Published as a conference paper at COLM 2025

SEAL: Steerable Reasoning Calibration of Large Language
Models for Free

Runjin Chen!* Zhenyu Zhang'* Junyuan Hong! Souvik Kundu? Zhangyang Wang!
IThe University of Texas at Austin, *Intel
{chenrunjin, zhenyu.zhang, jyhong, atlaswang}@utexas.edu, souvikk.kundu@intel.com

Abstract

Large Language Models (LLMs), such as OpenAl’s ol-series have demon-
strated compelling capabilities for complex reasoning tasks via the extended
chain-of-thought (CoT) reasoning mechanism. However, recent studies (Fu
et al., 2024; Wang et al., 2025) reveal substantial redundancy in the CoT
reasoning traces, which not only increases inference latency but also nega-
tively impacts model performance by diverting attention to unnecessary
reasoning paths. To address this issue, we investigate the internal reason-
ing structures of LLMs and categorize them into three primary thought
types: execution, reflection, and transition thoughts. Moreover, our anal-
ysis reveals that excessive reflection and transition thoughts are strongly
correlated with failure cases and these thought categories exhibit clear sep-
aration in the latent space. Based on these, we introduce SEAL (Steerable
rEAsoning caLibration), a training-free approach that seamlessly calibrates
the CoT process, improving accuracy while demonstrating significant effi-
ciency gains. SEAL consists of an offline stage for extracting the reasoning
steering vector in the latent space, followed by an on-the-fly calibration of
the reasoning trace through representation intervention using the steering
vector. Notably, the steering vector exhibits strong transferability across
various tasks. Extensive experiments across multiple models (DeepSeek-
R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSMSK,
LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improve-
ment in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our
code is publicly available at https://github.com/VITA-Group/SEAL.

1 Introduction

Recent advancements in Large Language Models (LLMs) have demonstrated significant
success in extending their capabilities beyond simple language understanding tasks to more
complex reasoning tasks, such as mathematical problem-solving (AlphaProof & Alpha-
Geometry, 2024; Ahn et al., 2024; Luo et al., 2023; Yuan et al., 2023), planning (Wang et al.,
2023; Valmeekam et al., 2023), and code debugging (Xia et al., 2024; Zhong et al., 2024). The
primary factor contributing to this success is the ability of LLMs to execute an extended
chain-of-thought (CoT)(Wei et al., 2022) reasoning process, which emulates human-like
cognitive problem-solving by dynamically scaling test-time computation. Notable examples
include OpenAl’s ol-series models(OpenAl, 2024) and its open-source counterparts (Guo
et al., 2025; Team, 2024; Muennighoff et al., 2025). These models are designed to explore
diverse reasoning strategies, reflect on their decisions, iteratively refine solutions, and
rigorously verify correctness—closely emulating human cognitive processes.

However, such an extended reasoning process introduces significant inference overhead due
to the auto-regressive nature of LLMs. The generation process is typically memory-bound,
with the KV cache size growing linearly with sequence length, leading to increasingly expen-
sive memory transfer latency and further exacerbating inference inefficiencies. Moreover,
lengthy reasoning is not always necessary. Studies have shown that LLMs often determine

*Equal contribution.

https://github.com/VITA-Group/SEAL

Published as a conference paper at COLM 2025

the correct final answer early in the reasoning process but continue generating excessive
and redundant thought sequences (Fu et al., 2024). Such inefficient long responses can
even degrade final performance, as models may become trapped in redundant verifica-
tion loops (Chen et al., 2024) or suffer from underthinking due to unnecessary reasoning
detours (Wang et al., 2025).

Can we identify and calibrate the flawed reasoning pathways in current LLMs? In this paper,
we first decompose the entire reasoning process into a structured sequence of consecutive
thoughts and categorize them into three types: (i) execution thoughts, (ii) reflection thoughts,
and (iii) transition thoughts. Our analysis reveals that LLMs allocate significantly more
thoughts to samples where they fail to produce the correct answer. We further analyze
the conceptual representations of each thought type and observe that they are highly
distinguishable in the latent space of deep layers. Building on this analysis, we propose
SEAL (Steerable rEAsoning caLibration), a training-free approach to calibrate reasoning
paths, achieving a win-win of both efficiency and capability. With SEAL, we first perform
an offline extraction of the reasoning steering vector in the latent space using a small subset
of the training data (around one hundred samples). Then, during inference, we dynamically
adjust the hidden states through arithmetic operations with the steering vector, enabling
efficient reasoning calibration.

Our key contributions are as follows: (i) We systematically study the reasoning process of
O1/R1-like LLMs and identify three distinct types of thoughts that compose the overall rea-
soning flow. Further, our analysis reveals that these thought types are highly distinguishable
in the latent space; (ii) We propose a training-free strategy, SEAL, that effectively calibrates
the reasoning process, reducing token consumption per question while simultaneously
improving accuracy. (iii) Extensive experiments across diverse models (DeepSeek-R1-Distill
and QwQ-32B-Preview) and various challenging benchmarks (such as Math500, GSM8K,
LiveCodeBench) demonstrate that SEAL achieves consistent accuracy improvement by up
to 11%, along with 11.8% to 50.4% token savings.

2 Recognizing Reasoning Patterns in LLMs

Question

In how many ways can 7 people sit around a round table if no two of the 3 people Pierre, Rosa, and Thomas can sit next to each other? (Seating
arrangements which are rotations of each other are treated as the same.)

Response

Okay, so I have this problem where I need to figure out how many ways 7 people can sit around a round table, but with a condition: Pierre, Rosa, and
Thomas can't sit next to each other. Hmm, circular permutations can be tricky, but let me try to break it down step by step.

First, I remember that for circular permutations, the number of ways to arrange n people around a round table is (n-1)! because rotations are
considered the same. So, for 7 people, it would normally be 6! = 720 ways. But here, we have restrictions, so I need to subtract the cases where
Pierre, Rosa, and Thomas are sitting next to each other.

In this case, the sets would be the arrangements where at least two of Pierre, Rosa, and Thomas are sitting next to each other. So, I need to calculate
the total number of arrangements without any restrictions, subtract the number of arrangements where at least two of them are sitting together, but
then add back in the cases where all three are sitting together because they were subtracted too many times.

Alternatively, another approach is to first arrange the non-restricted people and then place Pierre, Rosa, and Thomas in the gaps between them. That
might be a more straightforward method.

So, putting it all together, the total number of arrangements is the number of ways to arrange the 4 people multiplied by the number of ways to place
Pierre, Rosa, and Thomas in the gaps. That is 6 * 24 = 144.

Wait, but hold on. Is that the final answer? Let me double-check.

Wait, no, because when we fix one person to eliminate rotational symmetry, we might have overcounted or undercounted something. Let me think.

Execution Thoughts Reflection Thoughts Transition Thoughts

Figure 1: One example from DeepSeek-R1-Distill-Qwen-7B for a math question, where the
entire response is divided into individual thought blocks.

Published as a conference paper at COLM 2025

We begin with a preliminary study on the reasoning patterns of Ol-like LLMs that em-
ploy extended chain-of-thought (CoT) reasoning processes. To analyze the fine-grained
reasoning steps, we observed that the model often uses “\n\n"” to separate distinct steps
in its responses. Therefore, we decompose the generated output O into a sequence of
interconnected thoughts, segmenting each thought using two line break symbols, such that
O = (Ty, Ty, ..., Tn). Our experiments demonstrate that different thoughts can be catego-
rized into distinct types, each exhibiting unique roles within the reasoning process. Figure 1
illustrates a representative example for a math question using DeepSeek-R1-Distill-Qwen-7B.
We identify three types of thoughts: (i) Execution thoughts, where the model analyzes the
problem and solves it step by step; (ii) Reflecting thoughts, where the model pauses the
reasoning process to verify its steps; and (iii) Transition thoughts, where the model shifts its
reasoning flow and rethink the problem from a different perspective.

Considering the statistical properties of

various thoughts throughout the reason- s

ing process, we present the results in Fig- 1 e corect: # Taken = 7556

ure 2. Firstly, as the task difficulty in-

creases, the model generates longer re- 3 2 L Cormts b 16 [T tncorrect: # Token =9133
sponses for correctly answering the ques- 2 |\ roicn- 2060

tions, with the average token budget ex- £ ? 7 ! Jj Tncorrect: # Token = 9612
panding from 1,534 to 3,323. This trend £ , § | comscs ruken=2015

aligns with intuition, as more complex = et #loken 79247
questions necessitate greater reasoning 5 o1 Correct:# Token=3323

efforts for resolution, leading to longer i o Ao
response sequences. However, for sam- # Thoughts ”

ples of the same difficulty level, the num-
ber of thoughts in incorrect samples is
significantly higher than in correct ones,
with each type of thought exhibiting more
steps in incorrect cases. Given that the dif-
ficulty of correct and incorrect samples
is comparable, these results suggest that
such excessive reasoning steps introduce significant redundancy beyond the necessary
reasoning process and may negatively impact performance.

Figure 2: Statistics on the number of different
types of thoughts for subsets of samples that the
model answered correctly and incorrectly. The
results are derived from DeepSeek-R1-Distill-
Qwen-1.5B on the the Math-500 task. Response
lengths are reported numerically.

Additionally, the increase in thoughts for incorrect samples is largely driven by a rise in
reflection and transition thoughts, as each reflection or transition step is typically followed
by several execution steps. As shown in Figure 9, this pattern aligns with recent studies,
such as Chen et al. (2024), which demonstrate that allocating excessive reasoning steps to
simple questions is ineffective. Similarly, Fu et al. (2024) finds that models often identify
the correct answer early in the reasoning process but continue with redundant reasoning
steps. Wang et al. (2025) argues that frequent transition thoughts disrupt the continuity
of reasoning, leading to underthinking and performance degradation. Inspired by these
studies, we summarize two major flaws in current O1-like reasoning process: (i) Efficiency:
Frequent reflection and transition thoughts consume a significant token budget, introducing
substantial efficiency overhead. Given that LLMs rely on auto-regressive generation and
require increasing KV cache storage for long-context processing, excessive reasoning steps
impose a considerable cost for computation and memory transfer. (ii) Effectiveness: Reflec-
tion and transition thoughts can lead to either overthinking or underthinking, diverting the
model from the essential reasoning path. This distraction results in suboptimal performance,
as the model fails to focus on the most direct and necessary reasoning steps.

In the following section, we aim to analyze the roles of different thoughts in the latent
space and explore a controllable approach to mitigate redundant reflection and transition
thoughts, thereby enhancing both the efficiency and effectiveness of the reasoning process.

Published as a conference paper at COLM 2025

3 Different Reasoning Patterns are Distinguishable in the Latent Space

To analyze the underlying mechanisms of different reasoning patterns, one challenge lies in
the diversity of tokens present in various thoughts within the same category. Specifically,
for all thoughts classified as reflection thoughts, the specific tokens in each instance exhibit
substantial variation, as they are closely tied to the particular details of the question, as
illustrated in Figure 1. This variability complicates detailed analysis. Meanwhile, trans-
former models process input sequences in a layer-wise manner, with representations at each
layer capturing and accumulating conceptual knowledge rather than token-specific content.
These latent space representations offer a meaningful way to understand reasoning dynam-
ics. Thus, we conduct a preliminary study to analyze how different reasoning patterns are
structured within the latent space.

Layer: 1

Layer: 5

Layer: 10

Layer: 15
~

Layer: 20

Layer: 28

o
4
/.
’

N
\
¥
N
b3

1
\g

\
\
\
\

\

Reflection Thoughts Transition Thoughts Execution Thoughts

Figure 3: Results of t-SNE visualization of different reasoning thoughts in the latent space.

Experiments are conducted using DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) on
the Math-500 (Lightman et al., 2023) task. We first execute the general inference process
and collect the representations H; corresponding to the “\n\n" of each thought in layer i.
These representations encapsulate the entire information of each thought and determine
the initial token of the subsequent thought, making them a strong indicator for analyzing
the conceptual behavior of different thoughts. We then apply T-distributed Stochastic
Neighbor Embedding (t-SNE) (Van der Maaten & Hinton, 2008) to project H; into a two-
dimensional space. The results are presented in Figure 3, reveal several key observations: (i)
Execution thoughts are clearly separable from non-execution thoughts (i.e., reflection and
transition thoughts) in the latent space. For example, at Layer 20, execution thoughts exhibit
almost no overlap with other types of thoughts. (ii) The separability of different thought is
significantly better in deep layers, whereas the initial layers struggle to distinguish them.
This aligns with the expectation that shallow layers primarily capture low-level features,
while deeper layers encode more abstract conceptual and semantic knowledge (Liu et al.,
2024; Jin et al., 2024). (iii) Reflection and transition thoughts are more similar to each other
than to execution thoughts. Intuitively, both reflection and transition thoughts involve
reconsidering or modifying previous reasoning steps, whereas execution thoughts represent
the original step-by-step reasoning process. Based on these experiments, different reasoning
patterns are qualitatively distinguishable in the latent space.

4 Steerable Reasoning Calibration

Based on our preliminary investigation, we propose SEAL, a training-free framework
designed to achieve Steerable rEAsoning caLibration. As illustrated in Figure 4, SEAL
comprises two stages: the off-the-shelf extraction of the reasoning steering vector and the
on-the-fly intervention in the latent space during decoding. The core insight behind SEAL
is to identify the steering vector that controls the ratio of reflection and transition thoughts.
And use that vector to effectively reduce redundant token usage, achieving a win-win of
efficiency and accuracy.

4.1 Extraction of Reasoning Steering Vector

Collecting Reasoning Processing. We begin by using a validation set comprising samples
from reasoning benchmarks. In our experiments, we by default to use a selected set of

Published as a conference paper at COLM 2025

Execution Thoughts 5N Output N : -
PERTGCEA H 'Qef/ec . Extract Reasoning Steering Vector
f/aﬂ _
~_ T, N ! — Sex op g
Reflection Thoughts MLP 1 Hp Execution Vector
1
1
—— ~—T— ~y
ilgarsitionNiihody Attention Reasoning Steering Vector
~_ Hr A
Collect Reasoning e §=Hg—(Hg+ Hr)
. Input
Processin, Pt N
g Representations Transition Vector
Vanilla Decoding (Token Cost: 5K)

In how many ways can 7 people it around .

around table if no two of the 3 people |y ™, Execution Reflection | Execution | Transition Execution Transition
Pierre, Rosa, and Thomas can sit next to

each other?
oo Execution Reflection | ... Execution | Final Answer ®
Question
\\ g Decodi ith R i ing V Token Cost: 2k
ecoding with Reasoning Steering Vector (Token Cost: 2k)

Reasoning Calibration ’ Execution | Execution Reflection Execution | Final Answer @

Figure 4: Overview of our SEAL framework. The upper subfigure illustrates the offline
extraction process of the reasoning steering vector, while the lower subfigure depicts the
inference process utilizing the extracted steering vector.

1000 training samples from the training set of the Math (Hendrycks et al., 2021) dataset
and performed inference using the target model, such as DeepSeek-R1-Distill-Qwen-7B, to
generate the whole reasoning process for each sample. Similar to Section 3, we segmented
the reasoning process into a set of individual thoughts using a line-breaker symbol. Each
thought was then categorized into one of three predefined classes: execution, reflection,
or transition thoughts. The classification was performed through keyword identification.
For example, if a thought contained keywords like “Alternatively,” it was categorized as a
transition thought. The complete list of keywords used to classify transition and reflection
thoughts is provided in Appendix B. Any remaining thoughts were classified as execution
thoughts.

Calculating Steering Vector. For each thought j, we extract the output representations from

the i transformer blocks corresponding to the first token “\n\n”, denoted as Hf . We then
compute the average representations for each thought category:

Hc; = A 2 H{ , C € {Execution, Reflection U Transition }

C jec

Based on the results in Section 2, the primary objective of SEAL is to mitigate unnecessary
reflection and transition thoughts while preserving essential execution thoughts. To achieve
this, we compute the reasoning steering vector S as the arithmetic combination of different
thought vectors, i.e.,

S = Hg — Hgr

4.2 Decoding with Latent Space Intervention

We then perform on-the-fly calibration of the reasoning process using the reasoning steering
vector S. Specifically, during the decoding process, at the end of each thought, we intervene
in the representations of all \n\n tokens by applying an offset derived from S, formulated

as: H= H + a - S, where a is a hyperparameter controlling the strength of the intervention.
Since the extraction process is conducted offline, it does not introduce any additional latency

Published as a conference paper at COLM 2025

overhead during decoding. Furthermore, the computational cost of latent space intervention
is negligible, compared with the original forward pass.

For hyperparameter selection, we conduct a series of ablation studies in Section 5.3.1 and,
by default, set « = 1.0 and the intervention layer as 20 for Deepseek-R1-Distill-Qwen-1.5B
and Deepseek-R1-Distill-Qwen-7B, 55 for QwQ-32B-Preview. Additionally, we find that the
validation set used for extracting the steering vector generalizes well across different tasks,
such as transferring from mathematical reasoning to code generation. Further results are
provided in Section 5.2.1

5 Experiments

51 General Setup

We evaluate the effectiveness of our SEAL with several popular reasoning models, including
Deepseek-R1-distill-Qwen-1.5B, Deepseek-R1-distill-Qwen-7B (Guo et al., 2025) and QwQ-
32B-Preview (Team, 2024; Yang et al., 2024a). And we conduct the experiments on four
datsets: (i) Math500 (Hendrycks et al., 2021): A challenging math dataset comprising
problems from high school math competitions. We adopt a subset of 500 problems selected
by OpenAl® as test set. Additionally, the Math dataset categorizes problems by difficulty
on a scale from 1 to 5. We designate the subset of 500 problems with difficulty levels 4 or
5 as the hard test set. (ii) GSM8k Cobbe et al. (2021): A dataset of high-quality problems
at the grade school math level. This dataset exhibits high linguistic diversity while relying
on relatively simple grade school math concepts. The test set consists of 1,319 problems.
(iii) LiveCodeBench Jain et al. (2024): A dataset containing 400 Python coding problems
released between May 2023 and March 2024, each accompanied by a set of test samples for
verifying program correctness.

5.2 End-to-End Results

Table 1: Comparison results on the Math500 task. The reasoning steering vector of SEAL is
derived from a subset of training samples from the Math500 task.

Math-500 Math-500 (Hard)
Methods Accuracy@1 (1) #Tokens (|) | Accuracy@1 () #Tokens (|)
Deepseek-R1-Distill-Qwen-1.5B | 67.0 4526 | 54.2 5737
w. Logits Penalty fransition 68.2 (+1.2) 3660 55.7 (+1.5) 4766
w. Logits Penaltygefection 75.0 (+8.0) 4416 65.3 (+11.1) 5644
w. Logits Penaltypu, 76.6 (+9.6) 3340 63.7 (+9.5) 4552
w. SEAL ‘ 78.0 (+11.0) 3154 ‘ 68.3 (+14.1) 4086
Deepseek-R1-Distill-Qwen-7B | 85.8 3389 | 79.8 4176
w. Logits PenaltyTyansition 86.2 (+0.4) 3264 79.4 (-0.4) 4108
w. Logits Penaltyrefiection 88.2 (+2.4) 2905 81.7 (+1.9) 3773
w. Logits Penaltypom 87.4 (+1.6) 2807 80.9 (+1.1) 3596
w. SEAL ‘ 89.4 (+3.6) 2661 ‘ 84.0 (+4.2) 3365
QwQ-32B-Preview ‘ 90.4 2113 ‘ 86.6 2793
w. Logits Penalty fransition 90.2 (-0.2) 2115 85.5 (-1.1) 2820
w. Logits PenaltyRrefiection 88.8 (-1.6) 2104 84.0 (-2.6) 2778
w. Logits Penaltypogm 89.4 (-1.0) 1966 83.2 (-3.4) 2681
w. SEAL ‘ 91.0 (+0.6) 1716 ‘ 85.5 (-1.1) 2323

Ihttps://huggingface.co/datasets/HuggingFaceH4/MATH-500

https://huggingface.co/datasets/HuggingFaceH4/MATH-500

Published as a conference paper at COLM 2025

Table 2: Generalization results of SEAL across different datasets. The reasoning steering
vector is obtained from a subset of training samples from the Math500 task.

GSMSK LivecodeBench
Methods Accuracy@1 (1) #Tokens (|) | Accuracy@1 () #Tokens (|) |
Deepseek-R1-Distill-Qwen-1.5B | 74.1 2015 | 185 8205 |
w. Logits Penaltytransition 752 (+1.1) 1862 16.8 (-1.7) 8180
w. Logits Penaltygegection 78.5 (+4.4) 1214 26.0 (+7.5) 7160
w. Logits Penaltypog 78.3 (+4.2) 1100 25.8 (17.3) 7050
w. SEAL | 820 (+7.9) 999 | 285 (+10.0) 6923 |
Deepseek-R1-Distill-Qwen-7B | 88.0 1142 | 445 6856 |
w. Logits PenaltyTyansition 88.6 (+0.6) 1058 45.8 (+1.3) 6697
w. Logits PenaltyRegection 87.9 (-0.1) 904 44.0 (-0.5) 6166
w. Logits Penaltypou, 88.6 (+0.6) 885 46.3 (+1.8) 6065
w. SEAL | 88.4(+0.4) 811 | 517(:7.2) 5974 |
QwQ-32B-Preview ‘ 954 698 ‘ 62.5 6016 ‘
w. Logits PenaltyTransition 95.1 (-0.3) 657 63.5(+1.0) 5856
w. Logits Penaltygrefiection 95.8 (+0.4) 664 63.0 (+0.5) 5847
w. Logits Penaltypog 95.0(-0.4) 644 63.0(+0.5) 5847
w. SEAL | 957 (+0.3) 525 | 63.5(+1.0) 5309 |

5.2.1 Baseline and Evaluation Metrics.

We compare SEAL with another training-free method, namely logits penalty Wang et al.
(2025). Following their setup, we reduce the logits of tokens associated with characteristic
reflection or transition words, such as ‘wait” and ‘alternatively.” The adjustment values
were selected from {-1, -3, -10, -20}, with -3 generally yielding the best results. For each
task, we report both the average accuracy and token count across the test set to assess the
effectiveness and efficiency of SEAL. To ensure reproducibility, we use greedy search during
decoding. Results using sampling are additionally reported in the appendix E.

5.2.2 Main Results.

SEAL demonstrates superior performance and signifi-

cant efficiency gains. As shown in Table 1 and 2, across Deepseek-R1-Distill-Qwen-1.5B
diverse models and tasks, SEAL not only improves accu- —1 3 Bas

. 140017 ase
racy but also reduces response length, enhancing reason- =1 w. Logit Penalty

1200
1000

ing efficiency. For example, SEAL enhances performance v Quss

by up to 14.1% in accuracy while reducing token usage by
28.8% on hard problems in the Math-500 benchmark. This
improvement stems from the model’s ability to avoid ex-
cessive rechecking and minimize unnecessary transition
thoughts after steering, leading to a more direct path to |’7J_|_|
the final answer. More results on sequence length com- 0°0.0D. Reflecting 0.0.D. Transiton
parisons can be found in Appendix F. Additionally, SEAL

prevents the model from becoming trapped in an endless Figure 5: Logits Penalty makes
cycle of rechecking and switching, further optimizing the ther reflection and transition

reasoning process. thoughts increase

The reasoning steering vector exhibits high transferabil-

ity across different tasks. We applied the steering vector

extracted from the MATH dataset to GSM8K (out-of-distribution samples within the same
domain) as well as LiveCodeBench (transferring to a different domain). SEAL consistently
enhanced both performance and efficiency across all datasets (As shown in Table 2), with
accuracy improvements ranging from 0.3% to 10.0%, while reducing token usage by up to
50.4%. This indicates that the underlying patterns of rechecking and switching thoughts are

Thoughts
o
(=3
(=}

D
(=3
=]

400

[
=3
=]

Published as a conference paper at COLM 2025

generalizable across different tasks and domains. Consequently, our method can be effec-
tively applied to new domains without incurring the additional computational overhead of
extracting a new steering vector for each task.

Latent space calibration is more effective than token-space adjustment. One limitation
of the Logit Penalty (i.e., token-space adjustment) method is that it typically operates on
individual tokens, such as alternatively or wait, rather than adjusting at the conceptual level.
However, reflection and transition thoughts are often conveyed through phrases or longer
sentences, such as let me double-check or another approach is. These cases are difficult to
suppress using Logit Penalty alone. Furthermore, we observed that even after lowering
the logits of representative tokens for these thoughts, the model still exhibited a tendency
toward reflection and transition—albeit in a more implicit manner, through rephrased
expressions. To quantify this effect, we measured the number of reworded reflection and
transition steps. As shown in Figure 5, logit penalty led to an increase in such steps. In
contrast, our steering method suppresses the entire reflection/transition concept rather than
just specific tokens. As a result, these steps were significantly reduced, demonstrating that
steering is a stronger and more effective approach than logit penalty.

5.2.3 Quantitative Evaluation of Efficiency
Table 3: End-to-end efficiency comparison on the Math500 task benchmark. RD denotes the

relative reduction ratio compared to the baseline method. Both the average and maximum
reduction ratios are reported.

Models Throughput #Tokens /Sample Time/Sample (second)
(#Token/second) | Avg. RD (%) Max.RD (%) Avg. | Avg.RD (%) Max.RD (%) Avg.
Deepseek-R1-Distill-Qwen-1.5B 414 | N/A N/A 4666.9 N/A N/A 112.7
w. SEAL 435 34.70 80.46 3047.7 37.89 83.65 70.0
Deepseek-R1-Distill-Qwen-7B 37.2 \ N/A N/A 3522.1 N/A N/A 94.6
w. SEAL 395 28.78 81.26 2508.6 32.88 86.61 63.5

We report the end-to-end efficiency results in Table 3 using 50 random samples in Math500
benchmark. Without loss of generality, our implementation is based on the Hugging
Face Library with BF16 precision. Throughput and time cost are measured on a single
NVIDIA GH200 GPU without offloading. Our observations indicate that the additional
computation introduced by adding the steering vector is negligible. SEAL even achieves a
slight improvement in throughput (i.e., approximately 2 tokens per second) by eliminating
the overhead of KV cache in extremely long sequences. Additionally, SEAL significantly
reduces token consumption in responses, resulting in an average reduction in response time
per query by 32.9% to 37.9%. Notably, the most improved sample achieves a reduction
of 83.65% to 86.61%. These results further substantiate the efficiency gains and practical
advantages attained through our approach.

5.3 Ablation Study

In this section, we present ab-

lation studies on the effects of

applying the steering opera- Table 4: Ablation study of steering type. Experiments are
tion across different reasoning conducted with Deepseek-R1-Distill-Qwen-7B

types, layers, and strengths. Method | Math500 GSMSK _LiveCodeBench
. Baseline | 858 88.0 445
5.3.1 Ablation) SEAL (weakening Reflection) | 88.6 88.4 50.7
Study about the Steering Type SEAL (weakening Transition) | 87.8 88.5 49.0
SEAL (weakening Execution) 65.0 79.6 27.5
Table 4 presents the results SEAL | 894 88.9 517

of steering different reason-
ing types. We observe that
weakening execution thoughts
leads to performance degrada-
tion, as execution plays a crucial role in the reasoning process. In contrast, reducing the

Published as a conference paper at COLM 2025

influence of reflection and transition thoughts individually can still enhance performance.
Moreover, enabling the steering vector to weaken both reflection and transition yields the
most significant improvements. Consequently, the optimal reasoning formulation is given
by S=H E — H RT-

5.3.2 Ablation Study about the Steering Layer

Math500, Deepseek-R 1-Distill-Qwen-1.5B

LivecodeBench, Deepseek-R 1-Distill-Qwen-1.5B

78

Accuracy (%)
2 9w =
23 2 3

2
A

/\._.

A

5 10 15 20 25
Steering Layer Index

28

4400
4200 Z
o
4000 &
2
3800 2
3600 %
5
3400 2
3200

28

226
224

82
Sn

20

/e
\

8250

510 15 20 25
Steering Layer Index

28

90

Math500, Deepseck-R 1-Distill,Qwen-7B

/
-\/

5 10 15 20 25
Steering Layer Index

£
2

3200

3000

Average Token Cost

o
2
3
3

28

LivecodeBench, Deepseck-R 1-Distill-Qwen-7B

51
=50
g

S49

2
£48

Ace
PO
5 &85

A

510 15 20 25
Steering Layer Index

28

6800

6600

6400

6200

Average Token Cost

6000

Figure 6: Ablation study of the steering layers. Zoom in for better visualization.

In this section, we aim to identify the optimal layer for steering. We extract reasoning
steering vectors from different layers and apply corresponding steering to evaluate their
effectiveness. The results, shown in Figure 6, indicate that mid-to-late layers yields the best
performance, and the optimal layer shows strong generalization across different model and
tasks. This aligns with the typical forward pass dynamics of LLMs: early layers focus pri-
marily on token-level representations, while middle layers progressively merge information
across tokens to form higher-level concepts Liu et al. (2024); Jin et al. (2024). In contrast,
the final layers primarily summarize context to predict the next token. Consequently,
concept-level steering tends to be more effective in the middle layers.

5.3.3 Ablation Study about the Steering Strength

Math500, Deepseek-R 1-Distill-Qwen-1.5B

Math500, Deepseek-R1-Distill-Qwen-7B
80.0 90

LivecodeBench, Deepseck-R1-Distill-Qwen-1.5B»
30. 80 5,

775

750 2
s ’_‘ 20
700 s

0 05 1.0 125 15 20
Steering Strength a

Reflection & Transition Thoughts

E3

ES

|

0 0.5 1.0 125 15 20
Steering Strength &

® %
®

Accuracy (%)

%
s

53
g

60

=
5

M
Reflection & Tran:

ey
|

0 05 1.0 125 15 20
Steering Strength a

LivecodeBench, Deepseek-R I -Distill-Qwen-7B
< 5
54

3
2
=)

52

0 0.5
Steering Strength @

1

1.0 125 15 20

g & 2
Reflection & Transition Thoughts

w
3

>

Figure 7: Ablation study of the steering strength. Zoom in for better visualization.

We further investigate the effect of steering strength on the final outcomes, with results
presented in Figure 7. Our findings show that applying the reasoning steering vector ef-
fectively reduces reflection and transition thoughts. However, minimizing these thoughts
does not always yield better performance. This suggests that a balanced number of reflec-
tion and transition steps can be beneficial for arriving at the correct final answer. In our
experiments, a steering coefficient of « = 1.0 consistently demonstrated strong performance
across various tasks, and we maintained this setting throughout all our experiments.

6 Conclusion

In this paper, we investigate the internal reasoning dynamics of large language models
(LLMs), revealing that excessive engagement in reflection and transition thoughts often
introduces inefficiencies and errors during extended chain-of-thought reasoning. By catego-
rizing reasoning steps into execution, reflection, and transition components, we show that
these types exhibit clear and consistent separability within the latent space. This insight
enables more precise control over the reasoning process. Leveraging this observation, we
propose SEAL, a lightweight, training-free method that calibrates representations to steer
reasoning trajectories. Specifically, SEAL adjusts hidden states on the fly using a precom-
puted steering vector, effectively promoting execution while mitigating the influence of

Published as a conference paper at COLM 2025

less productive thoughts. Our approach improves both reasoning efficiency and accuracy
without requiring model fine-tuning or architectural modifications. Experimental results
across various LLMs and benchmarks confirm the robustness and generality of SEAL. It not
only reduces inference time but also consistently enhances performance, offering a practical
and interpretable solution for optimizing reasoning in language models.

Acknowledgment

Z. Wang is in part supported by NSF Awards 2523383 (AIMing), the NSF Al Institute for
Foundations of Machine Learning (IFML), and an Intel single PI SRS gift funding.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large lan-
guage models for mathematical reasoning: Progresses and challenges. arXiv preprint
arXiv:2402.00157, 2024.

Team AlphaProof and Team AlphaGeometry. Ai achieves silver-medal standard solving
international 178 mathematical olympiad problems. DeepMind blog, 179:45, 2024.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia,
and James Y Zou. Are more llm calls all you need? towards the scaling properties of
compound ai systems. Advances in Neural Information Processing Systems, 37:45767-45790,
2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song,
Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=?
on the overthinking of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Yichao Fu, Junda Chen, Sigi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and
Hao Zhang. Efficiently serving llm reasoning programs with certaindex. arXiv preprint
arXiv:2412.20993, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuan-
dong Tian. Training large language models to reason in a continuous latent space. arXiv
preprint arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contami-
nation free evaluation of large language models for code. arXiv preprint arXiv:2403.07974,
2024.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua,
Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. Exploring concept depth: How
large language models acquire knowledge and concept at different layers? arXiv preprint
arXiv:2404.07066, 2024.

10

Published as a conference paper at COLM 2025

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In The Twelfth International Conference on Learning Representations, 2023.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fantastic semantics and where to
find them: Investigating which layers of generative llms reflect lexical semantics. arXiv
preprint arXiv:2403.01509, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo
Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. arXiv
preprint arXiv:2308.09583, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candés, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAl. Learning to Reason with LLMs, 2024. URL https://openai.com/index/
learning-to-reason-with-1lms.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel
reasoning processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
Yuandong Tian, Jason Weston, and Xian Li. LIm pretraining with continuous concepts.
arXiv preprint arXiv:2502.08524, 2025.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://gwenlm.github.io/blog/qwg-32b-preview/.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati.
On the planning abilities of large language models-a critical investigation. Advances in
Neural Information Processing Systems, 36:75993-76005, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song,
Dian Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the
underthinking of ol-like llms. arXiv preprint arXiv:2501.18585, 2025.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-
world multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Jan Wehner, Sahar Abdelnabi, Daniel Tan, David Krueger, and Mario Fritz. Taxonomy,
opportunities, and challenges of representation engineering for large language models.
arXiv preprint arXiv:2502.19649, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824-24837, 2022.

Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky,
Christopher D Manning, and Christopher Potts. Axbench: Steering llms? even simple
baselines outperform sparse autoencoders. arXiv preprint arXiv:2501.17148, 2025.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demysti-
fying llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

11

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://qwenlm.github.io/blog/qwq-32b-preview/

Published as a conference paper at COLM 2025

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yugiong
Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
language models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837,
2024b.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuangi Tan,
Chang Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning
with large language models. arXiv preprint arXiv:2308.01825, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade
Nova, Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking
llms on natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model
debugger via verifying runtime execution step-by-step. arXiv preprint arXiv:2402.16906,
2024.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexan-
der Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Represen-
tation engineering: A top-down approach to ai transparency, 2023. URL https://arxiv.
org/abs/2310.01405.

12

Published as a conference paper at COLM 2025

A Related Works

Reasoning in Latent Space. Some studies have found that LLMs inherently perform
latent reasoning within their hidden computations Yang et al. (2024b); Shalev et al. (2024);
Hao et al. (2024); Tack et al. (2025). Yang et al. (2024b) explores reasoning paths in multi-
hop reasoning tasks and finds that intermediate entities can be recovered from latent
representations. Shalev et al. (2024) shows that multiple parallel latent reasoning paths may
exist in the middle layers. Collectively, these works demonstrate that LLMs naturally engage
in reasoning within their internal latent representations, embedding reasoning concepts and
cues. Additionally, several approaches have sought to further enhance and refine reasoning
within the latent space of existing models Tack et al. (2025); Hao et al. (2024). These efforts
collectively inspire further advancements in optimizing reasoning paths at the level of latent
representations.

Under-thinking and Overthinking. Several studies have shown that current O1-like models
exhibit both overthinking and underthinking issues in their reasoning paths Chen et al.
(2024; 2025); Wang et al. (2025); Fu et al. (2024). Overthinking, as discussed in Chen et al.
(2024), refers to allocating excessive computational resources to simple questions with
minimal performance gains. Fu et al. (2024) further reveals that LLMs often determine the
correct final answer early in the reasoning process but continue generating excessive and
redundant thought sequences. Conversely, underthinking, as described in Wang et al. (2025),
occurs when models frequently switch between thoughts without sufficiently exploring
promising reasoning paths to reach a correct solution. Our work aims to identify these
flawed reasoning patterns within the latent space and apply steering techniques to mitigate
them.

Representation Engineering (RepE). RepE Zou et al.; Wehner et al. (2025); Wu et al. (2025)
places the model’s latent representations at the core of analysis, identifying target concepts
within these representations and steering them to control model behavior. These methods
offer advantages such as efficiency, flexibility, and strong interpretability. Inspired by RepE,
our work adopts a similar approach to mitigate flawed reasoning patterns in the model’s
reasoning path.

B Criteria for Recognizing Reflection, Transition, and Execution
Thought

B.1 Criteria for different thoughts

Table 5: Criteria for recognizing reflection, transition, and execution thoughts

| Prefix: Alternatively

Transition Phrase: think differenly, another way, another ap-
proach, another method, another solution, another
strategy, another technique

| Prefix: Wait

Reflection Phrase: verify, make sure, hold on, think again,
’s correct, ‘s incorrect, Let me check, seems right

Through observation, we have summarized a set of rules to determine whether a given step
belongs to reflection, transition, or execution. These rules can be categorized into two main

types.

The first type is the prefix rule, which relies on the observation that many transition or
reflection thoughts often begin with words such as “wait” or “alternatively”. If a step starts
with these words, we classify it as a transition or reflection. However, this criterion alone is
insufficient, as many steps do not meet this condition.

13

Published as a conference paper at COLM 2025

To address this limitation, we designed the phrase rule, which identifies common phrases
that frequently appear in the middle of a step. As shown in Table 5, if any of these predefined
phrases occur within a step, we classify it as a transition or reflection. Steps that do not meet
either of these criteria are categorized as execution. During the classification process, letter
case is ignored.

B.2 Ablation on different criteria

Table 6: Ablation study of thoughts recognizing criteria with Deepseek-R1-Distill-Qwen-
1.5B

Methods MATH-500 GSM LiveCodeBench
Accuracy@1() Tokens(]) Accuracy@1(f) Tokens(]) Pass@1(?) Tokens(])

Base ‘ 67.0 4526 74.1 2015 18.5 8205

SEAL (w. Prefix Only) 78.0 3115 81.7 999 253 7119

SEAL (w. Phrase Only) 75.6 3522 80.4 1210 23.5 7466

SEAL ‘ 78.0 3153 82.0 999 28.5 6923

We also conducted an ablation study on the criteria rules, evaluating the performance of
using only the prefix rule or only the phrase rule to extract reflection and transition thoughts
for steering. The results, presented in Table 6, indicate that even with only a subset of the
rules, we can still achieve competitive results. This suggests that we do not need overly
rigid pattern designs; as long as these rules capture key concept-level information about
reflection and transition, we can obtain an effective steering vector. Naturally, more precise
rules can further enhance performance.

B.3 LLM-Based Labeling and Comparison with Heuristic Method

In addition to the keyword-based categorization introduced above, we also experimented
with using a frontier model (GPT-40) to label thought types. Given the full reasoning context
and the current step, we prompted the LLM to classify each thought as execution, reflection,
or transition.

Interestingly, our experiments showed that the keyword-based method achieves slightly
better end-task performance in SEAL as shown in Table 7.

Table 7: Comparison of thought labeling methods on MATH500 and Deepseek-R1-7B-Distill.

Method Accuracy (%)
Baseline 85.8
SEAL (Keyword-based) 89.4
SEAL (LLM-based) 88.6

That said, the LLM-based method remains appealing due to its ease of adaptation to new
domains, languages, or expanded categories, and could be especially useful in scenarios
where heuristic rules are hard to define or scale.

C SEAL Performance on In-Distribution Steering Vector

We also experimented with generating the steering vector using in-distribution data from
GSMSK and LiveCodeBench. For GSM8K, we followed the same approach as in MATH-
500, selecting 1000 samples from the training set to construct the steering vector. For
LiveCodeBench, since we used the authors’ released versionl as our test set, we leveraged
480 samples from the difference set between the later released version and the first version
to collect thoughts and generate the steering vector.

As shown in Figure 8, steering vectors derived from in-distribution data proved effective but
did not perform as well as those from MATH-500. This discrepancy can be attributed to the

14

Published as a conference paper at COLM 2025

Table 8: Performance of SEAL with a Reasoning Steering Vector Derived from In-Distribution
Samples

GSMSK LivecodeBench
Methods Accuracy@l1 (1) #Tokens (]) Pass@1 (1) #Tokens (])

Deepseek-R1-Distill-Qwen-1.5B

Base 74.1 2015 18.5 8205

SEAL 80.9 1196 23.8 7218
Deepseek-R1-Distill-Qwen-7B

Base 88.0 1142 44.5 6856

SEAL 88.6 786 49.0 6015

relatively homogeneous nature of GSM8K and LiveCodeBench samples, whereas MATH-
500 encompasses a wider range of difficulty levels and problem types, making it easier to
obtain a more generalized steering vector. These results further validate our hypothesis
that it is unnecessary to extract a new vector for each task individually, a well-curated,
high-quality dataset is sufficient to generate a generalizable steering vector.

D Generalization to Open-Ended Planning Tasks

To further evaluate the generalizability of SEAL beyond structured domains such as math-
ematics and programming, we conducted additional experiments on a more open-ended
reasoning benchmark: the NaturalPlan dataset(Zheng et al. (2024)), which focuses on
natural language calendar planning.

Importantly, we reused the reasoning steering vector extracted from the MATH domain,
to assess cross-domain transferability. As shown in Table 9, SEAL achieved consistent
improvements in both accuracy and response length compared to the baseline, indicating
that the latent patterns of reflection and transition overuse also appear in more open-ended
planning contexts.

Table 9: Results on the calendar planning task from the NaturalPlan benchmark using
Deepseek-R1-Distill-7B.

Method Accuracy (%) Avg. Response Length
Baseline 14.9 6341
SEAL (Math Vector) 18.6 3531

15

Published as a conference paper at COLM 2025

E Results with Sampling-Based Decoding

Table 10: Comparison results on the Math500 and LiveCodeBench. Using t = 0.6, top_p =
0.95 for decoding

Math-500 LiveCode
Methods Accuracy@1 (1) #Tokens (]) | Pass@1 (1) #Tokens (])
Deepseek-R1-Distill-Qwen-1.5B | 79.9 4021 | 296 7639
w. Logits Penaltyransition 80.9 (+1.0) 3802 29.3 (-0.3) 7567
w. Logits Penaltygefiection 78.8 (-1.1) 3416 28.9 (-0.7) 6727
w. Logits Penaltypou, 80.3 (+0.4) 3218 28.2 (-1.4) 6755
w. SEAL | 81.6(+1.7) 2976 | 32.2 (+2.6) 6468
Deepseek-R1-Distill-Qwen-7B ‘ 89.7 3334 \ 49.7 6609
w. Logits PenaltyTransition 88.5 (-0.2) 3318 48.7 (-1.0) 6652
w. Logits Penaltygefiection 89.7 (+0.0) 2942 53.1 (+3.4) 5920
w. Logits Penaltypoy, 90.3 (+0.6) 2831 53.8 (+4.1) 5895
w. SEAL ‘ 91.3 (+1.6) 2695 ‘ 56.3 (+6.6) 5871
QwQ-32B \ 91.1 3650 \ 76.2 5610
w. Logits PenaltyTransition 90.7 (-0.4) 3547 75.3 (-0.9) 5648
w. Logits Penaltygefiection 91.9 (+0.8) 3270 81.2 (+5.0) 5216
w. Logits Penaltyp, 92.1 (+1.0) 3150 81.5 (+5.3) 5169
w. SEAL | 925 (+1.4) 3160 | 82.8 (+6.6) 4959

We also experimented with decoding via sampling, using temperature t = 0.6 and top_p =
0.95. The results are reported in Table 10, averaged over three runs. Similar to greedy
decoding, we observe that SEAL achieves both improved performance and reduced token
usage.

F Comparison of Generated Sequence Lengths

Deepseek-R 1-Distill-Qwen-1.5B, Math500

12000 [Base Correct [ZZ1 Base Incorrect
10000 [Ours Correct EZZ Ours Incorrect
] g % 7]
2 8000+ -
()
% 1 >
; 6000 i 7
4000 1 ? 7
-
2000 - ¢ |_|_ |—|_
LA [T

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 8: Comparison results of generated sequence lengths. We report the average sequence
lengths for samples across different difficulty levels and separately for subsets where the
model produces correct or incorrect answers. The experiments are conducted on the Math500
task using the DeepSeek-R1-Distill-Qwen-1.5B model.

As shown in Figure 8, applying SEAL significantly reduces sequence length for subsets

where the model produces incorrect answers. This reduction occurs because the original
reasoning process is often disrupted by unnecessary reflection and transition thoughts.

16

Published as a conference paper at COLM 2025

Mitigating these distractions allows the model to focus on the core reasoning path, enhancing
performance while minimizing extra token consumption. Additionally, SEAL can slightly
reduce redundant tokens even for correctly answered samples, further demonstrating its
efficiency gains.

G Disentangling SEAL’s Gains from Truncation Effects

While SEAL demonstrates performance improvements, one may question whether the gains
stem primarily from suppressing redundant thoughts or simply from shortening the sequence
length, which might reduce token-level errors. To disentangle these effects, we conducted
a controlled comparison against a baseline that forcibly limits reasoning length without
semantic steering.

Specifically, we introduced a fixed “think budget” mechanism, where the model is in-
structed to insert an </think> token once the total token count in the reasoning process
exceeds a preset budget. After this point, the model proceeds directly to the answer sum-
marization phase. We set the budget to 3500 tokens, closely matching the average output
length of SEAL to ensure a fair comparison.

Table 11: Comparison between SEAL and simple truncation baseline on Deepseek-R1-Distill-
7B (MATH500).

Method Accuracy (%) Avg. Response Length
Baseline 85.8 3389
Baseline + Think Budget = 3500 85.0 2540
SEAL 89.4 2661

As shown in Table 11, the truncation-based baseline underperforms SEAL, despite producing
similarly shorter outputs. This demonstrates that SEAL’s advantage is not merely due to
sequence shortening. Instead, it effectively guides the model to suppress specific types of
non-productive reasoning, such as unnecessary reflection and transition thoughts, leading
to better-calibrated and more accurate reasoning trajectories.

H Thoghts Patten Demonstration Examples

We present a reasoning path for a sample from MATH-500 in Figure 9. This sample is
relatively easy, and the model is able to arrive at the correct answer within a few reasoning
steps. However, instead of confidently settling on the correct solution, the model repeatedly
attempts to verify and recheck its previously correct answer, continuously switching its
thoughts. Ultimately, this leads the model into a loop, causing it to deviate from the correct
reasoning path and produce an incorrect final answer.

17

Published as a conference paper at COLM 2025

Question

Simplify: V(2.5 - 0.72) / (2.7 - 2.5)

Response
Okay, so I have this math problem to solve: simplify the expression V(2.5% - 0.7%) divided by (2.7 - 2.5). Hmm, let me write that down to visualize it better.
First, the numerator is the square root of (2.5 squared minus 0.7 squared). The denominator is 2.7 minus 2.5. Alright, let me tackle the numerator first.

I know that 2.5 squared is 6.25 because 2.5 times 2.5 is 6.25. Similarly, 0.7 squared is 0.49 because 0.7 times 0.7 is 0.49. So, subtracting those, 6.25 minus 0.49. Let me
do that subtraction step by step.

6.25 minus 0.49. Hmm, 6.25 minus 0.4 is 5.85, and then minus 0.09 more would be 5.76. So, the numerator inside the square root is 5.76. Therefore, the numerator is
the square root of 5.76.

Now, what's the square root of 5.76? I remember that 2.4 squared is 5.76 because 2.4 times 2.4 is 5.76. Let me verify that: 2 times 2 is 4, 0.4 times 2 is 0.8, 2 times 0.4 is
another 0.8, and 0.4 times 0.4 is 0.16. Adding those up: 4 + 0.8 + 0.8 + 0.16 is 5.76. Yep, that's correct. So, the numerator simplifies to 2.4.

Now, moving on to the denominator: 2.7 minus 2.5. That's straightforward. 2.7 minus 2.5 is 0.2. So, the denominator is 0.2.

So now, the expression simplifies to 2.4 divided by 0.2. Let me compute that. 2.4 divided by 0.2. Hmm, 0.2 goes into 2.4 how many times? Well, 0.2 times 12 is 2.4
because 0.2 times 10 is 2, and 0.2 times 2 is 0.4, so 2 + 0.4 is 2.4. So, 0.2 times 12 is 2.4, which means 2.4 divided by 0.2 is 12.

and d i by 10 to elimis the decimal. So,

Wait, let me double-check that division. 2.4 divided by 0.2. Another way to think about it is to multiply
2.4 times 10 is 24, and 0.2 times 10 is 2. So, now it's 24 divided by 2, which is 12. Yep, that's correct.

So, putting it all together, the numerator simplifies to 2.4, the denominator simplifies to 0.2, and dividing them gives 12. Therefore, the simplified expression is 12.

But wait, let me make sure I didn't make any mistakes in my calculations. Let me go through each step again.

First, 2.5 squared is 6.25, correct. 0.7 squared is 0.49, correct. Subtracting 0.49 from 6.25 gives 5.76, correct. Square root of 5.76 is 2.4, correct. Denominator: 2.7 minus
2.5is 0.2, correct. Then, 2.4 divided by 0.2 is 12, correct.

Hmm, seems solid. Alternatively, I can think of the numerator as a difference of squares. The expression under the square root is 2.5 - 0.72, which factors into (2.5 - 0.7)
(2.5 +0.7). Let me compute that.

2.5 minus 0.7 is 1.8, and 2.5 plus 0.7 is 3.2. So, 1.8 times 3.2 is equal to 5.76, which is the same as before. So, the square root of 5.76 is 2.4, which is the same as before.
So, that's another way to confirm that the numerator is 2.4.

So, the denominator is 0.2, so 2.4 divided by 0.2 is 12. So, that's consistent.

Alternatively, I can think of the entire expression as (a? - b?)/(c - d), where a=2.5, b=0.7, ¢=2.7, d=2.5. But in this case, ¢ - d is 0.2, which is a small number, so the
division by a small number makes the result larger, which is why we get 12.

Wait, another thought: 2.7 is 2.5 + 0.2, so the denominator is 0.2, which is the same as the difference between a and b in the numerator's expression. Hmm, interesting.
So, the numerator is V(a? - b2) and the denominator is (a - b). So, the expression is V(a? - b?)/(a - b). Maybe I can simplify that expression algebraically.

Let me write that: V(a2 - b)/(a - b). Since a? - b? factors into (a - b)(a + b), so V((a - b)(a + b))/(a - b). Then, that's equal to V(a - b)V(a + b)/(a - b). Which simplifies to \(a
+b)/(a - b). Wait, is that correct?

‘Wait, hold on. Let me do that step by step. So, V(a2 - b?) is \[(a - b)(a + b)]. So, that's equal to V(a - b) times V(a + b). Then, the entire expression is [N(a-b) *V(@a+b)]
divided by (a - b). So, that's equal to [V(a +b) / V(a - b)] because V(a - b) cancels out one V(a - b) from the numerator.

So, in this case, a is 2.5 and b is 0.7. So, plugging in, we get V(2.5 + 0.7) divided by V(2.5 - 0.7). Let's compute that.
2.5+0.7is 3.2, and 2.5 - 0.7 is 1.8. So, V3.2 divided by V1.8. Hmm, let me compute that.

First, V3.2. 3.2 is 16/5, so V(16/5) is 4/N'5, which is approximately 1.788. Similarly, V1.8 is V(9/5) which is 3/V/5, approximately 1.342. So, dividing 4/\'5 by 3/V5 is equal
to (4/\5) * (V5/3) = 4/3. Wait, that's 1.333...

But wait, that contradicts my earlier result of 12. Hmm, that can't be right. So, where did I go wrong?

‘Wait, hold on. Let me check my algebra again. So, starting with V(a2 - b)/(a - b). That is equal to \[(a - b)(a + b)]/(a - b). Which is equal to V(a - b) * V(a + b)/(a - b). So,
that's equal to V(a + b)A(a - b). So, that's correct.

But in my numerical example, plugging in a=2.5 and b=0.7, I get \(3.2)/¥(1.8). Let me compute that numerically.

3.2 is approximately 1.788, and V1.8 is approximately 1.342. So, 1.788 divided by 1.342 is approximately 1.333, which is 4/3. But earlier, I had 12. So, that's a
problem.

‘Wait, so which one is correct? Is it 12 or 4/3? Hmm, that's confusing.
e o o

Wait, but 2.5 is a, 0.7 is b. So, a + bis 3.2,a- b is 1.8. So, V(a + b) is 3.2, which is approximately 1.788, and V(a-b) is 1.8, which is approximately 1.342. So, 1.788
divided by 1.342 is approximately 1.333, which is 4/3.

Execution Thoughts Reflection Thoughts Transition Thoughts

Figure 9: One example from DeepSeek-R1-Distill-Qwen-7B for a math question where the
model fails to provide the correct answer after multiple reflections and transitions, even
though it had arrived at the correct answer(12) multiple times before.

18

	Introduction
	Recognizing Reasoning Patterns in LLMs
	Different Reasoning Patterns are Distinguishable in the Latent Space
	Steerable Reasoning Calibration
	Extraction of Reasoning Steering Vector
	Decoding with Latent Space Intervention

	Experiments
	General Setup
	End-to-End Results
	Baseline and Evaluation Metrics.
	Main Results.
	Quantitative Evaluation of Efficiency

	Ablation Study
	Ablation Study about the Steering Type
	Ablation Study about the Steering Layer
	Ablation Study about the Steering Strength

	Conclusion
	Related Works
	Criteria for Recognizing Reflection, Transition, and Execution Thought
	Criteria for different thoughts
	Ablation on different criteria
	LLM-Based Labeling and Comparison with Heuristic Method

	SEAL Performance on In-Distribution Steering Vector
	Generalization to Open-Ended Planning Tasks
	Results with Sampling-Based Decoding
	Comparison of Generated Sequence Lengths
	Disentangling SEAL’s Gains from Truncation Effects
	Thoghts Patten Demonstration Examples

