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Abstract

New transformer networks have been integrated into object tracking pipelines and have
demonstrated strong performances on the latest benchmarks. Our research is focused on
understanding how transformer trackers behave under adversarial attacks and how different
attacks perform on tracking datasets as their parameters change. We conducted a series of
experiments to evaluate the effectiveness of existing adversarial attacks on object trackers
with transformer backbones. Our research characterized the susceptibility of transformer
trackers to adversarial perturbations. We assessed the accuracy of the object bounding box
and binary mask outputs after applying different attack methods and evaluated the impact
of perturbation levels on both white-box and black-box attacks. We used three types of
transformer trackers and four attack approaches to conduct the assess performances and
robustness. Interestingly, our study found that changing the perturbation level may not
significantly affect the overall object tracking results after the attack. Additionally, we
observed that, depending on the approach, the sparsity and imperceptibility of adversarial
attacks on object trackers may remain stable against perturbation levels, albeit with the cost
of generating several highly perturbed frames per sequence. Furthermore, we found that
new transformer trackers with stronger cross-attention modelling exhibit greater adversarial
robustness on tracking benchmarks. Our results also indicate that new attack methods are
required to tackle the latest types of transformer trackers effectively.

1 Introduction

Adversarial perturbations deceive neural networks, leading to inaccurate outputs. Such adversarial attacks
have been studied for vision tasks from image classification (Mahmood et al.l [2021; [Shao et al.l [2022) to
object segmentation (Gu et al. [2022) and tracker networks (Guo et al., 2020; |Jia et al., 2020; [Yan et al.
2020; [Jia et al., 2021). With transformer networks, the object trackers surpassed the other deep learning-
based trackers, showing a very robust performance on the state-of-the-art benchmarks (Kristan et al., 2023)).
However, the adversarial robustness of these trackers needs to be better studied in the literature.

First transformer trackers relied on relatively light relation modeling (Chen et al., [2021), using a relatively
shallow feature extraction and fusion modelling. With the mixed attention module, the MixFormer (Cui
et al.l |2022)) expanded the road for deeper relation modelling. Consequently, the Robust Object Modeling
Tracker (ROMTrack) (Cai et al.| [2023) proposed variation tokens to capture and preserve the object defor-
mation across frames. Using transformers, especially those with deep relation modeling (Cui et al., [2022;
Cai et all 2023]), the object tracker backbones made these models unshakable with many existing attack
approaches (Guo et al.l |2020; |Jia et al, [2020)). Indeed, the underlying concept of adversarial attacks against
object trackers is to manipulate the tracker’s output. By omitting the multi-head pipelines and substituting
them with the transformer backbones (Cui et al., 2022} (Cai et al.l 2023), the tracker’s output does not contain
the object candidates, classification labels and/or regression labels. As a result, it is not straightforward to
transfer adversarial attacks dealing with classification or regression labels (Guo et al.l [2020; |Jia et al., 2020))
on these new transformer trackers. However, a question remains on whether other transferable attacks (Jial
et al., |2021} [Yan et al., [2020) can represent a sufficient challenge to transformer trackers.



Under review as submission to TMLR

This paper presents a study on the reproducibility of existing attack approaches for transformer trackers.
We aim to recreate the attack outcomes on transformer trackers using the VOT2022ST (Kristan et al.,
2023) and UAV123 (Mueller et all 2016) datasets following two different evaluation protocols. We focused
on transformer trackers susceptible to adversarial attacks on their prediction outputs, including the object
bounding box and binary mask. Then, we analyzed two white-box attacks on a transformer tracker by varying
the perturbation levels and checked its vulnerability to different levels of noise. For the black-box setting,
we conducted a similar experiment to assess the attack performance on various noise levels by changing the
upper bound of the added noise. Based on our study, we found the following:

1. The generated perturbations for those attacks applicable to transformer trackers have more impact
on the object mask rather than on the object bounding box.

2. For a specific output, object bounding box or object mask, the transformer tracker with stronger
cross-attention modelling presents a more robust performance against the same attack.

3. Although it was demonstrated that adding previous perturbations to the current frame for per-
turbed search regions generation have an impact on the attacker performance (Guo et al., 2020,
these previous perturbations result in more stable performance against perturbation level shifts.
For instance, such an increased stability has been observed on SPARK (Guo et al. 2020) attack
performance against TransT tracker on UAV123 dataset (Mueller et al.| |2016)).

4. The SPARK algorithm generates temporally sparse perturbations, meaning that the added pertur-
bation to the search region is small for majority of the frames. It results in imperceptible noise for
many frames per video sequence, even though the perturbation level changes to a higher level.

5. Increasing the perturbation level on SPARK results in more super-perturbed regions, i.e. regions
with perceptible noise, that grows by the perturbation level.

6. In other methods such as IoU (Jia et al.| [2020) and RTAA (Jia et al.,|2021) attacks, adding a higher
perturbation level generates more perceptible noise for all frames, which damage more the overall
tracking performance.

7. The ranking of attack performance is sensitive to the experiment settings, with possibly significant
changes in the ranking with different datasets and evaluation protocol.

8. The outcome of the IoU attack is sensitive to its random noise-based initialization. Also, changes
in the initial conditions have a smaller effect on transformer trackers with stronger cross-attention
and object modelling compared to those with lighter and independent layers of cross-attention.

2 Related Work

Vision transformers have recently been employed in object trackers which enhances the tracking performance.
By using transformers in different architectures (Chen et all [2021; |Cui et al., 2022 |Chen et al., 2023} |Cai
et al} [2023), object trackers are capable of inferring object bounding box, binary mask and a prediction score
with high robustness values over tracking benchmarks (Kristan et al., |2023; [Mueller et al., [2016]). These
promising results though need to be revisited by assessing transformer trackers in handling the adversarial
perturbations. The first transformer tracker, TransT (Chen et al., 2021)), used the cross-attention and self-
attention blocks to mix features of the moving target and the search region of the tracker. TransT presents
a multi-head pipeline with classification and regression heads, unlike other transformer trackers. In TransT-
SEG (Chen et al., [2023), the segmentation head is included in the pipeline. The multi-head pipelines follow
the siamese-based trackers (Li et all 2019)) in dividing each task from target classification to discriminative
tracking processing into individual blocks and fusing the results at the end of the tracker structure. Some
light relation modelling layers called the Ego Context Augment (ECA) and Cross Feature Augment (CFA) are
introduced by TransT to infer the output from combining the multi-head outputs. Next, the MixFormer (Cui
et al., [2022) introduced Mixed Attention Module (MAM) to jointly extract and relate the information from
video frames for the object tracking task. By attaching the MixFormer (Cui et al. |2022)) tracker to the
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AlphaRefine (Yan et all 2021), MixFormerM (Kristan et al., [2023]) can provide an binary object mask per
frame for mask oriented evaluations (Kristan et al., |2023). The One-Stream Tracking (OSTrack) (Ye et al.,
2022)) developed a tracking pipeline that jointly extracts features and models the relation of search region
and the template by bidirectional information flows. In contrast, with the Attention in Attention (AiA)
mechanism, the AiATrack (Gao et al., 2022|) suggested a three stream framework with long-term and short-
term cross-attention modules for relation modelling. Following the further relation modeling, the Robust
Object Modeling Tracker (ROMTrack) (Cai et al. 2023)) is proposed to enable the interactive template
learning using both self-attention and cross-attention modules. The ROMTrack has two main streams to
learn discriminative features from hybrid (template and search) and inherent template. The newly introduced
variation tokens enables ROMTrack with heavier relation modeling rather TransT (Chen et all [2021) and
MixFormer (Cui et al}|2022). The variation token carries the contextual appearance change to tackle object
deformation in visual tracking task.

Adversarial attacks against object trackers adopt tracker outputs such as object candidates or classification
labels as an attack proxy to generate the adversarial perturbations. For instance, spatial-aware online
incremental attack (SPARK) (Guo et al.||2020)) creates perturbation by manipulating the classification labels
and Intersection of the Union (IoU) (Jia et al., |2021). It is developed to mislead trackers in providing an
altered object bounding box based on the predicted bounding box. In Robust Tracking against Adversarial
Attack (RTAA) (Jia et al.;|2020)), both classification and regression labels are used to generate the adversarial
samples, similar to SPARK (Guo et al.;[2020). In the RTAA (Jia et al., [2020]) algorithm, the positive gradient
sign is used to generate the adversarial frames. However, in SPARK, the gradient direction is set to negative
following the decoupling of norm and direction of gradients in white-box attacks (Rony et all|2019). Based
on the decoupling direction and norm for efficient gradient-based attacks, the direction of the gradient is set
in such a way that the generated perturbation has a smaller norm value and greater impact on the results.

Some other attacks, such as the Cooling-Shrinking Attack (CSA) (Yan et al., 2020) is developed specifically
to impact the output of siamese-based trackers. In CSA (Yan et al.l [2020), two GANs are trained to cool the
hottest regions in the final heat-map of siamese-based trackers and shrink the object bounding box. Due to
dependency on the siamese-based architecture and loss function, the generalization of the CSA attack (Yan
et al., [2020) for other scenarios is harder. The black-box attack, called IoU attack (Jia et all 2021), adds
two types of noise into the frame to make the tracker predict another bounding box rather than the target
bounding box. By considering the object motion in historical frames, the direction of added noise is adjusted
according to the IoU scores of the predicted bounding box.

3 Transformer Trackers and Adversarial Attacks

In this section, we briefly review the transformer trackers used in our experiments. Also, we explain the
adversarial attack methods which are transferred to attack transformer trackers. The codes and network of
all of the investigated models are publicly available. The implementation of every tracker and every attack
approach are the official repository announced by designers. The networks are also fine turned and released
by the authors of original works.

3.1 Transformer Trackers

For the object trackers, we considered three types of the robust single object trackers as follows.

TransT and TransT-SEG In our studies, we used both Transformer Tracker (TransT) (Chen et al.,|2021)
and TransT with mask prediction ability (TransT-SEG) (Chen et al.| [2023). By two discriminative streams
and a lightweight cross-attention modeling in the end, the TransT introduced the first transformer-based
tracker.

MixFormer and MixFormerM The MixFormer (Cui et all [2022)) is based on a flexible attention op-
eration (MAM) to interactively exploit features and integrate them in a deep layer of the tracker. The
MixFormer coupled with the AlphaRefine network has been proposed for the VOT2022 challenge (Kristan
et al.l |2023)) as MixFormerM. It enables the original tracker to provide the object mask as an extra output.
In our experiments, we tested both MixFormer and MixFormerM trackers.
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ROMTrack The ROMTrack (Cai et all, [2023) is developed to generalize the idea of MixFormer by pro-
viding the template learning procedure. The template feature is processed both in self-attention (inherent
template) and cross-attention (hybrid template) between template and search regions. This mixed feature
avoids distraction in challenging frames and provides a more robust performance compared to TransT and
MixFormer.

3.2 Adversarial Attacks

In our study, we examined four attack approaches against object trackers, as follows.

CSA In attention-based siamese trackers (Li et al.l2019), the loss function aims to locate the hottest region
in the image where the correlation of the target and that location is the highest among all other regions.
Using two GANSs, one for the template perturbation and the other for the search region perturbation, the
CSA attack (Yan et al., 2020)) is developed to firstly cool the hot regions in the end of the network and shrink
the object bounding box predicted by the tracker.

IoU The IoU attack (Jia et al.| |2021) proposes a black-box setting attack to generate the adversarial frames
based on the object motion with the purpose of decreasing the IoU between the predicted bounding box and
the target. Two types of noises are added to achieve the final goal of the attack where the noise is bounded
to a specific value for L1 norm.

SPARK In SPARK (Guo et al., 2020), the classification and regression labels are manipulated to create
the white-box attack. The generated perturbation up to the last 30 frames is accumulated to create the
adversarial search regions for the trackers in each time step.

RTAA Using RTAA (Jia et al.;[2020), the classification and regression of object candidates are manipulated
to generate the adversarial search regions. Only the last frame perturbation is used from the past in the
current step of the attack.

4 Investigation

We conducted an analysis to determine how sensitive transformer trackers are to perturbations generated
by existing attack methods under various conditions. We compared the difference in performance between
the tracker’s ability to provide accurate bounding boxes and binary masks by measuring the percentage
difference from their original performance on clean data. We evaluated the impact of adversarial attacks on
transformer trackers in predicting the object bounding boxes by varying the perturbation levels. Finally,
we assessed the performance of the IoU attack when the generated perturbations were bounded at different
noise levels. We then discussed the observations we drew from these sets of experiments.

4.1 Adversarial Attacks per Tracker Output

In this section, we have applied adversarial attack techniques against the TransT-SEG (Chen et al., [2023)
and MixFormerM (Cui et al.l 2022)) trackers and compared the results based on different tracking outputs.
The objective of this experiment is to determine the difference in each tracking metric before and after the
attack when one of the tracker’s outputs (bounding box or binary mask) is measured.

Evaluation Protocol We have conducted a baseline experiment for the VOT2022 (Kristan et al., 2023)
short-term sub-challenge in two cases: object bounding box (STB) vs. object masks (STS) for target an-
notation and tracking. The Expected Average Overlap (EAO), accuracy and the anchor-based robustness
metrics are calculated in this experiment. The EAO computes the expected value of the prediction overlaps
with the ground truth. The accuracy measures the average of overlaps between tracker prediction and the
ground truth over a successful tracking period. The robustness is computed as the length of a successful
tracking period over the length of the video sequence. The successful period is a period of tracking in which
the overlap between the prediction and ground truth is always greater than the pre-defined threshold. The
baseline metrics are computed based on the anchor-based protocol introduced in VOT2020 (Kristan et al.)
2020). In every video sequence evaluation under this protocol, the evaluation toolkit will reinitialize the
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Table 1: Evaluation results of the TransT-SEG (Chen et al., 2021) tracker attacked by different methods
on the VOT2022 (Kristan et al.,|2023) Short-Term (ST) dataset and protocol for two stacks: bounding box
prediction via bounding box annotations (STB) and binary mask prediction via binary mask annotations
(STS). The “Clean” values are the original tracker performance without applying any attack.

EAO Accuracy Robustness
Stack  Method Clean  Attack Drop Clean  Attack Drop Clean  Attack Drop
CSA 0.299 0.285 4.68%  0.472 0.477 -1.06%  0.772 0.744 3.63%
STB IoU 0.299 0.231 22.74% 0.472 0.495 -4.87%  0.772 0.569 26.29%
RTAA 0.299 0.058 83.28% 0.472 0.431 8.69% 0.772 0.157 79.66%
SPARK  0.299 0.012 95.99% 0.472 0.244 48.30% 0.772 0.051 93.39%
CSA 0.500 0.458 8.40%  0.749 0.736 1.73%  0.815 0.779 4.42%
TS IoU 0.500 0.334 33.20% 0.749 0.710 5.21%  0.815 0.588 27.85%

RTAA 0.500 0.067 86.60% 0.749 0.533 28.84% 0.815 0.146 82.08%
SPARK  0.500 0.011 97.80% 0.749 0.266 64.48% 0.815 0.042 94.84%

tracker from the next anchor of the data to compute the anchor-based metrics wherever the tracking failure
happens. For visualization usage, we employed some video sequences from DAVIS2016 (Perazzi et al.l [2016)
dataset.

Attacks Setting Four adversarial attacks are employed in this experiment namely: CSA
, ToU , SPARK , and RTAA . However, not all of the
attacks are applicable to both trackers. The SPARK and RTAA attacks manipulate the object candidates
list, which includes classification labels and/or regression labels. If the tracker does not infer the candidates
in the output, these attacks cannot be applied on, such as MixFormerM that only outputs
the predicted bounding box. In this experiment, we generated the perturbations using SPARK and RTAA
attacks, i.e. white-box attacks, against trackers. However, the perturbation of CSA (Yan et al, 2020) is
created by two GANs and passing the image into the SiamseRPN-++ tracker to generate
the adversarial loss depending on the SiamseRPN++ loss. Therefore, the CSA is a transferred black-box
attack for both TransT (Chen et al) [2021) and MixFormer trackers. The IoU method
is also a black-box approach that can perturb the whole frame using the tracker prediction for
several times.

Results The following is a summary of the results obtained from an experiment conducted on the
VOT2022 (Kristan et al. 2023|) dataset using the TransT-SEG tracker (Chen et all 2023)) after adver-
sarial attacks. The results are shown in Table [1| for both STB and STS cases. The most powerful attack
against TransT-SEG (Chen et al., [2023)) in all three metrics was found to be SPARK 2020). The
evaluation metrics revealed that the object binary mask was more affected by the adversarial attacks than
the object bounding box.

It was observed that the CSA attacks poorly degraded the outputs in evaluation metrics,
except for the accuracy of the STB case. However, it was surprising to note that there was a negative
difference in the accuracy metric after the CSA and IoU attack . Specifically, in the STB
case, after the adversarial attacks, the accuracy of TransT-SEG (Chen et al 2023) decreased by —1.06% for
the CSA attack and —4.87% for the IoU attack (Jia et al., . This improvement was
also observed for MixFormer in Table [2| for EAO and robustness metrics after the CSA
attack in the STB case and accuracy after the CSA in the STS case of the experiments.

According to Table[2] the most powerful attack against MixFormerM (Cui et all, 2022) is the IoU attack
2021). Even after the IoU attack (Jia et al. 2021), the adversarial perturbation slightly improves

accuracy. The EAO metric in the evaluation of the bounding box and binary mask is the most affected.
When compared to the corresponding metric for TransT-SEG (Chen et al.| 2023)) as shown in Table [I} the
IoU attack (Jia et all [2021) had a more significant impact on binary mask creation for MixFormerM than
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Table 2: Evaluation results of the MixFormerM tracker attacked by different methods on
the VOT2022 (Kristan et al., |2023)) Short-Term (ST) dataset and protocol for two stacks: bounding box
prediction via bounding box annotations (STB), binary mask prediction via binary mask annotations (STS).
The “Clean” values are the original tracker performance without applying any attack.

EAO Accuracy Robustness
Stack  Method Clean  Attack Drop Clean  Attack Drop Clean  Attack Drop
STB CSA 0.303 0.308 -1.65%  0.479 0.478 0.21%  0.780 0.791 -1.41%
IoU 0.303 0.246 18.81% 0.479 0.458 4.38%  0.780 0.665 14.74%
STS CSA 0.589 0.562 4.58%  0.798 0.803 -0.63%  0.880 0.857 2.61%
IoU 0.589 0.359 39.05% 0.798 0.660 17.30% 0.880 0.677 23.07%

CSA CSA

MixFormerM TransT-SEG

Figure 1: Mask vs. bounding box predictions as the output of transformer trackers, MixFormerM
2022)) and TransT-SEG |Chen et al| (2023), while the adversarial attacks applied to perturb the input
frame/search region. The TransT-SEG tracker’s outputs harmed by the white-box methods, SPARK (Guo

et al.| 2020) and RTAA (Jia et al., [2020), more than black-box attacks, IoU (Jia et all, [2021)) and CSA (Yan
et al., |2020]).

for TransT-SEG (Chen et al., 2023)). However, this result was reversed when the object bounding box was
evaluated in both trackers. For this point, it is important to mention that tracking and segmentation is
performed by two different networks in MixFormerM 2022). Therefore, the object bounding box
evaluation is the assessment of the tracker’s network while the binary mask evaluation is the assessment the
segmentation network 2021)). In contrast, the TransT-SEG (Chen et al [2023) tracker performs

both tracking and segmentation by a single transformer tracker.

Figure [I] demonstrates a sample frame perturbed by different attacks for MixFormerM and TransT-SEG
trackers and the output results are depicted on the video frame. As the quantitative results indicated in
Tables|l|and |2, the white-box attacks (SPARK and RTAA) have harmed the binary mask and bounding box
more than the black-box attacks (IoU and CSA).

4.2 Adversarial Attacks per Perturbation Level

We test the effect of the perturbation levels on adversarial attack performance against transformer track-
ers. In white-box attacks such as SPARK (Guo et all [2020) and RTAA 2020)), the generated
perturbation is used to update the frame patch in each attack step. The overview of pseudocode of these
two attacks is presented in Algorithms [I] and [2] where the ¢, indicates the operation of clipping the frame
patch to the e-ball. The « is the applied norm of gradients, and I is the search region. Although there
are several differences in both settings, there is one similar step to generate the adversarial region from
the input image gradient and previous perturbation(s). Line 4 of the RTAA pseudocode and line 6 of the
SPARK pseudocode change the image pixels based on the computed gradients. By adjusting the e-ball, the
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Algorithm 1 RTAA (Jia et al.| [2020)) algorithm as the adversarial attack for object trackers

1: P+ Pt—-1) > Initialize with perturbation map of previous frame
2 12V T > Initialize with clean current frame
3: fori=1,...,i** do

4: I8V o 12V 4 ¢ (P 4 asign(Viaav £)) > Application of adversarial gradient descent
5 12 < max(0, min(7297, 255)) > Clamp image values in [0, 255]
6 P 1] > Update perturbation map
7. Return 724V, P > Return adversarial image and corresponding perturbation map

Algorithm 2 SPARK (Guo et al., |2020) algorithm as the adversarial attack for object trackers

. P+ Pt—-1) > Initialize with perturbation map of previous frame
2: S« Zfil P(t—1) > Sum of perturbation maps of last K frames
3 12V ] > Initialize with clean current frame image
4: fori=1,...,im** do
5: I’ « [2dv > Get a copy of current adversarial image
6: 18« ' 4+ ¢ (P — asign(Vy L) + S > Application of adversarial gradient descent
7: 12+ max (0, min(72v, 255)) > Clamp image values in [0, 255]
8: PeIdv_1_8 > Update perturbation map
9: S Zfil P(t—i) > Update the sum of perturbation maps
10: 1% « T4+ S > Generate the current adversarial frame
11: Return 724V, P > Return adversarial image and corresponding perturbation map

performance of attacks is evaluated to demonstrate the power of each adversarial idea for object trackers.
The plus or minus sign of the gradient sign corresponds to the decoupling direction and norm research in the
gradient-based adversarial attack (Rony et al. [2019). For instance, SPARK (Guo et all 2020]) uses minus,
while RTAA (Jia et al.| |2020) sums up the sign of gradients with image values. Furthermore, note that in
the original papers of SPARK (Guo et al., 2020) and RTAA (Jia et al., |2020), the attack parameters may
have different names than those we used in this paper. Our goal was to unify their codes and approach into
principle steps that make comparison more accessible for the audience.

An important aspect of the SPARK algorithm, mentioned in (Guo et all |2020), is its regularization term.
This feature is convenient for maintaining sparse and imperceptible perturbations (Guo et al., 2020). The
regularization term involves adding the L ; Norm of previous perturbations to the adversarial loss, which
helps generate sparse and imperceptible noises. We generated examples of SPARK perturbation (Guo et al.,
2020) versus RTAA (Jia et al., |2020) perturbations to verify this claim.

Evaluation Protocol The test sets of the experiments on the perturbation level changes are the UAV123
dataset (Mueller et all |2016) and VOTST2022 (Kristan et al.|2023). The UAV123 dataset comprises 123
video sequences with natural and synthetic frames in which an object appears and disappears from the frame
captured by a moving camera. We calculate success and precision rates across various thresholds under the
One Pass Evaluation (OPE) protocol. In this setup, the object tracker is initialized using the first frame
and the corresponding bounding box. Subsequently, the tracker is evaluated for each frame’s prediction for
the rest of the video sequence. Precision is measured by calculating the distance between the center of the
ground truth’s bounding box and the predicted bounding box. The precision plot shows the percentage
of bounding boxes that fall within a given threshold distance. The success rate is computed based on the
Intersection over Union (IoU) between the ground truth and predicted bounding boxes. The success plot is
generated by considering different thresholds over IoU and computing the percentage of bounding boxes that
pass the given threshold. Furthermore, we computed the L1 norm and structural similarity (SSIM) (Wang
et al., 2004)) as the measurements of sparsity and imperceptibility of the generated perturbations per attack.
We chose some video frames from the VOT2022ST (Kristan et all 2023) dataset to visualize these metrics
per frame.
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Figure 2: The precision and success plots related to the TransT (Chen et al 2021) performance after
RTAA (Jia et al 2020) (a, b) and SPARK (c,d) attack under different levels of noise on
UAV123 (Mueller et all, [2016) dataset. The average score for each metric is shown in the legend of the plots.
The ’red’ plot is the original TransT performance without any attack applied on the tracker. The e’s are
corresponded to €’s in our experiment, changing from e; = 2.55 to e5 = 40.8 to assess the TransT performance
after the white-box attacks under various perturbation levels. The SPARK performances per perturbation
level shifts did not change on UAV123dataset as one can observe the SPARK curves are overlieded.

Attacks Setting The SPARK (Guo et al) 2020) and RTAA approaches applied on
the TransT tracker (Chen et all [2021) are assessed in this experiment using the OPE protocol. Both
attacks generate the perturbed search region over a fixed number of iterations (10). While the step
size « for the gradient’s update is 1 for RTAA and 0.3 for SPARK. We used five levels of perturbation
e € {2.55,5.1,10.2,20.4,40.8} to compare its effects on the TransT (Chen et al) [2021) performance on
UAV123 (Mueller et all [2016) and VOT2022ST (Kristan et al. [2023) datasets. The €'s are selected as
a set of coefficients {0.01,0.02,0.04,0.08,0.16} of the maximum pixel value 255 in an RGB image. It is
worth mentioning that the e for both attacks are set to 10 in their original settings. Therefore, the original
performance of each attack is very close to the e3 = 10.2 perturbation level.

Results Figure 2 shows the performance of TransT (Chen et all |2021) under RTAA
and SPARK attacks with different perturbation levels. The red curve indicates the clean
performance of the tracker before applying any attacks. The other perturbation levels are demonstrated
with different colors. Unlike classification networks with transformer backbones (Shao et al. |2022)), the
transformer tracker performances after the RTAA attack using different €’s are minimally
different but not after SPARK attacks . Adversarial perturbation methods against trackers
use the previous perturbation to be added to the current frame. This setting may remove the sensitivity
of the attack methods in the perturbation levels. In the RTAA attack (Jia et all , only one last
perturbation is added to the current frame. In contrast, the SPARK (Guo et al. 2020) uses the previous
perturbations in each time step for the last K = 30 frames, which reduces the sensitivity of the output

to small changes in the inputs. For perturbation levels {es, €4, €5}, RTAA’s performance (Jia et al., |2020)
remains the same, whereas using smaller levels affects its performance. It is noteworthy that RTAA

2020) outperforms SPARK (Guo et al., 2020) on UAV datasets (Mueller et al., 2016) in almost every

perturbation level except for the most minor level ¢; = 0.01 in which SPARK is the stronger attack.

In the main paper of SPARK (Guo et al., 2020), it has been mentioned that the technique generates a
temporally sparse and imperceptible noise. Figure [3] displays various examples of perturbed search regions
and perturbation maps produced by the TransT tracker after applying the SPARK attack. Upon applying
the attack, we noted that some frames, like frame number "7" of the "bubble’ sequence and the first two rows
of Figure [3| generated search regions and perturbation maps with fixed values for imperceptibility (SSIM
metric) and sparsity (L1 norm). Even by increasing the perturbation level, some frames retained the same
level of imperceptibility and sparsity. However, there were also instances of super-perturbed search regions
per video sequence, where the noise was noticeable, and the L1 norm had a high value, as shown in the last
two rows of Figure [3] We consider a perturbed search region super-perturbed when the imperceptibility of
the region is lower than 50%. The SPARK algorithm generates the most imperceptible noise with a constant
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Figure 3: The search regions related to the “bubble” sequence in the VOT2022ST dataset
after applying SPARK 2020) attack on TransT (Chen et al., [2021) tracker. The perturbed
search region is labeled with the SSIM (Wang et al.,|2004)) measured between search regions before and after
the attack. The perturbation maps, following the work of (Yan et al. |2020]), are created to demonstrate
the added noise in colors. The L1 norm for perturbation maps are calculated to show the perturbation
density /sparsity.

and high SSIM value of 99.95% and sparse noise with L1 norm of 40.96 in all of the perturbation levels given
the same frame. This fixed number of L1 norm is also the result of the regularization term discussed in the
SPARK paper . This stability of SSIM and L1 norm have been repeated for many frames
of the “bubble” sequence for SPARK attack (Guo et al., [2020) while in some frames, the imperceptibility
and sparsity are not stable per perturbation levels.

In Figure [3] we indicate some super-perturbed regions with their perturbation maps per perturbation level.
Interestingly, as we increase the perturbation levels, the number of super-perturbed regions also increases.
In the attack settings, the perturbation of previous frames considered in the loss function is erased every 30
frames for RTAA and SPARK algorithms. Table [3| provides information
about the number of highly perturbed frames during a video sequence and the average imperceptibility
(SSIM) and sparsity (L1 norm) scores. With higher levels of perturbations, more frames become highly
perturbed, resulting in a greater L1 norm of the perturbations. Furthermore, in the lower perturbations
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Table 3: The perturbation levels versus number of highly perturbed search regions generated by the SPARK
algorithm (Guo et all [2020) applied on TransT (Chen et al., [2021) tracker. The SSIM and L1 norm are
computed as the average number of highly perturbed regions on the “bubble” sequence of VOT2022

2023)) dataset.

€ No. of frames SSIM% L1 norm
2.55 #7 36.86 176.04
5.1 #7 40.96 181.86
10.2 #13 41.08 181.33
20.4 #13 41.97 182.53
40.8 #14 42.53 183.98
€1 €9 €3 €4 €5

Perturbed
Search Region

Perturbation
Map

Frame No. #7 #7 #7 #7 #7

Figure 4: The search regions related to the “bubble” sequence in the VOT2022ST dataset
after applying RTAA 2020)) attack on TransT (Chen et al) [2021) tracker. The perturbed
search region is labeled with the SSIM (Wang et al. [2004) measured between search regions before and after
the attack. The perturbation maps, following the work of 2020)), are created to demonstrate the
added noise in colors. The L1 norm for perturbation maps are calculated to show the perturbation density
(i.e. sparsity).

levels, the highly perturbed search regions generate more perceptible noise, i.e. the imperceptibility of
generated perturbations have grown by boosting the perturbation level.

For the RTAA attack applied on the TransT (Chen et al.l 2021) tracker, whenever the
perturbation level boosts the imperceptibility and sparsity declines. Figure [] demonstrates the result of
applying RTAA against TransT tracker for the same frame #7 of the 'bubble’ sequence. The RTAA attack
perturbs search regions with higher SSIM values at the lowest € level, i.e. the first level ¢ = 2.55. By
increasing the perturbation levels, the perceptibly of the RTAA perturbation has been increased while the
sparsity changes are small.

4.3 Adversarial Attack per Upper Bound

We conducted an experiment to test the vulnerability of the IoU attack to noise bounding,
using different upper bounds. The IoU method is a black-box attack that misleads trackers
by adding various noises to the frame using object bounding boxes. The essential steps of the IoU attack
involve creating two levels of noise perturbations: orthogonal and normal direction noises. Our
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SSIM: 13.18% SSIM: 7.397%

Perturbed Frame

Perturbation Map

Figure 5: The perturbed frames and perturbation maps generated by the IoU method l, 2021))
against ROMTrack (Cai et al., [2023) using three upper bounds of ¢ € {8k, 10k, 12k}. The imperceptibility

and L1 norm of the generated perturbations are shown in the frames representing the noise imperceptibility
and sparsity of perturbation maps.

study aims to manipulate the attack settings in the second part of perturbation generation, which is in the
normal direction.

Dataset and Protocol The performance of the IoU attack is assessed against ROMTrack
on UAV123 (Mueller et all [2016) dataset using the OPE protocol. The success rate, precision rate,
and normalized precision rate are computed to compare the results. For this experiment, we report the
average of the success rate called Area Under Curve (AUC), as well as the average precision and norm
precision on the thresholds.

Attack Setting The IoU method is a black-box attack on object trackers. It adds two
types of noise to the frames: one in the tangential direction and the other in the normal direction. In the
original setting, there was no limit on the number of times that noise could be added in the normal direction.
This noise was limited only by the upper bound ¢ and the S,y value in the original setting. The S,y value
is the weighted average of two computed IoU values: 1) the IoU of the noisy frame prediction and the first
initialized frame I¢% in the attack algorithm, and 2) the IoU of the noisy frame prediction and the last
frame bounding box in the tracking loop. In our experiment, we set a limit of 10 steps in the algorithm’s
last loop to reduce the processing time, especially for the larger upper bound ¢ values. We tested the IoU
attack under three upper bounds: ¢ € {8000, 10000,12000}. The middle value of ¢ = 10000 corresponds to

the original setting of the IoU attack (Jia et al., |2021)).

Results The images in Figure [5] display the results of the IoU attack against ROM-
Track under various upper bounds for a single frame. The L1 norm of the perturbation has
increased as the upper bounds were raised. Additionally, the imperceptibility, measured by the SSIM values,
decreased as the perturbations became more severe. Since the IoU attack starts by generating some random
noise, it is highly dependant on the initialization points. For some cases, the algorithm did not process a
single video sequence even after 48 hours. One solution that worked for proceeding was to stop the processing
without saving any results about the current sequence to restart the evaluation. After re-initialization, the
attack began from another random point (noise) and it proceeded to the next sequence in less than 2 hour.

The results of the attack on ROMTrack (Cai et al., [2023)) using the IoU method (Jia et al.l[2021)) with different

upper bounds are presented in Table[d] It is clear that a higher upper bound leads to a more effective attack
across all metrics. Despite the most substantial level of perturbation using the IoU method (Jia et al.
2021)) resulting in an 8.79% decrease in the AUC metric, this outcome is insignificant. As shown in Figure
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Table 4: Evaluation results of the ROMTrack (Cai et al.; [2023) attacked by the IoU approach (Jia et al.|
2021) on the UAV123 (Mueller et al.l [2016) dataset and protocol for three different upper bounds on the
added noise in normal direction up to 10 processing steps.

AUC Precision Norm Precision

¢ Original Attack Drop Original Attack Drop Original Attack Drop

8k 69.74 66.85 4.14%  90.83 89.31 1.67%  85.30 83.00 2.70%
10k 69.74 65.46 6.14%  90.83 87.81 3.32%  85.30 81.73 4.18%
12k 69.74 63.61 8.79%  90.83 86.31 4.98%  85.30 79.71 6.55%

increasing ¢ generates a perceptible perturbation with a lower SSIM to the original frame, resulting in a more
noisy frame that damages the tracking performance of ROMTrack (Cai et al.l 2023)) even more. However,
the robust tracking performance is not affected more than 9% per metric, even in the highest perturbation
level. In other words, ROMTrack (Cai et al., [2023) demonstrates good adversarial robustness against IoU
attack on UAV123 dataset.

5 Discussion and Conclusion

We conducted a study on adversarial attack methods for object trackers with the aim of testing their impact
on transformer trackers. Our paper includes experiments on tracking datasets, trackers, and attack settings.
We evaluated three transformer trackers, ranging from light to deep relation modelling, on two tracking
benchmarks. At the same time, we perturbed their inputs using four attack methods, including two white-
box and two black-box approaches.

Our analysis revealed that binary mask prediction is more affected than object-bounding box predictions
for the same tracker. White-box attacks were found to be stronger than black-box attacks against all track-
ers. For a single attack, the transformer tracker with deeper relation modelling showed greater adversarial
robustness. The level of perturbation shifts may or may not change the overall tracking results depending
on the attack approach. A higher level of perturbation always led to a greater number of super-perturbed
search regions with greater L1 norm for perturbations in both white-box and black-box settings. In the case
of black-box attacks dealing with random noises, the initialization point is a critical aspect. The IoU method
becomes highly time-consuming due to inappropriate initialization.

The most effective attack idea may vary depending on the benchmark, as the strongest attack on the
VOT2022 benchmark was SPARK, whereas RTAA outperformed the SPARK attack on the UVA123 bench-
mark. The only transferrable attacks for transformers with deep relation modelling are the black-box, IoU
and CSA methods. Among black-box methods, the IoU attack outperformed CSA for TransT-SEG and
MixFormerM trackers. However, the effect of the IoU method against ROMTrack is trivial. The ROMTrack
and MixFormerM bounding box predictions were harmed by the IoU method up to 9% and 18 % on UAV123
and VOT2022 datasets, respectively. It indicates that these trackers were not being challenged enough with
existing applicable attack methods.

We tested two tracking protocols, one-pass evaluation and anchor-based short-term tracking, using the
TransT, MixFormer, and ROMTrack trackers. Our study revealed that black-box attacks are the only
applicable methods on transformer trackers with deep relation modelling. However, they are not challenging
these trackers as much as white-box attacks challenge TransT. We also discovered that changes in the
perturbation level do not necessarily affect the tracking performance over a tracking dataset. The sparsity
and imperceptibility of the perturbations can be managed by advising a proper loss function. Finally and
above all, further research on the adversarial robustness of transformer trackers is needed for a more in-depth
exploration.
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