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Abstract

Data scarcity and domain heterogeneity impede simulation-to-real (sim2real) trans-
fer in materials data. We present a simple, data-efficient recipe that couples a
domain transformation with two methods: (i) scaler transfer, which shares stan-
dardization parameters fitted on transformed source data to robustly scale scarce
target data; and (ii) fine-tuning, which pretrains a predictor on the transformed
source and adapts it to the target. On the prediction of electrocatalytic activity with
the Open Catalyst Experiment 2024 datasets, the proposed method consistently
surpasses baselines and achieves R2 > 0.81 at the best condition. Critically, the
scaler transfer significantly improves the performance of few-shot learning, scoring
R2 = 0.43 compared to −0.062 for a baseline. This method is not only easy to
implement but also model- and task-agnostic, extending the coverage of sim2real
transfer in materials informatics.

1 Introduction

Data scarcity is a pervasive obstacle in materials informatics. Experimental synthesis and measure-
ment are costly and subject to external factors, which limit both the quality and quantity of data. As an
alternative, large-scale computational datasets have been increasingly used since material simulations
such as density functional theory (DFT) are relatively scalable and easy to automate [1, 2, 3].

Transfer learning from simulation to experiment, referred to as a sim2real transfer, is one of the
promising methods, and it has already been applied in the field of materials science [4, 5]. However,
there is a gap between them as the DFT draws on microscopic insights, whereas most experiments
measure macroscopic quantities, limiting the applicability of transfer learning. It is desired to establish
a methodology that realizes a sim2real transfer for materials by bridging this domain heterogeneity.

In this work, we propose a simple and data-efficient sim2real transfer scheme based on domain
transformation with scaler transfer, which shares a standard scaler from domain-transformed
computational data to target experimental data. Standardization is a fundamental preprocessing step
in data analysis, but in small-data regimes the scaling parameters may not adequately represent the
underlying population distribution. Moreover, naively borrowing data from different domains to
increase the sample size can introduce bias into the scaling parameters. In the proposed method, the
source data are first mapped onto the target domain while correcting for the domain shift between

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



them. Then, a scaler is constructed based on the source data and shared for the target data; it can
standardize target data robustly even with a small data region, such as in few-shot learning.

To evaluate the effectiveness of this method, we conduct an example of catalyst activity prediction
on the hydrogen evolution reaction (HER) by using the Open Catalyst Experiment 2024 (OCx24)
dataset that includes both experimental and computational data [6].

The key contributions of this work are as follows:

• Domain transformation with scaler transfer: We introduce an efficient knowledge transfer
scheme that significantly improves prediction performance, especially in few-shot learning.

• Widespread positive transfer: We validate positive transfer across wide range of target
data size, underscoring the effectiveness of our approach in a variety of situations.

• Accurate prediction of HER activity: The proposed method provides a highly accurate
predictive model for HER activity with R2 > 0.8, which outperforms other methods and
previous reports.

2 Method

2.1 Problem formulation and notation

Let the source and target dataset be Dr ≡ {(x(i)
r , y

(i)
r )}Nr

i=1 ⊂ (Xr × Yr), with the feature space
X r, the label space Yr, the size of dataset Nr where r = S or T represent the source or target,
respectively. Their domains are not required to be identical, namely, both XS ̸= XT and YS ̸= YT

are possible. The goal is to predict yT accurately under small NT assuming NS ≫ NT.

2.2 Proposal: Scaler transfer combined with domain transformation

The proposed method consists of two steps: domain transformation [7] and knowledge transfer.

The domain transformation maps the source data onto the target domain guided by chemistry
knowledge, for instance, a linear relationship between the source label and the target label. This
process approximately reduces the domain heterogeneity to a co-variate shift, which can be solved
through transfer learning.

Let DS′ ⊂ XT × YT be the transformed source data, the second step performs transfer learning from
DS′ to DT with two transfer schemes: scaler transfer and fine-tuning.

• Scaler transfer (ST): Fit a standard scaler with DS′ , then reuse it for DT.

• Fine-tuning (FT): Pretrain a model with DS′ , then retrain the same instance with DT.

3 Demonstration: HER catalyst activity prediction

3.1 Dataset and domain transformation

In this study, we employ the OCx24 dataset [6] for both source and target. The source (computational)
dataset is represented as DS ≡ {(x(j)

S , y
(j)
S )}Nsrc

i=1 , where xS specifies a surface structure (base
material, facet, adsorption site) and yS =

(
yS,H, yS,OH

)
are adsorption energies of H and OH

derived from DFT. The size of the source dataset is approximately NS ∼ 700, 000.

The target (experimental) dataset is represented as DT ≡ {(x(j)
T , y

(j)
T )}NT

i=1, where xT is chemical
composition and yT is measured potential relevant to the activity of HER. The size of the target
dataset is NT = 272. Further details are explained in Appendix A.

To address a domain heterogeneity between the source and target, we transform DS to DS′ ⊂
(XT × YT) with the following procedure [7]:

(1) Averaging
(
XS × YS → XT × YS

)
. For a given composition c, we aggregate corresponding

source entries with I(c) = { i : composition(x
(i)
S ) = c }, and obtain averaged labels g̃(c) =

2



Figure 1: Architecture of the prediction model. d is dimension of feature vector.

(ḡH, ḡOH) by

ḡa(c) =
1

|I(c)|
∑

i∈I(c)

y
(i)
S,a, a ∈ {H,OH}. (1)

(2) Function estimation
(
YS → YT

)
. We then map g̃ = (ḡH, ḡOH) to yT using a linear regressor,

Fθ(g̃) = θ0 + θ1 ḡH + θ2 ḡOH, (2)

obtained by minimizing the mean-squared error loss, lMSE

(
g̃(xT), yT

)
.

(3) Domain transformation. Using Fθ, we transform all entries of DS to DS′ = {x(i)
S′ , y

(i)
S′ }NS′

i ≡{
c(i), Fθ(g̃(c

(i)))
}NS′

i=1
. Here, the size of the transformed dataset is NS′ = 12, 463. By definition,

NS′ is equal to the number of varieties of composition contained in DS. During this procedure, 43
target data are used for function estimation. To avoid a data leak, these data will be excluded from
the test set. Further detail is explained in Appendix B.

3.2 Predictive model and training pipeline

Overall architecture of the predictive model is shown in Fig. 1. To optimize the model, we first
pretrain the model with DS′ and retrain it with DT.

The featurizer encodes a composition string into chemical descriptors. In this work, we use 186
features among XenonPy composition descriptors [8] (See Appendix C).

Both features and labels are standardized with a scaler. The scale parameter is estimated from DS in
the pretraining step and shared in the target training step.

As a predictor, we employ a fully connected network (FCNN), a common prediction head in neural
net architectures, implemented in PyTorch framework [9]. It consist with five layers and the number
of units in each layer gradually decreases, starting from the input dimension 186 in the first layer,
followed by 148, 111, 74, and 37 in the middle layers, with the final output layer having one unit.
All units are activated by ReLU (rectified linear unit). During training, dropout affects the first and
fourth layers at a rate of 0.1. The final unit is inversely scaled after training is completed. Detailed
(pre-)training conditions are shown in Appendix D.

3.3 Evaluation protocol

The effects of sim2real transfer are measured by the determination coefficient R2 as a function of
the size of the target training dataset. Here, 20% of DT were used to evaluate R2 and the remaining
80% were used to train the predictive model. For a given data size, we adopt the average value of R2

obtained from the randomly selected training set over a certain number of trials.
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Figure 2: Test R2 scores as functions of the size of target training data for each training method of
fine-tuning (FT) or learning from scratch (SC), with or without the scale transfer (ST).

Table 1: Summary of R2 score for HER activity prediction.

Method Best score Few-shot (5 data) score

Linear model [6] 0.63 -
FCNN 0.71 -0.062
FCNN+FT+ST (This work) 0.81 0.43

4 Results

We quantify the contribution of each transfer scheme in Sec. 2.2 by comparing fine-tuning (FT) and
learning from scratch (SC) with or without the scaler transfer (ST) for the target label, as represented
in Fig. 2. Note that the feature scaler is reused even in the case of no ST, because it can be easily
obtained using unlabeled data in practice.

In the small data regime (Fig. 2(a)), the proposed method (FT+ST) showed a significant improvement
in prediction performance. The model trained by FT performs approximately 0.1-0.2 higher R2

than that trained by SC, and the effect becomes more pronounced as the datasize decreases. It is
noteworthy that the ST dramatically enhanced the effect of FT in few-shot learning (less than 10
data).

Increasing the size of the target data (Fig. 2(b)), all methods improve as data grow, but FT+ST
remains best throughout and achieves R2 > 0.8 by using all training data. Although the effect of ST
diminishes compared to the few-shot regime, there is still a slight improvement in performance.

Table 1 summarizes R2 for each method and clearly indicates that the proposed method (FT+ST)
outperforms other methods, including the previous work [6].

5 Summary

We present a simple and data-efficient sim2real transfer scheme: scale transfer (ST) is a method that
reuses a scaler fitted on the source data to standardize target data robustly even in few-shot learning;
fine-tuning (FT) is a method that pretrains with the source data and then retrains the same instance
with target data, providing a nearly optimized model while correcting the residual domain gap. To
evaluate, we predict the hydrogen evolution reaction (HER) catalyst activity in the Open Catalyst
Expriment 2024 dataset [6] using this method combined with a domain transformation technique [7].

Across target data sizes, FT consistently outperforms training from scratch (SC), and ST further
improves prediction performance—most markedly in the few-shot regime (less than 10 data). The
combined FT+ST configuration yields the strongest and most stable gains: in the small-data regime
it performs 0.1-0.2 higher R2 than that of SC, and with all training data it attains R2 > 0.8.
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While the present study demonstrated it on the HER catalysts, the proposed method can be similarly
applied to other materials and properties. In addition, standardizing labels allows using common
learning conditions (such as learning rate, regularization parameter, etc.) for learning different
physical properties in different units. Furthermore, this method is model-agnostic and not limited to
neural networks. This versatility is a clear advantage.

A limitation of our approach is the requirement for compositional overlap between simulations and
experiments to enact the domain transformation. This can be mitigated by designing experiments
including compositions already represented in large computational datasets, or by augmenting
simulation datasets to cover compositions appearing in measurements. Moreover, in practical cases,
it is common that laboratory equipments are calibrated with some standard materials, providing some
overlap between calculations and experiments on such materials. By leveraging a small number of
overlaps, it is possible to transfer the scale advantages of abundant computational data to real-world
tasks, thereby reducing the number of experiments that consume budget, time, and human resources.
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A Dataset description

Throughout our demonstration, we refer OCx24 dataset for both the source and the target dataset. All
data can be found in their repository (https://github.com/facebookresearch/fairchem/). Details of the
computational and experimental pipeline can be found in the original paper [6].
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As the source dataset, we employ the computational dataset in OCx24 generated by a high-throughput
computation workflow. This dataset includes both values obtained from DFT calculations and
inferences made by machine learning models. In this study, we use only the former for the sake of
accuracy. It contains approximately 700,000 entries, and each entry represents a surface structure
(xS) and adsorption energies of H and OH, (yS,H, yS,OH).

As the target dataset, we employ the experimental dataset in OCx24, specifically the data in Exp-
DataDump_YYMMDD_clean.csv. This dataset is prepared with a high-throughput pipeline of
synthesis, characterization, and measurement.

The compositional overlaps among these datasets can be found in HER_40_70_matched.csv.

B Details of domain transformation

Using the compositional overlaps among DS and DT, we attempt domain transformations with the
following conditions:

(1) Averaging (two variants).

Mean (arithmetic average): ḡa =
1

|I|
∑
i∈I

y
(i)
S,a, a ∈ {H,OH}; (3)

Boltzmann average: ḡa =
∑
i∈I

exp(−βy
(i)
S,a)∑

k∈I exp(−βy
(k)
S,a)

y
(i)
S,a, (4)

with β = 38.68 eV−1 at room temperature (300 K).

(2) Function estimation (two variants).

Linear model: Fθ(g̃) = θ0 + θ1 ḡH + θ2 ḡOH, (5)
Piecewise LASSO (PWLASSO): Fθ(g̃) = PWLASSO(gH, ḡOH). (6)

Regression results are shown in Figs. 3-6.

Figure 3: Result of Mean-Linear. Figure 4: Result of Mean-PWLASSO.

According to the results, Mean-PWLASSO (Fig. 4) scores the best R2; however, it shows an
unphysical concentration of data. Thus, we finally adopt Mean-Linear (Fig. 3) as the next best.

Figs. 7 represent the label distribution of original source data and 8 represent the transformed one
compared with that of the target data. It is clear that the domain conversion has made it possible to
compare values that were different not only in terms of numerical values but also in terms of units.

C Compositional featurizer

The XenonPy compositional featurizer is a tool within the XenonPy library that converts raw
chemical composition data into informative numerical descriptors suitable for machine learning [8].
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Figure 5: Result of Boltzmann-Linear. Figure 6: Result of Boltzmann-PWLASSO.

4 3 2 1 0 1 2
Adsorption energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

rib
ut

io
n

(a) Source distribution
H
OH

Figure 7: Label distribution of source data.

2.5 2.0 1.5 1.0 0.5 0.0 0.5
Voltage (V vs. SHE)

0

1

2

3

4

Di
st

rib
ut

io
n

(b) Target distribution
Transformed source
Target

Figure 8: Label distribution of terget data com-
pared with the transformed source.

It can calculate 290 compositional features for a given chemical composition. For more details, see
the code documentation (https://xenonpy.readthedocs.io/en/latest/features.html).

The compositional descriptors are obtained from the five calculations, weighted-sum, weighted-
average, weighted-variance, max-pooling, and min-pooling. In this work, we omit the weighted-
sum calculation as it is identical to the weighted-average for a periodic system.Moreover, inspecting
the features in source data, we omit low-variance features (standard deviation < 0.01) and highly
correlated features (threshold = 0.95), resulting in 186 features, eventually.

D Training details

All essential parameters from our experiments are summarized in Table 2.

Figs 9 and 10 show training curves on pretraining and target training, respectively.

Figure 9: Learning curve on pretraining. Figure 10: Learning curve on target training

8



Table 2: List of model parameters and training conditions of our demonstration.

Parameter Value

Implementation PyTorch [9]
Input dimension 186
Output dimension 1
Training batch size 32
Optimizer AdamW
Initial learning rate 0.001
Weight decay 0.0005
Loss function Smooth L1 loss
Scheduler ReduceLROnPlateau
Random seed 42
Epochs (source pretrain) 70
Epochs (target training) 70
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