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Abstract
Recently, Cutkosky et al. introduce the online-
to-non-convex framework, which utilizes on-
line learning methods to solve non-smooth non-
convex optimization problems, and achieves an
O(ϵ−3δ−1) gradient complexity for finding (δ, ϵ)-
stationary points. However, their results rely on
the bounded variance assumption of stochastic
gradients and only hold in expectation. To address
these limitations, we investigate the case that
stochastic gradients obey heavy-tailed distribu-
tions with finite p-th moments for some p ∈ (1, 2],
and propose a novel algorithm which is able to
identify a (δ, ϵ)-stationary point with high prob-
ability, after consuming Õ(ϵ−

2p−1
p−1 δ−1) stochas-

tic gradients. The key idea is first incorporating
the gradient clipping technique into the online-
to-non-convex framework to produce a sequence
of points, the averaged gradient norms of which
is no greater than ϵ. Then, we propose a valida-
tion method to select one (δ, ϵ)-stationary point
among the candidates. When gradient distribu-
tions have bounded variance, i.e., p = 2, our re-
sult turns into Õ(ϵ−3δ−1), which improves the ex-
isting Õ(ϵ−4δ−1) high-probability bound. When
the objective is smooth, our algorithm can also
find an ϵ-stationary point with Õ(ϵ−

3p−2
p−1 ) gradi-

ent queries.

1. Introduction
Non-convex optimization holds a critical position within
machine learning because the training process of many ma-
chine learning models, especially deep neural networks, can
be formulated as solving non-convex optimization problems.
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With the trend towards building larger and more powerful
machine learning models, there is a growing demand for
efficient methods of non-convex optimization, which has
aroused extensive research interest (Ghadimi & Lan, 2013;
Kingma & Ba, 2015; Carmon et al., 2017; Goyal et al., 2017;
Levy et al., 2021; Qiu et al., 2022; Jiang et al., 2022).

The majority of prior research in non-convex optimization
relies on the smoothness assumption of the objective func-
tion, under which we aim to find an ϵ-stationary point, i.e.,
a point x satisfying ∥∇F (x)∥ ≤ ϵ (Allen-Zhu, 2018; Tripu-
raneni et al., 2018; Fang et al., 2018; Zhou et al., 2018;
Cutkosky & Orabona, 2019; Cutkosky & Mehta, 2021; Liu
et al., 2022; Faw et al., 2022; Nguyen et al., 2023). How-
ever, such an assumption often fails to hold in numerous
real-world applications. For instance, the objectives of many
neural networks are non-smooth due to the usage of the
ReLU activation function. As a result, several studies have
been conducted to explore the theoretical guarantees of op-
timizing non-smooth non-convex objectives (Benaı̈m et al.,
2005; Majewski et al., 2018; Davis et al., 2020).

The analysis of non-smooth non-convex optimization differs
significantly from that of smooth non-convex optimization.
As demonstrated by Zhang et al. (2020c), no algorithm can
find an ϵ-stationary point of a non-smooth non-convex ob-
jective within finite time. To provide an alternative, they
introduce the notion of (δ, ϵ)-stationary points and prove its
tractability for non-smooth non-convex objectives. Instead
of evaluating the gradient at a precise point x, this notion de-
scribes whether there exists a subset within the ball centered
at x with radius δ, so that by randomly drawing points from
this subset, the norm of the expected gradient is smaller than
ϵ. Compared to the definition of ϵ-stationary points, this no-
tion is more general since it recovers the previous one when
δ = 0. Then, the notion of (δ, ϵ)-stationarity has attained
widespread acceptance in subsequent research (Davis et al.,
2022; Kornowski & Shamir, 2022; Tian & So, 2022; Lin
et al., 2022; Kornowski & Shamir, 2023; Jordan et al., 2023).
Previous studies (Zhang et al., 2020c; Tian et al., 2022)
have proposed algorithms that utilize Õ(ϵ−4δ−1) gradient
queries to find a (δ, ϵ)-stationary point with high probabil-
ity. Recently, Cutkosky et al. (2023) introduce the online-
to-non-convex framework, which transforms non-smooth
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non-convex optimization to an online learning problem, and
improve the query complexity to O(ϵ−3δ−1), but their re-
sults only hold in expectation.

Moreover, prior studies on non-smooth non-convex opti-
mization (Zhang et al., 2020c; Tian et al., 2022; Cutkosky
et al., 2023) typically assume that gradient distributions
have bounded variance. However, empirical observations
suggest that such an assumption is too idealistic. For exam-
ple, Zhang et al. (2020b) report that the gradient distribu-
tions exhibit heavy-tailed characteristics during the training
of BERT (Vaswani et al., 2017). Here, heavy tails mean
that the distributions have bounded p-th moments for some
p ∈ (1, 2]. The assumption of heavy tails is more general
than that of bounded variance because it holds for a broader
class of distributions, while bounded variance only corre-
sponds to the special case of p = 2. An abundant of prior
research explores learning and optimization problems in the
presence of heavy tails (Audibert & Catoni, 2010; Hsu &
Sabato, 2014; Zhang & Zhou, 2018; Lu et al., 2019; Lugosi
& Mendelson, 2019; Gürbüzbalaban et al., 2021; Xue et al.,
2023). In recent years, several studies have investigated non-
convex stochastic optimization with heavy-tailed gradients
(Cutkosky & Mehta, 2021; Sadiev et al., 2023; Nguyen et al.,
2023), but their methods are limited to smooth non-convex
objectives.

To overcome the limitations of previous research, we pro-
pose a novel algorithm with high-probability guarantee
for non-smooth non-convex stochastic optimization under
heavy-tailed gradients. Inspired by Cutkosky et al. (2023),
we incorporate the gradient clipping technique into the
online-to-non-convex framework to handle heavy-tailed gra-
dients. Theoretical analysis shows that our modification
yields a high-probability upper bound for the averaged gra-
dient norms across a series of candidate points. Furthermore,
we propose a validation method based on sampling and gra-
dient clipping to efficiently estimate the gradient norm of
a specific candidate. By repeatedly validating candidate
points, we can explicitly select a genuine (δ, ϵ)-stationary
point among candidates. We summarize our contributions
as follows:

• We propose an algorithm with the complexity of
Õ(ϵ−

2p−1
p−1 δ−1) gradient queries for finding a (δ, ϵ)-

stationary point with high probability. To our knowl-
edge, this is the first work that targets non-smooth
non-convex stochastic optimization with heavy-tailed
gradients.

• When the stochastic gradients have bounded variance,
i.e., p = 2, the query complexity of our algorithm
reduces to Õ(ϵ−3δ−1), improving the existing high-
probability result, i.e., Õ(ϵ−4δ−1) (Zhang et al., 2020c;
Tian et al., 2022).

• When the objective is smooth, our algorithm is able

to identify an ϵ-stationary with Õ(ϵ−
3p−2
p−1 ) gradient

queries, nearly matching previous studies (Zhang et al.,
2020b; Cutkosky & Mehta, 2021; Nguyen et al., 2023).

2. Related Work
In this section, we briefly review recent studies on non-
convex stochastic optimization, including smooth and non-
smooth settings.

2.1. Smooth Non-Convex Optimization

For smooth non-convex objectives, Ghadimi & Lan (2013)
prove that stochastic gradient descent (SGD) finds a point x
satisfying E[∥∇F (x)∥] ≤ ϵ with O(ϵ−4) gradient queries,
when gradients have bounded variance. They also prove that
combining SGD with a post-optimization phase achieves
a query complexity of Õ(ϵ−4 + ϵ−2q−1) for ensuring
∥∇F (x)∥ ≤ ϵ with probability 1 − q. The aforemen-
tioned theoretical guarantees have (nearly) matched the
lower bound, as Arjevani et al. (2023) prove that Ω(ϵ−4)
queries are necessary to find an ϵ-stationary point of
smooth non-convex objectives. If additional properties
(e.g., second-order smoothness or mean-squared smooth-
ness) are assumed, it is possible to achieve lower com-
plexity (Allen-Zhu, 2018; Fang et al., 2018; Levy et al.,
2021). When the distributions of stochastic gradients are
heavy-tailed, Zhang et al. (2020b) establish the lower bound
of Ω(ϵ−

3p−2
p−1 ) queries for identifying an ϵ-stationary point

in expectation and propose a matching algorithm. Later,
Cutkosky & Mehta (2021) achieve a high-probability bound
of Õ(ϵ−

3p−2
p−1 ). Under the assumption of bounded variance,

i.e., p = 2, these results recover previous bounds. In re-
cent studies, Sadiev et al. (2023) and Nguyen et al. (2023)
also examine the setting of heavy-tailed noise with a similar
metric and weaker constraints.

2.2. Non-Smooth Non-Convex Optimization

The optimization of non-smooth non-convex objectives has
undergone rapid development in recent years. Zhang et al.
(2020c) demonstrate that ϵ-stationary points are intractable
in the non-smooth non-convex setting and introduce the al-
ternative notion of (δ, ϵ)-stationarity. In the stochastic finite
variance setting, they propose an algorithm that achieves
Õ(ϵ−4δ−1) query complexity in finding a (δ, ϵ)-stationary
point with high probability. They also consider the setting
of deterministic gradients and achieve an Õ(ϵ−3δ−1) bound.
One limitation of their study is the use of a directional gradi-
ent oracle that requires the subgradients to satisfy a certain
linear equation, which is impractical. To address this draw-
back, Tian et al. (2022) adopt the standard stochastic gradi-
ent oracle and propose algorithms with the same complexity
of Õ(ϵ−4δ−1). However, the algorithms of Zhang et al.
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(2020c) and Tian et al. (2022) only promise the existence
of one (δ, ϵ)-stationary point within the output set, without
explicitly selecting a specific point. Recently, Cutkosky
et al. (2023) introduce the online-to-non-convex framework,
which transforms the problem of minimizing non-smooth
non-convex objectives to the minimization of shifting regret
over linear losses. Their algorithm enjoys a query com-
plexity of O(ϵ−3δ−1) for finding a (δ, ϵ)-stationary point in
expectation, which is proved to be optimal. We observe that
all existing studies assume the variance of stochastic gradi-
ents to be bounded, which means their analyses do not apply
to heavy-tailed gradients. Additionally, the in-expectation
guarantee is not satisfactory, as the algorithm may perform
poorly in one individual run.

3. Main Results
In this section, we first present necessary preliminaries,
including basic assumptions and definitions, then introduce
our motivation and algorithms.

3.1. Preliminaries

We aim to optimize a non-convex and possibly non-smooth
function F : H 7→ R, where H denotes a real Hilbert space
(e.g., Rd). If not otherwise specified, we use ∥ · ∥ to denote
the ℓ2-norm. We assume that F ⋆ ≜ infx F (x) > −∞ and
F is differentiable.

In this paper, we focus on designing first-order optimization
strategies. Our algorithm accesses the information about F
through a stochastic gradient oracle (Tian et al., 2022).
Definition 3.1. Given a differentiable function F and a
query point x ∈ H, the oracle GRAD : H × Z 7→ H
samples an i.i.d. random variable z ∈ Z and returns
GRAD(x, z) ∈ H which satisfies

Ez [GRAD(x, z)] = ∇F (x) .

Following previous studies (Cutkosky & Mehta, 2021;
Cutkosky et al., 2023), we introduce three basic assump-
tions.
Assumption 3.2. The gradient of the objective function F
is bounded by G, i.e.,

max
x∈H

∥∇F (x)∥ ≤ G.

Assumption 3.3. The p-th moment of the possibly heavy-
tailed stochastic gradient g = GRAD(x, z) is bounded by
σp for some p ∈ (1, 2], i.e.,

Ez

[
∥g − Ez [g]∥p

]
≤ σp, ∀x ∈ H.

Assumption 3.4. The objective function F is well-behaved,
i.e., for any x,y ∈ H

F (y)− F (x) =

∫ 1

0

⟨∇F (x+ t (y − x)) ,y − x⟩dt.

Remark 1. Since we have assumed that F is differentiable,
Assumption 3.4 holds true due to the Fundamental Theorem
of Calculus. To handle objectives that are not everywhere
differentiable, one can apply the randomized smoothing
technique (Duchi et al., 2012; Yousefian et al., 2012; Nes-
terov & Spokoiny, 2017) to avoid non-differentiable points.
The processed objective exhibits milder properties: it is dif-
ferentiable and well-behaved, meanwhile its value is close
to the original one at any point.

Following Cutkosky et al. (2023), we introduce the defini-
tion of (δ, ϵ)-stationarity.

Definition 3.5. A point x is a (δ, ϵ)-stationary point of a
differentiable function F if there is a finite set S ⊂ B(x, δ),
where B(x, δ) denotes a ball centered at x with radius δ,
such that for y selected uniformly at random from S, E[y] =
x and ∥E[∇F (y)]∥ ≤ ϵ.

Remark 2. This definition of a (δ, ϵ)-stationary point is es-
sentially the same as used in Zhang et al. (2020c); Davis et al.
(2020); Tian et al. (2022), yet it is slightly more stringent.
Specifically, Definition 3.5 requires the explicit selection of
a finite support set S and the unbiasedness in calculating the
norm of expected gradient. These subtle differences provide
convenience for validation: given a support set S′, once it
is feasible to compute a high-precision approximation of
∥Ey∈S′ [∇F (y)]∥ from stochastic gradients, we are able to
validate the corresponding solution.

As a counterpart of Definition 3.5, we also introduce the
following notation of ∥∇F (x)∥δ .

Definition 3.6. Given a point x, a number δ > 0 and a
differentiable function F , define

∥∇F (x)∥δ ≜ inf
S⊂B(x,δ), 1

|S|
∑
y∈S

y=x

∥∥∥∥∥∥ 1

|S|
∑
y∈S

∇F (y)

∥∥∥∥∥∥ .
With Definition 3.6, we can use the inequality ∥∇F (x)∥δ ≤
ϵ to concisely demonstrate that x is a (δ, ϵ)-stationary point.

3.2. Motivation

Based on the online-to-non-convex framework (Cutkosky
et al., 2023), we endeavor to develop an algorithm that
achieves a high-probability bound for non-smooth non-
convex stochastic optimization with heavy tails. To reach
our goal, we first identify the bottleneck in the previous
analysis.

Our general intuition is that, within the online-to-non-
convex framework, the linear losses fed to the online learn-
ing algorithm are defined as

ℓn (x) = ⟨gn,x⟩ , ∀n ∈ [N ],

3



High-Probability Bound for Non-Smooth Non-Convex Stochastic Optimization with Heavy Tails

Algorithm 1 Candidate Generation Algorithm
Input: Initial point x0, number of restarts K, round length
T , clipping parameter τ , and domain radius D

1: Set M = KT , η = D/τ , ∆1 = 0
2: for n = 1 · · ·M do
3: Update xn according to (1)
4: Generate sn and compute wn according to (2)
5: Sample zn and generate gn = GRAD(wn, zn)
6: Compute ĝn according to (3)
7: Update ∆n+1 according to (4)
8: end for
9: Set wk

t = w(k−1)T+t for k ∈ [K] and t ∈ [T ]

10: Set w̄k according to (5)
11: Return w1, · · · ,wM and w̄1, · · · , w̄K

where ℓn(·) is the linear loss function in the n-th round,
gn is the corresponding stochastic gradient, and [N ] de-
notes {1, 2, · · · , N}. The challenge of achieving a high-
probability theoretical guarantee for heavy-tailed gradients
stems from the uncontrollable gn: we can not even bound∑M

n=1 ∥gn∥2 in expectation under heavy tails, causing the
regret of the online learning algorithm to be out of control.

To address the above challenge, we employ the gradient clip-
ping technique, which introduces a truncated value ĝn that
has favorable properties while generally remaining close
to gn. This technique is commonly used in training deep
learning models to mitigate the gradient explosion problem
(Mikolov, 2012; Goodfellow et al., 2016). We demonstrate
that by constructing the linear losses with clipped gradients,
the shifting regret of the online learning algorithm can be
effectively controlled with high probability. Meanwhile, we
prove that the deviation caused by clipping operations is of
the same order as the regret. Moreover, the gradient clip-
ping technique also plays an important role in our validation
method, helping attain high precision.

3.3. Algorithms

We follow the online-to-non-convex framework (Cutkosky
et al., 2023) to generate a sequence of candidate points
{w̄k}. Specifically, we update the iterate xn with a learned
step ∆n, i.e.,

xn = xn−1 +∆n. (1)

Meanwhile, we randomly select a point wn between xn−1

and xn, i.e.,

wn = xn−1 + sn∆n, (2)

where sn ∈ [0, 1] is a uniformly distributed random vari-
able. Next, we query the stochastic gradient oracle to access
the gradient gn at point wn. The reason for introducing
wn originates from its connection with the decrease in the

objective value between two consecutive iterations, as

F (xn)− F (xn−1) =

∫ 1

0

⟨∇F (xn−1 + s∆n),∆n⟩ds

=Esn [∇F (xn−1 + sn∆n)] = Ewn [∇F (wn)]

=⟨Ewn,zn [gn],∆n⟩

holds for the well-behaved objective F (c.f. Lemma 4.1),
where zn is the i.i.d. random variable sampled within the
gradient oracle. Later, we compute the clipped gradient with
a clipping parameter τ > 0, i.e.,

ĝn =
gn

∥gn∥
min (τ, ∥gn∥) (3)

to protect our algorithm from extraordinarily large stochastic
gradients. The computed ĝn is used to update ∆n, which
follows the strategy of the standard online gradient descent
(OGD) (Zinkevich, 2003) with the fixed step size η, i.e.,

∆n+1 = ΠB(0,D) [∆n − ηĝn] , (4)

where ΠB(0,D) [x] denotes projecting x to the nearest point
measured by ℓ2-norm within B (0, D). After M iterations,
we partition the elements of {wn} into groups of size T in
sequential order, and compute the average of each group to
produce K centers, i.e.,

w̄k =
1

T

T∑
t=1

wk
t , ∀k ∈ [K] . (5)

We return the candidate point w̄k as well as its correspond-
ing support set {wk

1 , · · · ,wk
T } for each k ∈ [K]. The

complete procedure is summarized in Algorithm 1.

The difference between our algorithm and that of Cutkosky
et al. (2023, Algorithm 1) is updating ∆n with the clipped
gradient ĝn rather than the original one gn, which allows
us to establish an upper bound for F (xM ) − F (x0) =∑M

n=1⟨Ewn,zn
[gn],∆n⟩ with high probability. To be pre-

cise, we conduct the following decomposition:

M∑
n=1

⟨Ewn,zn [gn] ,∆n⟩

=

M∑
n=1

⟨Ezn
[gn] ,un⟩+

M∑
n=1

⟨Ewn,zn
[gn]− Ezn

[gn] ,∆n⟩

+

M∑
n=1

⟨ĝn,∆n − un⟩+
M∑
n=1

⟨Ezn
[gn]− ĝn,∆n − un⟩ ,

where {un} is an arbitrary sequence of points. The first
term of the decomposition can be negative if un is chosen
according to Ezn [gn]. The second term is the summation
of a martingale difference sequence and can be bounded by
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Hoeffding-Azuma inequality. The third and fourth terms
correspond to the regret of the online learning algorithm and
the deviation of ĝn from Ezn [gn], respectively. Compared
with the analysis of Cutkosky et al. (2023, Theorem 8), we
substitute gn in the third and fourth terms with ĝn, so that
our analysis can benefit from the benign properties of ĝn.

By properly setting the parameters of Algorithm 1, we prove
that w̄1, · · · , w̄K are good candidates for (δ, ϵ)-stationary
points on average, as demonstrated in the following theorem.

Theorem 3.7. With the notation in Algorithm 1, set the clip-
ping parameter τ = T 1/p (σp +Gp)

1/p
log(2K/q)−1/p.

Under Assumptions 3.2, 3.3 and 3.4, with probability at
least 1− q, we have

1

K

K∑
k=1

∥∥∥∥∥ 1T
T∑

t=1

∇F
(
wk

t

)∥∥∥∥∥
≤F (x0)− F ⋆

DM
+

AKT 1/p

M
+

B√
M

,

for any D > 0, where A = O(log(K/q)(p−1)/p), B =
O(
√
log(1/q)).

Remark 3. We emphasize that Theorem 3.7 is the most
crucial step in achieving the high-probability bound un-
der heavy-tailed stochastic gradients. Specifically, we
prove that 1

K

∑K
k=1 ∥

1
T

∑T
t=1 ∇F (wk

t )∥ keeps decreasing
as K and T grow. Since w̄k is the center of wk

1 , · · · ,wk
T ,

∥ 1
T

∑T
t=1 ∇F (wk

t )∥ describes the norm of average gradi-
ent across the supporting set of w̄k and is closely related to
the definition of (δ, ϵ)-stationarity.

Then, we adjust T with respect to the query budget N and
set D to yield the following corollary.

Corollary 3.8. Suppose we have a budget of N gradi-
ent queries. Set T = min(⌈( ANδ

F (x0)−F⋆ )
p/(2p−1)⌉, N

2 ),
K = ⌊N

T ⌋ and D = δ/T for an arbitrary δ > 0. Un-
der Assumptions 3.2, 3.3 and 3.4, with probability at least
1− q, Algorithm 1 ensures

1

K

K∑
k=1

∥∥∇F
(
w̄k
)∥∥

δ
≤ 2 (F (x0)− F ⋆)

δN
+

2B√
N

+max

(
4A

p
2p−1 (F (x0)− F ⋆)

p−1
2p−1

(δN)
p−1
2p−1

,
4A

N
p−1
p

)
,

where A, B are given in Theorem 3.7.

Remark 4. When N is sufficiently large, Corollary 3.8
implies that

1

K

K∑
k=1

∥∥∇F
(
w̄k
)∥∥

δ
≤ O

((
log (K/q)

δN

) p−1
2p−1

)
.

Algorithm 2 Approximation Algorithm with Adjustable
Precision
Input: A given point set S = {w1, · · · ,wT }, total number
of rounds R, and clipping parameter τ

1: for r = 1 to R do
2: Sample wr from S uniformly at random
3: Sample zr and generate gr = GRAD(wr, zr)
4: Compute g̃r according to (6)
5: end for
6: Return gest =

1
R

∑R
r=1 g̃r

The above convergence rate indicates that setting N =

Õ(ϵ−
2p−1
p−1 δ−1 log(1/q)) ensures 1

K

∑K
k=1 ∥∇F (w̄k)∥δ ≤

ϵ with high probability. This guarantee reflects the aver-
age quality of candidate points {w̄k}, but in practice, we
are usually required to ultimately output one valid (δ, ϵ)-
stationary point among candidates, i.e., identifying a k sat-
isfying ∥∇F (w̄k)∥δ ≤ ϵ. Therefore, we need an algo-
rithm that approximates ∥ 1

T

∑T
t=1 ∇F (wk

t )∥ for a specific
k ∈ [K], which establishes a upper bound for ∥∇F (w̄k)∥δ ,
in order to perform validation.

Aiming at efficiently estimating the true value of the aver-
aged gradient over a specific set S = {w1, · · · ,wT }, we
also utilize the gradient clipping technique to alleviate the
impact of heavy tails. In the r-th round, we randomly select
a point wr from S, access its stochastic gradient gr, and
calculate the clipped gradient g̃r by

g̃r =
gr

∥gr∥
min (τ, ∥gr∥) . (6)

After R rounds, we compute gest =
1
R

∑R
r=1 g̃r to estimate

1
T

∑T
t=1 ∇F (wt). We summarize the procedure in Algo-

rithm 2 and provide the following guarantee for bounding
the approximation error.

Theorem 3.9. Set the clipping parameter τ =

R1/p (σp +Gp)
1/p

log(1/q)−1/p. Under Assumptions 3.2
and 3.3, with probability at least 1− q, Algorithm 2 ensures∥∥∥∥∥ 1R

R∑
r=1

g̃r −
1

T

T∑
t=1

∇F (wt)

∥∥∥∥∥ = O

((
log (1/q)

R

) p−1
p

)
.

Remark 5. According to Theorem 3.9, we can set R =

O(ϵ−
p

p−1 log(1/q)) to ensure that the approxiation error is
smaller than ϵ. We notice that under the setting of bounded
variance, a similar method to our Algorithm 2 exists in the
literature (Kornowski & Shamir, 2023, Algorithm 3), albeit
with a different implementation and analysis. At a high level,
they use the average of original gradients 1

R

∑R
r=1 gr to es-

timate 1
T

∑T
t=1 ∇F (wt). Since original gradients do not

have bounded norms, they employ the standard Markov’s
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Algorithm 3 Non-Smooth Non-Convex Optimization for
Heavy-Tailed Stochastic Gradients
Input: Initial point x0, query budget N , and validation
round length R

1: Call Algorithm 1 with x0 and N , other parameters are
set according to Theorem 3.7 and Corollary 3.8

2: Receive w1, · · · ,wM and w̄1, · · · , w̄K

3: Set wout = null, ϵthres = 5ϵ/6
4: while wout = null do
5: Select k ∈ [K] uniformly at random
6: Call Algorithm 2 with {wk

1 , · · · ,wk
T } and R, the

other parameter is set according to Theorem 3.9
7: Receive gest

8: if ∥gest∥ ≤ ϵthres then
9: Set wout = w̄k

10: end if
11: end while
12: Return wout

inequality, and their algorithm requires O(ϵ−2 log(1/q)/q)
gradient queries to achieve a precision of ϵ with probabil-
ity 1 − q. In comparison, our Algorithm 2 only requires
O(ϵ−2 log(1/q)) queries under the same setting, eliminat-
ing the undesirable 1/q factor. Moreover, our guarantee
naturally extends to the setting of heavy-tailed stochastic
gradients.

By assembling Algorithms 1 and 2, we devise an algorithm
that outputs a (δ, ϵ)-stationary point with high probability.
We start by running Algorithm 1 to generate w1, · · · ,wM

and w̄1, · · · , w̄K , which yields the high-probability guar-
antee of 1

K

∑K
k=1 ∥∇F (w̄k)∥δ ≤ ϵ/3. Then, we choose

k ∈ [K] randomly and verify whether the current w̄k is
indeed a (δ, ϵ)-stationary point. To perform validation, we
set the acceptance threshold to be ϵthres = 5ϵ/6 and control
the precision of Algorithm 2 to be ϵ/6, so that we are likely
to filter out any invalid w̄k satisfying ∥∇F (w̄k)∥δ > ϵ. We
summarize the procedure in Algorithm 3 and provide the
following theorem.

Theorem 3.10. Set N = Õ(ϵ−
2p−1
p−1 δ−1 log(1/q)) and R =

O(ϵ−
p

p−1 log(1/q)). Under Assumptions 3.2, 3.3 and 3.4,
with probability at least 1−q, Algorithm 3 guarantees to out-
put a (δ, ϵ)-stationary point with Õ(ϵ−

2p−1
p−1 δ−1 log(1/q) +

ϵ−
p

p−1 log(1/q)2) queries of stochastic gradient oracle.

Remark 6. When the variance of stochastic gra-
dients is bounded by σ2, existing algorithms require
Õ
(

(σ2+G2)3/2(F (x0)−F⋆) log(1/q)
ϵ4δ

)
gradient queries to iden-

tify a (δ, ϵ)-stationary point with probability 1− q (Zhang
et al., 2020c; Tian et al., 2022). This setting corresponds
to the special case of p = 2, where Theorem 3.10 implies
a query complexity of Õ

(
(σ2+G2)(F (x0)−F⋆) log(1/q)

ϵ3δ

)
. In

comparison, our bound has a smaller dependence not only
on ϵ, but also on parameters σ and G.

When the objective is smooth, Algorithm 3 can also adapt
to identify ϵ-stationary points by exploiting the smoothness
property (Nesterov, 2004).
Assumption 3.11. The objective function F is H-smooth,
i.e., for any x,y ∈ H

∥∇F (x)−∇F (y)∥ ≤ H ∥x− y∥ .

Using the strategy of converting guarantees for non-smooth
objectives to smooth objectives (Cutkosky et al., 2023, Sec-
tion 5), Algorithm 3 is equipped with the following property.
Corollary 3.12. Further set δ = ϵ/H . Under Assumptions
3.2, 3.3, 3.4 and 3.11, with probability at least 1 − q, Al-
gorithm 3 guarantees to output an ϵ-stationary point with
Õ(ϵ−

3p−2
p−1 log(1/q)+ ϵ−

p
p−1 log(1/q)2) queries of stochas-

tic gradient oracle.

Remark 7. Corollary 3.12 suggests that our high-
probability bound matches (up to logarithmic factors)
the Ω(ϵ−

3p−2
p−1 ) in-expectation lower bound (Zhang et al.,

2020b).

4. Theoretical Analysis
In this section, we only provide the detailed proofs of The-
orems 3.7 and 3.9. The omitted proofs can be found in
Appendix B.

4.1. Proof of Theorem 3.7

In the beginning, we introduce the following two lemmas
that will be used later.
Lemma 4.1. With the notation in Algorithm 1, under As-
sumption 3.4, we have

F (xM )− F (x0) =

M∑
n=1

⟨Ewn,zn
[gn] ,∆n⟩ . (7)

Lemma 4.2. With the notation in Algorithm 1, under As-
sumptions 3.2 and 3.4, we have

∥Ewn,zn [gn]∥ ≤ G. (8)

Remark 8. We acknowledge that Lemma 4.1 is an interme-
diate result of Cutkosky et al. (2023, Theorem 7). However,
their subsequent decomposition

M∑
n=1

⟨Ewn,zn
[gn] ,∆n⟩ =

M∑
n=1

⟨gn,∆n − un⟩

+

M∑
n=1

⟨Ewn,zn [gn]− gn,∆n⟩+
M∑
n=1

⟨gn,un⟩

6
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for the in-expectation result does not apply to our case,
where {un} is an arbitrary sequence of points within
B(0, D). When obtaining an in-expectation guarantee, each
term of the decomposition can be simply bounded by its
expected value. In contrast, we must bound each term with
high probability and then apply the union bound. One might
conjecture that we can directly utilize concentration inequali-
ties to conduct analysis, which is a common approach for ob-
taining high-probability guarantees. However, this approach
is not effective in this setting, since ∥gn∥ is unbounded and
we can only apply weak concentration inequalities, which
consequently yields suboptimal results. To make the situa-
tion worse, in the case of heavy-tailed gradient distributions,
even the in-expectation result by Cutkosky et al. (2023) fails
to hold. Specifically, the assumptions of Var(gn) ≤ σ2 and
E[∥gn∥2] ≤ G2 required by their analysis are not met.

To tackle this challenge, we introduce the gradient clipping
technique, which throws out the outliers and ensures the
following nice properties of clipped gradients for any τ > 0:

∥Ezn
[ĝn]− Ezn

[gn]∥ ≤ 2p−1 (σp +Gp)

τp−1
, (9)

Ezn

[
∥ĝn∥2

]
≤ 2p−1τ2−p (σp +Gp) . (10)

The proof is provided in Appendix A.

By exploiting Lemma 4.1, we have

F (xM )− F (x0)
(7)
=

M∑
n=1

⟨Ewn,zn
[gn] ,∆n⟩

=

M∑
n=1

⟨ĝn,∆n − un⟩︸ ︷︷ ︸
term (a)

+

M∑
n=1

⟨Ezn
[gn] ,un⟩︸ ︷︷ ︸

term (b)

+

M∑
n=1

⟨Ewn,zn [gn]− Ezn [gn] ,∆n⟩︸ ︷︷ ︸
term (c)

+

M∑
n=1

⟨Ezn [gn]− Ezn [ĝn] ,∆n − un⟩︸ ︷︷ ︸
term (d)

+

M∑
n=1

⟨Ezn [ĝn]− ĝn,∆n − un⟩︸ ︷︷ ︸
term (e)

,

where {un} is an arbitrary sequence of points whose norms
are bounded by D. Specifically, we take u(k−1)T+1 =

· · · = ukT = uk = D
∑T

t=1 ∇F (wk
t )

∥∑T
t=1 ∇F (wk

t )∥
for ∀k ∈ [K]

throughout the analysis of this theorem. In the following,
we analyze each term separately.

For term (a), our specification of {un} implies

term (a) =

K∑
k=1

T∑
t=1

〈
ĝk
t ,∆

k
t − uk

〉
,

where ĝk
t = ĝ(k−1)T+t and ∆k

t = ∆(k−1)T+t. We can
interpret term (a) as optimizing the online linear functions
ℓn (x) = ⟨ĝn,x⟩ with K restarts. In this sense, term (a)
directly corresponds to the shifting regret of the online learn-
ing algorithm.

The standard OGD-style update strategy of ∆n with the
fixed step size η has the regret guarantee of

T∑
t=1

ℓt (wt)−ℓt (u) ≤
1

2η
∥u− x1∥2+

η

2

T∑
t=1

∥∇ℓt (wt)∥2

for arbitrary sequence of convex functions ℓt, domain
bounded {wt} and u, according to Orabona (2019, The-
orem 2.13). Applying this result to Algorithm 1, we derive

T∑
t=1

〈
ĝk
t ,∆

k
t − uk

〉
≤ 2

η
D2 +

η

2

T∑
t=1

∥∥ĝk
t

∥∥2 (11)

for T rounds within the k-th restart.

Note that the properties of clipped gradient ensure ∥ĝk
t ∥ ≤ τ

and Ezn
[∥ĝk

t ∥2] ≤ 2p−1τ2−p (σp +Gp). We can further
bound

∑T
t=1 ∥ĝk

t ∥2 using concentration inequality for sub-
exponential sequences (c.f. Lemma D.1). From Lemma D.1,
with probability at least 1− q/ (2K), we have

T∑
t=1

∥∥ĝk
t

∥∥2 ≤6τ2−pT (σp +Gp) +
5

3
τ2 log

2K

q

=
23

3
τ2 log

2K

q
.

(12)

We combine (11), (12) and η = D/τ to bound the regret
of each restart, and then apply union bound for K restarts.
With probability at least 1− q/2, we have

term (a) ≤ DKτ

(
2 +

23

6
log

2K

q

)
.

For term (b), our specification of {un} and {uk} directly
implies

term (b) = −DT

K∑
k=1

∥∥∥∥∥ 1T
T∑

t=1

∇F
(
wk

t

)∥∥∥∥∥ .
For term (c), letting Vn = ⟨Ewn,zn

[gn]− Ezn
[gn] ,gn⟩,

we find that {Vn} forms a martingale difference sequence.
Thus, term (c) can be bounded using the Hoeffding-Azuma
inequality for martingales (c.f. Lemma D.2).

7
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Before applying the concentration inequality, we need to
bound Vn:

Vn ≤ ∥Ewn,zn
[gn]− Ezn

[gn]∥ ∥∆n∥ ≤ 2DG,

where the last step follows from ∥un∥ ≤ D, ∥Ezn
[gn]∥ ≤

G and Lemma 4.2. From Lemma D.2, with probability at
least 1− q/6, we have

term (c) =

M∑
n=1

Vn ≤ 4DG

√
M

2
log

6

q
.

For term (d), we utilize the property (9) of clipped gradi-
ents to bound this term, that is

term (d) =

M∑
n=1

⟨Ezn
[gn]− Ezn

[ĝn] ,∆n − un⟩

≤
M∑
n=1

∥Ezn [gn]− Ezn [ĝn]∥ ∥∆n − un∥

(9)
≤DKT · 2

p (σp +Gp)

τp−1
.

For term (e), we can bound this term by utilizing the prop-
erty (10) of clipped gradients. Let Dn = ⟨Ezn

[ĝn] −
ĝn,∆n − un⟩, then {Dn} is a martingale difference se-
quence. We make use of Freedman’s inequality for martin-
gales (c.f. Lemma D.3).

In order to apply Lemma D.3, we respectively bound the
following two terms

Dn ≤ ∥Ezn
[ĝn]− ĝn∥ ∥∆n − un∥ ≤ 4τD,

Ezn

[
D2

n

]
≤Ezn

[
∥Ezn

[ĝn]− ĝn∥2 ∥∆n − un∥2
]

(10)
≤D22p+1τ2−p (σp +Gp) ,

where we utilize ∥∆n∥ ≤ D, ∥un∥ ≤ D and ∥ĝn∥ ≤ τ .
From Lemma D.3, with probability at least 1−q/6, we have

term (e) ≤ 8Dτ

3
log

6

p
+D

√
2p+2 (σp +Gp)Mτ2−p log

6

q
.

We apply the union bound to combine the high-probability
guarantee of each term in the decomposition, so that

F (xM )− F (x0)

≤DKτ

(
2 +

23

6
log

2K

q

)
−DT

K∑
k=1

∥∥∥∥∥ 1T
T∑

t=1

∇F
(
wk

t

)∥∥∥∥∥
+ 4DG

√
M

2
log

6

q
+DKT · 2

p (σp +Gp)

τp−1

+
8Dτ

3
log

6

q
+D

√
2p+2 (σp +Gp)Mτ2−p log

6

q

holds with probability at least 1− q.

Finally, we rearrange the above inequality and divide
both sides by DM , and then replace all τ by T 1/p(σp +
Gp)1/p log(2K/q)−1/p to finish the proof. The precise val-
ues of A and B are given by

A = (σp +Gp)
1/p

log (2K/q)
−1/p

(
8 +

29

2
log (2K/q)

)
,

B =
√
8 log (6/q).

4.2. Proof of Theorem 3.9

As Ewr,zr
[gr] =

1
T

∑T
t=1 ∇F (wt) holds true due to our

choice of wr, we can decompose the approximation error
of Algorithm 2 as∥∥∥∥∥ 1R

R∑
r=1

g̃r −
1

T

T∑
t=1

∇F (wt)

∥∥∥∥∥ ≤ 1

R

∥∥∥∥∥
R∑

r=1

g̃r − Ewr,zr
[g̃r]

∥∥∥∥∥︸ ︷︷ ︸
term (f)

+
1

R

R∑
r=1

∥Ewr,zr
[g̃r]− Ewr,zr

[gr]∥︸ ︷︷ ︸
term (g)

.

For term (f), we let Xr = g̃r − Ewr,zr [g̃r] and find that
{Xr} forms a vector-valued martingale difference sequence.
Then we bound ∥Xr∥ and Ewr,zr

[∥Xr∥2] in order to ap-
ply concentration inequality for vector-valued martingales
(c.f. Lemma D.4):

∥Xr∥ ≤ ∥g̃r∥+ ∥Ewr,zr
[g̃r]∥ ≤ 2τ,

Ewr,zr

[
∥Xr∥2

]
≤ Ewr,zr

[
∥g̃r∥2

] (10)
≤ 2τ2R−1 log (1/q) .

Apply Lemma D.4 by taking Xr = g̃r − Ewr,zr [g̃r], br =
2τ , σ2

r = 2τ2R−1 log(1/q), q = q and ν = 2τ to have∥∥∥∥∥
R∑

r=1

Xr

∥∥∥∥∥ ≤5τ

√
2 log

1

q
log

64

q
+ 46τ log

(
224

q
· 32
)

≤τ

(
5

2
log 64 + 46 log 2016 +

107

2
log

1

q

)
.

Thus with probability at least 1− q, we have

term (f) ≤ τ

R

(
5

2
log 64 + 46 log 2016 +

107

2
log

1

q

)
.

For term (g), we expand the expectation on wr, then bound
this part using property (9) of clipped gradients:

term (g)

≤ 1

TR

T∑
t=1

R∑
r=1

∥∥∥Ezr
[G̃ (wt, zr)]− Ezr

[GRAD(wt, zr)]
∥∥∥

(9)
≤2τR−1 log (1/q) ,

8
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Figure 1. Accuracy of different methods versus the number of epochs.

where G̃ (wt, zr) denotes applying gradient clipping to
GRAD(wt, zr) with parameter τ .

We apply the union bound and substitute τ with R1/p(σp +
Gp)1/p log(1/q)−1/p to finish the proof.

5. Preliminary Experiment
We conduct a preliminary experiment to evaluate our pro-
posed algorithm, with details provided in Appendix C. We
train the ResNet18 (He et al., 2016) model on the CIFAR10
(Krizhevsky & Hinton, 2009) dataset, which consists of a
training set of 50k images and a testing set of 10k images
from 10 classes. As we are investigating the heavy-tailed
distributions of stochastic gradients, we manually add heavy-
tailed noise to the gradients. We compare the performance
of CGA (Candidate Generation Algorithm, our Algorithm
1) with three benchmarks: SGD with momentum, SINGD
(Stochastic-INGD, Algorithm 2 of Zhang et al., 2020c) and
ONCCA (Online-to-Non-Convex Conversion Algorithm,
Algorithm 1 of Cutkosky et al., 2023). For each algorithm,
we choose the output of the last iteration for evaluation.

From the results presented in Figure 1, We observe that
SGD performs poorly and does not converge due to the
heavy-tailed noise. Meanwhile, SINGD, ONCCA and CGA
make steady progress towards higher accuracy. Although
SINGD and ONCCA do not explicitly address heavy-tailed
gradients, the normalization steps in their update strategies
seem to mitigate the effects. Our CGA further outperforms
SINGD and ONCCA on both the training and testing sets in
terms of accuracy, which demonstrates the effectiveness of
applying gradient clipping to the stochastic gradients.

6. Conclusion and Future Work
In this paper, we propose a novel algorithm for non-smooth
non-convex stochastic optimization that supports heavy-
tailed gradients. As far as we know, it is the first attempt to
investigate such setting. We integrate the gradient clipping
technique into the online-to-non-convex framework to pro-
duce candidate points, and validate a solution among candi-
dates by computing the approximation of the expected gradi-
ent norm. Our algorithm provides a high-probability bound
of consuming Õ(ϵ−

2p−1
p−1 δ−1) gradient queries for finding a

(δ, ϵ)-stationary point. When the gradient distributions have
bounded variance, our complexity becomes Õ(ϵ−3δ−1),
better than the existing Õ(ϵ−4δ−1) high-probability bound.
For smooth objectives, our algorithm identifies ϵ-stationary
points with a query complexity of Õ(ϵ−

3p−2
p−1 ), nearly match-

ing the lower bound.

For future work, since our algorithm requires the knowledge
of problem parameters σ and G, it is of interest to explore
the possibility for any parameter-free extensions, for in-
stance, removing the dependence of the clipping parameter
on either σ (Liu & Zhou, 2023) or G (Sadiev et al., 2023).
Another possible direction is designing a time-varying clip-
ping parameter, which may extend the theoretical guarantee
to an unknown time horizon and enable more refined analy-
sis (Nguyen et al., 2023).
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A. Properties of Clipped Gradients
These properties are first introduced by Zhang et al. (2020b) and similarly analyzed by Zhang & Cutkosky (2022). We
reproduce the following results from Zhang & Cutkosky (2022, Lemma 15) for completeness.
Lemma A.1. Suppose gt is a heavy-tailed random vector, ∥E [gt] ∥ ≤ G, E[∥gt − E[gt]∥p] ≤ σp for some p ∈ (1, 2] and
σ < ∞. Define truncated gradient ĝt with a positive clipping parameter τ :

ĝt =
gt

∥gt∥
min (τ, ∥gt∥) ,

then we have:

∥E [ĝt]− E [gt]∥ ≤ 2p−1 (σp +Gp)

τp−1
,

E
[
∥ĝt∥2

]
≤ 2p−1τ2−p (σp +Gp) .

First we bound the bias by

∥E [ĝt]− E [gt]∥ = ∥E [ĝt − gt]∥
≤E [∥ĝt − gt∥]
≤E [∥gt∥1 [∥gt∥ ≥ τ ]]

≤E[∥gt∥p /τp−1]

≤E[(∥gt − E [gt]∥+ ∥E [gt]∥)p /τp−1]

=
2p

τp−1
E[(

1

2
∥gt − E [gt]∥+

1

2
∥E [gt]∥)p]

≤2p−1

τp−1

(
E
[
∥gt − E [gt]∥p

]
+ E

[
∥gt∥p

])
≤2p−1 (σp +Gp)

τp−1
,

where the first and the second last inequality follow from convexity of ∥·∥ and (·)p accordingly and linearity of expectation.
Then we continue to bound the variance with similar algebra and have

E
[
∥ĝt∥2

]
≤E

[
∥gt∥p τ2−p

]
≤E

[
(∥gt − E [gt]∥+ ∥E [gt]∥)p τ2−p

]
=2pτ2−pE[(

1

2
∥gt − E [gt]∥+

1

2
∥E [gt]∥)p]

≤2p−1τ2−p
(
E
[
∥gt − E [gt]∥p

]
+ E

[
∥gt∥p

])
≤2p−1τ2−p (σp +Gp) .

B. Omitted Proofs in Sections 3 and 4
B.1. Proof for Corollary 3.8

Corollary 3.8. Suppose we have a budget of N gradient queries. Set T = min(⌈( ANδ
F (x0)−F⋆ )

p/(2p−1)⌉, N
2 ), K = ⌊N

T ⌋ and
D = δ/T for an arbitrary δ > 0. Under Assumptions 3.2, 3.3 and 3.4, with probability at least 1− q, Algorithm 1 ensures

1

K

K∑
k=1

∥∥∇F
(
w̄k
)∥∥

δ
≤ 2 (F (x0)− F ⋆)

δN
+

2B√
N

+max

(
4A

p
2p−1 (F (x0)− F ⋆)

p−1
2p−1

(δN)
p−1
2p−1

,
4A

N
p−1
p

)
,
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where A, B are given in Theorem 3.7.

Proof. Recall that ∥∆n∥ ≤ D, we can then bound the distance between w̄k = 1
T

∑T
t=1 w

k
t and wk

1 , · · · ,wk
T for a fixed

k ∈ [K]. For 1 < t ≤ T , with update rule xn = xn−1 +∆n in Line 5 and wn = xn−1 + sn∆n in Line 7 of Algorithm 1,
we have ∥∥wk

t −wk
1

∥∥ =
∥∥(xk

t−1 + skt∆
k
t

)
−
(
xk
1 +

(
sk1 − 1

)
∆k

1

)∥∥
≤

∥∥∥∥∥
t−1∑
i=2

∆k
i

∥∥∥∥∥+ ∥∥(skt − 1
)
∆k

t

∥∥+ ∥∥(sk1 − 1
)
∆k

1

∥∥
≤

t−1∑
i=2

∥∥∆k
i

∥∥+ 2D ≤ tD.

Thus, the distance between w̄k and wk
t for ∀t ∈ [T ] is bounded by

∥∥w̄k −wk
t

∥∥ =

∥∥∥∥∥ 1T
T∑

i=1

wk
i −wk

t

∥∥∥∥∥ =
1

T

T∑
i=1

∥∥wk
i −wk

t

∥∥ ≤ TD = δ.

We relate Theorem 3.7 to our setting of D,K, T to obtain

1

K

K∑
k=1

∥∥∥∥∥ 1T
T∑

t=1

∇F
(
wk

t

)∥∥∥∥∥
≤2 (F (x0)− F ⋆)

DN
+

2AKT 1/p

N
+

2B√
N

≤2T (F (x0)− F ⋆)

δN
+

2A

T
p−1
p

+
2B√
N

≤max

(
4A

p
2p−1 (F (x0)− F ⋆)

p−1
2p−1

(δN)
p−1
2p−1

,
4A

N
p−1
p

)
+

2 (F (x0)− F ⋆)

δN
+

2B√
N

,

(13)

with probability at least 1− q, where the first step follows from N < 2KT = 2M , the second step follows from D = δ/T
and N ≥ KT , the last step follows from our choice of T .

Note that we have w̄k = 1
T

∑T
t=1 w

k
t for ∀k ∈ [K], then we can relate (13) to Definition 3.6. We have a support set

S′ = {wk
1 , · · · ,wk

T } whose center is w̄k and satisfying S′ ⊂ B
(
w̄k, δ

)
, thus it establishes an upper bound for ∥∇F (w̄k)∥δ ,

that is ∥∥∇F
(
w̄k
)∥∥

δ
≜ inf

S⊂B(w̄k,δ), 1
|S|

∑
y∈S

y=w̄k

∥∥∥∥∥∥ 1

|S|
∑
y∈S

∇F (y)

∥∥∥∥∥∥ ≤

∥∥∥∥∥ 1T
T∑

t=1

∇F
(
wk

t

)∥∥∥∥∥ .
Taking the average over K restarts to have 1

K

∑K
k=1 ∥∇F (w̄k)∥δ ≤ 1

K

∑K
k=1 ∥

1
T

∑T
t=1 ∇F (wk

t )∥, we finally combine it
with (13) to finish the proof.

B.2. Proof for Theorem 3.10

Theorem 3.10. Set N = Õ(ϵ−
2p−1
p−1 δ−1 log(1/q)) and R = O(ϵ−

p
p−1 log(1/q)). Under Assumptions 3.2, 3.3 and 3.4,

with probability at least 1− q, Algorithm 3 guarantees to output a (δ, ϵ)-stationary point with Õ(ϵ−
2p−1
p−1 δ−1 log(1/q) +

ϵ−
p

p−1 log(1/q)2) queries of stochastic gradient oracle.

Proof. We apply Corollary 3.8 with the specification of taking ϵgen = ϵ/3 and qgen = q/3. Then, with a budget of
N = Õ(ϵgen

− 2p−1
p−1 δ−1 log(1/qgen)) gradient queries, we ensure 1

K

∑K
k=1 ∥

1
T

∑T
t=1 ∇F (wk

t )∥ ≤ ϵ/3 with high probability.
Meanwhile, since norms are non-negative, at least half of ∥ 1

T

∑T
t=1 ∇F (wk

t )∥ are no greater than 2ϵ/3. Therefore, by
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selecting k ∈ [K] at random, with probability 1 − q/3 we will meet a k that satisfies ∥ 1
T

∑T
t=1 ∇F (wk

t )∥ ≤ 2ϵ/3 in
log(3/q) rounds.

We continue to analyze the query complexity of each validation algorithm call. We apply Theorem 3.9 by setting the
precision of approximation to ϵval = ϵ/6 and qval = q/(3 log(1/q)). Thus, each call of Algorithm 2 requires R =

O(ϵval
− p

p−1 log(1/qval)) gradient queries. Under this setting, any ∥ 1
T

∑T
t=1 ∇F (wk

t )∥ > ϵ will be rejected by our threshold
of 5ϵ/6 with probability 1− qval, which guarantees the validity of the accepted solution. From another perspective, any
∥ 1
T

∑T
t=1 ∇F (wk

t )∥ ≤ 2ϵ/3 will be accepted with probability 1− qval, meaning that a valid solution is likely to be accepted
within O(log(1/q)) rounds.

Since we call Algorithm 1 for one time and call Algorithm 2 for O(log(1/q)) times, we require Õ(ϵ−
3p−2
p−1 log(1/q) +

ϵ−
p

p−1 log(1/q)2) gradient queries in total.

B.3. Proof for Corollary 3.12

Corollary 3.12. Further set δ = ϵ/H . Under Assumptions 3.2, 3.3, 3.4 and 3.11, with probability at least 1−q, Algorithm 3
guarantees to output an ϵ-stationary point with Õ(ϵ−

3p−2
p−1 log(1/q) + ϵ−

p
p−1 log(1/q)2) queries of stochastic gradient

oracle.

Proof. When the objective function F is smooth, we will see that with minor modification, the (δ, ϵ)-stationary point we
identified converts to (0, ϵ′)-stationary point for some appropriate ϵ′. The conversion is based on the following lemma
(Cutkosky et al., 2023, Proposition 14).

Lemma B.1. Suppose that F is H-smooth (that is, ∇F is H-Lipschitz) and x also satisfies ∥∇F (x)∥δ ≤ ϵ. Then,
∥∇F (x) ∥ ≤ ϵ+Hδ.

From Lemma B.1, by setting δ = ϵ/H , we have ∥∇F (x) ∥ ≤ 2ϵ under Assumption 3.11, indicating that the (δ, ϵ)-
stationary point x is also a 2ϵ-stationary point. Thus, the number of required queries changes from Õ(ϵ−

2p−1
p−1 δ−1 log(1/q)+

ϵ−
p

p−1 log(1/q)2) to Õ(ϵ−
3p−2
p−1 log(1/q) + ϵ−

p
p−1 log(1/q)2) by our specification of δ.

B.4. Proof for Lemma 4.1

This lemma is originally introduced by Zhang et al. (2020a) and is referred to as the random scaling trick. We reproduce the
proof for completeness.
Lemma 4.1. With the notation in Algorithm 1, under Assumption 3.4, we have

F (xM )− F (x0) =

M∑
n=1

⟨Ewn,zn
[gn] ,∆n⟩ . (7)

Proof. Under Assumption 3.4, we have

F (xM )− F (x0) =

M∑
n=1

F (xn)− F (xn−1)

=

M∑
n=1

∫ 1

0

⟨∇F (xn−1 + s (xn − xn−1)) ,xn − xn−1⟩ds

=

M∑
n=1

∫ 1

0

⟨∇F (xn−1 + s∆n) ,∆n⟩ds.

(14)

Meanwhile, we can simplify the above equation with the following observation:

Ewn,zn
[gn] = Ewn

[Ezn
[GRAD(wn, zn)]] = Esn [∇F (xn−1 + sn∆n)] =

∫ 1

0

∇F (xn−1 + s∆n) ds, (15)

where the first equality holds as wn and zn are independent. Combining (14) and (15) to finish the proof.
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B.5. Proof for Lemma 4.2

Lemma 4.2. With the notation in Algorithm 1, under Assumptions 3.2 and 3.4, we have

∥Ewn,zn [gn]∥ ≤ G. (8)

Proof. Under Assumption 3.2, we further bound the norm of (15) to have

∥Ewn,zn
[gn]∥

(15)
=

∥∥∥∥∫ 1

0

∇F (xn−1 + s∆n) ds

∥∥∥∥ ≤
∫ 1

0

∥∇F (xn−1 + s∆n)∥ ds ≤ G.

C. Experimental Setting
In this part, we provide experimental details of Section 5.

To our knowledge, only Zhang et al. (2020c) has conducted experiment in non-smooth non-convex stochastic optimization.
Therefore, we adopt their setup to design our experiment.

As we are investigating the heavy-tailed distributions of stochastic gradients, we manually add heavy-tailed noise to the
gradients. The noise is added in the following manner. First, we concatenate the computed gradients into a vector graw.
Then, we generate a vector v of the same size, where each element follows the continuous uniform distribution over the
interval [−1, 1]. Next, we generate a variable X following the Pareto distribution described by shape α = 1.5 and scale
xm = 4, which implies E[Xp] = αxm

p

α−p for p < α. Finally, we combine graw with the generated noise to compute the noisy
gradient as gnoisy = graw + vX/∥v∥, and feed gnoisy as the gradient accessed through the oracle to algorithms. Under this
setting, we have E[∥gnoisy − graw∥p] = E[Xp] = αxm

p

α−p .

We compare the performance of our algorithm with three benchmarks. The specific settings are as follows:

• SGD with momentum. We set the learning rate as 0.01 and momentum as 0.9.
• SINGD (Stochastic-INGD, Algorithm 2 of Zhang et al., 2020c). We use β = 0.9, p = 1, q = 10, and multiply the

learning rate by an additional factor of 0.1. This setting follows from their experiment.
• ONCCA (Online-to-Non-Convex Conversion Algorithm, Algorithm 1 of Cutkosky et al., 2023). We use D = 2.5×10−2

and η = 2.5× 10−3.
• CGA (Candidate Generation Algorithm, our Algorithm 1). We use D = 2.5× 10−2, τ = 10 and η = 2.5× 10−3.

All four algorithms are equipped with a weight decay parameter of 5× 10−4.

We run these four algorithms with the same pre-trained model, which achieves 81.96% accuracy on the training set and
81.10% on the testing set. We report their performance over the next 50 epochs, with the accuracy averaged over 20
individual runs.

D. Some Useful Concentration Inequalities
We make use of several concentration inequalities in Section 4. Here we provide these inequalities for reference.

The first is bounded squared sum for sub-exponential sequences (Zhang & Cutkosky, 2022, Lemma 24).

Lemma D.1. Suppose {Xt,Ft} is a sequence with |Xt| ≤ b and E[X2
t |Ft] ≤ σ2 almost surely for some fixed σ, b. Then

with probability at least 1− q we have
T∑

t=1

X2
t ≤ 3σ2

2
T +

5

3
b2 log

1

q
.

The second is Hoeffding-Azuma inequality for martingale difference sequences stated below (Cesa-Bianchi & Lugosi, 2006).

Lemma D.2. Let V1, V2, · · · be a martingale difference sequence with respect to some sequence X1, X2, · · · such that
Vi ∈ [Ai, Ai + ci] for some random variable Ai, measurable with respect to X1, · · · , Xi−1 and a positive constant ci. Then
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for any t > 0,

Pr

[
n∑

i=1

Vi > t

]
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

When we specify |Vi| ≤ b, Lemma D.2 is equivalent to guarantee

n∑
i=1

Vi ≤ 2b

√
n

2
log

1

q

with probability at least 1− q.

The third is Freedman’s inequality for martingales (Cutkosky & Mehta, 2021, Lemma 11).

Lemma D.3. Let D1, D2, · · · be a martingale difference sequence adapted to a filtration F1,F2, · · · such that Di ≤ R
almost surely for all i. Let Ei indicate expectation conditioned on Fi. Suppose further that for all i with probability 1,

Et−1

[
D2

i

]
≤ σ2

i .

Then with probability at least 1− q, for all n we have

n∑
i=1

Di ≤
2R

3
log

1

p
+

√√√√2

n∑
i=1

σ2
i log

1

q
.

The fourth is vector-valued martingale difference sequence concentration inequality (Zhang & Cutkosky, 2022, Theorem
19).

Lemma D.4. Suppose that {Xt,Ft} is a vector-valued martingale difference sequence such that E[∥Xt∥2|Ft−1] ≤ σ2
t and

∥Xt∥ ≤ bt almost everywhere for some sequence {σt, bt} such that σt, bt is Ft−1-measurable. Let ν ≥ 0 be an arbitrary
constant. Then with probability at least 1− q, for all t we have

∥∥∥∥∥
t∑

i=1

Xi

∥∥∥∥∥ ≤5

√√√√√√ t∑
i=1

σ2
i log

16

q

log

√√√√ t∑

i=1

σ2
i /ν

2


1

+ 2

2


+ 23max

(
ν,max

i≤t
bi

)
log

(
224

q

[
log

(
2max (ν,maxi≤t bi)

ν

)
+ 2

]2)

where [x]1 = max(1, x).
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