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ABSTRACT

Online continual learning (OCL) aims to enable neural networks to learn sequen-
tially from streaming data while mitigating catastrophic forgetting, a key chal-
lenge in which learning new tasks interferes with the retention of previously ac-
quired knowledge. Although most existing approaches rely on memory buffers to
replay past samples, training jointly on mixed data from different tasks often leads
to gradient conflicts, which undermine model performance. To address this, we
propose FairOCL, a framework that draws inspiration from fair resource alloca-
tion in communication networks. FairOCL formulates gradient aggregation across
tasks as a constrained utility maximization problem and enforces fairness in the
optimization process, allowing principled control over task prioritization. Exten-
sive experiments on several standard benchmarks show that FairOCL achieves
consistent improvements over state-of-the-art methods. Our code will be released.

1 INTRODUCTION

Continual learning (CL) aims to equip machine learning models with a remarkable capability of
human intelligence, i.e., the ability to learn continuously over time, acquiring new knowledge while
retaining and integrating prior experience (McCloskey & Cohen, 1989). This capability is crucial for
developing general-purpose intelligent systems that can adapt to dynamic and evolving environments
without forgetting previously learned information. Traditional CL methods typically operate under
the offline setting (Parisi et al., 2019), where models have access to the full dataset of each task and
are allowed multiple passes over the data. In contrast, online continual learning (OCL) presents a
more realistic and challenging scenario, where data arrive sequentially in a stream and each sample
can be used only once. This streaming constraint closely aligns with practical deployment scenarios
such as real-time learning in robotics, edge computing, and user-facing systems (Mai et al., 2022;
Gunasekara et al., 2023). In this paper, we focus on the challenging class incremental learning
setting of the OCL mode, where the model incrementally learns to recognize all classes observed so
far from a data stream in a single pass, and classify test instances without access to task identity.

Experience replay has emerged as the cornerstone of nearly all successful OCL methods (Chaudhry
et al., 2019; Guo et al., 2022; Soutif-Cormerais et al., 2023), where a small subset of past data is
stored in a memory buffer and interleaved with current samples during training. Earlier approaches
imply a uniform gradient aggregation strategy and treat gradients from previous tasks equally dur-
ing joint optimization (Rolnick et al., 2019; Buzzega et al., 2020; Caccia et al., 2022; Wang et al.,
2023). However, this simple scheme ignores task heterogeneity, allowing a few dominant tasks
to overshadow others and resulting in unbalanced updates. Gradient transformation approaches
modify gradients through projections, constraining gradient updates to be approximately orthogo-
nal to the subspace of past representations to preserve their high-level statistics (Zeng et al., 2019;
Saha et al., 2021; Deng et al., 2021; Yoo et al., 2024). However, these methods focus on preserv-
ing individual task representations and do not explicitly balance their relative influence, which may
result in uneven retention of past task knowledge. Gradient alignment methods instead reweight
gradients according to their conflict with the current task, emphasizing conflicting ones while dis-
carding others (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Riemer et al., 2019; Guo et al.,
2020; Gupta et al., 2020). Though effective at reducing current–past interference, these approaches
overlook conflicts among past tasks, which leads to imbalanced retention. More recently, Pareto
optimization has been explored to capture inter-task relationships more holistically (Wu et al., 2024),
but this approach requires complex hyper-gradient computations for stable training.
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To tackle the problem of achieving balanced learning across past tasks in OCL, we propose
FairOCL, a principled framework that mitigates gradient interference in replay-based methods. Our
approach builds on an analogy with fair resource allocation in communication networks (Mo & Wal-
rand, 2000). We view each past task as a user competing for resources, where the shared gradient
direction serves as the resource to reduce task losses, and the “service quality” of a task is mea-
sured by its loss reduction after updating along this direction. Under this perspective, replay-based
OCL can be formulated as a utility maximization problem, where each task is assigned an α-fair
utility function. Different choices of α correspond to different fairness behaviors, among which
certain settings coincide with classical notions such as max-min (Radunovic & Le Boudec, 2007),
proportional (Kelly, 1997), and minimum potential delay fairness (Kelly et al., 1998). From a CL
standpoint, this fairness-driven formulation enhances stability by enforcing fairness among past task
gradients to prevent uneven retention, while preserving plasticity by ensuring sufficient gradient con-
tribution from the current task. In addition, to counteract the task recency bias (Chrysakis & Moens,
2023) inherent in replay-based methods, where predictions are biased toward recently observed data,
we incorporate knowledge distillation (Hinton et al., 2015) to stabilize feature representations and
mitigate drift in earlier tasks.

Our contributions are three-fold: i) We provide a fresh perspective that connects replay-based OCL
with fair resource allocation in communication networks, framing gradient aggregation as a fairness-
driven problem. ii) We propose FairOCL, the first framework to formulate gradient aggregation in
replay-based OCL as a fairness-constrained utility maximization problem, enabling dynamic and
balanced task contributions during training. iii) To further mitigate task recency bias inherent in
replay-based methods, we incorporate knowledge distillation to stabilize past representations and
improve retention. Extensive experiments on standard benchmarks, including CIFAR-10 Krizhevsky
et al. (2009), CIFAR-100 Krizhevsky et al. (2009), TinyImageNet Le & Yang (2015), and ImageNet-
100 Hou et al. (2019), demonstrate that FairOCL consistently outperforms competitive state-of-the-
art baselines across varying buffer sizes, validating both its effectiveness and generality.

2 RELATED WORK

Online continual learning (OCL) and Replay-based Methods. OCL aims to train models to adapt
to non-stationary data streams under a strict single-pass constraint while mitigating catastrophic
forgetting (McCloskey & Cohen, 1989). Unlike offline continual learning, which permits multiple
passes over task datasets (Parisi et al., 2019), OCL operates under more realistic and restrictive
conditions. A foundational strategy in OCL is experience replay (Rolnick et al., 2019), which stores
a subset of past data in a memory buffer and interleaves it with incoming samples during training.
Recent extensions include DER++ (Buzzega et al., 2020), which distills past experiences from the
logits of samples stored in the memory buffer, ER-ACE (Caccia et al., 2022), which introduces
asymmetric losses to balance new and replay data, and CBA (Wang et al., 2023), which utilizes
stored past samples to correct the recency bias through a bias attractor. Despite their effectiveness,
these methods typically aggregate gradients from past and current tasks with uniform weighting,
which often produces conflicting gradient directions and ultimately degrades performance.

Gradient Transformation Methods. One way to mitigate gradient conflicts is to apply projection-
based transformations, where gradient updates are constrained to be orthogonal to the subspace
spanned by past representations so as to preserve their high-level statistics. Representative examples
include OGD (Zeng et al., 2019) and GPM (Saha et al., 2021), which build orthogonal subspaces to
protect important representations of earlier tasks. Later methods improved estimation of projection
subspace either by maintaining averaged mini-batch activations to avoid capacity exhaustion (Zeng
et al., 2019; Guo et al., 2022) or by employing low-rank approximations of past activations in an
SVD-like manner (Saha et al., 2021; Deng et al., 2021; Lin et al., 2022; Saha & Roy, 2023). Re-
cently, LPR (Yoo et al., 2024) extended this line of work to the online setting, introducing a layerwise
proximal point formulation that stabilizes replay-based training by encouraging gradual representa-
tion updates. Although effective in preserving knowledge, these methods regulate tasks indepen-
dently without explicitly balancing their relative influences, potentially leading to uneven retention.

Gradient Alignment Methods. A complementary line of work mitigates gradient conflicts by ad-
justing update directions according to their compatibility with past task gradients. GEM (Lopez-Paz
& Ranzato, 2017) enforces non-negative inner products between the current gradient update di-
rection and past task gradients, ensuring that new learning does not harm prior knowledge. More
efficient variants such as A-GEM (Chaudhry et al., 2019) and MEGA (Guo et al., 2020) reduce
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(a) Experience Replay (b) Gradient Transformation (c) Gradient Alignment (d) POCL (Wu et al. 2024) (e) FairOCL (Ours)

(a) (b) (c) (d) (e)
update
direction

more balanced projections

Figure 1: Conceptual illustration of gradient update strategies. Here, S is the subspace spanned
by past-task representations. (a) Uniform gradient aggregation treat current and past-task gradi-
ents equally. (b) Gradient Transformation projects g3 onto the subspace orthogonal complement
of S to preserve prior knowledge. (c) Gradient Alignment considers gm

1 that conflicts with g3 while
neglecting g2 that does not. (d) POCL (Wu et al., 2024) obtains weights λ∗ via Pareto optimization
to flexiblely manage inter-task trade-offs. (e) FairOCL (Ours) formulates gradient aggregation as
an α-fair utility maximization problem and yields λ∗ that achieves more balanced projections (blue
arrows) across tasks. See §3 and §4 for details.

computational cost by averaging historical gradients rather than applying the aforementioned in-
ner project constraint individually. Meta-learning approaches such as MER (Riemer et al., 2019)
and La-MAML (Gupta et al., 2020) further adapt update directions through bi-level optimization.
Though highlighting the importance of handling gradient conflicts, these methods primarily focus on
resolving conflicts between the current task and past tasks, while overlooking relationships among
past tasks themselves. More recently, POCL (Wu et al., 2024) employs Pareto optimization to cap-
ture inter-task relationships and achieve more holistic gradient balancing, but this approach relies
on computationally intensive hyper-gradient calculations for stability. Our method extends this re-
search direction by incorporating fairness-driven constraints, thereby promoting balanced gradients
across past tasks without relying on hyper-gradients.

Fairness in Capacity-Constrained Resource Allocation. Fair resource allocation has long been
studied in wireless communication, where limited resources such as power and bandwidth must
be distributed among users in a manner that balances equity and efficiency, and has more recently
also appeared in settings like federated learning (Li et al., 2020; Zhang et al., 2022) and multi-
task learning (Ban & Ji, 2024). To formalize this trade-off, researchers have proposed a variety of
fairness metrics. Jain’s fairness index (Jain et al., 1984) quantifies the uniformity of allocations,
while proportional fairness (Kelly, 1997) strikes a compromise between equity and throughput by
allocating resources in proportion to demand. Max-min fairness (Radunovic & Le Boudec, 2007)
instead protects the least-served user by maximizing their minimum allocation. These notions are
unified under the α-fairness framework (Mo & Walrand, 2000; Lan et al., 2010), where varying α
interpolates between utilitarian efficiency (α!→!0) and max-min equity (α→∞). In this paper, we
bridge OCL with fair resource allocation theory and propose FairOCL, which formulates gradient
aggregation as an α-fair utility maximization problem to alleviate gradient interference and mitigate
forgetting, while preserving plasticity to learn new tasks.

3 PRELIMINARIES

3.1 GRADIENT AGGREGATION IN REPLAY-BASED OCL

Online continual learning (OCL) aims to incrementally learn a sequence of N tasks from a non-
stationary data stream under strict single-pass constraints. Let gn denote the gradient of the current
task n computed from its incoming batch, where n = 1, . . . , N . Let gm

i denote the gradient of a
previous task i<n computed from stored samples in the memory bufferM.

Traditional replay-based OCL methods (Rolnick et al., 2019; Buzzega et al., 2020; Caccia et al.,
2022) calculate the gradient update direction u by aggregating the current gradient gn with previous
task gradients gm

i through uniform weighting (cf., Fig. 1 (a)):

u = gn +
∑n−1

i=1
gm
i . (1)

While this uniform gradient weighting reduces catastrophic forgetting, it often suffers from gradient
conflicts due to its naive averaging scheme. To mitigate such conflicts, gradient transformation
methods (Zeng et al., 2019; Saha et al., 2021; Deng et al., 2021; Yoo et al., 2024) project the current
gradient gn onto the orthogonal complement of S to preserve prior representations (cf., Fig. 1 (b)),
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where S is the subspace spanned by past-task representations. Gradient alignment methods (Lopez-
Paz & Ranzato, 2017; Chaudhry et al., 2019; Guo et al., 2020) instead determine u by solving:

max
u
−1

2
∥gn − u∥22, s.t. ⟨u, gm

i ⟩ ≥ 0, i = 1, . . . , n− 1. (2)

This formulation ensures that u remains close to the current task gradient gn to preserve the perfor-
mance of the current task, while maintaining non-negative alignment with past task gradient gm

i to
prevent negative backward transfer (cf., Fig. 1 (c)). However, the solution implicitly prioritizes past
tasks that conflict with the current gradient, while neglecting inter-task relationships.

Building on these formulations, Wu et al. (2024) (cf., Fig. 1 (d)) derived a hierarchical gradient
aggregation framework, reformulating the update direction u as:

u = gn + g(λ) = gn +
∑n−1

i=1
λig

m
i , (3)

where gn is the current task gradient, and g(λ) aggregates past gradients with weights λi. This re-
veals that replay-based methods inherently prioritize the current task gradient, while the aggregation
of past task gradients primarily serve as a regularization to mitigate forgetting. Thus, effective OCL
requires not only preserving the current task gradient but also fairly balancing past task gradients.

3.2 FAIRNESS IN RESOURCE ALLOCATION

An analogous challenge arises in communication networks, where fairness is a central principle for
allocating limited resources (e.g., channel bandwidth, transmission rate) among K users. A common
approach formulates this as a utility maximization problem under link capacity constraints:

max
x1,...,xK∈C

∑
i∈[K]

u(xi) := (1− α)−1x1−α
i , α ∈ [0, 1) ∪ (1,+∞), (4)

where xi denotes the allocation for user i (e.g., transmission rate), u(·) is the utility (e.g., through-
put), and C represents the convex set of feasible allocations. The function (1−α)−1x1−α

i is known as
the α-fair function. Different choices of α recover widely studied fairness notions. Proportional
fairness arises as α→ 1, where the utility reduces to log xi, and the objective becomes the sum of
logarithmic utilities. Minimum potential delay fairness corresponds to α=2, where the objective
to maximize

∑
i−1/xi can be interpreted as minimizing the total delay for transferring unit-size

files. Max-min fairness is obtained as α→+∞, which protects the least-served user by maximiz-
ing their minimum allocation. We refer readers to (Mo & Walrand, 2000) and (Ban & Ji, 2024) for
detailed derivations and more discussion. This well-established framework motivates our treatment
of gradient aggregation in OCL as a fairness-driven resource allocation problem.

4 FAIROCL: FAIR GRADIENT AGGREGATION IN OCL

Inspired by the principles of fair resource allocation, we propose FairOCL, a framework for fairness-
aware and adaptive gradient aggregation in OCL. FairOCL addresses the hierarchical gradient ag-
gregation by regulating past-task gradients to ensure more balanced contributions (cf., Fig. 1 (e)).

4.1 PROBLEM FORMULATION

Recall the hierarchical formulation in Eq. (3), where each gm
i denotes the gradient of a past task

i. Our goal is to construct an update direction d= g(λ) that fairly aggregates past-task gradients.
Following the analogy to communication networks, we interpret gm⊤

i d as the utility (loss reduction
rate) xi for task i, and larger gm⊤

i d indicate more favorable optimization for task i.

To promote fairness among n−1 past tasks, we adopt the α-fair utility function in Eq. (4), and
view each past task as a user in network resource allocation. The utility of user i is calculated as
(1−α)−1x1−α

i =(1−α)−1(gm⊤
i d)1−α, where α∈ [0, 1)∪(1,+∞). We then formulate:

max
d∈Bϵ

∑n−1

i=1

(gm⊤
i d)1−α

1− α
, s.t. gm⊤

i d ≥ 0, (5)

where Bϵ is a ball of radius ϵ centered at the origin, enforcing a bound on the magnitude of the update
direction d, similar to the link capacity constraints in network resource allocation. The convexity of
the constraint set of d ensures the tractability of the problem. This formulation offers a principled
and effective perspective on fairness-aware gradient aggregation for OCL, enabling FairOCL to
adaptively modulate task contributions while maintaining optimization efficiency under constraints.
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Algorithm 1 FairOCL Training Procedure

Require: Initial student parameters θ0; initialize teacher parameters as θtea
0 ← θ0, fairness param-

eter α, memory bufferM, learning rate η, number of tasks N
1: for task n = 1 to N do ▷ Sequential task learning
2: Initialize task model: θ(0)

n ← θn−1, θtea(0)
n ← θtea

n−1

3: for each batch B(b)n in task n do ▷ Online updates
4: Compute current task gradient: gn ← ∇θL(θ(b−1)

n ,θ
tea(b−1)
n ;B(b)n ) ▷ Eq. (9)

5: Compute past task gradients: [gm
1 , . . . , gm

n−1]← ∇θL(θ(b−1)
n ,θ

tea(b−1)
n ;M) ▷ Eq. (9)

6: Solve Eq. (7) to obtain weights λ← w∗

7: Update direction: u = gn +
∑n−1

i=1 λig
m
i

8: Update student: θ(b)
n = θ

(b−1)
n − ηu

9: Update teacher via EMA ▷ Eq. (8)
10: Update memory bufferM via reservoir sampling (Vitter, 1985)
11: end for
12: Final task model: θn ← θ

(b)
n , θtea

n ← θ
tea(b)
n

13: end for

4.2 OPTIMIZATION METHOD

Since the objective in Eq. (5) is monotonically non-decreasing in d, the optimal solution lies on the
boundary of Bϵ. At the optimum, the KKT conditions (Boyd & Vandenberghe, 2004) imply:∑

i
gm
i (gm⊤

i d)α=cd, c > 0. (6)

Following (Ban & Ji, 2024), we set c= 1 for simplicity. Assume that the task gradients {gm
i } are

linearly independent, we can express d as a non-negative combination d =
∑

i ωig
m
i . Substituting

yields the relation (gm⊤
i d)α = ωi, which gives the system:

G⊤Gω = ω−1/α, α ̸=0, (7)

where G= [g1 · · · gn] is a gradient matrix and the exponent −1/α is applied elementwise. When
α = 0, this reduces to uniform weighting where ωi = 1 for all i. Following (Ban & Ji, 2024), we
solve Eq. (7) by using a constrained nonlinear least squares formulation. Since FairOCL performs
a single backward pass over the current batch combined with memory samples, its computational
cost does not increase with the number of tasks. The overall training budget remains comparable to
other replay-based baselines (see §A.4).

4.3 ALLEVIATING FEATURE DRIFT WITH KNOWLEDGE DISTILLATION

While fair gradient aggregation ensures balanced updates across tasks, replay-based OCL still suf-
fers from task recency bias (Chrysakis & Moens, 2023), which can compromise gradient aggregation
as it undermines the stability of representations. To mitigate this, we integrate knowledge distilla-
tion with an Exponential Moving Average (EMA) teacher (Tarvainen & Valpola, 2017), where the
teacher parameters are updated as:

θtea(b)
n = γθ(b)

n + (1− γ)θtea(b−1)
n , n = 1, . . . , N. (8)

Here, θ(b)
n denotes the student model parameters at task n, batch b, and γ ∈ [0, 1) is the momentum

coefficient, which is set to 0.1 empirically in our experiments. The overall training loss integrates
standard cross-entropy with a distillation term:

L(θ,θtea;D) = LCE(θ;D) + βLKL(θ,θ
tea, τ ;D), (9)

where D = {B(b)n ,M} is the current training data, LCE is the cross-entropy loss, LKL is the KL
divergence with temperature τ , and β controls the relative contribution of the distillation term. The
overall training pipeline is detailed in Alg. 1. At inference, we average the final weights of teacher
and student to obtain a stable model estimate following (Tarvainen & Valpola, 2017).
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Table 1: Average Accuracy (Acc) (%, ↑) on four benchmark datasets with different memory buffer
size |M|. Displayed values are the mean and standard deviation computed over 5 runs. See §5.2.

Dataset CIFAR-10 CIFAR-100 TinyImageNet ImageNet-100

|M| 200 500 1000 1000 2000 5000 2000 5000 10000 2000 5000 10000

ER (NeurIPS’19) 46.33±2.42 55.73±2.04 62.99±2.10 23.00±3.80 31.55±1.27 38.05±1.08 12.29±0.44 19.64±1.14 26.92±1.89 19.06±0.90 29.74±1.34 36.72±1.09

DER++ (NeurIPS’20) 47.07±0.97 55.53±1.05 58.51±0.68 22.80±1.80 25.89±1.46 25.71±2.40 16.10±1.23 18.49±1.08 18.06±1.30 15.36±3.04 19.19±1.55 20.48±4.67

DVC (CVPR’22) 48.08±4.27 58.72±2.03 61.11±2.97 18.66±2.54 22.73±2.90 28.47±3.95 14.04±0.75 18.48±1.49 17.95±2.93 14.54±5.15 21.88±3.45 28.50±2.93

GSA (CVPR’23) 48.90±3.38 61.45±1.95 67.63±1.24 29.68±1.54 36.96±0.79 45.86±1.89 19.08±0.18 27.22±0.95 32.94±0.75 24.29±0.59 33.47±1.18 40.18±0.93

PCR (CVPR’23) 52.20±0.66 60.61±2.23 61.66±13.86 30.68±0.81 38.63±1.01 45.27±0.78 19.55±0.54 27.02±0.37 33.34±0.22 19.89±6.24 31.35±3.01 36.99±4.70

POCL*
(ICML’24) 35.69±3.82 48.08±3.72 56.97±3.88 16.48±1.45 24.84±0.89 32.16±2.44 11.59±0.48 19.45±1.72 24.38±0.98 – – –

ER-MKD (ICML’24) 57.54±2.55 68.48±0.92 74.33±0.68 38.50±0.50 45.20±0.20 52.10±0.50 25.03±0.57 33.32±0.50 39.69±0.55 30.67±0.46 39.71±1.07 44.92±0.98

FairOCL 58.65±0.85 68.71±0.89 74.83±0.90 39.47±0.34 46.53±1.03 53.39±0.34 26.92±0.38 34.95±0.46 40.52±0.61 31.19±1.78 41.18±1.55 47.22±0.93

* denotes results obtained by running the official code.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. Following (Michel et al., 2024; Wu et al., 2024), we consider four representative bench-
marks for evaluating OCL. CIFAR-10 (Krizhevsky et al., 2009) consists of 10 classes with 50,000
training and 10,000 test images, which is partitioned into five disjoint tasks with two classes each.
CIFAR-100 (Krizhevsky et al., 2009) includes 100 classes with the same number of training and test
images as CIFAR-10, which is organized into 10 disjoint tasks of 10 classes each. TinyImageNet (Le
& Yang, 2015) contains 200 classes, with 100,000 training and 10,000 test images, which is split into
20 non-overlapping tasks of 10 classes each. ImageNet-100 (Hou et al., 2019) is a 100-class subset
of ImageNet-1K (Deng et al., 2009), which is divided into 20 tasks, each comprising 5 classes.

Baselines. To contextualize the performance of our method, we compare it against a diverse set
of state-of-the-art replay-based OCL baselines. ER (Rolnick et al., 2019) is a foundational experi-
ence replay method that trains the model using cross-entropy loss on a combination of current and
buffered samples. DER++ (Buzzega et al., 2020) enhances ER by introducing a logit-level consis-
tency regularization via knowledge distillation. DVC (Gu et al., 2022) augments replay with a dual-
view contrastive loss that maximizes mutual information between different augmentations of input
data. GSA (Guo et al., 2023) deal with cross-task class discrimination caused by data imbalance
by introducing a self-adaptive loss based on gradients. PCR (Lin et al., 2023) adopts a proxy-based
contrastive loss to enhance discriminative feature learning across tasks. POCL (Wu et al., 2024)
incorporates Pareto optimization to balance trade-offs among tasks with a hyper-gradient-based im-
plementation. ER-MKD is a basic instantiation of MKD-OCL (Michel et al., 2024), which incorpo-
rates a momentum-based knowledge distillation strategy into ER, producing a simple yet competi-
tive baseline. We adopt ER-MKD as it allows us to evaluate the core mechanism of MKD-OCL in
isolation from additional complexities introduced when combining it with stronger baselines.

Evaluation Metrics. We adopt two standard metrics in the continual learning literature: Average
Accuracy and Average Forgetting. Let Ai,j denote the test accuracy on task i after training on
task j. Average Accuracy (Acc) measures the overall model performance, and is computed as the
average accuracy after learning all the N tasks: Acc = 1

N

∑N
i=1 Ai,N . Average Forgetting (F)

quantifies forgetting of previously learned tasks, which is computed as the average of the maximum
performance drop of each task after learning the final task: F = 1

N−1

∑N−1
i=1 maxt∈{1,...,N−1}(Ai,t−

Ai,N ). Together, they comprehensively evaluate both plasticity (via Acc) and stability (via F),
providing a balanced view of continual learning performance.

Implementation Details. Following (Guo et al., 2023; Michel et al., 2024), we use a standard
ResNet-18 (He et al., 2016) (not pre-trained) as the backbone for all methods. The memory buffer is
maintained using reservoir sampling (Vitter, 1985). Our method is trained using Adam (Kingma &
Ba, 2015) with an initial learning rate of 0.0005. The input batch size is set to 10 for CIFAR-10, and
16 for all other datasets. For replay, the memory sampling batch size is 64/80/160 for CIFAR-10
with |M| = 200/500/1000, 256 for CIFAR-100 and TinyImageNet, and 128 for ImageNet-100.
Each experiment is run on a single NVIDIA GeForce RTX 4090 GPU. The fairness parameter α is
set to 0.5 for CIFAR-10, and 1.5 for all other three datasets. For knowledge distillation, we use a
temperature τ = 3.0 and a distillation loss weight β = 5.5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Average Forgetting (F) (%, ↓) on four benchmark datasets with different memory buffer
size |M|. Displayed values are the mean and standard deviation computed over 5 runs. See §5.2.

Dataset CIFAR-10 CIFAR-100 TinyImageNet ImageNet-100

|M| 200 500 1000 1000 2000 5000 2000 5000 10000 2000 5000 10000

ER (NeurIPS’19) 52.90±3.54 34.07±3.13 23.43±3.41 33.04±1.75 22.84±1.27 14.55±2.73 40.68±0.72 28.43±1.14 20.78±1.00 43.69±2.12 28.04±1.11 0±3.37

DER++ (NeurIPS’20) 36.93±5.86 28.26±5.06 19.47±3.20 33.01±4.85 29.31±3.65 30.10±3.56 32.28±7.37 33.56±3.80 33.42±4.83 27.68±1.04 17.53±2.51 19.04±0.57

DVC (CVPR’22) 45.36±4.08 30.64±2.16 24.21±3.18 41.24±2.28 36.20±2.54 33.26±3.13 38.20±2.49 39.01±5.46 40.71±7.99 53.97±2.25 41.88±4.36 34.86±4.66

GSA (CVPR’23) 35.85±4.05 23.74±2.47 16.93±2.58 30.65±0.61 20.78±1.89 8.15±0.37 36.98±0.55 22.72±0.92 13.66±0.84 48.30±1.26 32.14±0.82 19.15±0.81

PCR (CVPR’23) 30.90±4.50 26.92±5.01 19.57±3.35 34.45±1.67 25.41±1.71 15.03±1.97 27.88±2.10 16.86±0.60 9.78±0.64 37.93±1.84 27.17±3.37 19.04±2.38

POCL*
(ICML’24) 55.01±4.87 34.82±6.14 24.78±4.92 31.73±0.66 19.31±1.06 11.94±2.12 36.04±0.84 20.18±2.20 13.53±1.56 – – –

ER-MKD (ICML’24) 39.95±3.43 21.48±1.38 10.96±1.73 16.62±1.10 10.73±0.89 5.31±1.20 25.21±1.25 16.49±0.97 10.02±0.97 25.22±2.54 17.00±1.94 11.91±0.57

FairOCL 32.11±2.00 20.82±1.77 13.16±0.64 15.80±1.40 10.71±1.65 6.51±0.98 19.40±1.09 14.00±0.79 9.80±0.81 23.46±1.54 14.83±1.16 11.03±0.91

* denotes results obtained by running the official code.
(a) (b)

(a) (b)

Figure 2: (a) Average Accuracy (Acc) and (b) Average Forgetting (F) of different OCL methods on
CIFAR-10 with N=5 and buffer size |M| as 200. Here, T1-T4 denotes the previously learned tasks,
T5 is the current task, and Avg(T[1:4]) means the average performance of past tasks. See §5.3.

5.2 COMPARISON RESULTS

Average Accuracy (Acc) Results. Table 1 reports the mean and standard deviation of Average
Accuracy (Acc) over 5 runs on four benchmarks with varying buffer sizes |M|. FairOCL consis-
tently achieves the best performance across all settings. On CIFAR-10, it yields 58.65%, 68.71%,
and 74.83% at buffer sizes 200, 500, and 1000, corresponding to relative improvements of 1.93%,
0.34%, and 0.67% over the strongest baseline ER-MKD. On CIFAR-100, FairOCL reaches 39.47%,
46.53%, and 53.39% for buffer sizes 1000, 2000, and 5000, outperforming ER-MKD by 3.22%,
2.94%, and 2.48%. On TinyImageNet, it achieves 26.92%, 34.95%, and 40.52% with buffer sizes
2000, 5000, and 10000, surpassing ER-MKD by 7.55%, 4.89%, and 2.09%. Finally, on ImageNet-
100, FairOCL obtains 31.19%, 41.18%, and 47.22% under buffer sizes 2000, 5000, and 10000, with
relative gains of 1.70%, 3.70%, and 5.12%. These results demonstrate that FairOCL achieves robust
improvements across both simpler and more challenging benchmarks, highlighting its effectiveness
in balancing learning and retention. Runtime analysis in §A.4 confirms that FairOCL remains com-
parable in cost to other replay-based methods.

Average Forgetting (F) Results. Table 2 presents Average Forgetting (F) across the same bench-
marks, where lower values indicate better knowledge retention. FairOCL consistently achieves the
lowest or near-lowest forgetting across most buffer sizes, confirming its resistance to catastrophic
forgetting. On CIFAR-10 and CIFAR-100, it performs best in low-resource regimes, while slightly
trailing ER-MKD at larger buffer sizes, though with narrow margins. More importantly, on the
more challenging TinyImageNet and ImageNet-100, FairOCL delivers the lowest forgetting across
all buffer sizes. For example, it reduces forgetting on TinyImageNet to 19.40%, 14.00%, and 9.80%
(buffers 2000, 5000, 10000), and on ImageNet-100 to 23.46%, 14.83%, and 11.03%, outperforming
ER-MKD and other strong baselines. Overall, these results confirm that FairOCL not only improves
accuracy but also provides superior retention in the OCL setting.

5.3 VERIFICATION ON FAIROCL

Past Task Knowledge Preservation. We first evaluate how well different methods preserve past
knowledge by computing Average Accuracy (Acc) on all previously encountered tasks after learning
each new task. As shown in Fig. 2 (a), FairOCL maintains consistently high accuracy across tasks,
particularly for earlier ones (T1–T4). While it is not the best on the most recent task T5, FairOCL
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Table 3: Mean Average Accuracy (Acc) on previous tasks T[1:n−1] and on all tasks T[1:n] for
CIFAR-10 with |M|=200 and N=5, where n = 2, . . . , N . See §5.3 for details.

n = 2 n = 3 n = 4 n = 5

Methods Avg(T1) Avg(T[1:2]) Avg(T[1:2]) Avg(T[1:3]) Avg(T[1:3]) Avg(T[1:4]) Avg(T[1:4]) Avg(T[1:5])

ER (NeurIPS’19) 55.98±1.97 72.34±0.71 49.36±6.67 60.38±4.81 39.45±4.76 50.62±3.22 32.98±1.80 43.73±1.14

DVC (CVPR’22) 49.29±17.36 68.28±6.29 51.50±3.78 60.55±1.62 45.12±2.96 53.99±1.19 39.17±5.77 46.97±3.30

GSA (CVPR’23) 73.05±10.29 74.12±4.11 58.85±3.37 63.36±2.34 49.88±3.28 57.07±1.57 42.53±4.13 49.98±3.20

PCR (CVPR’23) 66.38±11.02 75.70±3.87 62.31±7.83 65.83±3.01 54.33±7.13 57.42±4.25 47.16±3.88 52.86±1.73

ER-MKD (ICML’24) 71.54±9.25 80.12±3.51 63.09±3.09 70.23±2.65 57.21±3.39 63.40±3.60 47.34±2.97 55.35±1.91

FairOCL 77.43±7.17 81.44±3.40 62.82±4.09 69.54±2.74 59.14±3.97 63.95±2.63 52.94±2.09 58.65±0.85

Figure 3: Task-based confusion matrix of various gradient-alignment-based OCL methods on the
CIFAR-10 dataset with |M|=200. See §5.3 for details.

achieves the highest average accuracy over past tasks (Avg(T[1:4])), demonstrating its ability to retain
historical knowledge and avoid overfitting to the most recent task. In addition, Fig. 2 (b) shows the
Average Forgetting (F) per task. FairOCL consistently exhibits lower forgetting across all tasks,
with strong performance on Avg(T[1:4]), underscoring its ability to mitigate catastrophic forgetting
and ensure preservation of earlier task knowledge.

Table 3 further details accuracy on past tasks (Avg(T[1:n−1])) and all tasks (Avg(T[1:n])) as the task
sequence grows from n = 2 to n = 5. FairOCL consistently surpasses all baselines in past-task
knowledge retention. For instance, at n=5, it achieves 52.94% on past tasks and 58.65% overall,
compared to ER-MKD (47.34% / 55.35%) and PCR (46.13% / 52.86%). This demonstrates that
FairOCL’s fairness-driven aggregation directly translates into improved overall performance.

Task Interrelationships Analysis. Beyond average accuracy on past tasks, we also examine task
interrelationships using the confusion matrices. An effective method should display strong diago-
nal values, indicating accurate performance on each task, and low off-diagonal entries, reflecting
limited interference across tasks. As shown in Fig. 3, FairOCL achieves the most uniform and ele-
vated diagonal values, particularly on earlier tasks T1–T4, showing that it preserves knowledge more
evenly throughout the task sequence. In contrast, ER, ER-MKD, and GSA all exhibit stronger bias
toward the most recent task T5 while showing weaker retention of earlier tasks. Overall, the inter-
task analysis confirms that FairOCL maintains more balanced knowledge preservation across tasks,
mitigating forgetting while sustaining strong performance on current tasks.

5.4 ABLATION STUDY

Component Analysis. To evaluate the contribution of each component in FairOCL, we perform
an ablation study on CIFAR-10 (|M| = 1000), CIFAR-100 (|M| = 2000), and TinyImageNet
(|M| = 5000). As shown in Table 4, both the fair gradient aggregation strategy (“Fair”) and the
recency-bias mitigation via knowledge distillation (“RB-KD”) contribute substantially, but serve
complementary purposes. Fairness alone delivers consistent improvements across datasets, con-
firming its role in balancing past-task contributions and alleviating gradient interference, an aspect
that RB-KD cannot address. While RB-KD yields larger standalone improvements in some cases,
it mainly stabilizes representations against drift and does not address imbalanced gradient updates.
The best performance is consistently obtained when both components are combined, indicating that
fairness provides the principled foundation for balanced continual learning, while RB-KD acts as an
auxiliary stabilizer that further enhances retention. Together, they form a synergistic framework that
surpasses either component in isolation and is essential to the full effectiveness of FairOCL.
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Table 4: Component analysis on FairOCL. Here, “Fair” denotes the fair gradient aggregation
strategy, and “RB-KD” denotes the task recency bias alleviation via knowledge distillation. Results
show that both components contribute complementary benefits, and the best performance is consis-
tently achieved when both are combined. See §5.4 for details.

Fair RB-KD
CIFAR-10 (|M|=1000) CIFAR-100 (|M|=2000) TinyImageNet (|M|=5000)

Acc (↑) F (↓) Acc (↑) F(↓) Acc (↑) F(↓)

✗ ✗ 56.84 38.88 31.21 23.14 19.64 29.55
✓ ✗ 62.00 27.66 40.00 17.08 26.88 20.82
✗ ✓ 67.95 20.73 44.78 11.21 33.16 16.05
✓ ✓ 68.44 19.38 46.43 9.02 34.51 14.08
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Figure 4: Ablation study on hyperparameters. (a) Effect of loss weight β on CIFAR-100 (|M|=
5000). (b) Effect of fairness parameter α and temperature τ on CIFAR-10 (|M| = 1000) and
CIFAR-100 (|M|= 5000). FairOCL shows stable performance across a broad range of α values,
indicating robustness to this parameter. See §5.4 for details.

Hyperparameters. We first determine the loss weight β in Eq. (9). Fig. 4 (a) reports the Average
Accuracy (Acc) on CIFAR-100 with |M|=5000 under different values of β. The best performance
is obtained at β=5.5, which we adopt as the default for all experiments.

We then study the effects of the fairness parameter α and the distillation temperature τ . Fig. 4 (b)
shows results on CIFAR-10 with |M|= 1000 (left) and CIFAR-100 with |M|= 5000 (right). On
CIFAR-10, the best performance occurs at α = 0.5 and τ = 3.0, which we use for all CIFAR-10
settings. On CIFAR-100, the optimal configuration is α= 1.5, τ = 3.0, which also performs well
on ImageNet-100 and TinyImageNet, and we apply it directly to these two datasets without further
tuning. More broadly, Fig. 4 (b) shows that FairOCL is robust across a wide range of α values, with
performance varying only gradually. Thus, α can be treated as a principled control parameter for
fairness preferences rather than a fragile hyperparameter requiring extensive search.

6 CONCLUSION

This study targets a key limitation of current replay-based online continual learning (OCL) methods,
namely, the gradient conflicts that arise when jointly training on mixed-task data, which hinder the
retention of previously acquired knowledge. Our proposed FairOCL framework mitigates this chal-
lenge by formulating gradient aggregation as a constrained utility maximization problem inspired
by fair resource allocation principles in communication networks. This formulation promotes fair
and adaptive task-level gradient updates, thereby effectively alleviating interference among tasks.
To further mitigate the task-recency bias caused by class imbalance, we incorporate a knowledge
distillation mechanism that stabilizes representations of earlier tasks. Extensive experiments on
standard OCL benchmarks show that FairOCL consistently outperforms state-of-the-art baselines,
establishing it as a principled and effective solution for OCL.

Limitations and Future Work. While FairOCL shows competitive results in balancing stability and
plasticity through gradient fairness, future work could explore mechanisms to automatically adapt
the fairness parameter α during training. Another promising direction is to extend the fairness-
based formulation to offline continual learning, where multiple passes over data are possible, to
further assess its benefits under less restrictive conditions.
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A APPENDIX

In this section, we provide additional information to support the main content of the paper. §A.1
documents our use of large language models (LLMs). §A.2 presents a toy multi-objective example
to illustrate the effect of different fairness parameters. §A.3 offers a detailed derivation of Eq. (6).
§A.4 reports the computational efficiency of FairOCL compared to other baseline methods. Finally,
§A.5 analyzes the effect of class coverage in replay batches.

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only for polishing the text, specifically, improving grammar, wording, clarity, and
fluency. We did not use LLMs for generating core scientific content, defining the methodology,
deriving proofs, designing experiments, interpreting results, or any other technical components. We
take full responsibility for correctness, factual claims, and attribution.

A.2 ILLUSTRATION OF DIFFERENT FAIRNESS PARAMETERS

Figure 5: Illustrative of convergence for a two-objective optimization example. Here shows trajec-
tories (color gradient from orange to purple) from five distinct initializations (black dots • ) under
varying fairness parameters α∈{0.0, 0.5, 1.5}. The Pareto front is highlighted, demonstrating how
α affects the trade-off between objectives L1 and L2. See §A.2 for details.

To demonstrate the effect of the fairness parameter α, we adopt a two-objective optimization prob-
lem from (Ban & Ji, 2024), with two optimization objectives L1(x) and L2(x) are defined for
x = (x1, x2)

⊤ ∈ R2:

L1(x) = 0.1 · (f1(x)g1(x) + f2(x)h1(x)), (10)
L2(x) = f1(x)g2(x) + f2(x)h2(x), (11)

where the component functions are given by:

f1(x) = max(tanh(0.5x2), 0), (12)
f2(x) = max(tanh(−0.5x2), 0), (13)
g1(x) = log (max(|0.5(−x1 − 7)− tanh(−x2)|, 0.000005)) + 6, (14)
g2(x) = log (max(|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005)) + 6, (15)

h1(x) = ((−x1 + 7)2 + 0.1(−x1 − 8)2)/10− 20, (16)

h2(x) = ((−x1 − 7)2 + 0.1(−x1 − 8)2)/10− 20. (17)

The gradient magnitude disparity (∥L2(x) ∥>∥L1(x) ∥) poses challenges for multi-objective bal-
ancing. We investigate five initial points {(−8.5, 7.5), (0, 0), (9.0, 9.0), (−7.5,−0.5), (9.0,−1.0)}
using Adam optimizer with a learning rate of 1×10−3. The training process stops when the Pareto
front is reached. Fig. 5 shows the optimization trajectories under different fairness regimes. When
α = 0 (i.e., without fairness), the algorithm may fail to converge to a Pareto stationary point. In
contrast, settings with fairness (α > 0) lead to convergence to the Pareto front, with the degree of
fairness shaped by the choice of α. Specifically, α=0.5 is used in our CIFAF-10 experiments, while
α = 1.5 is adopted for CIFAR-100, TinyImageNet and ImageNet-100. These results demonstrate
that incorporating fairness not only ensures convergence but also allows for flexible control over
fairness behavior across tasks.
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A.3 DERIVATION OF EQ. (6)

We first show that the optimal solution lies on the boundary of the Euclidean ball Bϵ, i.e., ||d||2 = ϵ.
This follows from the fact that the objective is monotonically increasing in the norm of d, under the
constraint g⊤

i d ≥ 0 for all i. Specifically:

• The objective in Eq. (5) is a sum of terms of the form (g⊤
i d)1−α

1−α .

• If α < 1, the function (g⊤
i d)

1−α is a monotonically increasing in g⊤
i d (since the exponent

1−α > 0).

• If α>1,the term (g⊤
i d)1−α

1−α can be rewritten as− (g⊤
i d)1−α

α−1 , which is also a monotonically increas-
ing function of g⊤

i d (since the exponent 1−α<0, but the negative sign flips the monotonicity).

Since g⊤
i d is non-decreasing with ||d||2 (due to the constraint), the objective is non-decreasing in

d, and is therefore maximized when ||d||2 = ϵ.

Next, to derive Eq. (6), we apply the Karush-Kuhn-Tucker (KKT) conditions (Boyd & Vanden-
berghe, 2004) to the constrained optimization in Eq. (5). The Lagrangian is:

L(d, c, {µi}) =
n−1∑
i=1

(g⊤
i d)

1−α

1− α
− c

2
(d⊤d− ϵ2) +

n−1∑
i=1

µi(g
⊤
i d). (18)

The KKT conditions yield:

• Stationarity: ∇dL =
∑n−1

i=1 (g
⊤
i d)

−αgi− cd+
∑n−1

i=1 µigi = 0.

Rearranging gives:
∑n−1

i=1 [(g
⊤
i d)

−α + µi]gi = cd.

• Primal Feasibility: ||d||22 ≤ ϵ2 and g⊤
i d ≥ 0 .

• Dual Feasibility: c ≥ 0, µi ≥ 0.

• Complementary Slackness: c(||d||22 − ϵ2) = 0, µi(g
⊤
i d) = 0,∀i.

At the optimum, ||d||2 = ϵ, implying c > 0.

Since g⊤
i d ≥ 0, we get µi = 0 for all i.

Substituting into the stationarity condition gives:
∑n−1

i=1 ((g
⊤
i d)

−α)gi = cd, c > 0, which is Eq. (6).

A.4 COMPUTATIONAL EFFICIENCY

To assess the computational efficiency of FairOCL, we compare its training time with five replay-
based OCL methods, namely, DVC (Gu et al., 2022), GSA (Guo et al., 2023), PCR (Lin et al.,
2023), POCL (Wu et al., 2024), and ER-MKD (Michel et al., 2024). All experiments are conducted
on CIFAR-10 with a buffer size ofM= 200. As shown in Table 5, FairOCL achieves the highest
average accuracy (58.65%) while maintaining competitive training time (545.2s). Notably, FairOCL
is 3× faster than the POCL (1628.2s), which relies on computationally intensive hyper-gradient op-
timization. Moreover, FairOCL exhibits similar or better efficiency compared to DVC (552.2s) and
PCR (547.4s), despite outperforming them in terms of accuracy. These results show that FairOCL
delivers strong performance without incurring additional computational overhead.

Table 5: Comparison of training time and average accuracy for different OCL methods on CIFAR-10
(M=200). See §A.4 for details.

Method DVC GSA PCR POCL ER-MKD FairOCL

Average Accuracy (%, ↑) 48.08 48.90 52.20 35.69 57.54 58.65

Training Time (s) 552.2 400.6 547.4 1628.2 355.4 545.2
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A.5 EFFECT OF CLASS COVERAGE

FairOCL does not explicitly enforce the presence of all previously seen classes in each replay batch.
To evaluate whether such coverage improves performance, we conducted experiments on CIFAR-
10. As shown in Table 6, enforcing class coverage did not lead to noticeable accuracy gains, but in
our cases, slightly degraded performance. This may be because enforcing such class coverage can
disrupt the natural sampling distribution maintained by reservoir sampling. More importantly, our
method focuses on mitigating task-level interference. Although individual classes may be temporar-
ily absent from a batch, they are unlikely to remain absent across many consecutive batches, and it
is also rare for all classes from a task to be absent simultaneously. Thus, FairOCL can still com-
pute meaningful task-level gradients and apply fairness-aware updates effectively. Over time, most
classes can be sampled with sufficient frequency to support stable learning dynamics. Experimental
results in Fig. 2 confirm that FairOCL can mitigate task interference effectively without requiring
strict class coverage in each batch compared with other methods.

Table 6: Effect of class coverage. Here presents the Average Accuracy (Acc, %, ↑) on CIFAR-10
with different buffer sizes |M|. See §A.5 for details.

Class Coverage? |M| = 200 |M| = 500 |M| = 1000

Yes 57.41 69.43 74.12
No 59.22 69.94 76.26
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