=1 e
u′
len(x)(m−1)+j,k−

∑len(x)(m−1)+j
k=1 e

ulen(x)(m−1)+j,k

m |

≤ | len(x)T (ϵ)eA

m |+ |
∑len(x)(m−1)+j

k=len(x)T (ϵ)+1
e
u′
len(x)(m−1)+j,k−

∑len(x)(m−1)+j

k=len(x)T (ϵ)+1
e
ulen(x)(m−1)+j,k

m |
≤ | len(x)T (ϵ)eA

m |+ | e
A(e2Aϵ−1)(mlen(x)−T (ϵ)len(x))

m |

For the second part, we use the fact (1) and fact (3), such that

|ulen(x)(m−1)+j,k − u′
len(x)(m−1)+j,k|

≤ ||(F[i],len(x)(m−1)+j(x
m)−F−M,[i],len(x)(m−1)+j(x

m))Qi+1Ki+1F[i],k(x
m)T ||2

+||F−M,[i],len(x)(m−1)+j(x
m)Qi+1Ki+1(F−M,[i],k(x

m)−F[i],k(x
m))T ||2

≤ 2ϵA

and |eu
′
len(x)(m−1)+j,k−eulen(x)(m−1)+j,k | = |eu

′
len(x)(m−1)+j,k(1−eulen(x)(m−1)+j,k−u′

len(x)(m−1)+j,k)| ≤
eA(e2ϵA − 1).

So that, for any δ, we just need to take ϵ such that eA(e2Aϵ − 1)len(x) < η/2, then when m ≥
2len(x)T (ϵ)eA

η , there is | len(x)T (ϵ)eA

m | < η/2 and | e
A(e2Aϵ−1)(m−T (ϵ))len(x)

m | < η/2, so:

|
∑len(x)(m−1)+j

k=1 eu
′
len(x)(m−1)+j,k −

∑len(x)(m−1)+j
k=1 eulen(x)(m−1)+j,k

m
| < η,

which can directly lead our result.

Secondly, we can also prove that limm→∞
||f ||2
m = 0, where t = len(x) and

f =

tm∑
k=1

eu
′
t(m−1)+j,kF−M,[i],k(x

m)−
t(m−1)+j∑

k=1

eut(m−1)+j,kF[i],k(x
m).

Just similar to the first part.

Final, we prove that

lim
m→∞

||ATTi+1(F[i](x
m))[(m− 1)len(x) + j]

− ATT−M
i+1 (F−M,[i](x

m))[(m− 1)len(x) + j]||2 = 0

for any j ∈ [len(x)] when m → ∞.

To be convenient, we write
∑tm

k=1 e
u′
tm,kF−M,[i],k(x

m) = Bm,−M and
∑tm

k=1 e
u′
tm,k = Am,−M ;∑t(m−1)+j

k=1 eut(m−1)+j,kF[i],k(x
m) = Bm and

∑t(m−1)+j
k=1 eut(m−1)+j,k = Am. So based on the

definition of ATTi+1(F[i](x
m))[(m−1)len(x)+ j] and ATT−M

i+1 (F−M,[i](x
m))[(m−1)len(x)+ j],

we just need to prove that limm→∞ ||Bm

Am
− Bm,−M

Am,−M
||2 = 0, we have that:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

||Bm

Am
− Bm,−M

Am,−M
||2

= ||Bm(Am,−M−Am)+Am(Bm,−M−Bm)
AmAm,−M

||2
≤ ||Bm(Am,−M−Am)

AmAm,−M
||2 + ||Bm,−M−Bm

Am,−M
||2.

As mentioned before, the value of transformer and hidden layer output has an upper bound and lower
bound, so m

Am,−M
has an upper bound and lower bound.

So there are:

lim
m→∞

||Bm(Am,−M −Am)

AmAm,−M
||2 = lim

m→∞
||Bm

Am
||2

m

Am,−M

|Am,−M −Am|
m

= 0,

use limm→∞
|Am,−M−Am|

m = 0 as proved above.

And

lim
m→∞

||Bm,−M −Bm

Am,−M
||2 = lim

m→∞
||Bm,−M −Bm

m
||2

m

Am,−M
= 0,

use limm→∞
||Bm,−M−Bm||2

m = 0 as proved above.

Combine them, we prove the result.

The gap of the FNN layer.

For the FNN layer, easy to see that for any Relu network FNNr, there are ||FNNr(x) −
FNNr(z)||2 → 0 when ||x− z||2 → 0.

So consider that limm→∞ ||ATTi+1(F[i](x
m))[(m− 1)len(x) + j]−ATT−M

i+1 (F−M,[i](x
m))[(m−

1)len(x) + j]|| = 0 and limm→∞ ||F[i],(m−1)len(x)+j(x
m)−F−M,[i],(m−1)len(x)+j(x

m)||2 = 0 for
all j ∈ [len(x)], it is obvious that

limm→∞ ||FNNi+1(ATTi+1(F[i](x
m)) + F[i](x

m))[(m− 1)len(x) + j]

− FNNi+1(ATT−M
i+1 (F−M,[i](x

m)) + F−M,[i](x
m))[(m− 1)len(x) + j]||2 = 0,

so we prove the limitation of FNN layer.

Finally, combining the gap from the attention layer and FNN layer, we prove the result.

Lemma D.4. Let x, z ∈ 2Γ, xm[−1] ∈ 2Γ be the sentence such that xm without the last element.
Then we have limm→∞ ||F(xm[−1]⊕ z ⊕ x[len(x)])−F(xm)||2 = 0.

Proof. Without loss of generality, let γ1 be the last element of x. We assume the l-th hidden layer of
F(x) is Fl(x), and the Fl,k(x) is the k-th row of Fl(x). We write xm[−1]⊕ z ⊕ γ1 as xm,z .

By the Lemma D.2, we have that the first mlen(x)− 1 rows of Fl(x
m,z) and Fl(x

m) are the same.

Then we will show that if limm→∞ ||Fl,len(xm)(x
m) − Fl,len(xm,z)(x

m,z)||2 = 0 stand for l-th
hidden layer, there are limm→∞ ||Fl+1,len(xm)(x

m)−Fl+1,len(xm,z)(x
m,z)||2 = 0 stand for (l+1)-

th hidden layer. See F0(x
m) and F0(x

m,z) as the embedding layer which is satisfied the above
assumptions, so this result directly leads to the lemma.

By the definition of transformer, we know that Fl+1(x
m) = FNNl+1(Fl(x

m)+ATTl+1(Fl(x
m)))+

Fl(x
m) + ATTl+1(Fl(x

m)), similar as for Fl+1(x
m,z).

We prove the result in two parts.

The gap of attention layer.

We will prove that

lim
m→∞

||ATTl+1(Fl(x
m))[len(xm)]− ATTl+1(Fl(x

m,z))[len(xm,z)]||2 = 0,

ATT(x)[i] means the i-th row of the attention layer ATT.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Firstly, we consider the attention layer, easy to see that the last row of ATTl+1(Fl(x
m)) is∑len(xm)

k=1 eukFl,k(x
m)∑len(xm)

k=1 euk
Vl+1, where uk = Fl,len(xm)(x

m)Ql+1Kl+1Fl,k(x
m)T .

Similarly, the last row of ATT(Fl(x
m,z)) is

∑len(xm,z)
k=1 eu

′
kFl,k(x

m,z)∑len(xm,z)
k=1 eu

′
k

Vl+1, where u′
k =

Fl,len(xm,z)(x
m,z)Ql+1Kl+1Fl,k(x

m,z)T .

Then, we prove that limm→∞ |
∑len(xm,z)

k=1 eu
′
k −

∑len(xm)
k=1 euk |/m = 0 at first.

We need the following facts:

(1): Based on the assumption, for any given ϵ there is a T (ϵ) such that ||Fl,len(xm)(x
m) −

Fl,len(xm,z)(x
m,z)||2 ≤ ϵ when m ≥ T (ϵ).

(2): By the Lemma D.1, the ||Fl(x
m)||2,∞ and ||Fl(x

m,z)||2,∞ have the upper bound A1, so uk

and u′
k also have an upper bound A2, ||Ql+1Kl+1Fl,k(x

m,z)T ||2 has an upper bound A3, write
A = max{A1, A2, A3, 1}.

Then when m ≥ T (ϵ), we have that:

|
∑len(xm,z)

k=1 eu
′
k −

∑len(xm)
k=1 euk |/m

≤ eA(len(z)+1)
m + |

∑len(xm)−1
k=1 eu

′
k −

∑len(xm)−1
k=1 euk |/m

≤ eA(len(z)+1)
m + eA(eAϵ−1)(mlen(x))

m ,

where we use fact 1 to get |uk − u′
k| ≤ ||Fl,len(xm)(x

m) −
Fl,len(xm,z)(x

m,z)||2||Ql+1Kl+1Fl,k(x
m,z)T ||2 ≤ Aϵ for any k ≤ len(xm) − 1. Other

parts are similar as that in the proof of Lemma D.3.

So, for any δ > 0, we just need to take ϵ such that eA(eAϵ − 1)len(x) < δ/2 and m > T (ϵ) +
2eA(len(z)+1)

δ , then |
∑len(xm,z)

k=1 eu
′
k −

∑len(xm)
k=1 euk |/m ≤ eA(len(z)+1)

m + eA(eAϵ−1)(mlen(x))
m ≤

δ/2 + δ/2 = δ. So we prove the result.

Secondly, similarly as before, we can prove that:

lim
m→∞

||
len(xm,z)∑

k=1

eu
′
kFl,k(x

m,z)−
len(xm)∑
k=1

eukFl,k(x
m)||2 = 0.

Thirdly, similar as in the proof of Lemma D.3, we can prove that

lim
m→∞

||ATTl+1(Fl(x
m))[len(xm)]− ATTl+1(Fl(x

m,z))[len(xm,z)]||2 = 0.

The gap of FNN layer.

Because limm→∞ ||ATTl+1(Fl(x
m))[len(xm)] − ATTl+1(Fl(x

m,z))[len(xm,z)]||2 = 0 and
limm→∞ ||Fl,len(xm)(x

m)−Fl,len(xm,z)(x
m,z)||2 = 0, so it is obvious that

limm→∞ ||FNNl+1(ATTl+1(Fl(x
m)) + Fl(x

m))[len(xm)]
− FNNl+1(ATTl+1(Fl(x

m,z)) + Fl(x
m,z))[len(xm,z)]||2 = 0,

so we prove the result.

Finally, combining the gap from the attention layer and FNN layer, we prove the lemma.

D.2 PROOF OF THEOREM 4.4

Proof. Let F be a transformer and S be a F -lead set. We show that, for any xz such that
xz[len(xz)] = xi[len(xi)] and yi = F̂−M (xm

z) where (xi, yi) ∈ S, there exists a m such that
xm
z is a prompt which makes PPP(Γ, S,F) = 1.

According to Lemma D.3 and Lemma D.4, for any xi, there is a mi such that F̂(xm
z ⊕ xi) = F̂(xm

z)

(Lemma D.3, and use xz[len(xz)] = xi[len(xi)]) and F̂(xm
z) = F̂−M (xm

z) (Lemma D.4) for any

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

m ≥ mi. Combining them, we have F̂(xm
z ⊕ xi) = F̂−M (xm

z) = F̂−M (xz) = yi, using the fact
that F−M is scaling equivalence(lemma B.2).

So by taking m = maxi∈[N]{mi}, xm
z is what we want, we prove the theorem.

D.3 EXPLANATION AND PROOF OF PROPOSITION 4.7

For convenience, we introduce the following definition.
Definition D.5. A dataset S = {(xi, yi)}Ni=1 ⊂ 2Γ × Γ is said to be strong F -lead for a transformer
F , if there exists an x ∈ 2Γ such that last(x) = last(xi) and yi = F̂(x) for all i ∈ [N].

Then we have that:
Proposition D.6. (1) For any transformer F , if S is F-lead, then it is also strong F-lead; (2) For
some transformer F , S is strong F-lead, but not F-lead.

Proof. Result (1). We just need to prove that if F̂−M (x) = y, then there exists a z ∈ 2Γ such that
last(z) = last(x) and F̂(z) = y.

It is easy to see that F̂−M (xm) = y for any m ∈ Z+, and based on the Lemma D.3, we have
F̂(xm) = F̂−M (xm) = y when m is large enough. So we just need to take z = xm for such a large
m.

Result (2). By the Proposition 4.6, it is obvious. Note that the proof of Proposition 4.6 does not rely
on that of this proposition.

The concept of strong F -lead encompasses a wider spectrum of S than that of F -lead. So, why do we
establish that PPP(Γ, S,F) = 1 for an S that is a F-lead but not strong F-lead? This is primarily
due to a fundamental reason outlined in the following proposition 4.6(repeat in the below):
Proposition D.7. (1) For any transformer F and x ∈ 2Γ, there exist infinite x′ ∈ 2Γ such that
F̂−M (x) = F̂(x′); (2) For some transformer F and x ∈ 2Γ, there exists only finite x′ ∈ 2Γ such
that F̂(x) = F̂(x′).

By Proposition 4.6, we obtain the following result.
Corollary D.8. For some symbol set Γ and transformer F , a strong F -lead dataset S of F , we have
that PPP(Γ, S,F) = 0.

This corollary directly proves the corollary 4.7. The proof is easy, as shown below:

Proof. Based on the result (2) in the proposition 4.6, suppose that for a x ∈ 2Γ such that there only
exists K x′ ∈ 2Γ such that F̂(x) = F̂(x′). Then consider a strong F-lead set S = {(xi, yi)}Ni=1

where N > K satisfied that yi = F̂(x), then it is easy to see that P does not exist because
|S| = N > K.

Now we prove Proposition 4.6.

Proof. Based on the scale equivariant of F−M and lemma D.3, (1) of Proposition 4.6 is obvious
because F̂−M (x) = F̂−M (xm) = F̂(xm) for the large enough m. We will prove (2) of Proposition
4.6 below.

For a matrix V , let V [i] be the i-th row of V , V [i]j be the j-th weight of V [i].

We will give an example for a pair of F and y such that F̂(x) = y can only stand for a finite number
of x ∈ 2Γ.

Let y = γ1, we consider the following transformer F :

(1) The embedding layer: embeds the γ1 to vγ1
= (0, 0, 1, 0), and γj to vγj

= (0, 0, 0, 1) when
j > 1. For convenience, we also write vγi as vi.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(2) The first layer F1: the attention layer is that QK = 0 and V ∈ {0, 1}4×4 and V [3]1 and V [4]2
are 1, others are 0. The FNN layer is FNN(x) = 0.

Easy to see that: for an input x, the i-th row of the first layer output is vxi +
∑i

j=1

vxj

i V ∈ R4
≥0,

and there are F(x)[i]1 + F(x)[i]2 = 1.

We also have that |
∑i

j=1

(vxj
)k

i −
∑i+1

j=1

(vxj
)k

i+1 | = |(
∑i

j=1

(vxj
−vxi+1

)k

i)/(i+ 1)| < 1/(i+ 1) for
any k = 1, 2, 3, 4, where (vxi

)k is the k-th weight of vxi
, naming this result as result (∗).

(3) The next several layers Fs: all their attention layers are 0, and their FNN layer makes sure that
Fs(x)[j] = (F0.5,1(F1(x)[j]1), F0,0.5(F1(x)[j]2), 0, 0) for any j. In here F0.5,1 : R → R is a Relu
network such that F0.5,1(x) ≥ x for all x ∈ [0, 1], F0.5,1(x) ≥ x + 0.2 for the x ∈ [0, 1] satisfied
|x − 0.5| > 0.01 and |x − 1| > 0.01, and F0.5,1(x) = x when x ∈ {0.5, 1}; F0,0.5 : R → R is a
Relu network such that F0,0.5(x) ≥ x for all x ∈ [0, 1], F0,0.5(x) ≥ x+0.2 when x ∈ [0, 1] satisfied
|x − 0.5| > 0.01 and |x| > 0.01, and F0,0.5(x) = x when x ∈ {0.5, 0}. It is easy to see that such
Relu networks must exist.

After such layers, we know that each row of Fs(x) satisfies that ||Fs(x)[i]||1 ≥ 1; moreover,
||Fs(x)[i]||1 ≥ 1.2 when |F1(x)[j]1−0.5| > 0.01 and |F1(x)[j]1−1| > 0.01, or |F1(x)[j]2−0.5| >
0.01 and |F1(x)[j]2| > 0.01.

(4) The next hidden layer Fl: the attention layer is that QK = 0 and V ∈ {0, 1}4×4 and the V [1]3
and V [2]4 are 1, others are 0. The FNN layer is FNN(x) = 0. The last row of Fl(x) is Fll(x)

(5) The FNN layer in the last hidden layer and the output layer lead to the final output of the
transformer: F(x) = (0.01 − |0.75 − Fll(x)3| − |0.25 − Fll(x)4|, 0,−0.1, . . . ,−0.1), where we
just need to use |x| = Relu(x)−Relu(−x).

Now we show such a pair of F(x) and y is what we want.

Part One: It is easy to check that F̂((γ1, γ2)) = γ1.

Part Two: Assume that x such that F̂(x) = F̂((γ1, γ2)) = γ1, we show that len(x) has an upper
bound, which can directly lead to our result.

If F̂(x) = γ1, we have the following results:

Result One: There are at least 90% proportion rows i of Fs(x) satisfying: Fs(x)[i]1 + Fs(x)[i]2 <
1.2.

If not, because Fll(x)3 =
∑len(x)

i=1 Fs(x)[i]1/len(x) and Fll(x)4 =
∑len(x)

i=1 Fs(x)[i]2/len(x), it
is easy to calculate that |Fll(x)3 + Fll(x)4| > 0.9 ∗ 1 + 0.1 ∗ 1.2 = 1.02; hence, there are
0.01− |0.75−Fll(x)3| − |0.25−Fll(x)4| < 0, which implies that there are F̂(x) ̸= γ1.

Result Two: There are at least 0.9 − 0.638 > 0.25 proportion rows i satisfy:
||(F1(x)[i]1,F1(x)[i]2)− (0.5, 0.5)||∞ < 0.01.

For a i such that ||Fs(x)[i]||1 < 1.2, based on the definition of F0.5,1 and F0,0.5, there must be
||(F1(x)[i]1,F1(x)[i]2) − (0.5, 0.5)||∞ < 0.01 or ||(F1(x)[i]1,F1(x)[i]2) − (1, 0)||∞ < 0.01,
use the fact that F1(x)[i]1 + F1(x)[i]2 = 1. So if ϵ proportion rows of F1(x) such that
||(F1(x)[i]1,F1(x)[i]2) − (1, 0)||∞ < 0.01, then there are at least 0.9 − ϵ proportion rows of
F1(x) such that ||(F1(x)[i]1,F1(x)[i]2)− (0.5, 0.5)||∞ < 0.01(by result one).

To make sure that F̂(x) = γ1, there should be |0.75 − Fll(x)3| < 0.01, so there are 0.99ϵ +
0.49(0.9− ϵ) < 0.76, so ϵ < 0.638, which is what we want.

Similar to before, there are at least 0.9 − 0.26
0.49 > 0.25 proportion rows i that satisfy

||(F1(x)[i]1,F1(x)[i]2)− (1, 0)||∞ < 0.01.

Result Three: Prove the result.

Let len(x) = N . Consider that i1 is the last row such that ||(F1(x)[i1]1,F1(x)[i1]2) −
(0.5, 0.5)||∞ < 0.01 and i2 is the last row such that ||(F1(x)[i2]1,F1(x)[i2]2)− (1, 0)||∞ < 0.01.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Without losing generality, let i1 > i2, then there exists a i′2 which is the first row in (i1, i2] such that
||(F1(x)[i

′
2]1,F1(x)[i

′
2]2)− (1, 0)||∞ < 0.01.

Consider that from the row i1 to i′2, the first weight of F1(x) changes at least 0.48, combined with
result (∗) and the calculation of the first hidden layer, we have that |i1−i′2|

i1+1 ≥ 0.48, so there are
|i1− i′2| ≥ 0.48

1/(i1+1) = 0.48(i1+1) > 0.48 ∗ 0.25N = 0.12N , use i1 ≥ 0.25N here(by Result two).
So there are at least 0.12N − 1 number of i such that |Fs(x)[i]| > 1.2, which is contradictory to
Result One when 0.12N − 1 ≥ 0.1N . So N has an upper bound. Vice versa for i2 > i1. We prove
the result.

E PROOFS IN SECTION 4.3

E.1 PROOF OF PROPOSITION 4.8

We show how to estimate the length.

Lemma E.1. Let x ∈ 2Γ and F be a transformer. Then for any z ∈ 2Γ, if ||F(xm[−1] ⊕ z ⊕
x[len(x)]) − F(xm)||2 ≤ ϵ, then the value of mlen(x) is at most CF len(z)/ϵ, where CF is a
constant that only depends on F .

Proof. We follow the notations in the proof of the Lemma D.4.

Assume that F has L hidden layers. We just need to consider the last row of the last hidden layer,
i.e. we just need to prove that ||FL,len(xm)(x

m) − FL,len(xm,z)(x
m,z)||2 ≤ ϵ for any m such that

mlen(x) ≥ CF len(z)/ϵ for a CF dependent on F .

Now we assume that the above result stands for any transformer F ′ with L− 1 hidden layers, that is,
||F ′

L−1,len(xm)(x
m)−F ′

L−1,len(xm,z)(x
m,z)||2 < ϵ for any m such that mlen(x) > CF′ len(z)

ϵ . Then
we show that the lemma is also satisfied for the transformer with L hidden layers.

Easy to see that the embedding vector of xm and xm,z satisfied the above result, and can be seen as a
0-hidden layer transformer, so the above result can easily lead to the lemma.

It is easy to see that FL(x
m) = FNNL(ATTL(FL−1(x

m)) + FL−1(x
m)) + ATTL(FL−1(x

m)) +
FL−1(x

m), similar to xm,z . Then we show such a result in two parts.

The Attention Layer. We show that there is a CA
F dependent on F such that when mlen(x) ≥

CA
F len(z)

ϵ , there is ||ATTL(FL−1(x
m))[len(xm)]− ATTL(FL−1(x

m,z))[len(xm,z)]||2 ≤ ϵ.

About the attention layer, we have that:

ATTL(FL−1(x
m))[len(xm)] =

∑len(xm)
k=1 eukFL−1,k(x

m)∑len(xm)
k=1 euk

V,

and

ATTL(FL−1(x
m,z))[len(xm,z)] =

∑len(xm,z)
k=1 eu

′
kFL−1,k(x

m,z)∑len(xm,z)
k=1 eu

′
k

V.

The uk and u′
k are the same meaning with that in the proof of Lemma D.4.

To be convenient, let
∑len(xm,z)

k=1 eu
′
kFL−1,k(x

m,z) = (
∑len(xm)−1

k=1 eu
′
kFL−1,k(x

m,z) +

eu
′
len(xm,z)FL−1,len(xm,z)(x

m,z)) + (
∑len(xm,z)−1

k=len(xm) eu
′
kFL−1,k(x

m,z)) = (V1) + (V2), and∑len(xm,z)
k=1 eu

′
k = (

∑len(xm)−1
k=1 eu

′
k + eu

′
len(xm,z)) + (

∑len(xm,z)−1
k=len(xm) eu

′
k) = (W1) + (W2). And

write ATTL(FL−1(x
m))[len(xm)] = Q/P .

Then, we have that

ATTL(FL−1(x
m))[len(xm)]− ATTL(FL−1,len(xm,z)(x

m,z))[len(xm,z)]

= (PV1−QW1)+(PV2−QW2)
(W1+W2)P

V.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

And we have the following facts:

(1) Let the subset transformer of F consist of the first L− 1 layer name F ′, based on the assumption,
there exist a CF ′ such that for any ϵ, when mlen(x) ≥ CF′ len(z)

ϵ , there are ||FL−1,len(xm)(x
m) −

FL−1,len(xm,z)(x
m,z)||2 ≤ ϵ;

(2) By the Lemma D.1, the ||FL−1(x
m)||2,∞ and ||FL−1(x

m,z)||2,∞ have the upper bound A1, so uk

and u′
k also have an upper bound A2, ||FL−1,len(xm,z)(x

m,z)QK||2 and ||FL−1,len(xm)(x
m)QK||2

have an upper bound A3, write A = max{A1, A2, A3, 1}, which is only depended on F .

Then when mlen(x) ≥ CF′ len(z)
ϵ and 2Aϵ < 1, simialr as that in the proof of the lemma D.4, we

have that:

||V1 −Q||2
= ||(

∑len(xm)−1
k=1 eu

′
kFL−1,k(x

m,z)) + (eu
′
len(xm,z)FL−1,len(xm,z)(x

m,z))

−
∑len(xm)

k=1 eukFL−1,k(x
m)||2

= ||(
∑len(xm)−1

k=1 (eu
′
k − euk)FL−1,k(x

m,z)) + (eu
′
len(xm,z)FL−1,len(xm,z)(x

m,z)
−eulen(xm)FL−1,len(xm)(x

m))||2
≤ (len(xm)− 1)eA(eAϵ − 1)A+ ||(eu

′
len(xm,z) − eulen(xm))FL−1,len(xm,z)(x

m,z)||2
+||eulen(xm)(FL−1,len(xm)(x

m)−FL−1,len(xm,z)(x
m,z))||2

≤ (len(xm)− 1)eA(eAϵ − 1)A+ eA(e2Aϵ − 1)A+ eAϵ.

The first equation uses the fact that the first mlen(x)− 1 rows of Fl(x
m,z) and Fl(x

m) are the same,
by the Lemma D.2. In the above second inequality sign, we use

|u′
len(xm,z) − ulen(xm)|

≤ |FL−1,len(xm,z)(x
m,z)QK(FL−1,len(xm,z)(x

m,z)−FL−1,len(xm)(x
m))T |

+|(FL−1,len(xm,z)(x
m,z)−FL−1,len(xm)(x

m))QKFL−1,len(xm)(x
m)T |

≤ 2ϵA.

So ||V1−Q||2 ≤ (len(xm)−1)eA(eAϵ−1)A+eA(e2Aϵ−1)A+eAϵ ≤ (2A2(len(xm)+1)+1)ϵeA ≤
5A2len(xm)ϵeA = C1len(x

m)ϵ, when 2Aϵ ≤ 1.

Hence, we also have

|W1 − P |
= |(

∑len(xm)−1
k=1 eu

′
k) + (eu

′
len(xm,z))−

∑len(xm)
k=1 euk |

= |(
∑len(xm)−1

k=1 (eu
′
k − euk) + (eu

′
len(xm,z) − eulen(xm))|

≤ (len(xm)− 1)eA(eAϵ − 1) + eA(e2Aϵ − 1).

So when 2ϵA ≤ 1, there are |W1−P | ≤ (len(xm)−1)eA(eAϵ−1)+ eA(e2Aϵ−1) ≤ 2(len(xm)+
1)eAAϵ ≤ 4len(xm)eAAϵ = C2ϵlen(x

m). Combine the above result, when 2ϵA ≤ 1, we have that:

|| (PV1−QW1)+(PV2−QW2)
(W1+W2)P

||2
≤ || P (V1−Q)

(W1+W2)P
||2 + || Q(W1−P)

(W1+W2)P
||2 + || PV2−QW2

(W1+W2)P
||2

≤ ||C1len(x
m)ϵ

W1+W2
||2 + ||C2len(x

m)ϵQ
(W1+W2)P

||2 + || PV2−QW2
(W1+W2)P

||2.

Because of the fact (2), it is established that there exists a constant c associated with F for which
|W1 +W2| ≥ clen(xm,z) > clen(xm), thereby leading us to conclude that:

||C1len(x
m)ϵ

W1+W2
||2 + ||C1len(x

m)ϵQ
(W1+W2)P

||2 + || PV2−QW2
(W1+W2)P

||2
≤ |C1ϵ

c
|+ |C2ϵA

c
|+ |V2−Q/PW2

clen(xm)
|

≤ |C1ϵ
c

|+ |C2ϵA
c

|+ | 2len(z)e
AA

clen(xm)
|.

So to make sure that || (PV1−QW1)+(PV2−QW2)
(W1+W2)P

V ||2 ≤ δ for the given δ, based on the assumptions

and above result, we just need the C1ϵ
c ≤ δ/(3||V ||2), that is mlen(x) ≥ 3C1CF′ len(z)||V ||2

δc ; and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C2ϵA
c ≤ δ/(3||V ||2), that is mlen(x) ≥ 3C2CF′Alen(z)||V ||2

cδ ; and 2len(z)eAA
clen(xm) ≤ δ/(3||V ||2), that is

mlen(x) ≥ 6len(z)eAA||V ||2
cδ .

Combining them, define CA
F = max{3C1CF ′/c, 3C2C

′
FA/c, 6eAA/c}||V ||2, which is only

dependent on F , and we know that CA
F satisfies that when mlen(x) ≥ CA

F len(z)
ϵ , there is

||ATTL(FL−1(x
m))[len(xm)]− ATTL(FL−1,len(xm,z)(x

m,z))[len(xm,z)]||2 ≤ ϵ. So we prove the
result in this part.

We now prove the lemma. It is easy to see that ||FNNL(x)− FNNL(z)||2 ≤ ||WL||2||x− z||2 for
any x and z, where WL are the parameters in FNNL layer, so we have:

||FL,len(xm)(x
m)−FL,len(xm,z)(x

m,z)||2
≤ (||WL||2 + 1)(||ATTL(FL−1(x

m))[len(xm)]
−ATTL(FL−1,len(xm,z)(x

m,z))[len(xm,z)]||2
+||FL−1,len(xm)(x

m)−FL−1,len(xm,z)(x
m,z)||2).

So to make sure that ||FL,len(xm)(x
m) − FL,len(xm,z)(x

m,z)||2 ≤ ϵ for a given ϵ, we just
need the ||ATTL(FL−1(x

m))[len(xm)] − ATTL(FL−1(x
m,z))[len(xm,z)]||2 ≤ ϵ

2(1+||WL||2) and
||FL−1,len(xm)(x

m)−FL−1,len(xm,z)(x
m,z)||2 ≤ ϵ

2(1+||WL||2) . By the above part and assumptions,
we just need to take CF = 2(1 + ||WL||2)max{CA

F , CF ′}, then when mlen(x) ≥ CF len(z)/x,
there are ||FL,len(xm)(x

m) − FL,len(xm,z)(x
m,z)||2 ≤ ϵ, such CF is only dependent on F , so we

prove the lemma.

Then we can prove Proposition 4.8.

Proof. Let ConF (x) = Fmax(x) − Fmax,2(x), where Fmax(x) is the max weight of F(x) and
Fmax,2(x) is the second largest weight of F(x).

For any γs, γt ∈ Γ, let Tγs,γt = argminx∈2Γ,x[len(x)]=γs,F̂−M (x)=γt
{len(x)} and Uγs,γt =

minx∈Tγs,γt
{ConF−M

(x)}. Because Tγs,γt
is a finite set, so it is easy to see that there is a

Um, Ul ∈ Z+ such that: for any s, t and x ∈ Tγs,γt , there is F̂(xm) = F̂−M (xm) for any m ≥ Um;
for any s, t and x ∈ Tγs,γt , there is len(x) ≤ Ul.

Then for a F-lead set S and a (x, y) ∈ S, for a z ∈ Tx[len(x)],y such that z[len(z)] =

x[len(x)] and y = F̂−M (z), by Lemma E.1, there is a C and when we take a prompt zm

such that len(zm) ≥ max{Clen(x)/Ux[len(x)],y, len(z)Um}, there are F̂(zm ⊕ x) = F̂(zm) =

F̂−M (zm) = F̂−M (z) = y. So to make sure F̂(zm ⊕ x) = y for any (x, y) ∈ S, we just need to
make sure that len(zm) ≥ {Cmax(x,y)∈S{len(x)/Ux[len(x)],y}, UlUm}, use len(z) ≤ Ul here.

Finally, since Ul, Um only depend on F , we take UF = max{C/mini,j,Tγi,γj
̸=ϕ{Uγi,γj}, UlUm}

which can lead to the result.

E.2 PROOF OF PROPOSITION 4.9

Proof. We consider a one-hidden layer transformer F as follows:

(1) Embedding layer: embedding γ2 to (0.5, 0.5), and γi ∈ Γ/γ2 to vi such that:
∑

vi = −1, where∑
v is the sum of each component of vector v.

(2) Attention layer, let QK = 0 and V = 2I . So the last row of the attention layer is calculated

as ATT(x)[len(x)] = vx[len(x)] + 2
∑len(x)

j=1 vxj

len(x) , where xj is the j-th symbol in x, and vxj is the
embedding vector of xj .

(3) The output layer and the FNN layer, just let them be F(x) = W (Relu(vx[len(x)] +

ATT(x)[len(x)]) + vx[len(x)] + ATT(x)[len(x)]), where W ∈ R|Γ|×2, and the second row of W
is (1, 1), the other rows are all negative, vx is the embedding matrix of x.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Let (·)i mean the i-th row of the given matrix. It is easy to see that, if and only if
∑

(vx[len(x)] +

ATT(x)[len(x)]) > 0, F(x) has label γ2. Let 2Γ̸=2 = {(γi1 , γi2 , γi3 , . . . , γim)∥ij ̸= 2} ⊂ 2Γ.

Then we consider the following PPP question: F is given above, S = {(xm, γ2)∥xm ∈
2Γ̸=2, xm[len(xm)] = γ1}, we show this is what we want.

Part One: S is F-lead. Because F̂−M (γ5
2 ⊕ γ1) = γ2, so such S is a F-lead.

Part Two: Prove the result.

For any given x ∈ 2Γ̸=2 and let len(x) = m. If we want to use prompt Pr to make F̂(P ⊕ x) = γ2,
write xp = P⊕x, based on the definition of the output layer and the FNN layer, we need to make sure
that

∑
(vxp[len(xp)] +ATT(xp)[len(xp)]) > 0, which implies that: −1+ 2

∑
j:(xp)j=γ2

1/len(xp)−
2
∑

j:(xp)j ̸=γ2
1/len(xp) > 0, so that: −1 + 2

2Numγ2 (xp)−(len(P)+m)

len(P)+m > 0, that is: Numγ2(xp) >

3/4(len(P) +m), consider that Numγ2
(xp) = Numγ2

(P), so there must be len(P) > 3len(x) =
3m.

So, for such a dataset, if P makes PPP(Γ, S,F) = 1, by the above result, there are len(P) >
3max(x,y)∈S{len(x)}, and this is what we want.

F PROOFS OF SECTION 4.4

F.1 PROOF OF PROPOSITION 4.13

Proof. Without loss of generality, for a symbol set Γ = {γi}mi=1 where m ≥ 3 and a data set
S = {(x1, γ1), (x2, γ2), . . . }, where last(x1) = last(x2) = γk and k ∈ [m], we will show that there
is a F satisfied condition (3) such that if prompt P satisfied F̂(P ⊕ x1) = γ1, then F̂(P ⊕ x2) ̸= γ2,
which can directly prove the proposition.

Let len(S) = L, and M ∈ Z+ such that M > 3(L + m), let p ∈ [m] such that p ̸= k. We will
consider the transformer F with one hidden layer as follows:

(1) Embedding layer: the embedding layer of γi is vi, and satisfies that vi ⊥ vj and ||vi||2 = 1 for
any i ̸= j;

(2) Hidden layer: In the attention layer, QK = 0 and V = I; the FNN layer is 0; so the last row of

the hidden layer Fl(x) is calculated as Fl(x) = vxlen(x)
+

∑len(x)
j=1 vxj

len(x) , where xj is the j-th symbol in
x, and vxj

is the embedding vector of xj

(3) Output layer and FNN layer: The output layer of F is that: the first weight is F1(x) = 2M(m+

1)m(vpFl(x)
T − 1 + 1/M), the i-th weight is Fi(x) = (m+ 1)

i−2
(vp(Fl(x))

T − (i − 1)/i +
1/(m+ 1)), where i ≥ 2.

Easy to check that F̂(γi−1
p ⊕ γk) = γi for i ≥ 2 and F̂(γ2M

p ⊕ γk) = γ1, so based on the conditions
(2), we know that the conditions (3) is satisfied for such F and S.

Now we show that: if prompt P satisfied F̂(P ⊕ x1) = γ1, then F̂(P ⊕ x2) ̸= γ2.

Part One: To make sure that F̂(P ⊕ x1) = γ1, there must be −1 + 1/M + vp(Fl(x))
T > 0. If

not, to make sure that F1 is large than Fi when i ≥ 2, there must be 0 > F1 > F2, which implies
vp(Fl(x))

T < 0.5− 1/(m+1), hence, we have that F2(x) ≥ −0.5+1/(m+1) > −2Mmm/3 >

2Mmm(0.5− 1/(m+ 1)− 1 + 1/M) > F1(x), which is contradictory to F̂(P ⊕ x1) = γ1.

Part Two: Consider that there are vp(Fl(x1))
T = vp(vk +

∑len(x1)+len(P)
j=1 v(P⊕x1)j

len(P)+len(x1)
)T =

Numγp (P⊕x1)

len(P)+len(x1)
, by Part one, so we know that

Numγp (P⊕x1)

len(P)+len(x1)
> 1− 1/M .

Consider that
Numγp (P⊕x1)

len(P)+len(x1)
≤ Numγp (P)+L−1

len(P)+L ≤ 1− 1
L+len(P) , so we have that L+ len(P) ≥ M .

Part Three : Now we prove the result. Based on the result in Part two, we have that:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Numγp (P⊕x2)

len(P)+len(x2)

≥ Numγp (P)

len(P)+L

=
Numγp (P)+L−1

len(P)+L − L−1
len(P)+L

≥ Numγp (P⊕x1)

len(P)+len(x1)
− L−1

M

≥ 1− L/M > 2/3.

Take it into transformer F , we have that

F2(x2)−F3(x2)
= (vp(Fl(x2))

T − 1/2 + 1/(T + 1))− (T + 1)(vp(Fl(x2))
T − 2/3 + 1/(T + 1))

= (
Numγp (P⊕x2)

len(P)+len(x2)
− 1/2 + 1/(T + 1))− (T + 1)(

Numγp (P⊕x2)

len(P)+len(x2)
− 2/3 + 1/(T + 1))

≤ (2/3− 1/2 + 1/(T + 1))− (T + 1)(2/3− 2/3 + 1/(T + 1))
≤ 1/6 + 1/(T + 1)− 1 < 0.

So F(P ⊕ x2) will not have label γ2, so we prove the result.

F.2 PROOF OF PROPOSITION 4.14

Proof. Without loss of generality, for a symbol set Γ = {γi}mi=1 where m ≥ 3 and a data set
S = {(x1, γ1), (x2, γ1), . . . }, where last(x1) = γk, last(x2) = γp and k ̸= p ∈ [m]. We show
that there is a F satisfied the conditions (3) such that if prompt P satisfied F̂(P ⊕ x1) = γ1, then
F̂(P ⊕ x2) ̸= γ1, this can directly prove the proposition.

Let len(S) = L, and M ∈ Z+ such that M > 2(L+m). We will consider the transformer F with
one hidden layer as follows:

(1) Embedding layer: the embedding layer of γi is vi, and satisfies that vi ⊥ vj and ||vi||2 = 1 for
any i ̸= j;

(2)Hidden layer: In the attention layer, QK = 0 and V = I; the FNN layer is 0; so the last row of

the hidden layer Fl(x) is calculated as Fl(x) = vxlen(x)
+

∑len(x)
j=1 vxj

len(x) , where xj is the j-th symbol in
x, and vxj

is the embedding vector of xj

(3) Output layer and FNN layer: The output layer of F is that: the first weight is F1(x) = vpFl(x)
T −

1 + 1/M , the 2-th weight is F2(x) = M(vpFl(x)
T − 1 − 1/M), the i-th weight is Fi(x) =

−vpFl(x)
T + 1− 1/M , where i > 2.

It is easy to check that F̂(γM
p ⊕γi) = γ1 for i ̸= p and F̂(γM

k ⊕γp) = γ1, so based on the conditions
(2), we know that the conditions (3) are satisfied for such F and S.

Now we show that: if prompt P satisfied F̂(P ⊕ x1) = γ1, then F̂(P ⊕ x2) ̸= γ1.

Part One: To make sure that F̂(P ⊕ x1) = γ1, there must be F1(P ⊕ x1) > F3(P ⊕ x1), so

that vpFl(P ⊕ x1)
T − 1 + 1/M > 0, so that vpFl(P ⊕ x1) = vp(vk +

∑len(P⊕x1)
j=1 v(P⊕x1)j

len(P⊕x1)
)T =

Numγp (P⊕x1)

len(P)+len(x1)
≥ 1− 1/M .

Consider that
Numγp (P⊕x1)

len(P)+len(x1)
≤ Numγp (P)+L−1

len(P)+L ≤ 1− 1
L+len(P) , so we have that L+ len(P) ≥ M .

Part Two: Now we prove the result. We have that:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Numγp (P⊕x2)

len(P)+len(x2)

≥ Numγp (P)

len(P)+L

=
Numγp (P)+L−1

len(P)+L − L−1
len(P)+L

≥ Numγp (P⊕x1)

len(P)+len(x1)
− L−1

M

≥ 1− L/M > 0.5.

If we input this into a transformer, we find that

F2(x2)−F1(x2)
= M(vpFl(x2)

T − 1− 1/M)− (vpFl(x2)
T − 1 + 1/M)

= M(1 +
Numγp (P⊕x2)

len(P)+len(x2)
− 1− 1/M)− (1 +

Numγp (P⊕x2)

len(P)+len(x2)
− 1 + 1/M)

≥ M(1.5− 1− 1/M)− (1.5− 1 + 1/M) > 0.

So we prove the result.

G PROOFS OF SECTION 5

G.1 PROOF OF THEOREM 5.1

We give a classic generalization bound below, which will be used in the proof.
Theorem G.1 (P.217 of (Mohri et al., 2018), Informal). Let the training set Dtr be i.i.d. sampled from
the data distribution DS and N = |Dtr|. For the hypothesis space H = {L(F(x), y) : Rn × [m] →
[0, 1]} and δ ∈ R+, with probability at least 1− δ, for any L(F(x), y) ∈ H , we have

E(x,y)∼DS
[L(F(x), y)] ≤ E(x,y)∈Dtr [L(F(x), y)] + 2RadDS

N (H) +
√

ln(1/δ)
2N

(4)

Now we prove the Theorem 5.1

Proof. Let 2ΓL be the set of x ∈ 2Γ satisfying len(x) ≤ L. For a given transformer F , we define
the hypothetical space HF,L of function 2Γ × Γ → {0, 1} as: HF,L = {GP(x, y) ∈ 2Γ × Γ →
{0, 1} :GP(x, y) = I(F̂(P ⊕ x) = y),P ∈ 2ΓL}. It is easy to see that HF,L contains TL func-

tions. Consider that RadDN (H) ≤
√

2 ln |H|
N (Mohri et al., 2018) for any infinite hypothetical space

with range [−1, 1] for all the function in it and distribution D, so the Rademacher complexity

RadDN (HF,L) ≤
√

2L lnT
N for any distribution D of (x, y).

Hence, using the Rademacher generalization bound in G.1, we prove the result.

G.2 PROOF OF PROPOSITION 5.4

Proof. It suffices to consider a special transformer F and P .

For the given distribution D, we can find a finite set Ss ⊂ 2Γ ×Γ such that P(x,y)∼D((x, y) ∈ Ss) ≥
1 − ϵ/N . So if we select N i.i.d. samples in D, with probability (1 − ϵ/N)N ≥ 1 − ϵ, all such
samples in Ss.

Assume that |Ss| = m and Ss = {(xi, yi)}mi=1. Let F satisfy that F̂(z1 ⊕ z2 ⊕ . . . zm ⊕ xi) = zi
for each xi ∈ Ss and zj ∈ Γ where j ∈ [m].

Then for any S ∼ DN , we just consider the situation that all samples in S are in Ss, which is stand
with probability at least 1− ϵ.

Firstly, we can find a P = y′1 ⊕ y′2 ⊕ . . . y′m such that y′i = yi if and only if there is (xi, yi) ∈ S. We
show P is what we want.

Then by the definition of F , for any i ∈ [m] such that (xi, yi) ∈ S, there are F̂(P ⊕ xi) =

F̂(y′1 ⊕ y′2 ⊕ . . . y′m ⊕ xi) = y′i = yi, then we have that AF,P,S = 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

But for AF,P,D, we have that AF,P,D ≤ 1− E(x,y)∼D[I((x, y) ∈ Ss/S)], because if (xi, yi) /∈ S,
then F̂(P ⊕ xi) = F̂(y′1 ⊕ y′2 ⊕ · · · ⊕ y′m ⊕ xi) = y′i ̸= yi, based on the definition of Ss and
assumption on D, so there are AF,P,D ≤ 1− E(x,y)∼D[I((x, y) ∈ Ss/S)] ≤ E(x,y)∼D[I((x, y) ∈
S)] + E(x,y)∼D[I((x, y) /∈ Ss)] ≤ ϵ+ ϵ/N ≤ 2ϵ.

So there are |AF,P,D −AF,P,S | ≥ 1− 2ϵ, which is what we want.

G.3 PROOF OF PROPOSITION 5.5

Proof. Firstly, let D be defined on set SD = {(xi, yi)} ⊂ 2Γ × Γ and P(x,y)∼D(x = xi) = Pi, then
there is a finite set Ss ⊂ SD such that P(x,y)∼D(x ∈ Ss) ≥ 1− ϵ/2.

Let ni be the number of xi in S, so we have that:

|AF,P,D −AF,P,S |
= |E(x,y)∼D[I(F̂(P ⊕ x) = y)]− 1

|S|
∑

x∈S(I(F̂(P ⊕ x) = y))|
= |

∑
(xi,yi)

(Pi − ni

|S|)I(F̂(P ⊕ xi) = yi)|
≤

∑
(xi,yi)∈Ss

|Pi − ni

|S| | I(F̂(P ⊕ xi) = yi) + ϵ/2

Based on the Hoeffding inequality, for any xi, we know that with probability 1− 2e−Nϵ2/2, there is
|Pi − ni

|S| | ≤ ϵ/2.

So we take a N such that 1−
∑

(xi,yi)∈Ss
2e−Nϵ2/2 < δ(because Ss is finite, so such N must exist),

then there are |AF,P,D − AF,P,S | ≤
∑

(xi,yi)∈Ss
|Pi − ni

|S| | I(F̂(P ⊕ xi) = yi) + ϵ/2 ≤ ϵ with
probability 1− δ, which is what we want.

29

	Introduction
	Related Work
	Prerequisite
	Existence conditions and computational complexity
	Existence of perfect prepended-prompt is NPC
	A sufficient condition for PPP(,S,F)=1
	Length of perfect prepended-prompt
	Necessary conditions on S for PPP(,S,F)=1 to be valid for all F

	Generalization of prepended-prompt
	Experiment
	Conclusion
	statements
	Notations and preliminary results
	Proof of Theorem 4.1
	Proofs of Section 4.2
	Several lemmas
	Proof of Theorem 4.4
	Explanation and Proof of Proposition 4.7

	Proofs in Section 4.3
	Proof of Proposition 4.8
	Proof of Proposition 4.9

	Proofs of Section 4.4
	Proof of Proposition 4.13
	Proof of Proposition 4.14

	Proofs of Section 5
	Proof of Theorem 5.1
	Proof of Proposition 5.4
	Proof of Proposition 5.5

